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ABSTRACT

This paper introduces a novel paradigm for the generalizable neural radiance
field (NeRF). Previous generic NeRFs combine multiview stereo techniques with
image-based neural rendering, yielding impressive results, while suffering from
three issues. First, occlusions often result in inconsistent feature matching. Then,
they deliver distortions and artifacts in geometric discontinuities and locally sharp
shapes due to their individual process of sampled points and rough feature aggre-
gation. Third, their image-based representations experience severe degradations
when source views are not near enough to the target view. To address challenges,
we propose the first paradigm that constructs the generalizable neural field based
on point-based rather than image-based rendering, which we call the General-
izable neural Point Field (GPF). Our approach explicitly models visibilities by
geometric priors and augments them with neural features. We propose a novel
nonuniform log sampling strategy to improve both rendering speed and recon-
struction quality. Moreover, we present a learnable kernel spatially augmented
with features for feature aggregations, mitigating distortions at places with drasti-
cally varying geometries. Besides, our representation can be easily manipulated.
Experiments show that our model can deliver better geometries, view consisten-
cies, and rendering quality than all counterparts and benchmarks on three datasets
in both generalization and finetuning settings, preliminarily proving the potential
of the new paradigm for generalizable NeRF.

Figure 1: Our approach produces sharper and clearer at discontinuous geometries in an unobserved
scenario without per-scene training and synthesizes higher quality images than baselines.

1 INTRODUCTION

Novel view synthesis has emerged as an important and widely discussed topic in computer vision
and graphics. In recent years, neural rendering techniques have made remarkable progress in this
domain, with Neural Radiance Fields (NeRF) Mildenhall et al. (2021) being a prime instance. How-
ever, traditional NeRF-based approaches are heavily constrained by a long time for optimization and
the inability to generalize to unseen scenarios.
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Recent works such as Chen et al. (2021); Yu et al. (2021); Wang et al. (2021c); Lin et al. (2022); Liu
et al. (2022); Johari et al. (2022) have investigated into generalizing NeRF to unobserved environ-
ments without retraining. At present, the common motivation of existing approaches is to integrate
multi-view stereo (MVS) techniques into the NeRF pipeline. Their methods are called image-based
neural rendering. In this paradigm, the image features extracted by networks are projected to the
query 3D points which are generated by uniform sampling in volume ray marching and regressing
their colors and densities. However, the paradigm has a few issues. First, geometry reasoning sig-
nificantly relies on stereo matching between multi-view features. However, occlusions often destroy
the feature consistencies, resulting in inaccurate geometry reconstruction. On the other hand, the
sampled 3D points are often processed individually, which damages the local shape connections.
In this case, distortions and artifacts commonly occur in shape-varying regions. Next, they use
simple methods to aggregate features, which limits the expressive abilities of networks and causes
undesirable degenerations in out-of-distribution scenes. Besides, such image-based rendering rep-
resentation is not capable to interact with and edit.

To address these problems, this paper proposes a novel paradigm for generalizable NeRF based on
point-based instead of image-based rendering, Generalizable neural Point Field. The proposed ap-
proach includes three main components, the visibility-oriented feature fetching, the robust log sam-
pling strategy, and the feature-augmented learnable kernel. Furthermore, we present a three-stage
finetuning scheme. Extensive experiments were conducted on the NeRF synthetic dataset Milden-
hall et al. (2021), the DTU dataset Jensen et al. (2014), and the BlendedMVS dataset Yao et al.
(2020). The results showcase that the proposed method outperforms all benchmarks with clearer
textures, sharper shapes and edges, and better consistency between views. Additionally, we show
examples of point completion and refinement results to illustrate its validity in improving recon-
structed geometries. Moreover, we show the potential of the method in interactive manipulation.

The main contributions of this paper are as follows:
• We first propose a novel paradigm GPF for building generalizable NeRF based on point-

based neural rendering. This novel paradigm outperforms all image-based benchmarks and
yields state-of-the-art performance.

• We explicitly model the visibilities by geometric priors and augment it with neural features,
which are then used to guide the feature fetching procedure to better handle occlusions.

• We propose a novel nonuniform log sampling strategy based on the point density prior, and
we impose perturbations to sampling parameters for robustness, which not only improve
the reconstructed geometry but also accelerate the rendering speed.

• We present the spatially feature-augmented learnable kernel as feature aggregators, which
is effective for generalizability and geometry reconstruction at shape-varying areas.

2 RELATED WORK

Neural Scene Representations. Different from traditional methods that directly optimize explicit
3D geometries, such as mesh Liu et al. (2020), voxelSitzmann et al. (2019), and point cloudLiu et al.
(2019), recently the use of neural networks for representing the shape and appearance of scenes
Sitzmann et al. (2019); Xu et al. (2019); Tancik et al. (2020); Jiang et al. (2020) is prevailing. More
recently, NeRFMildenhall et al. (2021) achieved impressive results. The following works improve
NeRF in different aspects Yang et al. (2022b); Deng et al. (2022). Fridovich-Keil et al. (2022) store
neural features in voxels. Xu et al. (2022) integrate point cloud into neural rendering. Yariv et al.
(2021) and Wang et al. (2021b) apply NeRF to model signed distance fields. 3D Gaussian splatting
Kerbl et al. (2023) achieves fast and high-quality reconstruction for per-scene settings.

