
1/14

Specification of Derivations with Automunge
This essay intended for advanced users

t’s been a busy month here at Automunge. Given all of the uncertainty surrounding the



6/2/202

edium.com/automunge/specification-of-derivations-with-automunge-6174ca227184 2/14

l

Today wanted to offer a brief write-up expanding on detail for defining family trees of

transformations in the Automunge library. By family trees I am referring to composing

sets of returned columns originating from a single source column which may include

multiple generations and branches of derivations, which in Automunge may be specified

with the “family tree” primitives. Generally speaking, each one of these transforms is

performed based on some basis from an evaluation of a training set of tabular data in

application of the automunge(.) function, and then that same basis may be used to

consistently prepare additional data in application of the postmunge(.) function. Let’s

look at a few simple derivations to start. 

Glass' 2nd EtudeGlass' 2nd Etude Nicholas TeagueNicholas Teague



3/14

Here’s an example of three simple sets of transformations which are intended for

application to numerical source columns. Each transformation has a “root category”

designator which is how the sets are assigned to distinct columns in the “assigncat”



4/14

dictionary passed to automunge(.), as shown here the root categories are ‘nmbr’, ‘bxcx’,

and ‘log1’. Also demonstrated here are the order of application for transformations and

the resulting returned columns for these root categories. Note that the transformations

applied in derivation of a returned column are helpfully logged by the inclusion of suffix

appenders affixed to the original column header, such as for example ‘column_nmbr’

represents the source column ‘column’ with a ‘nmbr’ transformation applied. Or

‘column_nmbr_bint’ represents the source column ‘column’ with a ‘nmbr’ transform

applied followed by the assembly of a ‘bint’ set of bins identifying the number of

standard deviations from the mean for each entry.

The first of these sets, the ‘nmbr’ root category, is our default transform for numerical

data under automation, and so gets a little special treatment by way of the binstransform

parameter which allows a user to turn on or off the inclusion of a set of bins identifying

numerical entries by the number of standard deviations from the mean of the set, which

to be honest is sort of a relic from very early implementations and don’t intend to offer

this kind of option elsewhere going forward — the goal after all is universality and as

they say in The Zen of Python “There should be one — and preferably only one —

obvious way to do it.” The preferred way to specify custom transformations is by passing

a transformdict to automunge(.) more on that to follow. The only other use in the library

of a parameter to shape family trees is the ‘NArw_marker’ parameter which turns on/off

the inclusion of a NArw set on each internally defined root category, which identifies by

boolean activations presence of entries which were subject to infill.

As a few more examples of root category returned sets, the ‘bxcx’ root category is

intended for numerical sets in which a distribution may have fat-tailed characteristics,

thus a Box-Cox power law transformation is applied to the data prior to the application

of a z-score normalization (please consider this intended for advanced users). Note

again that the transformation is performed on a basis of distribution properties found in

the training data passed to automunge(.), and then consistently applied to additional

data, which we call such additional sets “test data”. Note also here that there is only one

column returned in the ‘bxcx’ / ‘nmbr’ application (as ‘column_bxcx_nmbr’), in the next

slide we’ll show how to specify. The ‘log1’ root category is another simple demonstration

which receives a numerical set, and returns a column with a log transform applied, as

well as a set of binned columns with activations identifying an entry’s power of ten (e.g.

https://www.python.org/dev/peps/pep-0020/


5/14

distinct column activations for source column values found in range 0.1–0.9, 1–9, 10–

99, etc) by way of the ‘pwr2’ transform.

The specification of the family tree associated with a root category is performed in a

data structure that we refer to as the “transformdict”. The transformdict has entries for

each root category associated with family tree primitives of parents / siblings /

auntsuncles / cousins // children / niecesnephews / coworkers / friends. The first four

of these are “upstream” primitives which means they are only applied in a root

category’s first generation of transformations. The second four are “downstream”

primitives, and they are only inspected when the root category is found as an entry in a

primitive with offspring.

