
Learning Sequential Acquisition Policies501

for Robot-Assisted Feeding502

Please refer to our website for videos, code, and supplementary material, as well as the ’Additional503

Experiments’ page for supplementary ablations and a comparison to additional baselines. In this504

section, we provide an overview of the main design choices behind VAPORS and a thorough overview505

at implementation and experimental details.506

A Simulator Details507

A.1 Simulator Design508

Figure 8: Blender Food Simulation Environment: We implement a custom food manipulation simulator in
Blender 2.92 with an Open AI gym-style environment. The simulator supports softbody objects, such as noodles
in different shape variations, as well as rigid, granular piles of items. We implement cutlery with arbitrary utensil
meshes such as forks and spoons, and implement actions using the keyframing feature of Blender to control the
position and orientation of a tool across frames.

We use Blender 2.92, a physics and rendering engine, to develop a custom feeding environment509

supporting deformable items, rigid items, and cutlery interactions. To instantiate deformable items510

like noodles (Fig. 8), we represent each item as a group of particles simulated with soft body physics.511

We treat granular piles of food such as jelly beans as separate rigid bodies. Additionally, we provide512

support for mesh-based utensils including a fork, spoon, and pusher tool, where we programatically513

keyframe the position and orientation of the tool across simulation frames to implement actions.514

A.2 Reward Design515

In this section, we describe the implementation of the reward function given in Eq. (3). For a set516

of known food item states in simulation st = {(xi, yi, zi)}i2(1,...,N), PICKUP measures the quantity517

of food items picked up out of N total items. We detect a picked up food item in simulation by518

thresholding the z position of all items before and after an action, relative to plate height. Analogous519

to task progress metrics in cloth smoothing work [51, 52], we use COVERAGE to measure of spread of520

items on the plate. We compute this via the area of the convex hull of {(xi, yi)}i2(1,...,N), depicted521

in Fig. 2, via the Scipy Python library.522

B Details of Learning-Based Methods523

B.1 Latent Dynamics Training Details524

We implement the latent plate dynamics model using the recurrent state space model from [37], with525

64⇥ 64 input images and 30-dimensional diagonal Gaussian latent variables. This is a multi-headed526

deep recurrent network comprised of a learned encoder, transition model, and reward model. We527

supervise each head of the network with the following objectives:528

• For the encoder q(zt|Mt, at�1), we use an auxiliary decoder head that upsamples latent529

variables zt to predicted images M̂t and take the mean-squared error between (M̂t,Mt) as530

a standard reconstruction objective. This encourages the learned latent representations to531

preserve the notion of food spread captured in segmented image observations.532

• We supervise the transition function p(z⌧ |z⌧�1, h
k

⌧�1) head using the KL-divergence for533

multi-step predictions as defined in [37].534

12

https://sites.google.com/view/sequential-food-acquis

• Finally, for the reward model given by p(rt|zt), we take the mean-squared error between535

predicted rewards and ground truth rewards (r̂t, rt). This objective promotes accurately536

decoding rewards of future states to inform planning at test-time.537

B.2 Planning with Learned Dynamics Model538

Once trained, we use an MPC-style loop to sample and plan actions that maximize predicted rewards539

under the learned reward model.540

At time ⌧ , we can enumerate all KT future candidate action sequences for the small library of541

primitives K, where T is the planning horizon. Conditioned on a history of observations M1:t and542

actions a1:t�1, we imagine the future latent states z⌧ :⌧+T+1 under each action sequence h
k

⌧ :⌧+T
:543

zt:t+T+1 ⇠ q(z⌧ |M1:t, a1:t�1)
⌧+T+1Y

i=⌧+1

p(zi|zi�1, h
k

i�1), (4)

where q(zt|Mt, a<t�1) is the learned encoder and p(z⌧ |z⌧�1, h
k

⌧�1) is the learned transition model.544

Next, we predict decoded rewards according to the reward model p(rt|zt) for each candidate sequence:545

R =
i+T+1X

i=⌧+1

E [p(ri|zi)] . (5)