Generalizable Neural Field. Typical NeRF requires per-scene optimization, and cannot be gen-
eralized to unseen scenes. In recent years, many methods Chen et al. (2021); Johari et al. (2022)
have proposed generalizable neural fields from multi-view images. PixelNeRF Yu et al. (2021) and
IBRNet Wang et al. (2021c) regard multiple source views as conditions, query features from them
and perform neural interpolation. MVSNeRF Chen et al. (2021), GeoNeRF Johari et al. (2022) and
ENeRF Lin et al. (2022) incorporate Multiview stereo into NeRF to generate neural cost volume to
encode the scene. To avoid occlusion in stereo matching, NeuralRay Liu et al. (2022) infers occlu-
sions in a learnable fashion. The above methods either require source views to reconstruct the neural
volume before each rendering or are fully inaccessible. We propose the generalizable point-based
paradigm to avoid issues that can hardly be solved by image-based methods.
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Figure 2: The Overview pipeline with our model. (a) depicts the hierarchical feature extraction.
(b) is visibility-oriented feature fetching. (c) denotes the density-guided robust log sampling. (d)
illustrates feature aggregation by the feature-augmented learnable kernel.

Editing NeRF. Most of the works (Yuan et al., 2022; Sun et al., 2022; Jiang et al., 2022) combine
typical NeRF with different explicit representations. CageNeRF (Peng et al.) incorporate control-
lable bounding cages into NeRF. Xiang et al. (2021); Yang et al. (2022a); Kuang et al. (2022) decom-
pose appearance editing of NeRF. Manipulation is a by-product of the GPF that can be manipulated
by users in both the appearance and geometry individually.

Point-based Rendering Point-based rendering involves generating images from point clouds. In the
past years, neural-based point renderers Rusu & Cousins (2011).Debevec et al. (1998) have made
significant advancements in generating images from point clouds. Very recently, studies Dai et al.
(2020); Rückert et al. (2022) have combined it with the prevailing NeRF pipeline to achieve better
results, such as PointNeRF Xu et al. (2022) and Point2Pix Hu et al. (2023). Our method is partially
similar to this category, while with good generalizability and performance.

3 METHODOLOGY

Given multi-view images, our aim is to generate representations for different source scenes without
per-scene optimization. For each scene, first, we initialize the point scaffold by the MVS technique.
Next, we propose to explicitly compute the physical visibilities of points to each source image.
Then, we fetch image features for all points oriented by the visibility scores to mitigate occlusion
effects. Up to this step, the occlusion-aware neural point representation is built from multi-view
images. We access this representation by volume rendering to synthesize novel views. Furthermore,
we propose a robust log sampling strategy based on the physical visibility scores, which improves
not only the rendering speed but also the quality of reconstructed geometries. Last we propose to
aggregate neural features for query points via a spatially learnable kernel function to obtain better
generalizability. The whole paradigm is described in Fig. 2.

3.1 VISIBILITY-ORIENTED FEATURE FETCHING

First, we extract multi-level image features from all input source views {I}ni=1 via a symmetric U-
Net-like Convolutional Network. As described in Fig. 2, the multi-view images are first fed to the
UNet-like extractor to produce low (Fl ∈ RH×w×8) and high (Fh ∈ RH/4×w/4×32) scale features,
respectively. Meanwhile, the PatchmatchMVS is used to initialize point cloud scaffolds.

Moreover, we fetch these features to the point cloud based on their physical visibilities. This is
necessary to mitigate the adverse effect of stereo-matching inconsistency caused by occlusions. We
first estimate the visible depth map for each camera viewpoint. We do not use either the depth map
obtained by the MVS network or directly project points into view planes by camera parameters.
Because the former contains lots of noise and the latter only produces sparse depth maps with a
mass of holes. Instead, inspired by volumetric rendering, we propose a novel method to extract
clean and dense depth prior from the point cloud. In detail, we emit rays from all pixels and sample
128 query points along each ray. We search neighbors in their adjacent areas with the radius r and
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filter out queries with no neighbors. Then we define the spatial density of each query point as the
function of their neighbors, in the following:

d =
1

N

∑
n

exp(−1

2
(x− x0)

2) (1)

where N refers to the number of neighbors and x0 is the coordinates of centers. The transmittance
can be defined as

Tn = exp(

n∑
i=0

2dir) (2)

where di is the density and r is the search radius. As to the above, the opacity weight of each query
point is determined as wi = Tidi. The depth can be estimated softly:

D =
1∑N

i=1 wi

N∑
i=1

wizi (3)

Next, the physical visibility score can be calculated by Eq. 4, where Pz denotes the z value of the
camera coordinates and Di can be considered as the visible depth estimation, especially efficient
when the number of points causes bleeding problems via rasterization. Details are in the Appendix.
It is natural for Pz to be inherently smaller than its corresponding Di, xy by the definition of depth
projection. Therefore, The visibility score is naturally constrained between 0 and 1.

Score = 1− |Pz −Di,xy|
Pz

(4)

Each point only fetches features from images with the top k visibility scores by Fl,n =
∑k

i=1 w
l
i ∗

fl,i, Fh,n =
∑k

i=1 w
h
i ∗ fh,i and Fc,n =

∑k
i=1 w

c
i ∗ Ii, where wis are computed over the top k

visibility scores via two independent learnable modules conditioned by the physical visibilities and
features, Fl, Fh, Fc are low-level features, high-level features, and colors for each point.

Fc, Fl, Fh = Ω(fl,i∈[1,k], fh,i∈[1,k], Ii∈[1,k], vi∈[1,k]) (5)

The Ω depicts the entire feature fetching process, which is also determined by their visibility scores,
moreover, we augment the process with neural features, a detailed description is in the Appendix.

3.2 ROBUST DENSITY-GUIDED LOG SAMPLING STRATEGY

Conventional sampling strategy either skips surfaces or requires more sampled points hence improv-
ing computational burden, which not only slows the rendering but also severely affects reconstructed
geometries. Point clouds contain rich geometric priors that can be used to improve the sampling
strategy. We reutilize the visible depth map introduced in Sec. 3.1 to determine the intersection
points of a ray with the surface, which we call central points. In contrast to the uniform sampling
used in NeRF, we sample points along a ray nonuniformly and irregularly by spreading out from the
central point, following the guidance of Eq. 6.