(A slight bit of minutia, for advanced users: internally to codebase there is a distinction

between “transformdict” without underscore and “transform_dict” with underscore,

which is simply that transformdict (without underscore) is the object passed to an

automunge(.) call with user defined entries, and transform_dict (with underscore) is



6/14

the resulting internal consolidated version including both user passed entries and

internal library entries, sorry for the tangent (Medium needs to add support for

footnotes). We use this kind of underscore distinction naming convention in a few places

in codebase.)

To demonstrate for these simple examples, in the root category ‘nmbr’, the family tree

has entries for upstream primitives of parents and cousins. For the parents primitive

entries, family trees will be inspected to identify if there are any downstream primitive

entries, such as for this case ‘bint’ is found as a downstream primitive entry for root

category ‘nmbr’. A root category, such as ‘nmbr’, can also be an entry to a primitive in its

own family tree although that is not required. In the case of the ‘bxcx’ transform, the

downstream primitive is a coworkers entry instead of friends, which differs in that it is a

“replacement” primitive instead of a “supplement” primitive, which is why there is no

‘column_bxcx’ column returned, just ‘column_bxcx_nmbr’. For the ‘log1’ root category,

we are only applying one generation of derivations so only upstream primitives are

entered. Note that a user could still set downstream primitive entries here, but they

would only be inspected and applied if ‘log1’ was found as an upstream primitive with

offspring entry in some other root category’s family tree.



7/14

Let’s take a closer look at the family tree primitives. The primitives can be distinguished

by three properties:

1. Generation: upstream primitives are inspected and applied to the first generation

associated with a root category, downstream primitives are only accessed if the root

category was found as an entry in a primitive with offspring (whether in its own

family tree or some other family tree), and thus may even potentially be applied for

multiple generations after the first.

2. Action: there is a distinction between replacement and supplement. Replacement

simply means that at completion of a generation, if a replacement primitive was

found, the source column will be removed (which source column may be the

returned column from a prior generation or for the first tier of transforms the

original column of the passed data). Note that the presence of a replacement

primitive in a generation overrides any supplement primitives, so even if a single

replacement primitive is found along with supplement primitives the source column

will still be removed.



8/14

3. Offspring: the downstream offspring refers to the distinction of whether an

additional generation will be performed after completion of a primitive entry’s

transformation. Category entries to a primitive with offspring have their own family

trees inspected for presence of downstream primitive entries.

Let’s take a closer look at a few more advanced derivations to demonstrate.

The root categories ‘or19’ and ‘or20’ are intended to encode bounded categorical string

sets of unknown composition (by bounded meaning with expectation of fixed range of

potential values between train and test sets — there are variants in the library for other

scenarios). These root categories are very illustrative of means for specifying multi-

generation sets. Included in these derivations are the ‘NArw’ derivations discussed

earlier identifying entries corresponding to infill based on missing or improperly

formatted data in the source column. Upstream of all of the other transforms an ‘UPCS’

transform is applied which converts all categorical string entries to uppercase, based on

the assumption that entries are intended as consistent between uppercase and lowercase



9/14

(for example resulting in consistent interpretation for string entries of usa, Usa, and

USA). The ‘1010’ transform is a binary categorical encoding, kind of related to one-hot

encoding but in which multiple columns may have simultaneous activations, thus

allowing a more efficient memory bandwidth for encoding categorical sets with large

range of values (sort of a compromise between one-hot encoding and ordinal encoding).

The ‘nmc7’, ‘spl9’, and ‘sp10’ categories are part of our “string parsing” family of

transformations which evaluate sets of string compositions to identify things like

presence of numbers embedded in string entries or character overlaps between entries.