Next, we select the sequence of actions (ĥk

⌧
, ĥ

k

⌧+1, . . . , ĥ
k

T
) which maximizes predicted cumulative546

reward R. The final step of the MPC planning loop is we take ⇡H(Mt, at�1) = ĥ
k

⌧
, which is547

simply the first primitive in the predicted sequence. After executing this action, we replan with ⇡H ,548

thus obtaining a second action and so on until ⌧ = T (Algorithm 1).549

Algorithm 1 Planning with VAPORS

1: for ⌧ 2 {1, . . . , T} do
2: It, Dt Get current RGBD image observation
3: M̂t = fseg(It) // Infer segmentation mask
4: ĥ

k

⌧
= ⇡H(M̂1:t, a1:t�1) // Select high-level action

5: Execute ⇡L(M̂t, ĥ
k

⌧
)

B.3 Food Segmentation Training Details550

Self-Supervised Dataset Generation. To circumvent the painstaking process of pixel-level551

segmentation annotation for real food images, we design a self-supervised annotation procedure.552

First, we record a grayscale RGB image of an empty plate, Iempty 2 RW⇥H

+ . Next, we manually553

place food items on the plate at random without changing the position of the plate, yielding a new554

grayscale observation It. Let Idi↵ = |It � Iempty|, the framewise absolute difference between the555

full and empty plate. We initialize the ground truth segmentation mask Mt corresponding to It as a556

2D array of zeros, and then assign Mt[Idi↵ > THRESH] = 1. In practice, we find that THRESH = 20557

reasonably separates the foreground from the background to detect food. With this procedure, we558

can scalably collect 280 paired RGB food images and segmentation masks in real within an hour559

and a half of data collection. This includes plate resets, food placement, image capture, and offline560

background subtraction post-processing.561

Augmentation. We augment this dataset 8X by randomizing the linear contrast, gamma contrast,562

Gaussian blur amount, saturation, additive Gaussian noise, translation, and rotation of each563

RGB image, applying only the affine component of these same transformations to the associated564

segmentation masks.565

Training Objective. We train fseg, implemented as a fully convolutional FPN (Feature Pyramid566

Network) using Dice loss:567

13

Ldice = 1�
2⇥ TP

2⇥ TP+ FN+ FP
(6)

This objective encourages high overlap between predicted and ground truth masks, as TP, FN, FP568

denote the number of pixel-level true positives, false negatives, and false positives in a prediction M̂t569

compared to ground truth Mt.570

C Experimental Details571

C.1 Noodle Acquisition Hardware Setup572

Using a Franka Panda 7DoF robot, we aim to clear a plate of cooked noodles within a horizon of573

T = 10 actions. We fit the end-effector with a custom 3D-printed mount consisting of a RealSense574

D435 camera and a fork. To enable autonomous twirling and scooping capabilities, we extend the575

fork’s range of motion via two servo motors (Dynamixel XC330-M288-T). We control the robot576

with a Cartesian impedance controller, where the programmable servos are integrated in the forward577

kinematics chain for positional control of the fork tip. The action space consists of either group578

(rearrangement) or twirl (acquisition) actions, instantiated according to the learned segmentation and579

pose estimation models detailed in Section 4.2.580

A group action consolidates a sparsely distributed plate by sensing the furthest and densest points,581

(x̂f , ŷf , ẑf) and (x̂d, ŷd, ẑd), and executing a planar push from the furthest to densest point. In a twirl582

action, we infer the densest point and appropriate insertion angle �̂, roughly orthogonal to the grain583

of majority of the noodles. We use positional control to insert the fork into the densest noodle pile,584

and execute a fixed twirling motion by making two rotations at 6 radians per second. Finally, the585

fork scoops upward until nearly horizontal (� = 80�) and the robot brings the acquired noodles to a586

neutral position in the workspace.587

For all trials, we use a non-slip plastic dinner plate, and mimick a bite successfully taken by a user588

after twirling by autonomously untwirling onto a discard plate.589

C.2 Bimanual Scooping Hardware Setup590

We assume access to two Franka Panda robots, equipped with a pusher tool and a metal spoon,591

respectively, and an external RealSense D435 camera for perception. With this setup, we aim to592

acquire granular items on a plate using either group (rearrangement) or scoop (acquisition) actions,593

with a total action budget of T = 8 actions. In particular, we evaluate our system on the task of594

scooping jelly beans, but VAPORS is agnostic to the exact choice of food. Following the experimental595

setup of Grannen et al. [7], the spoon is mounted at an angle to the robot end-effector (� = 30�).596

