
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MOLECULAR DATASETS

A.1 TRAINING DATA

We collected a diverse dataset to train our FARM model from various sources, including
ChEMBL25, ZINC15, and several chemical suppliers. The number of compounds in each dataset is
reported as follows:

Table 4: List of compound suppliers and number of compounds
Supplier Number of Compounds Source
Targetmol 22,555 https://www.targetmol.com/
Chemdiv 1,741,620 https://www.chemdiv.com/
Enamine 862,698 https://enamine.net/
Life Chemical 347,657 https://lifechemicals.com/
Chembridge 1,405,499 https://chembridge.com/
Vitas-M 1,430,135 https://vitasmlab.biz/
InterBioScreen 560,564 https://www.ibscreen.com/
Maybridge 97,367 https://chembridge.com/
Asinex 601,936 https://www.asinex.com/
Eximed 61,281 https://eximedlab.com/
Princeton BioMolecular 1,647,078 https://princetonbio.com/
Otava 9,203,151 https://www.otava.com/
Alinda Chemical 733,152 https://www.alinda.ru/synthes_en.html
ChEMBL 25 1,785,415 https://www.ebi.ac.uk/chembl/
ZINC15 4,000,000 https://zinc15.docking.org/

Total 20,000,000

A.2 DOWNSTREAM TASKS DATA

In Table 5, we provide an overview of the datasets used for evaluating the performance of our model
on various downstream tasks. Each dataset is denoted by its name, followed by the number of tasks
it encompasses, the total number of samples available in each dataset, and a brief description. These
datasets cover a range of chemical and biological properties, enabling comprehensive evaluation of
the model’s performance across different tasks in molecular representation learning.

B FG-AWARE TOKENIZATION AND FRAGMENTATION

B.1 THE LIST OF FUNCTIONAL GROUPS

The exhaustive list of 101 functional groups that can be detected by the functional group detec-
tion algorithm includes: Tertiary carbon, Quaternary carbon, Alkene carbon, Cyanate, Isocyanate,
Hydroxyl, Ether, Hydroperoxy, Peroxy, Haloformyl, Aldehyde, Ketone, Carboxylate, Carboxyl,
Ester, Hemiacetal, Acetal, Hemiketal, Ketal, Orthoester, Carbonate ester, Orthocarbonate ester,
Amidine, Carbamate, Isothiocyanate, Thioketone, Thial, Carbothioic S-acid, Carbothioic O-acid,
Thiolester, Thionoester, Carbodithioic acid, Carbodithio, Trifluoromethyl, Difluorochloromethyl,
Bromodifluoromethyl, Trichloromethyl, Bromodichloromethyl, Tribromomethyl, Dibromoflu-
oromethyl, Triiodomethyl, Difluoromethyl, Fluorochloromethyl, Dichloromethyl, Chlorobro-
momethyl, Chloroiodomethyl, Dibromomethyl, Bromoiodomethyl, Diiodomethyl, Alkyl, Alkene,
Alkyne, Carboxylic anhydride, Primary amine, Secondary amine, Amide, Imide, Tertiary amine,
4-ammonium ion, Hydrazone, Primary ketimine, Primary aldimine, Secondary ketimine, Secondary
aldimine, Nitrile, Azide, Azo, Nitrate, Isonitrile, Nitrosooxy, Nitro, Nitroso, Aldoxime, Ketoxime,
Sulfhydryl, Sulfide, Disulfide, Sulfinyl, Sulfonyl, Sulfur dioxide, Sulfuric acid, Sulfino, Sulfonic
acid, Sulfonate ester, Thiocyanate, Phosphino, Phosphono, Phosphate, Phosphodiester, Phospho-
ryl, Borono, Boronate, Borino, Borinate, Silyl ether, Dichlorosilane, Trimethylsilyl, Fluoro, Chloro,
Bromo, Iod.
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Table 5: Overview of downstream tasks, corresponding sample sizes, and dataset descriptions.
Dataset # Tasks # Samples Description
BBBP 1 2,039 Benchmark for Blood-Brain Barrier permeability prediction,

assessing whether compounds can cross the blood-brain barrier.
Tox21 12 7,831 Toxicology data containing multiple assays for evaluating