{p}2Nk

i =

{
Pc ± base

Nk
Nk−1∗(i−1)

}2Nk

i

(6)

in which the total number of sampled points on a ray is 2Nk. The Pc refers to the central point, and
the base represents the logarithm base value that controls the sparsity of the sampling process. This
equation describes that we sample points on both sides of the center in a symmetric and nonuniform
way. The implication of this sampling strategy is to sample more points near the surface with
rich geometric information and sample fewer points far away from it. In addition, to alleviate the
influence of the error between the estimated and the real depths, small perturbations δ and ϵ are
added to base and Pc. The Pc and δ in Eq. 6 are replaced by P̂c = Pc + δ and ˆbase = base + ϵ,
respectively. This is also able to avoid model trapping in the local minimum. Moreover, previous
generalizable NeRF methods require two identical models to implement ”coarse to fine” sampling,
but our model generates good sampling directly from the geometry prior and does not need the
”coarse stage”. Hence, we consume fewer memories and less time.
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3.3 POINT-BASED NEURAL RENDERING WITH FEATURE-AUGMENTED LEARNABLE KERNELS

In the above two subsections, we discuss building the neural augmented point scaffold and the log
sampling strategy. In this section, we introduce how to convert information from the neural scaffold
to the sampled points. First of all, we search K nearest neural points for each query point within
a fixed radius r, and filter out those without neighbors. Popular aggregation approaches in point-
based rendering include inverse distance weighting, feature encoding, and predefined radial basis
functions. They suffer from distortions and blurs when generalizing to varying geometries. Because
geometries and scene scales drastically vary across different scenes. Thus bridging neural scaffolds
and the continuous field via simple predefined functions is challenging. Therefore, we propose a
feature-augmented learnable kernel to aggregate features. For the nearest K points

{
p1i ...p

K
i

}
of

the query pi, we first compute their spatial information encoding including the distances, positions
under camera coordinate systems, and relative coordinates by Eq. 7, detailed in Appendix.

hk
s,i = MLP (cat(pki , p

k
i − pi, ||pki − pi||1)) (7)

Then we input the local spatial features and their neural features (F∗ in Eq. 5, ∗ contains l, h, c) to
the feature-augmented learnable kernel, which is illustrated by Eq. 8 to Eq. 10.

ŵk
i = MLP (hk

s,i), (8)

vki , H
k
i = Sigmoid(hv), ReLU(hH) = MLP (cat(hk

s,i, F∗)), (9)

F =

K∑
k=1

softmax(vki ∗ ŵk
i )H

k
i , (10)

where cat is the concatenation operation, the spatial features are first initialized as weights ŵk
i .

Meanwhile, they are then concatenated with the neural features to produce another feature vector
Hk

i and a tunning coefficient. The tuning coefficients are multiplied with the ŵk
i to adjust their ratio,

and then Hk
i is weighted summation to obtain the final feature vector for each query point. The

results are interpreted as c or σ by decoders. Besides, if the final target is the color, F∗ denotes
the concatenation of Fl and Fc in Eq. 5. In contrast, if the target is σ, it should be Fh. With this
feature-augmented learnable kernel, our network expresses local features better and performs well
at geometric discontinuities, such as the edge of an object.

Finally, conventional volume rendering (c =
∑

K Tj(1− exp(−σjδj))cj) is applied to obtain color
at pixels, where Tj = exp(−

∑j−1
t=1 σjδj). The only loss we used to train our model is the MSE loss

between predictions and groundtruth, which is depicted as Lc =
1
|R|

∑
r∈R ||ĉr − cgt(r)||.

3.4 HIERARCHICAL FINETUNING

We present a hierarchical finetuning paradigm. Different from previous image-based generic NeRF
approaches, we remove the image feature extractor before fintuning, and only maintain features
attached to the point scaffold, because our method can render views independently of source images.

The proposed hierarchical finetuning paradigm includes three stages: 1. feature finetuning 2. point
growing and pruning 3. point refinement. The first stage optimizes neural features stored in the
point scaffold and the weights of the learnable kernels. The initialized point clouds sometimes are
imperfect and contain artifacts and pinholes. Inspired by PointNeRF, we introduce point completion
and pruning techniques in the second finetuning stage. For point completion, we grow new points
at places with higher opacity (α = 1 − exp(−σjδj)). If the opacity of a candidate point is larger
than a preset threshold α > Topacity and the distance to its nearest neural points is not smaller than
another threshold dmin ≥ Tdist, a new point with averaged features over its neighbors is added.

Our point pruning is different from PointNeRF because our representation does not rely on the per-
point probabilistic confidence. Instead, we follow the feature-augmented kernel to recompute the
opacity at the positions of neural points and delete them when they have smaller opacity.

The third stage is called point refinement. Point positions might be suboptimal in their vicinities.
In this stage, we freeze features and all networks and iteratively adjust the coordinates of the point
scaffold, following Eq. 11. In detail, a trainable offset ∆pi is assigned to each point, and v refers to
the camera viewpoint. The offset is regularized with its L2 loss to ensure that they would not move
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Training Methods NeRF Synthetic DTU BlendedMVS
Setting PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Generalization

IBRNet 26.91 0.925 0.113 25.17 0.902 0.181 22.01 0.813 0.171
MVSNeRF 23.65 0.827 0.181 23.50 0.818 0.314 20.27 0.795 0.290

ENeRF 26.69 0.947 0.097 25.77 0.913 0.168 21.88 0.758 0.176
Neuray 27.07 0.935 0.085 25.94 0.925 0.122 23.24 0.878 0.106
Ours 29.31 0.960 0.081 27.67 0.945 0.118 26.65 0.878 0.098

Finetuning

IBRNet 29.95 0.934 0.079 28.91 0.908 0.130 25.01 0.721 0.277
MVSNeRF 28.69 0.905 0.160 26.41 0.881 0.274 21.11 0.796 0.279

ENeRF 29.21 0.931 0.077 28.13 0.931 0.101 24.81 0.863 0.201
Neuray 30.26 0.969 0.055 29.15 0.935 0.104 26.71 0.885 0.083
Ours 33.28 0.983 0.037 31.65 0.969 0.081 28.78 0.944 0.073

Table 1: Quatatitive comparisons on the three datasets under generalization and finetuning settings.
The PSNR, SSIM, and LPIPS are computed.

too far from their original positions. The three stages experience iterative optimizations one after
another until the loss no longer decreases.