The pusher is a concave 3D-printed tool intended to push piles of items into the spoon and maintain597

contact during lifting so as to prevent spillage.598

Grouping actions are unimanual and use the pusher tool to push the sensed furthest item to the densest599

region on the tray. In a scoop action, we sense the densest pile and execute a parameterized motion in600

which the pusher and spoon move towards each other synchronously at a fixed � = 180�. Once they601

arms are within a fixed threshold apart, the spoon scoops by tilting to � = 80� and lifting to a neutral602

workspace position.603

We conduct all trials on a standard cooking tray due to the enlarged manipulation workspace for two604

arms. To simulate a user’s bite between actions, we manually discard the spoon contents after a scoop605

action.606

C.3 Implementation Details607

For each task, we use the following training procedures. We train ⇡H on simulated segmentation608

observations of size 64⇥ 64 for 2, 250 update steps, where we collect 1 episode every 150 update609

steps. We instantiate the reward as per Eq. (3) with ↵ = 0.66, and train each model using the Adam610

optimizer with with a learning rate of 10�3 , ✏ = 10�4, and gradient clipping norm of 1000 with611

batch size B = 32, based on the training procedure from [37]. Each model takes approximately 1612

hour to train on an Nvidia RTX A4000 GPU. To instantiate ⇡L, we train fseg and fori from real data.613

For segmentation, we collect 280 paired examples of images and binary segmentation masks using614

the self-supervised annotation process from Section 4.2, where we use cooked noodles of randomized615

14

Figure 9: Noodle Acquisition Rollout: We visualize 6 actions performed by VAPORS on the task of clearing
an initially half-full plate of Tier 3 noodles. As the distribution of noodles on the plate becomes sparse
(t = 0, 42, 54), VAPORS employs grouping strategies (black) to push noodles in close proximity. Once
consolidated, VAPORS employs twirling (t = 12, 66, 86), as shown in red, for efficient plate clearance, where t
denotes the clock time in seconds.

Figure 10: Bimanual Scooping Rollout: Using a bimanual setup with two Franka Emika Panda robots,
VAPORS performs 6 actions consisting of grouping (black arrows) and scooping (red arrows) to acquire jelly
beans on a tray. By grouping when the tray is sparse and acquiring when a bite-sized clump forms, VAPORS
demonstrates efficient acquisition. The annotated timestamps denote clock time in seconds.

shape and sauce variations as well as jelly beans of randomized colors. We augment each dataset 10X616

and train for 50 epochs, which takes approximately 3 hours on an NVIDIA GeForce RTX 2080 GPU.617

In order to instantiate the twirl primitive for noodle acquisition, we additionally train fori to predict618

fork tine orientation � from 280 manually annotated crops of noodles as per Section 4.2, augmented619

8X. The train time for fori is approximately 1 hour on an NVIDIA GeForce RTX 2080 GPU. For620

deployment, we use an Intel NUC 7 for inference and robot control via a ROS 2-based control stack.621

C.4 Additional Experimental Results622

In this section, we supplement the experimental findings from Section 5 with additional results.623

Plate Clearance: Fig. 9 and Fig. 10 visualize two rollouts of VAPORS on plate clearance. We note624

that visually, VAPORS tends to favor grouping as the plates become sparser and otherwise acquires625

when there is a reasonably sized bite available.626

VAPORS Failure Mode Categorization: In addition to evaluating the percentage of the plate627

cleared, we observe the occurrence of a few failure modes, as depicted in Fig. 11. A misplanned628

action (A) can occur due to a perception error, such as accidentally perceiving sauce, a garnish,629

a vegetable, or plate specularity for noodles and erroneously grouping or twirling in that region.630

Figure 11: VAPORS Failure Modes: We illustrate the 4 most commonly observed failure modes with VAPORS
on noodle acquisition. Misperception (A) occurs when ⇡L erroneously senses vegetables, sauce, or plate glare
as a noodle due to false positives with fori, leading to a misplanned action such as grouping in that region.
Occasionally, ⇡H may acquire when rearrangement is more appropriate, leading to a low-volume bite (B). In
terms of action execution, food acquisition requires care so as to not miss food (C), as seen in the grouping
motion which fails to group singular noodle strands due to system imprecision. Finally, slippage (D) can happen
during acquisition with highly adversarial items such as those coated in sauce.