the toxicity of compounds across various endpoints.
SIDER 27 1,427 Side Effect Resource dataset that includes drug side effects

associated with FDA-approved drugs, focusing on adverse drug reactions.
ClinTox 2 1,478 Clinical Toxicology dataset designed to predict the toxicity of

drug-like compounds based on clinical data.
BACE 1 1,513 Data for predicting activity against the beta-secretase enzyme,

relevant for Alzheimer’s disease drug discovery.
MUV 17 93,807 Multiple Unrelated Variables dataset aimed at assessing the ability

to predict various molecular properties and activities.
HIV 1 41,127 Dataset focused on predicting the activity of compounds

against the HIV virus, crucial for antiviral drug development.
ESOL 1 1,128 Dataset used for estimating the solubility of organic compounds

in water, useful for understanding compound behavior in biological systems.
FreeSolv 1 642 Dataset containing free energy of solvation values for

small organic molecules in water, aiding in solvation energy predictions.
Lipophilicity 1 4,200 Data focused on predicting the octanol-water

partition coefficient, a key measure of a compound’s lipophilicity.
QM8 12 21,786 Quantum Mechanics dataset that provides a range of molecular properties

computed using quantum mechanical methods for small organic molecules.
QM9 3 133,885 Quantum Mechanics dataset providing molecular properties for

a large set of small organic compounds.

B.2 NAMING FUNCTIONAL GROUPS WITH RINGS IN FUSED RING SYSTEMS

Fused ring systems are a diverse and prevalent class of functional groups, accounting for 99.37% of
the total functional groups in our dataset (147,564 out of 148,507 FGs). Despite their importance,
many of these systems lack standardized nomenclature. To address this, we propose a systematic
approach to naming these ring systems based on their ring sizes and core structures.

Each ring in a fused ring system is named according to its size. For instance, a six-membered
aromatic ring like benzene is named ring 6. This straightforward approach provides a clear identifier
for individual rings within a system. For systems composed of multiple fused rings, we use the
following naming convention:

• Identification: Determine the smallest atom index for each ring within the system.
• Sorting: Arrange the rings by increasing atom indices.
• Construction: Combine the ring sizes in ascending order. For example, a fused system

with a six-membered ring and a five-membered ring would be named ring 5 6.

This systematic naming helps in identifying and categorizing complex fused ring systems by focus-
ing on their core structure. The core structure is defined as the central framework of interconnected
rings that forms the fundamental backbone of the molecule. The core structure of a ring system
is important because it influences the molecule’s reactivity, stability, and biological activity. In
SMILES notation, which uses lowercase characters to indicate atoms within aromatic rings, we can
enhance the representation by combining the atom symbol (uppercase or lowercase) with the core
structure, thereby providing a comprehensive depiction of the ring system. Figure 6a illustrates an
example of naming a fused ring system based on the rules described above, and Figure 6b shows
how FG-aware tokenization is applied.

After completing the naming process, we derive a new FG-enhanced SMILES representation for
the molecules. We then analyze our collected dataset, which comprises 20 million samples of FG-
enhanced SMILES, to evaluate the results. This dataset includes representations of 46 different
elements. Notably, 11 elements are represented by only a single form, indicating their rare occur-
rence within the dataset (excluding hydrogen). These elements are: H, Ti, V, Cr, Rb, Mo, Rh, Sb,
Ba, Pb, and Bi. In contrast, the remaining 35 elements feature at least two representations, each cor-
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Figure 6: (a) Example of naming a fused ring system in 4 steps: generate the core structure of the
functional group, index atoms using RDKit, select the smallest-index atom in each ring and sort,
and name the fused ring system based on ring size. (b) Example of FG-aware tokenization.

responding to distinct FGs. The distribution of these elements is visualized in Figure 7, highlighting
the diversity of representations in our dataset. The most prevalent element in our dataset is Carbon,
with 9,112 FGs containing it. Nitrogen follows as the second most prevalent element, represented
in 2,549 FGs, while Oxygen and Sulfur appear in 2,156 and 571 FGs, respectively.

