
1/8

Hashed Categoric Encodings with Automunge
High cardinality, low overhead

“Hashing is a form of cryptography in which a message is transformed into an encoded



2/8

representation.”

=> '0f44cb01d838c981156d9f0c030159fb'

In common practice hashing may be used to validate voracity of a message’s sender, such

as e.g. by comparing a received hash of a bank account number to a hash of that number

on file without having to transmit the actual account number through a channel which

may be exposed to an eavesdropper. Thus, a hashing is a deterministic transform where

consistently received data will return a consistent encoding. There are exceptions

though, as in cases where a randomness seed may be incorporated into a hash by a

“salting” in order to further mask transmissions from eavesdroppers.

In the context of a machine learning workflow, a hashing algorithm may become useful

for purposes of encoding a high cardinality categoric feature set because they enable

consistent translations from strings to integers without the use of a conversion

dictionary to serve as basis, which for sets with a large number of unique entries may

become unwieldy.

['unique', 'entries', 'in', 'feature', 'set']

=> {'entries' : 0, 'feature' : 1, 'in' : 2, 'set' : 3, 'unique' : 4}

The use of a hashing algorithm to perform these type of conversions is known as “the

hashing trick” [1, 2]. The hashing trick works by first translating entries to a hashing,

followed by conversion to a numeric representation.

"Hashing is a form of cryptography in which a message is transformed 
into an encoded representation."

=> 20295613598449223719803640046900304379

Consistent with the hashing serving as origin, this numeric form will be deterministic

such that a consistent message will return a consistent numeric representation. Now in



3/8

order to convert this numeric representation into an integer encoding, we can simply

divide by a configurable integer and let the remainder serve as the encoding, where this

configurable integer represents the range of embedding space, e.g. if we divide by 10

then we will have capacity for 10 distinct encodings.

"Hashing is a form of cryptography in which a message is transformed 
into an encoded representation."

=> 9

Because the hashing trick relies on this division operation, there is possibility that

different unique entries may result in an encoding overlap, with such probability getting

larger with smaller embedding space. Since the intended use is for high cardinality sets,

this is deemed an acceptable tradeoff.

['unique', 'entries', 'in', 'feature', 'set']

=> [6, 2, 8, 7, 7]

Automunge offers a few variants on hashing transforms. In the base configuration ‘hash’

transformation category, unique entry strings are given some preprocessing in order to

separately encode distinct words found within entries.

“Unique entries (in feature set).”

=> [6, 2, 8, 7, 7]

This is conducted by stripping special characters and extracting words based on space

separators, where special characters, space separator, and embedding size are all

configurable parameters. The extracted encodings are returned in separate columns,

with the number of columns derived based on the largest entry in the train set, and

entries with fewer words are padded out with zeros. The encoding space size may either

be configured or based on a heuristic of twice the vocabulary size. The hashing may be



4/8

by the native python hash function as default or a parameter may activate a md5 hash

basis. A salt parameter may also be designated to perturb encoding basis for privacy

preservation. For an upstream uppercase conversion to ignore case configurations the

‘Uhsh’ transformation category can also be applied.

For encodings based on the full entries without extraction of words and special

characters, a variation is available as ‘hsh2’ (or ‘Uhs2’ with uppercase conversion). This

version is loosely comparable to ordinal encoding, where the tradeoffs include potential

for encoding overlaps, and lack of inversion support as there is no conversion dictionary

assembled. A similar transform is available to return binary encodings instead of integer

encodings with ‘hs10’ / ‘Uh10’.

The whole point of Automunge is that data transformations can be fit to properties of

the train set for consistent efficient processing of subsequent data. While the hashing

transforms are unique for our categoric library in that a conversion dictionary is not

required for the hashing, in our implementation there are still train set properties that

are saved in a populated dictionary and applied to subsequent test data, like train set

embedding space size (either user specified or inferred under heuristic) and also the

various parameters when activated. These hashing transformation categories are



5/8

intended for use in high cardinality categoric sets, as an alternative to those transforms

previously discussed in our paper which

are better suited for categoric feature sets with a bounded range of unique entries.

Automunge: We make machine learning easy.

Acknowledgments
A thank you owed to the authors of for their

introduction to the hashing trick. The Automunge implementation was partly inspired

by review of the Tensorflow keras_preprocessing hashing_trick function.

References
[1] John Moody. Fast Learning in Multi-Resolution Hierarchies. NIPS Proceedings, 1989

(Link)

[2] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, Josh Attenberg.

Feature Hashing for Large Scale Multitask Learning. ICML Proceedings, 2009 (Link)

https://proceedings.neurips.cc/paper/1988/file/82161242827b703e6acf9c726942a1e4-Paper.pdf
http://alex.smola.org/papers/2009/Weinbergeretal09.pdf