∆pi = argmin(
∑
v

||Iθ(v|pi +∆pi)− Igt||22 +
N∑
i=1

||∆pi||2) (11)

4 EXPERIMENT

Datasets. We pretrain our model on the train set of DTU Yao et al. (2020), in which we follow the
train-test split setting introduced in MVSNeRF. To evaluate the generalization ability of our model,
we test the pretrained model on NeRF Synthetic Dataset Mildenhall et al. (2021), the test set in DTU
Dataset and large-scale scenes in BlendedMVS Yao et al. (2020).

Figure 3: Qualitative comparisons of novel view synthesis under generalization setting.

4.1 COMPARISON WITH BASELINES

We compare the proposed method with IBRNet, MVSNeRF, and ENeRF, all of which are recent
state-of-the-art open-source generic radiance field methods, in both the generalization setting and
finetuning setting. All generalization methods are pretrained on the same training scene. The qual-
itative and quantitative results are reported in Table 1 and Fig. 3 and 4 respectively. In Table 1,
we list the metrics of PSNR, SSIM, and LPIPS on the three datasets. Our method outperforms all
other methods in both generalization and finetuning settings by a considerable margin. Fig. 3 vividly
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Figure 4: Qualitative comparisons of novel view synthesis under finetuning setting.

Training Methods NeRF Synthetic DTU
Setting PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Finetuning
PointNeRF 30.71 0.961 0.081 28.43 0.929 0.183
Point2Pix 25.62 0.915 0.133 24.81 0.894 0.209

Ours 33.28 0.983 0.037 31.65 0.970 0.081

Table 2: Quantitative comparisons with point-based methods on NeRF Synthetic and DTU datasets.

depicts that other models produce severe artifacts at places with local shape variations, especially
edges of the object. Existing methods cannot handle extremely varying local shapes because they
only consider independent sampled points. Instead, our model fully utilizes the geometric prior and
presents the learnable kernels to better abstract local features.

In the finetuning setting (Fig. 4), it is observed from DTU results that the other three models in-
correctly infer the geometry, caused by occlusions in source views. Furthermore, in the Blended-
MVS example, the other three models completely collapsed. This is because the source images
are distributed in a scattered manner, and occlusions exist between adjacent views, which damage
the image-based methods. By contrast, our model leverages visibility-based feature fetching to ef-
fectively address the issue. Even if the novel view lacks enough nearest source views, our model
can generate plausible high-quality images. We also show the quantitative comparison in Table
4.1 between our approach with other point-based rendering methods, PointNeRF Xu et al. (2022)
and Point2Pix Hu et al. (2023) (Point2pix is our unofficial implementation). The results show our
method still has significant advantages. More detailed comparisons are depicted in the Appendix.

4.2 COMPARISON WITH NEURAY

We individually report the comparisons with Neuray in this subsection because it implicitly models
the occlusion by a trainable visibility module. However, it performs poorly in out-of-distribution
scenarios. In contrast, we compute the visibility in an explicit way and slightly adjust it based on
neural features. Our method yields better geometries and consistencies between views, which can
be seen in Fig. 5. It is observed that NeuRay generates blur and unsharp geometries, resulting in
incorrect reconstructions in local areas with drastically varying shapes. Nevertheless, our method
produces clean and sharp geometrics even though at places with geometric discontinuities. Further-
more, we also compute the metrics of NeuRay on the three datasets, which we report in Table 1 as
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Figure 5: Qualitative Comparisons between ours and the implicit occlusion-aware image-based ren-
dering method: NeuRay, including the rendering views and the reconstructed geometries. The green
box is the groundtruth at the right side of the figure.

Methods Training Time ↓ Rendering Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Uni 64 22h 86.6s 21.42 0.776 0.312

Uni 128 26h 103.2s 25.08 0.878 0.382
Uni 64+128 29h 124s 26.56 0.903 0.179

Surf 2 11.5h 0.62s 24.10 0.891 0.226
log16-noϵ 8.5h 1.04s 27.13 0.927 0.136

log16(ours) 8.5h 1.04s 27.67 0.945 0.118

Table 3: Ablations about different sampling strategies. Uni+number refers to uniform sample ”num-
ber” points. Uni 64+128 denotes the ”coarse to fine” strategy used in conventional NeRF. Surf2
follows the method in ENeRF, only sampling 2 points around the surface. log16-noϵ is the log sam-
pling without perturbation. log16(ours) refers to the full setting of log sampling.

well. Obviously, NeuRay delivers more remarkable results than the other three benchmarks thanks
to its implicit occlusion modeling. However, it suffers from degeneration when generalized to out-
of-distribution scenes. Besides, compared with our explicit visibility modeling, implicit modeling
causes severe damage to view consistencies, which are shown in our supplementary video. By con-
trast, our model gives preferable reconstruction qualities on both geometries and novel views under
both generalization and finetuning settings.

4.3 ABLATION STUDIES AND ANALYSIS

Main components. This subsection presents the effectiveness of the other main components of
our method, including the robust log sampling and the feature-augmented learnable kernel. We
experimentally prove the necessity of the irregular log sampling strategy in terms of performance
and time by comparing it with uniform and surface sampling methods. Table 3 illustrates that the
novel sampling strategy delivers better performance while consuming less time. A visual aid is
provided in Sec. E of Appendix. Even though the rendering speed of Surf2 used in ENeRF is
slightly less than ours, its performance is largely degraded because the estimated surface is not
accurate thus sampling only 2 points around it leads to dramatic errors. The metrics are evaluated on
the DTU test set under generalization settings, we also present visual aids to facilitate understanding
in Appendix Sec. E.