Figure 7: Number of functional groups associated with different chemical elements in the FG-
enhanced SMILES dataset. The y-axis represents the natural logarithm (log, base e) of the count.
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C FG KNOWLEDGE GRAPH

The FG knowledge graph is designed to capture both the structural and property-related information
of FGs. The list of relations includes:

Table 6: Key relations defined in the FG knowledge graph.
Relation Description
contain atom Identifies atoms present in the FG (e.g., C, H, O, N).
contain bond Specifies types of bonds in the FG (e.g., single, double, triple, aromatic).
functional group Recognizes functional groups in the FG (e.g., hydroxyl, carboxyl, amine).
contain ring [n] Indicates the presence of a non-aromatic ring of size n in the FG.
contain aromatic ring [n] Indicates the presence of an aromatic ring of size n in the FG.
num substitutes Specifies the number of substituents (e.g., alkyl or aryl groups) in the FG.
is hydrogen bond donor Identifies whether the FG contains a functional group capable of donating hydrogen bonds.
is hydrogen bond acceptor Identifies whether the FG contains a functional group capable of accepting hydrogen bonds.
logp Measures the lipophilicity of the FG using the logP value (calculated via RDKit).

In the collected dataset, values range from -35 to 31.
water solubility Predicts the solubility of the FG in water, based on logP, molecular weight, and TPSA.

In the collected dataset, values range from -5 to 8.
core smiles The SMILES representation of the core structure of the FG.

• List of functional groups that act as hydrogen bond donors: Hydroxyl, Hydroperoxy,
Primary amine, Secondary amine, Hydrazone, Primary ketimine, Secondary ketimine, Pri-
mary aldimine, Amide, Sulfhydryl, Sulfonic acid, Thiolester, Hemiacetal, Hemiketal, Car-
boxyl, Aldoxime, Ketoxim.

• List of functional groups that act as hydrogen bond acceptors: Ether, Peroxy, Halo-
formyl, Ketone, Aldehyde, Carboxylate, Carboxyl, Ester, Ketal, Carbonate ester, Car-
boxylic anhydride, Primary amine, Secondary amine, Tertiary amine, 4-Ammonium ion,
Hydrazone, Primary ketimine, Secondary ketimine, Primary aldimine, Amide, Sulfhydryl,
Sulfonic acid, Thiolester, Aldoxime, Ketoxi.

D IMPLEMENTATION DETAILS

D.1 TRAINING MASKED LANGUAGE MODEL FOR SMILES REPRESENTATION

We trained the BERT model using Hugging Face (Wolf et al., 2020) on the masked molecule pre-
diction task with both conventional SMILES and FG-enhanced SMILES from our collected dataset.
To assess the impact of different masking percentages, we trained BERT models with masking per-
centages of 0.15, 0.25, 0.35, 0.45, and 0.55. The models were then evaluated on seven MoleculeNet
tasks, including three classification tasks and four regression tasks, to determine the optimal mask-
ing percentage. The results, presented in Table 7, indicate that a masking percentage of 0.35 yields
the best performance across the considered downstream tasks.

Table 7: Performance of BERT models with varying masking percentages across six MoleculeNet
tasks. The data is split using a random split into training, validation, and test sets with an 8:1:1 ratio.

BBBP BACE HIV Average ESOL FreeSolv Average QM9
#tasks 1 1 1 1 1 3

#samples 2039 1513 41127 1128 642 133885

Metric ROC-AUC (") RMSE (#) MAE (#)

0.25 93.01 ± 0.9 94.31 ± 1.08 80.17 ± 1.5 89.16 0.688 ± 0.033 0.622 ± 0.007 0.655 0.0091 ± 0.00001
0.25 93.59 ± 1.7 93.94 ± 1.4 81.03 ± 1.9 89.52 0.543 ± 0.030 0.714 ± 0.010 0.629 0.0032 ± 0.00001
0.35 94.36 ± 0.5 94.54 ± 0.4 81.93 ± 1.7 90.27 0.608 ± 0.031 0.507 ± 0.030 0.558 0.0041 ± 0.00001
0.45 93.48 ± 1.3 94.36 ± 0.90 80.12 ± 1.7 89.32 0.795 ± 0.028 0.493 ± 0.008 0.644 0.0048 ± 0.00001
0.55 92.85 ± 1.1 88.68 ± 1.0 79.89 ± 0.90 87.14 0.734 ± 0.030 0.599 ± 0.005 0.667 0.0097 ± 0.00001