Going into more detail, the ‘nmc7’ transform parses the categorical string entries in the

training set to identify any numerical string inclusions, and returns those numbers as a

dedicated column of floats. Note that the ‘nmc7’ transform differs from ‘nmr7’ for

instance in that the inclusion of comma characters are allowed in the numerical portion

of the strings. Note that if multiple numerical entries are present in the string the longest

grouping will be returned. As demonstrated here, the extraction of numerical entries

can then be normalized with a z-score normalization via the ‘nmbr’ transform. The ‘spl9’

transform is really neat and I’m proud of how it turned out. It’s a means to parse training

set categorical string entries to identify cases where the string compositions may have

character overlaps, and if found the longer versions with identified overlaps are replaced

with the shorter overlap. For example, a set with entries of [‘North Florida’, ‘Central

Florida’, ‘South Florida’, ‘The Keys’] would be consolidated to and returned as [‘th

Florida’, ‘Central Florida’, ‘th Florida’, ‘The Keys’], and then with a second application

would be further consolidated and returned as [‘ Florida’, ‘ Florida’, ‘ Florida’, ‘The

Keys’]. As demonstrated here, the application of ‘spl9’ can thus be run in multiple

iterations to progressively identify shorter length character overlaps, each of which

returned sets may then be further encoded with ‘ord3’ which is an ordinal encoding

sorted by frequency, such as for our example would return [0, 0 , 0, 1] which is then

directly digestible by machine learning algorithms. There is a small distinction between

‘spl9’ and ‘sp10’ in which entries that are not consolidated are replaced with a 0 to avoid

unnecessary redundancy between earlier returned ‘spl9’ outputs and ‘sp10’ outputs, thus

‘sp10’ should only be applied to the final tier of string parsing applications.



10/14

The specification of the ‘or19’ transformdict entries are now demonstrated, and we’ll see

a little more complexity than our last demonstration, partly as we are showing

additional detail of how a transform category is matched to a transformation function by

the corresponding function entries in the “processdict”. A processdict contains a few

entries associated with each category such as to distinguish expected data properties for

purposes of deriving NArw entries and ML infill application (not shown), here we’re just

focusing on the specification of a processdict transformation function. A transformation

function may be associated with multiple transformation categories used as entries to

family tree primitives, while each transformation category may only be associated with a

single transformation function. Thus we’re able to specify multiple configurations of

unique branches downstream of a common transformation function in different family

trees. For the example of branches used to derive the specific returned column

‘column_UPCS_spl9_sp10_ord3’, a source column is assigned to the root category ‘or19’,

and so upstream primitive entries are applied for ‘or19’ and ‘NArw’, here we’ll just focus

on one specific path for demonstration, the entry to the parent primitive is ‘or19’, so the

transformation function found in the ‘or19’ processdict entry is applied, which is ‘UPCS’.

Because parents is a replacement primitive, the source column is not returned. And since

parents is a primitive with offspring, the ‘or19’ transformdict is inspected for



11/14

downstream primitive entries, here the one we’re interested in is the niecesnephews

entry of ‘sp13’, which applies a ‘spl9’ transformation function based on the ‘sp13’

processdict entry. Since niecesnephews has downstream offspring, the ‘sp13’ family tree

is inspected for downstream primitive entries, here we’re interested in ‘sp10’, which

applies a ‘sp10’ transform based on the ‘sp10’ processdict. Since ‘sp10’ was accessed as a

niecesnephews entry in the ‘sp13’ transformdict, we’ll look again for offspring, now

looking at the downstream primitives in the ‘sp10’ transformdict, where we’ll find a

coworkers primitive entry of ‘ord3’, which replaces the source column and returns an

‘ord3’ transformation based on the (not shown) ‘ord3’ processdict entry.

I have demonstrated here some of the minutia of complexity for advanced users of the

Automunge library, but these considerations need not be taken into account for

mainstream use. The design philosophy is all of these methods here are abstracted, and

Glass' 4th Etude Glass' 4th Etude Nicholas TeagueNicholas Teague



12/14

a user need not even think about the matter unless one wishes to pursue more advanced

methods for passing custom sets of transformations.

I’m afraid that I don’t have a lot to offer to the Coronavirus discussion. I have high faith

in our government leadership to handle this matter appropriately and intend to defer to

their decisions and communications on the matter until such time as I may find myself in

position to offer unique contribution.

I would like to offer to any data scientists or practitioners that are looking to work

towards the solution by way of evaluating tabular data sets to perform machine learning

evaluations that the Automunge library is very useful for this purpose and I would be

happy to offer an introduction and guidance. Saying a prayer for the safety and health of

our global community. We are all in this together. The dawn will come.



13/14

* patent pending


