
A Assigning Infill1

Each transformation category has some default infill convention to serve as precursor to ML infill.2

For cases where a user wishes to override defaults assignments can be passed in the assigninfill3

parameter. ML infill is applied for columns not otherwise assigned, which default can be deactivated4

with the MLinfill parameter. When MLinfill is deactivated, columns not explicitly assigned5

will have infill per the default initialization associated with a transformation category. Here we6

demonstrate deactivating the ML infill default and assigning infill types zero infill to column1 and7

ML infill just to column2.8

Not shown, if the data includes a label set or other features such as an index column appropriate for ex-9

clusion from ML infill basis, they should be designated with labels_column or trainID_column.10

assigninfill = {'zeroinfill' : ['column1'],11

'MLinfill' : ['column2'] }12

13

train, train_ID, labels, \14

val, val_ID, val_labels, \15

test, test_ID, test_labels, \16

postprocess_dict = \17

am.automunge(df_train,18

MLinfill = False,19

assigninfill = assigninfill)20

Note that the column headers can be assigned in assigninfill using the received column headers21

to apply consistent infill to all sets derived from an input column, or may alternatively be assigned22

using the returned column headers with transformation suffix appenders to assign infill to distinct23

returned columns, which take precedence.24

B ML Infill Parameters25

The default ML infill architecture is a Scikit-Learn random forest with default parameters. Alternate26

auto ML options are currently available as CatBoost, FLAML, and AutoGluon. Parameters can be27

passed to the models with ML_cmnd.28

First we’ll demonstrate applying ML infill with the CatBoost library. Note that we can either defer to29

the library default parameters or also pass parameters to the model initializations or fit operations.30

Here we also demonstrate assigning a particular GPU device number.31

ML_cmnd = {'autoML_type' : 'catboost'}32

33

#GPU device assignment takes place in model initialization34

ML_cmnd.update({'MLinfill_cmnd' :35

{'catboost_classifier_model' :36

{'task_type' : 'GPU', 'devices' : 0 },37

'catboost_regressor_model' :38

{'task_type' : 'GPU', 'devices' : 0 }}})39

40

train, train_ID, labels, \41

val, val_ID, val_labels, \42

test, test_ID, test_labels, \43

postprocess_dict = \44

am.automunge(df_train,45

MLinfill = True,46

ML_cmnd = ML_cmnd)47

The FLAML library is also available. Here we demonstrate setting a training time budget (in seconds)48

for each imputation model.49

ML_cmnd = {'autoML_type' : 'flaml'}50

1



51

ML_cmnd.update({'MLinfill_cmnd' :52

{'flaml_classifier_fit' : {'time_budget' : 60 },53

'flaml_regressor_fit' : {'time_budget' : 60 }}})54

55

train, train_ID, labels, \56

val, val_ID, val_labels, \57

test, test_ID, test_labels, \58

postprocess_dict = \59

am.automunge(df_train,60

MLinfill = True,61

ML_cmnd = ML_cmnd)62

As another demonstration, here is an example of applying the AutoGluon library for ML infill and also63

applying the best_quality option which causes AutoGluon to train extra models for the aggregated64

ensembles. (Note this will likely result in large disk space usage, especially when applying to every65

column, so recommend saving this for final production if at all.)66

ML_cmnd = {'autoML_type' : 'autogluon'}67

68

ML_cmnd.update({'MLinfill_cmnd' :69

{'AutoGluon' :70

{'presets' : 'best_quality' }}})71

72

train, train_ID, labels, \73

val, val_ID, val_labels, \74

test, test_ID, test_labels, \75

postprocess_dict = \76

am.automunge(df_train,77

MLinfill = True,78

ML_cmnd = ML_cmnd)79

To be complete, here we’ll demonstrate passing parameters to the Scikit-Learn random forest models.80

Note that for random forest there are built in methods to perform grid search or random search81

hyperparameter tuning when parameters are passed as lists or distributions instead of static figures.82

Here we’ll demonstrate performing tuning of the n_estimators parameter (which otherwise would83

default to 100).84

ML_cmnd = {'autoML_type' : 'randomforest'}85

86

#by passing random forest parameters as a list87

#each imputation model will perform a grid search88

89

ML_cmnd.update({'MLinfill_cmnd' :90

{'RandomForestClassifier' :91

{'n_estimators' : [100, 222, 444] },92

'RandomForestRegressor' :93

{'n_estimators' : [100, 222, 444] }}})94

95

train, train_ID, labels, \96

val, val_ID, val_labels, \97

test, test_ID, test_labels, \98

postprocess_dict = \99

am.automunge(df_train,100

MLinfill = True,101

ML_cmnd = ML_cmnd)102

2



C Broader Impacts103

The following discussions are somewhat speculative in nature. At the time of this writing Automunge104

has yet to establish what we would consider a substantial user base and there may be a bias towards105

optimism at play in how we have been proceeding, which we believe is our sole leverage of bias.106

From an ethical standpoint, we believe the potential benefits of our platform far outweigh any107

negative aspects. We have sought to optimize the postmunge(.) function for speed, used as a proxy108

for computational efficiency and carbon intensity. As a rule of thumb, processing times for equivalent109

data in the postmunge(.) function, such as could be applied to streams of data in inference, have110

shown to operate on the order of twice the speed of initial preparations in the automunge(.) function,111

although for some specific transforms like those implementing string parsing that advantage may112

be considerably higher. While the overhead may prevent achieving the speed of directly applying113

manually specified transformations to a dataframe, the postmunge(.) speed gets close to manual114

transformations with increasing data size.115

We believe too that the impact to the machine learning community of a formalized open source116

standard to tabular data preprocessing could have material benefits to ensuring reproducibility of117

results. There for some time has been a gap between the wide range of open source frameworks118

for training neural networks in comparison to options for prerequisites of data pipelines. I found119

some validation for this point from the tone of the audience Q&A at a certain 2019 NeurIPS keynote120

presentation by the founder of a commercial data wrangling package. In fact it may be considered121

a potential negative impact of this research in the risk to commercial models of such vendors, as122

Automunge’s GNU GPL 3.0 license coupled with patent pending status on the various inventions123

behind our library (including parsed categoric encodings, family tree primitives, ML infill, and etc.)124

will preclude commercial platforms offering comparable functionality. We expect that the benefits to125

the machine learning community in aggregate will far outweigh the potential commercial impacts126

to this narrow segment. Further, benefits of automating machine learning derived infill to missing127

data may result in a material impact to the mainstream data science workflow. That old rule of thumb128

often thrown around about how 80% of a machine learning project is cleaning the data may need to129

be revised to a lower figure.130

Regarding consequence of system failure, it should be noted that Automunge is an industry agnostic131

toolset, with intention to establish users across a wide array of tabular data domains, potentially132

ranging from the trivial to mission critical. We recognize that with this exposure comes additional133

scrutiny and responsibility. Our development has been performed by a professional engineer and134

we have sought to approach validations, which has been an ongoing process, with a commensurate135

degree of rigor.136

Our development has followed an incremental and one might say evolutionary approach to systems137

engineering, with frequent and sequential updates as we iteratively added functionality and transforms138

to the library within defined boundaries of the data science workflow. The intent has always been to139

transition to a more measured pace at such time as we may establish a more substantial user base.140

D Intellectual Property Disclaimer141

Automunge is released under GNU General Public License v3.0. Full license details available on142

GitHub. Contact available via (anonymized). Copyright (C) 2021 - All Rights Reserved. Patent143

Pending, applications (anonymized)144

3