Additional details of the training setup include training the BERT model on 20 million SMILES
for 15 epochs using two NVIDIA Tesla V100 GPUs. The learning rate was set to 1e � 5 , with a
batch size of 128, and model checkpoints were saved after every 10,000 batches. This setup was
also applied to the baseline model, which used conventional SMILES for comparison.
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Figure 8 illustrates the convergence behavior of the models trained on different representations of
molecular data. The model utilizing FG-enhanced SMILES exhibits a slower convergence rate, at-
tributed to the increased complexity of its vocabulary, reflecting its closer resemblance to natural
language. The SMILES model converges by step 200 (after processing 25,600 SMILES), while the
FG-enhanced SMILES model achieves convergence by step 300 (after processing 38,400 SMILES).
Notably, despite the larger prediction vocabulary (14,714 vs. 93), the FG-enhanced model ultimately
reaches a lower loss, suggesting its enhanced capacity to capture intricate molecular representa-
tions and improve generalization in complex tasks. This indicates the model’s ability to leverage
functional group information effectively, potentially leading to better performance in downstream
applications.

Training step

Tr
ai

ni
ng

 lo
ss

FM-enhanced SMILES

SMILES

Figure 8: Loss curves for the masked language model (MLM) during training on two datasets:
standard SMILES and functional group-enhanced SMILES.

D.2 TRAINING FG KNOWLEDGE GRAPH EMBEDDING MODEL FOR MOLECULAR
STRUCTURE REPRESENTATION

Once the FG knowledge graph is constructed as detailed in Section C, we utilize the ComplEx model
to learn embeddings for the functional groups. The knowledge graph comprises 148,507 unique
nodes: 147,564 corresponding to ring systems and 943 representing non-ring functional groups.
Training is conducted with a batch size of 64, a learning rate of 1 ⇥ 10�3, over 50 epochs, with
model checkpoints saved at the end of each epoch.

ComplEx Model Representation
In the ComplEx model (Trouillon et al., 2016), each element in a triple (h, r, t) — where h is the
head entity, r is the relation, and t is the tail entity — is represented as a complex vector:

h, r, t 2 Cd (1)

Scoring Function

The score for a given triple (h, r, t) is calculated as:

f(h, r, t) = Re
�
hT r · t

�
(2)

where r is a complex-valued vector, and the dot product is performed in the complex space.

Loss Function

ComplEx employs a margin-based ranking loss function defined as:
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LGraph =
X

(h,r,t)2E+

X

(h0,r,t0)2E�

max (0, � + f(h0, r, t0)� f(h, r, t)) (3)

where E+ denotes the set of positive triples, E� denotes the set of negative triples, and � represents
the margin.

To assess the quality of the learned embeddings, we randomly sample clusters of five closely re-
lated embedding vectors and analyze their arrangement in the embedding space. The results of this
evaluation are presented in Figure 5a.

D.3 LINK PREDICTION MODEL USING GNNS

For link prediction using the GCN model, we start by segmenting molecules into functional groups
via FG-aware molecular segmentation, where each module is connected by single bonds. We then
use embeddings from the FG knowledge graph embedding model as node features for the GCN.
The training process involves computing node embeddings through graph convolution (Equation 4),
followed by scoring potential edges with a multi-layer perceptron (MLP) (Equation 5). This score
is used to calculate the probability between two nodes (Equation 6). Positive and negative edges are
sampled, and the model is optimized to maximize scores for positive edges while minimizing scores
for negative edges using the loss function in Equation 7. This approach effectively trains the model
to distinguish between likely and unlikely connections between functional groups.

h0
i = ReLU

0

@W · 1

|N (i)|
X

j2N (i)

hj

1

A (4)

where h0
i is the updated embedding for node i. It is computed by averaging the embeddings hj

of neighboring nodes N (i), applying the weight matrix W, and then passing through the ReLU
activation function.

sij = MLP(hi � hj) (5)

where sij denotes the score assigned to the potential edge between nodes i and j. The score is
computed using a multi-layer perceptron (MLP), which takes as input the concatenated node em-
beddings of i and j, denoted as hi � hj . Here, hi and hj represent the node embeddings for nodes
i and j, respectively. The operator � indicates the concatenation of these embeddings. The MLP
processes this concatenated vector to produce a score that reflects the likelihood of an edge existing
between i and j.

pij = �(sij) (6)
where � is the sigmoid function.