Second, we compare our feature-augmented spatial learnable kernel with inverse distance weight-
ing Xu et al. (2022), Gaussian radial basis kernel Abou-Chakra et al. (2022), and trainable feature
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Methods Inverse distance weights Radial basis kernel Trainable encoding Ours
PSNRg↑ 23.61 24.75 25.20 27.67
PSNRft↑ 28.18 25.88 28.92 31.65

Table 4: Quantitative Comparisons with different feature aggregators. ”g” refers to generalizable
setting and ”ft” denotes finetuning.

Figure 6: Instances of point completion and refinement in finetuning.

encoding Wang et al. (2021c) for feature aggregation. Table 4 quantitatively gives the comparison
results. It is noted that the inverse distance weights yield the worst quality in generalization, whereas
significantly improved after finetning. The predefined kernel function produces good results in gen-
eralization but does not benefit so much from finetuning. However, our method produces the best
results in both generic and finetuning.

Finetune. In addition, we evaluate our hierarchical finetuning paradigm, especially in the second
and third stages. It can be observed from Fig. 6 (a). that the holes caused by imperfect initial point
cloud have gradually filled up with the increasing training steps. It is clear from Fig. 6 (b) that the
point refinement module enables points closer to the real object surface, which effectively benefits
both the density-guided log sampling procedure and the reconstructed geometry.

Figure 7: Interactive manipulation on appearance and geometry

Interactive and Editable. Our approach also comes with a good by-product compared with cur-
rently popular image-based generic NeRF models. Our representation is easy to interactively ma-
nipulate. Here we simply conduct some preliminary attempts to show its potential for manipulation.
For a well-deployed neural point scaffold, we use open-source 3D software, such as Blender, to
manipulate the positions of points and maintain the features stored in them. The results are shown
in Fig. 7. The object in scenes can either move to new places (a) or slightly change its shape (b).
Besides, it can also be handled under physical constraints (c).

5 DISCUSSION

Conclusion. This paper proposed a novel point-based paradigm for building generalizable NeRF.
This model explicitly models physical visibility augmented with features to guide feature fetching,
which better solves occlusions. Besides, a robust log sampling strategy is proposed for improv-
ing both reconstruction quality and rendering speed. Moreover, we present the spatially feature-
augmented learnable kernel to replace conventional feature aggregators. Thanks to this, the perfor-
mance at geometric discontinuities is improved by a large margin. Experiments on the DTU, NeRF,
and BlendedMVS datasets demonstrate that our method can render high-quality plausible images
and recover correct geometries for both generic and finetuning settings.

Limitation. Our GPF requires the PatchmatchMVS to initialize the point scaffold in the generaliza-
tion stage. In the future, we plan to propose a neural-based initialization module that can be jointly
trained with our modules simultaneously.
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Appendix
A MODEL ARCHITECTURES

In this section, we complementally introduce the architectures of the visibility-oriented feature fetch-
ing module and our low and high-level feature aggregators.

A.1 DETAILED DESCRIPTIONS OF THE VISIBILITY SCORES

As we explained in the main body of this paper, we first estimate the depth maps by the proposed
point density-based method. Notably, z-buffer point rasterization or splatting methods can also
be used as long as the number of points is sufficient to avoid the ”bleeding” problem because the
geometry prior is just estimated and will be compensated by the following neural augmented module.

Then we precompute physical visibility scores of each point to all source images, as Fig. 8 states. We
use Fig. 9 to help us clearly depict the physical meaning behind the design of the visibility scores.
In this figure, in the camera coordinate system, Pz represents the z-value of a specific point. It
indicates the distance between the projection of the line connecting the point and the camera center
to the camera’s optical axis. The value Di,xy is obtained by interpolating the depth map using Eq. 1
to 3. If a point, such as point A in the figure, is visible from the viewpoint, it implies that it lies on
the object’s surface. In this case, the z-value of the point in the camera coordinate system should
roughly match the interpolated depth value, Di,xy . On the contrary, if a point (e.g., point B) is not
visible from the viewpoint, its z-coordinate can only be greater than Di,xy . There should not be any
other points between Di,xy and the camera’s center, as it would cause a change in the value of Di,xy

accordingly. Consider another case where a point lies outside the viewing angle’s frustum, and its
z-value is smaller than the minimum depth on the depth map, as illustrated by point C in the figure.
In this case, the point would be projected outside the image plane. However, during interpolation
on the plane, we employ zero padding. Therefore, the value of Di,xy for this point would be zero,
which is smaller than Pz as well.

Figure 8: Schemetic diagram of physical visibility score computing. We precompute visibility scores
for each independent point to all source images. Vs refers to the score which ranges from 0 to 1,
larger score represents more possibility of this point to be viewed from the associated view.

A.2 DETAILED IMPLEMENTATION OF FEATURE AGGREGATORS

When the visibility scores are obtained, we select three source views with the first three largest
visibilities for each point. Next, the features on the three selected views will be aggregated by
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Figure 9: Visualization of the physical meaning of the visibility score.

our proposed attentive visibility module, instead of simply averaging over them, in a more refined
manner. First, the fetched low- and high-dimensional features are projected to 32 dimensional space
by MLPs. Here we design two aggregators, one for low-level features and colors, the other for
high-level features. Regarding the low-level feature aggregators, a multi-layer perceptron (MLP)
consisting of two hidden layers is employed. This MLP takes in the concatenation of low-level
features, colors, and visibilities as input and generates weights for features and colors as output
(refer to Eq. 1). In the equation, the variable v represents the physical visibility scores. The feature
tuning weights, denoted as wl

i, are utilized to make slight adjustments to the original visibility scores.
The visibility scores are multiplied by the feature tuning weights and then normalized to ensure that
their summation equals 1, then the weighting sum of hl is performed to obtain the final features with
the consideration of visibilities, as stated in Eq. 13.

