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ProFD: Prompt-Guided Feature Disentangling for Occluded
Person Re-Identification
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1 INTRODUCTION
The supplementary material offers extra details and additional ex-
periments that were infeasible to include in the main article due to
space constraints. The document is organized as:

• Details of Mask Generation. In this section, we will describe
the mask generation process in detail.

• Additional Experimental Results. In this section, we will
provide more ablation study and visualization results to fully
demonstrate the effectiveness of ProFD.

2 DETAILS OF MASK GENERATION
In this paper, we define five regions based on the result of PifPaf[1].
Specifically, PifPaf can generate 17 part confidence and 19 affinity
fields of input image. These part confidence and affinity fields can
be regarded as probability maps presenting different body parts.
Here, these 36 probability maps are manually divided into 5 groups
as follows:

• head: "nose", "left eye", "right eye", "left ear", "right ear",
"left eye to right eye", "nose to left eye", "nose to right eye",
"left eye to left ear", "right eye to right ear", "left ear to left
shoulder", "right ear to right shoulder".

• upper arms and torso: "left elbow", "right elbow", "left
shoulder to left elbow", "right shoulder to right elbow", "left
shoulder", "right shoulder", "left shoulder to right shoulder".

• lower arms and torso:"left wrist", "right wrist", "left elbow
to left wrist", "right elbow to right wrist", "left hip", "right
hip", "right shoulder to right hip".

• legs:"left hip", "right hip", "left knee", "right knee", "left ankle
to left knee", "left knee to left hip", "right ankle to right knee",
"right knee to right hip".

• feet: "left ankle", "right ankle".
Then, according to the aforementioned groups, the 5-parts proba-
bility map M ∈ R𝐻 ′×𝑊 ′×5are generated by performing pixel-wise
max operation on these 36 probability maps. Finally, we perform
a argmax operation on the probability map M to generate body
parsing label 𝑌 , as follows:

𝑌 (ℎ,𝑤) =

0 if max

𝑐
(M(ℎ,𝑤, 𝑐)) < 0.5

1 + argmax
𝑐

(M(ℎ,𝑤, 𝑐)) otherwise,
(1)

where M(ℎ,𝑤, 𝑐) denotes the probability of spatial location (ℎ,𝑤)
belonging to group 𝑐 .

3 ADDITIONAL EXPERIMENTAL RESULTS
3.1 Ablation Study
3.1.1 Effectiveness of Prompt Design. To verify the impact of prompt
design onmodel’s performance, we designed three types of prompts:
’a photo of a {class}’, ’a {class} part of person’, and ’[Learnable Tem-
plate] {class}’. The experimental results are shown in Table 1.We can

Table 1: Performance of ProFDwith different prompt designs
on Occluded-Duke. {class} represents the class token, and
[Learnable Template] represents learnable prompts.

Prompts Rank-1 mAP

“a photo of a {class}.” 68.9 61.2
“a {class} part of a person.” 69.3 61.5
“[Learnable Template] {class}” 70.8 62.8
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Figure 1: Evaluation of the perfomance with different region
number𝑀 and learnable prompt length𝑁 onOccluded-Duke.

Table 2: Five types of grouping strategy for mask generation.

M Grouping Strategy

2 upper body(head+arms+torso), lower body(legs+feet)
3 head, middle body(arms+torso), lower body(legs+feet)
4 head, middle body(arms+torso), legs, feet
5 head, upper arms and torso, lower arms and torso, legs, feet
8 head, left arm, right arm, torso, left leg, right leg, left foot, right foot

observe that using fixed prompt templates significantly degrades
the model’s performance. Compared to the manually designed tem-
plates, using a learnable template increases mAP by at least 1.3%
and Rank-1 by at least 1.5%. However, it can also be observed that
the second type of prompt performs better than the first type, as
it provides more prior information to help the model better align
visual-textual features to some extent.

3.1.2 Evaluation of the Region Number. To validate the influence
of different region numbers 𝑀 , we conducted numerous experi-
ments by generating region masks using various grouping strate-
gies, which are defined in Table 2. The experimental results are
presented in Figure 1 (a). In general, we can observe that a bigger
region number 𝑀 leads to better performance. When the region
number𝑀 is equal to 5, the best performance is achieved. However,
performance begins to decline when the region number is greater
than 8. This is because finer-grained partitioning of body parts may
be more susceptible to noise in the mask itself, thereby affecting the
final result. Here is a delicate balance: a smaller region number may
be susceptible to occlusion effects, whereas a larger region number
may be influenced by noisy masks from off-the-shelf model.
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Figure 2: Visualization of the hybrid attention. The hybrid
attention, compared to the spatial-aware attentionwith noise,
more accurately focuses on prompt-specific regions and also
pays attention to some prominent features, such as a person’s
backpack.

Table 3: Performance comparison of the occluded ReID
problem on the Occluded-Duke, Occluded-ReID and P-
DukeMTMC.

Occluded-Duke Occluded-REID P-DukeMTMCMethod
Rank-1 mAP Rank-1 mAP Rank-1 mAP

w/o Local mem 70.7 62.9 91.2 88.3 91.6 83.5
Concatenated mem 70.8 62.8 91.1 88.5 91.7 83.7
Separate mem 67.2 60.6 90.5 88.2 89.9 82.4

3.1.3 Evaluation of the Length of Learnable Prompts. To investigate
the impact of learnable prompt lengths, we conducted experiments
using five different lengths of learnable prompts: 2, 4, 8, 16, and 32.
The experimental results are shown in Figure 1 (b). Overall, we can
find that performance improves as the length 𝑁 increases, reach-
ing its peak when the length 𝑁 equals 16. However, performance
slightly declines when 𝑁 is set to 32. This could be attributed to
an excessive number of learnable prompts, which may negatively
affect the model’s generalization ability, leading to catastrophic
forgetting and over-fitting.

3.1.4 Effectiveness of Self-distillation Strategy for Part Features. As
described in Section 4.3.2, their similarity of part features is in-
dependent of ID labels. And Due to the lack of annotations for
part features, the way to distill knowledge for part features differs
from global features. To thoroughly validate this conclusion, we
conducted experiments on three occluded person ReID datasets,
Occluded-Duke [2], Occluded-ReID [3], and P-DukeMTMC [4].
We compared three scenarios: training part features without self-
distillation (Line 1), concatenating part features and training with
a single memory bank (Line 2), and training with separate mem-
ory banks for each part feature (Line 3). The experimental results
are presented in Table 3. We can observe that the third strategy
significantly suppresses performance compared to the first two
strategies. The decrease in performance occurs because utilizing
global ID labels to distill part features results in the erosion of local
similarities, consequently reducing the representativeness of these
features.

3.2 Visualization
Visualization of Hybrid Attention Map. We present the visu-

alization of hybrid attention map to in Figure 2. We can find that
hybrid attention accurately focus to prompt-specific regions while
also allocating attention to prominent features of person, aiding
in the better identification. The results indicate that the hybrid
attention has achieved its intended purpose.
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