LLink = � 1

|E+|
X

(i,j)2E+

log pij �
1

|E�|
X

(i,j)2E�

log(1� pij) (7)

where L is the loss function for link prediction. It computes the average log-likelihood of positive
edges E+ and negative edges E�, where pij is the predicted probability of an edge between nodes
i and j. The loss penalizes the model for incorrect predictions, encouraging high probabilities for
true edges and low probabilities for false edges.

The GCN model for link prediction is trained as follows: For each molecule, represented as a FG
graph, we generate all possible combinations of nodes, encompassing both positive pairs (nodes that
are linked) and negative pairs (nodes that are not linked). In cases where the graph contains more
than three nodes (FGs), we select 60% of all possible combinations along with all positive pairs
to form the training data for each graph. The model is subsequently trained for three epochs on a
comprehensive dataset consisting of 20 million data points. Figure 9 shows the performance of the
link prediction model. Similar to word embedding analogies in NLP, replacing one FG in a molecule
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Figure 9: Link prediction model performance: Similar to word embedding analogies in NLP, re-
placing one functional group in a molecule with another produces parallel results across different
molecules, demonstrating the model’s ability to capture chemical relationships effectively.

with another produces parallel results across different molecules, demonstrating the model’s ability
to capture chemical relationships effectively.

D.4 CONTRASTIVE LEARNING: ALIGN SMILES AND STRUCTURE REPRESENTATION

In our contrastive learning model, we set the margin � = 0.5 and the weights �MLM = 1.0 and
�CL = 0.5. We train the contrastive BERT model using a batch size of 126 for a total of 5 epochs.
This training configuration mirrors the setup used for learning atom representations with the BERT
model, as described in Section D.1.

In this work, we propose a contrastive learning strategy to align SMILES-based representations of
molecules with their corresponding graph-based molecular structures. The goal of this approach is
to capture both the sequential information from SMILES and the structural relationships encoded in
graph representations, thus allowing the model to learn a more comprehensive molecular represen-
tation that bridges these two modalities.

To measure the similarity between representations derived from the FG-enhanced SMILES and FG
graph, we utilize cosine similarity, which is defined as: The cosine similarity between two vectors
u and v is defined as:

cosine similarity(u,v) =
u · v

kukkvk
Here, u and v represent the embeddings from two different modalities, such as the SMILES-based
BERT output and the GNN output for the molecular graph. This similarity score helps ensure that
embeddings of positive (i.e., matched) SMILES and graph representations are closer in the latent
space.

To align these two types of representations, we use contrastive loss, a popular technique in self-
supervised learning that enforces representations from the same sample (positive pair) to be more
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similar than those from different samples (negative pair). Given a positive pair (hMLM,hpos), where
hMLM is the SMILES representation derived from a pretrained BERT model and hpos is the cor-
responding representation from a graph neural network (GNN), and a negative pair (hMLM,hneg),
where hneg is a augmented FG-graph, the contrastive loss can be written as:

LCL =
1

N

NX

i=1

max (0, � � cosine similarity(hMLM,hpos) + cosine similarity(hMLM,hneg))

Where:

• � is the margin parameter, ensuring that the positive similarity is significantly larger than
the negative similarity.

• N is the number of training examples (or contrastive pairs)

The objective function is

L = �MLM · LMLM + �CL · LCL

where LMLM represents the masked language modeling loss, which encourages the model to predict
masked tokens in the input sequence effectively, and LCL denotes the contrastive loss, which aligns
the SMILES and structural representations. The coefficients �MLM and �CL are hyperparameters that
control the contribution of each loss to the overall objective. By tuning these coefficients, we can
balance the learning process between the two tasks, allowing the model to learn rich and meaningful
representations from both the sequential and structural aspects of the molecular data.

