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Supplementary Material

This supplementary material provides additional imple-
mentation details, experimental analysis, and visualization
results for ContA-HOI. We organize the content as fol-
lows: Section 6 provides extended evaluation metrics anal-
ysis,Section 7 covers detailed implementation aspects, and
Section 8 discusses limitations and future work.

6. Extended Evaluation Metrics

6.1. Contact-Related Metrics Details

While the main paper presents standard evaluation metrics,
here we provide detailed explanations of our contact-related
metrics and introduce an enhanced evaluation protocol.

Contact and Collision Definitions. Following ROG [34],
we define contact as occurring when the minimum distance
between human joints (left hand, right hand, left foot, right
foot) and object surface is below 0.05m. The original ROG
evaluation defines collision/penetration as human-to-object
distance below 0.04m. We identified this threshold as too
permissive, potentially missing subtle but perceptually no-
ticeable penetrations. Therefore, we additionally compute
collisions using a stricter threshold of 0.01m to provide a
more conservative assessment of physical plausibility.

6.2. Enhanced Evaluation Results

Table 3 presents the evaluation results using our enhanced
mesh-based contact metrics alongside the standard joint-
based metrics from the main paper.

Table 3. Comparison of collision evaluation with different thresh-
olds on the FullBodyManipulation dataset. Collision@0.04m uses
the original ROG threshold, while Collision@0.01m uses our
stricter threshold for more conservative evaluation.

Method Contact% → Collision004% ↑ Collision001% ↑

CHOIS [20] 0.44 0.25 0.20
ROG [34] 0.45 0.22 0.17
ContA-HOI (Ours) 0.49 0.23 0.15

The stricter threshold better differentiates between meth-
ods - while all methods show similar performance with the
0.04m threshold, the 0.01m threshold reveals clearer dif-
ferences in their ability to avoid subtle penetrations. Our
method maintains competitive performance even under the
stricter evaluation, achieving the lowest collision rate (0.15)
among all baselines with the 0.01m threshold.

7. Detailed Implementation
7.1. Contact Affordance Predictor (CAP)
The Contact Affordance Predictor identifies task-relevant
contact regions on object surfaces by jointly reasoning
about text semantics, human pose configuration, and object
geometry. Here we provide additional implementation de-
tails beyond those in the main paper.

Architecture Design. CAP employs a hierarchical atten-
tion mechanism that creates a causal chain: language → hu-
man understanding → object interaction. This design is mo-
tivated by how humans naturally plan interactions: first un-
derstanding the task from language, then determining which
body parts to use, and finally identifying where to contact
the object.

Given input features: text embedding etext ↑ R
512 from

CLIP encoder, human keypoints h ↑ R
24↓3 representing

24 SMPL-X joints, and object point cloud O ↑ R
1024↓3

from PointNet++ encoding. The object point cloud is pre-
processed to ensure uniform coverage of the object surface,
combining both boundary points for overall shape and Pois-
son disk sampled points for fine details.

The hierarchical processing follows two steps. First, we
compute language-contextualized human features:

hproj = Linear(h) ↑ R
24↓d, (10)

hcontext = CrossAttn(hproj, etext, etext). (11)

This allows language to modulate which aspects of hu-
man pose are important for the specific interaction. For in-
stance, ”kick the box” would emphasize foot joints, while
”lift the box” would highlight hand configurations. The
cross-attention mechanism learns these task-specific asso-
ciations during training.

Second, we apply human-object attention to identify po-
tential contact regions:

Oenc = PointNet++(O) ↑ R
1024↓d, (12)

Acontact = CrossAttn(hcontext,Oenc,Oenc), (13)

Pcontact = Softmax(MLP(Acontact)), (14)

where Pcontact ↑ R
1024 represents contact probability for

each object point. The attention weights in Acontact capture
which object regions are most relevant for the contextual-
ized human features, effectively learning an affordance map
conditioned on both the action semantics and current body
configuration.



Contact Point Selection. From the predicted contact prob-
abilities Pcontact, we select the top-K points with highest
probabilities as contact anchors for CRF construction:

C = TopK(Pcontact,K) = {c1, c2, . . . , cK}, (15)

where K is adaptively determined based on the interaction
complexity, typically ranging from 4 to 24 points. These se-
lected contact points serve as the object-side anchors in our
sparse CRF representation, significantly reducing computa-
tion compared to using all 1024 points while maintaining
the most task-relevant information.

Contact Validity Loss. To ensure predicted contacts are
physically feasible, we introduce a contact validity loss that
enforces consistency between predicted object contacts and
designated human joints. This loss operates in world coor-
dinates to account for actual spatial relationships:

Lvalidity =
∑

l↔Lactive

ωl ·max(0, dlmin ↓ εreach), (16)

where Lactive denotes active limbs based on contact labels
from the dataset (e.g., left hand, right hand, left foot, right
foot), dlmin is the minimum distance between limb l and its
nearest predicted contact point, and εreach = 0.03m is the
reachability threshold determined empirically from biome-
chanical constraints.

The distance dlmin is computed as:

dlmin = min
c↔C

↔ql ↓ pc↔2, (17)

where ql is the 3D position of limb l and pc is the world
coordinate of contact point c after applying object transfor-
mations.