wi=1,...,k
l , hi=1,...,k

l = f(F i
l , ci, v

i)i=1,...,k (12)

Fl =

k∑
i

Norm(wi∈k
l ∗ vi=1,...,k)hi

l (13)

When it comes to aggregating the high-level features, there exists minimal disparity. The aggregator
employed for high-level features also utilizes a multi-layer perceptron (MLP), albeit with distinct in-
puts. Initially, features are concatenated with colors akin to the low-level aggregator. Subsequently,
the mean and variance are calculated across the k vectors, and the resultant values are concatenated
as an additional input vector. This approach is adopted due to the inclusion of more comprehensive
information pertaining to the scene geometries within the high-level feature consistency.

We here formulate a vivid diagram to depict the process of the feature-augmented learnable kernel
(Eq. 8 to Eq. 10 in the main paper) in Fig. 10. Clearly, the weights to sum neural features are
initially produced by spatial information in the above branch, but experience tuning with the feature
augmentations of the below branch. Besides, the cross-scene decoders are two simple MLPs with

Figure 10: Schemetic diagram of the feature-augmented learnable kernel.

two layers to translate neural features aggregated from their neighboring points to the density σ and
the color weights. Simple decoder architectures can enhance the representation ability of the neural
features.
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Figure 11: Qualitative comparisons on LLFF dataset.

Training Setting Generalization Finetuning
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
IBRNet 25.13 0.817 0.205 26.73 0.851 0.175

MVSNeRF 21.93 0.795 0.252 25.45 0.877 0.192
ENeRF 22.78 0.808 0.209 24.89 0.865 0.199
Neuray 25.35 0.818 0.198 27.06 0.850 0.172
Ours 26.01 0.829 0.184 27.79 0.872 0.171

Table 5: Quantitative comparisons on LLFF dataset.

B IMPLEMENTATION DETAILS

We train our generalizable model on a single RTX3090 GPU for 100k iterations using Adam op-
timizer with an initial learning rate of 5e-4 and a cosine annealing schedule with annealing α of
0.1. In our experiments, in the training stage, we selected 10 input views to compute the visibility
and set the top-k as top-3 to perform visibility-based feature fetching. In contrast, in the test stage,
we compute visibility and fetch features across all source images. In our log sampling strategy, the
two perturbations are sampled from the two uniform ϵ ∼ U(−10, 10) and normal δ ∼ N(0, 0.01)
distributions respectively. The parameters of the two distributions are determined by the scale of the
scenes. The base is set to 1.35 and we sample 16 points for each ray. For each iteration, the training
batch is 512. In the feature-augmented learnable kernel, the k nearest neighbors are selected as 8.
Besides, we enlarged the NeRF Synthetic scene 100 times to make it in accordance with the scale
of DTU training set. In finetuning, we first extract and aggregate all image features to the point
scaffold. Then, source images are not required in the finetuning setting. Moreover, the finetuning is
effectively fast and only consumes 50k iterations.

In the first stage of finetuning setting, the features and parameters of networks have the initial learn-
ing rate of 1e-5 but the color of each point is trained with 1e-7. In the point completion stage,
notably, only if the radius of the hole is smaller than the searching radius, the point cloud can be re-
covered. Therefore, we slightly enlarge the search areas 1.5 to 2 times than that in the generalization
stage. To extend searching areas, we reutilize uniform sampling. In point pruning, it is impossible to
check all the neural points at each iteration step, thus we randomly select 3192 neural points at each
pruning step. After the refinement of point positions, the precomputed visible depth map should be
regenerated.

C ADDITIONAL RESULTS AND ANALYSIS

In this section, we provide additional qualitative results under generalization and finetuning settings
with enlarged details.
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Figure 12: Additional qualitative results on the three datasets with enlarged details under general-
ization setting.
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Figure 13: Additional qualitative results on the three datasets with enlarged details under finetuning
setting.

C.1 QUALITATIVE RESULTS ON THE LLFF DATASET

To provide further comparisons and evaluations, we conducted additional experiments on the LLFF
dataset for all baselines and our proposed method. This section includes the qualitative results,
depicted in Fig. 11, as well as the quantitative results presented in Table 5. These findings offer
insights into the performance and effectiveness of our method in comparison to the baselines.

C.2 QUALITATIVE RESULTS WITH ENLARGED DETAILS

In Fig. 12 and 13, additional results under generalization and finetuning settings with their large
detail boxes are given. Our representation performs stably under all three datasets, even if the ge-
ometry is complex or the source images are not close to the target view. However, in BlendedMVS

16



Published as a conference paper at ICLR 2024

Dataset, the camera views often distribute sparsely, thus image-based rendering cannot acquire suf-
ficient information from a few surrounding source images. Utilizing all source images would cause
computation redundancy. Therefore, the counterparts cannot deliver satisfactory results on the three
Datasets. Furthermore, even if finetuning can improve the quality of rendering images of the coun-
terparts, it cannot deal with the in-realism caused by occlusion. The chair scene in NeRF Dataset is
an example of that. The back leg of the chair disappears. Moreover, the mic scene in NeRF dataset
contains many geometry inconsistencies, which lead to blur and artifact of reconstruction images,
our model performs better in such scenes as well.

D COMAPRISONS OF THE RECONSTRUCTED GEOMETRY WITH BASELINES

Fig. 5 indicates the performance of our model on the reconstruction of geometries. The predicted
depth map is clear and contrasting. In this section, we report the quantitative results to further
describe our benefits in Table 6.