This combined loss function enables the model to leverage the strengths of both masked language
modeling and contrastive learning, fostering a more comprehensive understanding of molecular rep-
resentations that can enhance performance in downstream tasks such as property prediction, molec-
ular generation, and structure-based drug discovery.

D.5 DOWNSTREAM TASK FINETUNING

MoleculeNet tasks are treated as downstream tasks for our FARM model. We freeze all layers of
FARM and pair it with a GRU head for both classification and regression tasks. For classification,
we use cross-entropy as the loss function, while for regression, we employ mean squared error.
The Adam optimizer is applied with a learning rate of 1e � 4 and a cosine annealing learning rate
schedule with a period of 20 epochs. The training process spans 100 epochs with a batch size of 16,
using an 80-10-10 train-validation-test split with scaffold splitting. To address imbalanced datasets,
we implement a weighted loss function, assigning a weight of 5 to classes with fewer samples. For
each task, we conduct three runs with different train-validation-test splits and report the average and
standard deviation of the results.

E ABLATION STUDY

To assess the effectiveness of each component in our architecture, we conducted a comprehensive
ablation study across several MoleculeNet benchmark tasks. The first model, FM KGE + GAT,
utilizes FG knowledge graph embeddings as input for a Graph Attention Network (Veličković et al.,
2017) (GAT) to predict molecular properties. Although its performance on these tasks is not the
strongest, the model still demonstrates its capacity to learn underlying chemical rules (syntax and
semantics) from the data to a certain degree.

The second model, AttentiveFP (Xiong et al., 2019), performs a masked atom prediction task on
the molecular graph, predicting atom types such as carbon, hydrogen, oxygen, and nitrogen. Its
variation, FG AttentiveFP, shares the same architecture as AttentiveFP, but it predicts both the atom
type and the associated functional group. Experimental results indicate that incorporating functional
group information significantly improves the model’s performance on downstream tasks.
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We also evaluate the BERT model trained on canonical SMILES strings, and its counterpart, FG
BERT, which is trained on FG-enhanced SMILES. Results show that providing additional chemical
context about functional groups boosts model performance in downstream tasks.

Finally, FARM (FG BERT with contrastive learning) integrates molecular structure representations
from link prediction embeddings. FARM consistently achieves the highest performance across
6 out of 7 downstream tasks, demonstrating the power of combining FG-enhanced SMILES and
contrastive learning.

Table 8 presents the detailed results of the aforementioned models across various MoleculeNet tasks,
illustrating the performance of each architecture.

Table 8: Performance of various models across six MoleculeNet tasks. The data is split using a
random split into training, validation, and test sets with an 8:1:1 ratio.

BBBP BACE HIV
Average

ESOL FreeSolv
Average

QM9
#tasks 1 1 1 1 1 3

#samples 2039 1513 41127 1128 642 133885

Metric ROC-AUC (") RMSE (#) MAE (#)

FG KGE + GAT 73.23 ± 1.93 76.44 ± 1.27 71.65 ± 0.98 73.77 2.35 ± 0.210 4.32 ± 0.29 3.335 0.0139 ± 0.00014
AttentiveFP 77.71 ± 1.30 77.15 ± 0.78 78.81 ± 0.99 77.89 1.63 ± 0.042 2.11 ± 0.94 1.87 0.0056 ± 0.00012

FG AttentiveFP 85.57 ± 1.32 87.30 ± 0.90 81.21 ± 0.92 84.5 1.02 ± 0.034 1.08 ± 0.14 1.05 0.0053 ± 0.00034
BERT 82.12 ± 1.45 85.12 ± 0.76 83.03 ± 1.12 83.42 1.45 ± 0.056 1.89 ± 0.09 1.67 0.0059 ± 0.00012

FG BERT 94.36 ± 0.50 94.54 ± 0.40 81.93 ± 1.70 90.27 0.608 ± 0.031 0.507 ± 0.03 0.558 0.0041 ± 0.00017
FARM 96.23 ± 0.7 96.19 ± 0.65 82.13 ± 1.10 91.43 0.734 ± 0.039 0.308 ± 0.08 0.521 0.0038 ± 0.00014
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