For training, we combine this with a binary cross-
entropy loss for contact prediction:

LCAP = LBCE(Pcontact,C
gt) + ϑ · Lvalidity, (18)

where C
gt ↑ {0, 1} are the ground-truth contact labels ob-

tained from the dataset annotations, where each frame of an
action sequence is labeled with binary indicators (0/1) for
contact of the left hand, right hand, left foot, and right foot.

Training Strategy. CAP is pre-trained independently for
100 epochs before being integrated into the full framework.
This staged training ensures stable contact predictions that
provide reliable anchors for CRF construction. During pre-
training, we use data augmentation including random rota-
tions and translations to improve generalization to different
object orientations and positions.

7.2. Contact Dynamics Model (CDM)
The Contact Dynamics Model learns to predict realistic
CRF evolution over time, providing a learned prior for phys-
ically plausible interactions. Unlike the motion generation

model that operates in full pose space, CDM focuses specif-
ically on learning the dynamics of contact relationships, en-
abling more targeted and effective guidance during infer-
ence.

Architecture. CDM employs a conditional diffusion model
with spatio-temporal attention to capture CRF dynamics.
Given the sparse CRF representation from Section 3.1, the
model learns how contact relationships evolve throughout
an interaction sequence.

The forward diffusion process progressively adds noise
to the clean CRF:

q(CRFt|CRFt↗1) = N (CRFt;
√

1↓ ϖtCRFt↗1,ϖtI),
(19)

where ϖt follows a cosine schedule from 10↗4 to 0.02 over
T = 1000 timesteps, providing smooth noise addition. The
model learns to reverse this process:

pω(CRFt↗1|CRFt, c) = N (CRFt↗1;µω(CRFt, t, c),ϱ
2
t I),
(20)

where c = {etext,h0,O} are conditioning variables com-
prising text embeddings, initial human pose, and object ge-
ometry.

Network Architecture. The denoising network µω consists
of three key components:

Spatial Attention: Models dependencies between different
joint-contact pairs within each frame:

Sn = SelfAttn(CRFn) ↑ R
M↓d, (21)

where M is the number of selected contact pairs and d is the
feature dimension. This captures which contacts are corre-
lated—for instance, when grasping, multiple fingers contact
simultaneously.

Temporal Attention: Captures the temporal evolution of
contact relationships across frames:

T = TemporalAttn([S1,S2, . . . ,SN ]) ↑ R
N↓M↓d. (22)

This models how contacts form, maintain, and release
over time, learning typical interaction patterns like ap-
proach → contact → manipulation → release.

Conditional Cross-Attention: Incorporates semantic and
geometric conditions:

F = CrossAttn(T, [etext,h0,O]). (23)

This ensures the predicted CRF dynamics align with the
intended action and are compatible with the object’s geom-
etry and initial human configuration.

Training Objective. The CDM is trained to predict the
clean CRF from noisy inputs using a reconstruction loss:

LCDM = Et,ε

[
↔CRF0 ↓ ˆCRFω(CRFt, t, c)↔2

]
, (24)



where CRFt =
↗
ϑ̄tCRF0 +

↗
1↓ ϑ̄tς is the noisy CRF at

timestep t, with ς ↘ N (0, I) and ϑ̄t =
∏t

s=1(1↓ ϖs).

Implementation Details. The CDM network uses a U-Net
backbone with skip connections to preserve fine-grained
contact information across diffusion timesteps. Each atten-
tion block consists of 4 heads with dimension 256. The
model is trained for 500 epochs with a learning rate of 10↗4

using the AdamW optimizer. During training, we apply
dropout with rate 0.1 to the attention layers to improve gen-
eralization.

8. Limitations and Future Work
8.1. Failure Cases
While ContA-HOI significantly improves contact model-
ing in human-object interactions, we identify several failure
modes:

Complex Multi-Contact Scenarios. When interactions in-
volve simultaneous contacts with multiple body parts (e.g.,
sitting on a chair while manipulating an object), our method
occasionally misses secondary contacts. This occurs be-
cause CAP tends to focus on primary interaction points
identified from text descriptions.

Dynamic Object Deformation. Our framework assumes
rigid objects and does not model deformable objects like
cloth or soft furniture. The rigid assumption limits appli-
cations to scenarios with deformable objects where contact
dynamics differ significantly.

Fine-Grained Manipulation. For interactions requiring
precise finger-level control (e.g., typing on a keyboard,
playing piano), the SMPL-X joint representation lacks suffi-
cient granularity. While SMPL-X includes hand joints, the
resolution is insufficient for capturing detailed finger con-
tacts.

8.2. Future Directions
Several promising directions emerge from this work:

Hierarchical Contact Modeling. Extending CRF to cap-
ture multi-scale contacts from full-body to finger-level in-
teractions would enable more diverse applications.

Physics-Based Refinement. Incorporating physics simula-
tion as a post-processing step could further improve physi-
cal plausibility, especially for complex multi-object scenar-
ios.

Interactive Generation. Developing user interfaces that
allow interactive specification of contact constraints during
generation would enhance controllability for animation and
VR applications.

Learning from Partial Observations. Extending the

framework to learn from RGB videos without full 3D su-
pervision would greatly expand the available training data.
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