In this table, The RMSE refers to the root mean square error computed over the normalized depth
groundtruth, Acc. T denotes the accuracy of the threshold, we set the threshold as 195% for all
experiments. The Ourswo/vis refers to the variant of our model by removing the visibility scores.
In addition, all tests are under generalization settings because finetuning cannot faithfully reflect the
real understanding of models to the realistic geometries. The performance would see a decrease
if we remove the explicit occlusion modeling, which proves the validity of the visibility-oriented
feature fetching module.

Method IBRNet ENeRF Neuray Ourswo/vis Ours

NeRF Synthetic RMSE↓ 0.677 0.527 0.547 0.294 0.161
Acc.T↑ 0.380 0.159 0.119 0.596 0.787

DTU RMSE↓ 0.321 0.435 0.162 0.189 0.122
Acc.T↑ 0.896 0.741 0.911 0.905 0.936

Table 6: Quantitative comparisons of depth maps on NeRF Synthetic and DTU datasets.

E ADDITIONAL ABLATION STUDIES

Additional visualizations about ablation studies for the main components are provided in this sec-
tion to further interpret Sec. 4.3 in the main paper. Besides, we report the ablations of the depth
map generated by our model with different configurations. Moreover, the effect of point numbers
is compared and reported. Here we first present Fig. 14 to visually help understand the differences
between various sampling strategies, i.e. Table 3 in the main paper. In this figure, the x-axis cor-
responds to training time, the y-axis represents the PSNR, and the size of the circles indicates the
rendering time for an 800*800 image. By examining the figure, we can readily observe that the log
sampling method consumes the least amount of training time while achieving the highest PSNR.
Additionally, it demonstrates the second-fastest rendering speed, slightly slower than the surface
sampling technique.

E.1 VISUALIZATIONS OF ABLATION STUDIES

Fig. 15 shows the detailed structure at places with dramatically varying geometries under gener-
alization settings. Our learnable kernel reconstructs the sharpest edges with fewer blurs and fogs,
whereas other methods suffer from confused appearances and disconnected shapes.

Furthermore, Fig. 16 gives visual examples to compare different sampling strategies. We can see
that uniform sampling fails to maintain detailed textures in renderings, even though the number
of sampled points increases to 192. However, our density-based log sampling can recover distinct
appearances and unambiguous geometry.
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Figure 14: Ablation studies of different sampling strategies.

Figure 15: Ablation study of various feature aggregators.

E.2 VALIDATION OF THE LOW- AND HIGH-LEVEL DECOMPOSITION

We conducted experiments on the DTU dataset to analyze the impact of different combinations of
features on the rendering qualities, including only low-level features, only high-level features, and
the combinations of low- and high-level features. The ablation results are listed in Table 7. Here we
evaluate the rendering quality in both generalization and finetuning settings and the reconstructed
depth map in the generalization setting. The results show that separating appearance and shape into
individual code is indeed meaningful.

Training Setting Generalization Finetuning
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ RMSE↓ Acc.T↑
Only-low 24.15 0.896 0.178 30.16 0.921 0.133 0.383 0.865
Only-high 22.94 0.852 0.231 30.47 0.928 0.132 0.155 0.917
low-high 27.67 0.945 0.118 31.65 0.970 0.081 0.122 0.936

Table 7: Quantitative comparisons between the compositions of different levels of features.

E.3 RECONSTRUCTION OF GEOMETRIES

Here we qualitatively report the depth visualization under different model settings. Fig. 17 (b) refers
to the groundtruth depth, and (c) is the depth predicted by PatchmatchMVS Net Wang et al. (2021a).
(d) denotes our full model prediction. (e) is the prediction of our model except for using the feature-
augmented learnable kernel introduced in the main paper. (f) is also the prediction of our model but
using ”coarse to fine” uniform sampling rather than the proposed log sampling. From these figures,
we observe that the full model provides the most reasonable prediction. Besides, the prediction of
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Figure 16: Ablation study of different sampling strategies.

Figure 17: Ablation study of depth predictions.

MVSNet is unable to handle regions without depth, which also occurs in the prediction of other
generic NeRF models.

Figure 18: Ablation studies of the influence of the number of points in the point scaffold. The
figure reports the rendering quality when the number of points is about 15K, 50K, 100K, and 200K
respectively. The quantitative metrics including PSNR, SSIM, and LPIPS are calculated.

E.4 INFLUENCE OF THE POINT SCAFFOLD DENSITY

We additionally analyze the effect of the different number of points in the scaffold. In detail, we test
our trained model on the DTU Scan114 scene with different levels of point downsampling under
the generalization setting. It is shown in Fig. 18 that the quality of rendering is slightly impacted
by the density of the point scaffold. However, fewer number points lead to faster rendering speed.
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Thus, this is a trade-off between rendering quality and speed. We recommend that the number of
points 50K 100K is enough to produce plausible novel images with satisfactory speed for the DTU
dataset. This experiment demonstrates the robustness of our proposed representation, which cannot
be drastically affected by the point density.

In addition, we found that for the large scene, too fewer number of initial points would lead to
smoother images due to the lack of representation of high-frequency information. Here we give an
example to illustrate it in Fig. 19. Obviously, the initial number of points is insufficient for the large
scene at (b) in the figure, leading to the smoothness of the image. That is intuitive since larger scenes
typically require more points for initialization.

Figure 19: Examples to indicate fewer points result in smoother images.

F MANIPULATION OF THE REPRESENTATIONS

In this paper, we also prove that the proposed representation has the potential to interact with users.
In this section, we in detail introduce how to edit the generalizable point field, including moving,
recoloring, and stretching, which corresponds to Fig. 7 in the main paper.

Object movement. If one wants to move an object in the scene, he can directly move the corre-
sponding neural points. As shown in Fig. 7 in the main body, the purple ball in the top right corner
is moved to a distance. This is the simplest way to edit the scene. Because all information is stored
in the point representation.