15

Alternatively, this can happen when (B) the robot twirls when grouping is more appropriate or vice631

versa. A mis-executed action failure occurs when (C) the fork fails to group or acquire due to system632

imprecision or (D) the noodles slip during acquisition due to sauce. In Table 1, we also report the633

per-action failure rate, computed as the total number of failures over the total number of actions (60634

= 6 trials ⇥ T = 10).635

Qualitative User Study: In the Likert survey administered to gauge user preferences across636

methods, we report in Fig. 6 the statistical findings which are significant. In Table 2, we indicate the637

specific margin of significance for each of the criteria, obtained via 1-way ANOVA testing.638

Table 2: 1-Way ANOVA Statistically-Significant Findings (p-value < 0.05)

Criterion Method 1 Method 2 p-value
Efficiency Heuristic VAPORS 0.0004
Efficiency Acquire Only VAPORS 0.0010
Bite Size Acquire Only VAPORS 0.0318

Humanlike Heuristic VAPORS 0.0003
Humanlike Acquire Only VAPORS 0.0044
Practicality Heuristic VAPORS 0.0012
Practicality Acquire Only VAPORS 0.0025

Reuse Heuristic VAPORS 0.0000
Reuse Acquire Only VAPORS 0.0008
Trust Heuristic VAPORS 0.0124
Trust Acquire Only VAPORS 0.0198

Generalizability Heuristic VAPORS 0.0478

Table 3: Noodle Acquisition

Criterion Method 1 Method 2 p-value
Efficiency Heuristic Acquire Only 0.0029
Practicality Heuristic Acquire Only 0.0091

Reuse Heuristic Acquire Only 0.0093
Efficiency Heuristic Acquire Only 0.0029
Efficiency Acquire Only VAPORS 0.0000
Bite Size Heuristic VAPORS 0.0029
Bite Size Acquire Only VAPORS 0.0002

Humanlike Acquire Only VAPORS 0.0094
Practicality Heuristic Acquire Only 0.0091
Practicality Acquire Only VAPORS 0.0001

Reuse Heuristic Acquire Only 0.0093
Reuse Acquire Only VAPORS 0.0001
Trust Acquire Only VAPORS 0.0438

Generalizability Acquire Only VAPORS 0.0481

Table 4: Bimanual Scooping

In addition to the user study outlined in Section 5, we administered a second part of the study, in639

randomized order to the first, in which users were asked to pick a preferred method for feeding in640

side-by-side comparisons of jelly bean acquisition trials. To control for the initial state of the jelly641

beans, we purposely arrange 16 beans into a 4⇥ 4 grid initially, and conduct two trials per method642

which are randomly selected for the comparisons. Although we would like to include an analogous643

side-by-side comparisons survey for noodle acquisition for completeness, we find in practice that644

controlling for the initial state of noodles is nontrivial due to their highly deformable nature and645

vast set of feasible initial configurations. This makes it difficult to present users with unbiased646

comparisons across methods.647

Thus, for bimanual scooping, we presented all permutations of pairs of the three methods, for a total648

of six comparisons overall. Empirically, we find that VAPORS is the preferred method by a large649

margin compared to both baselines (Fig. 12).650

16

Figure 12: Overall Ratings Left: After observing all methods perform acquisition across 10 trials, we ask users
to rank all three methods from most to least preferable. We find the VAPORS is most consistently ranked the
best by a statistically significant margin (p < 0.05, denoted ‘*’) compared to the baselines. Right: For jelly
bean acquisition, we control for the initial state of the plate by arranging the beans in a 4⇥ 4 grid, and ask users
to select their preferred method across 6 side by side acquisition videos of different methods. VAPORS is the
preferred method by a large margin compared to Heuristic and Acquire-Only.

17

	Introduction
	Related Work
	Problem Statement
	State-Action Representations

	VAPORS: Visual Action Planning OveR Sequences
	Learning High-Level Plans from Simulation
	Visual Policies for Low-Level Real Manipulation

	Experiments
	Discussion
	Simulator Details
	Simulator Design
	Reward Design

	Details of Learning-Based Methods
	Latent Dynamics Training Details
	Planning with Learned Dynamics Model
	Food Segmentation Training Details

	Experimental Details
	Noodle Acquisition Hardware Setup
	Bimanual Scooping Hardware Setup
	Implementation Details
	Additional Experimental Results