Object recoloring. Our representation also supports recoloring. One example is exhibited in Fig. 7
in the main paper. In this instance, We replace the red ball’s color and low-level appearance features
(Fc and Fl in Eq. 5) with those in the left purple one while maintaining its high-level geometry
features. In addition, if the number of points of the two objects is not identical, we compute the
feature in the second object by interpolating the neighbor points in the original object. We simply
use the inverse distance weights to obtain the interpolated feature vectors, this process is shown in
Eq. 14.

fa(x) =

∑N
k=1wkfk∑N
k=1wk

wk =
1

||x− pk||

(14)

where N is the number of neighbors, in our experiments we select 8 as N . x refers to the point in
the second object. pk denotes the neighboring points in the first object.

Object deformation. We stretch the stool in the drums scene in NeRF Synthetic Dataset, which
can be seen in Fig. 7 in the main paper. To avoid nonuniform deformation of the point cloud, we
first reconstruct the mesh representation from the original point cloud. For each vertex in the mesh,
we assign the geometry and appearance features to it by Eq. 14. Then we use Blender to stretch
the mesh. After the deformation occurs in the mesh, we sample points uniformly on the surface of
the mesh and interpolate features from the mesh vertex. Here we obtain the deformed neural point
field that can be used to render views. For the Lego example, we simply construct the mesh by
connecting the points with their neighbors. Next, we twist the joint of the Lego model by Blender to
get the deformed positions of points. While the geometry and appearance features remain the same
as before deformation occurs. We can see that there is no obvious decrease in the rendering qualities
between the original images and the deformed images.
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G COMPARISON WITH OTHER POINT-BASED RENDERING METHODS.

Some existing methods combine point cloud with NeRF to conduct point-based rendering, repre-
sented by PointNeRF and Point2Pix. Our approach substantially differs from other point-based
rendering methods. Works represented by PointNeRF focus on improving rendering quality and
speed with the assistance of point clouds. Those denoted by Point2Pix focus on rendering novel
views from colorful point clouds. However, our goal is to train a model that can generate neural
representations from multiview images generalizing to different scenes. In this section, we compare
the three approaches in detail. Table 8 gives information about the quantitative results for comparing
the three approaches.

Training Methods NeRF Synthetic DTU
Setting PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Generalization
PointNeRF 6.12 0.18 0.88 23.18 0.87 0.21
Point2Pix 19.23 0.787 0.542 16.74 0.655 0.558

Ours 29.31 0.960 0.081 27.67 0.945 0.118

Finetuning
PointNeRF 30.71 0.961 0.081 28.43 0.929 0.183
Point2Pix 25.62 0.915 0.133 24.81 0.894 0.209

Ours 33.28 0.983 0.037 31.65 0.970 0.081

Table 8: Quantitative Comparisons with point-based methods on NeRF Synthetic and DTU datasets.

G.1 COMPARISON WITH POINTNERF

Our method is a novel point-based paradigm for generalizable NeRF reconstruction, whereas Point-
NeRF focuses on single-scene optimization. PointNeRF also requires pertaining to the DTU dataset,
while it can be seen as an initialization and cannot generalize to unseen scenes.

In Fig. 20 we give an example to illustrate this. From this figure and Table 8, PointNeRF performs
well on the DTU dataset but collapses on the NeRF dataset due to its pre-training on the DTU dataset.
This lack of generalization ability is a significant drawback for PointNeRF. In contrast, our proposed
model, although also trained on the DTU dataset, exhibits a strong generalization capability on out-
of-distribution data. This ability to generalize well to unseen data is a key advantage of our method.

Additionally, we note that Point2pix, another baseline model, tends to produce blurry images. This
limitation hampers the visual quality and fidelity of the rendered images.

Point-based rendering methods can generally be divided into two main steps: ”image-to-point fea-
ture fetching” and ”point-to-ray feature aggregation.” We will outline their distinctions in terms of
the two steps.

In the ”image to point” step:

1.PointNeRF fetches features for points solely from a single image, but our method considers
multiple-view images simultaneously, incorporating a broader range of visual information. 2. Addi-
tionally, our method explicitly takes occlusions into account during feature fetching. 3. Furthermore,
while PointNeRF employs a single latent vector as the neural feature for each point, our method
utilizes a pair of latent vectors to separately represent shape and appearance. 4. Our method lever-
ages low-level features to capture color information and high-level features for geometry regression,
PointNeRF only utilizes high-level features.

In the ”point to ray” step:

1. PointNeRF employs uniform sampling to sample points, whereas our method fully utilizes ge-
ometry priors in the point cloud by employing a log sampling strategy. This enables our method to
render more efficiently and achieve superior geometries. 2. PointNeRF simply aggregates features
from the neural point cloud to the sampling points along rays using inverse distance weights. In con-
trast, our method introduces a learnable kernel that enables feature aggregation based on visibilities,
improving the effectiveness of the aggregation process.

21



Published as a conference paper at ICLR 2024

Figure 20: Comparisons with PointNeRF. ft refers to the per-scene optimization results.

Figure 21: Comparison with Point2Pix.

G.2 COMPARISON WITH POINT2PIX

Point2pix is proposed to render novel views from colorful point clouds rather than reconstructing
neural radiance fields from multiview images, which is different from our methods. However, it
can be categorized as point-based rendering. Therefore we also compare our method with it in
terms of rendering qualities. We reimplement Point2pix with Pytorch and test it under our dataset
configurations because there is no source code available at this moment. The qualitative results are
shown in Fig 21. The point2pix cannot correctly render views at scenes with complex geometries
and locally shape-varying areas. In addition, it is adversely affected by the imperfect point cloud,
resulting in large holes and distortions in renderings. However, thanks to the point completion and
finetuning in our hierarchical finetuning scheme, we can faithfully fill up holes and iteratively refine
point clouds to achieve much better reconstructions. Moreover, our log sampling and learnable
kernel modules enable us to perform well at geometric discontinuities.
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