A Graphical Terminology

An arbitrary graph G consists of vertices V and edges E C V2 with (v,v) ¢ E for any v € V. Then
G = (V,E) is a graph with V := {1,...,d} and corresponding random variables { X1, ..., X4}.
A variable X is called a parent of X if (i,5j) € F and (j,7) ¢ E and a child if (j,7) € E and
(1,7) ¢ E. The set of parents of X in G is denoted as PAig, and the set of its children by CH?.
Whenever the graph G is obvious from the context, one can omit its specification in the above
notations. Two variables X; and X; are adjacent if either (4, j) € E or (j,¢) € E. A pair of variables
can be connected with a directed edge X; — X;. If there does not exist a sequence of edges such
that X; — --- — X, forall i € V, then G is acyclic.

A path in G is a sequence of (at least two) distinct vertices i1, . .., i,, such that there is an edge
between if and 4549 forallk = 1,...,m — 1. If 4 — ixy; forall k, then X, is an ancestor of X,
and that X;  is a descendant of X;, . The set of ancestors of X is denoted as AN,ig and DEig denotes
the set of descendants of X;. All non-descendants of X;, excluding itself, are denoted as ND?. In

this work we use NT? to denote the set of non-descendants excluding its parents.

Causal structure learning via performing conditional independence tests involves matching conditional
independences contained in probability distributions with the conditional independence assumptions
encoded in the graph. D-separation (Pearl, 1988) provides a graphical criterion that characterizes the
set of conditional independences in the graph.

Definition 8 (d-separation). Given a directed acyclic graph G, a path p with vertices i1, . .., iy, is
d-separated by a block of nodes Z if and only if one of the two conditions holds:

* pcontains a chain i1 — i), — 41 OF lj—1 < U ¢ 41, OF a fork ip_1 < i = ig41
and iy, € Z;

* p contains a collider i1 — i < ig41 S.t. the middle node i, ¢ Z and none of its
descendants is in Z.

We then say Z d-separates two disjoint subsets of vertices X and 'Y if it blocks every path from a
node in X to anode inY, and write as X 1g Y|S.

We refer the readers to (Peters et al., 2017) for more detailed graphical terminology.

B Proof of Causal de Finetti

Here we refer to Causal de Finetti as in its multivariate form, as bivariate is a subcase contained in
multivariate form. We base our proof mostly on (Kirsch, 2019).

Preliminaries For a probability measure ;2 on R? we define the mixed moment by mg () =
[TIL, 2% du(zy, . .., z4) whenever it exists (in the sense that [ ], |z|* du(z1,. . ., z4) < 0o
). Below we will only deal with measures with compact support so that all moments exist and are
finite. The following is a multivariate extension of method of moments:

Theorem 6 (Multivariate method of moments). Let yi,,(n € N) be probability measures with support
contained in a fixed interval [a,b]e. If for all u the mixed moments m.,(j1,,) converge to some my,
then the sequence (i, converges weakly to a measure [ with moments my({1) = my and with support
contained in [a,b]%. Further, if 11 is a probability measure with support contained in [a,b]? and v is a
probability measure on R such that my (1) = my(v) then p = v.

Proof of Theorem 6. The first statement follows directly from the first theorem in (Haviland, 1936).
The second statement can be shown using a similar argument as univariate case in (Kirsch, 2019)

with Weierstrass approximation theorem. O
Notation Let X;.,, denotes i-th random variable in n-th sample. We write X,, := (X1, ..., Xa;n)
and X4 = (Xg1,...,Xgn). Define UP;.. := (X;41..,...,X4;), which contains all random

variables that have higher variable index value than ¢, i.e. upstream of node <.

14



Definition 9 (Topological Ordering). A topological ordering of a DAG is a linear ordering of its
nodes such that for every directed edge X — Y, X comes before Y in the ordering. We call the
ordering is a reversed topological order if we reverse the topological ordering of a DAG.

Without loss of generality, we reorder the variables according to reversed topological ordering, i.e. a
node’s parents will be placed after this node. Note a reversed topological ordering is not unique, but
it must satisfy a node’s descendants will come before itself. Then by Kolmogorov’s chain rule, we
can always write the joint probability distribution as

d
P(X4,...,X H X;..|UP;.,) (11)

Note P and P are not the same, for ease of notation, we use P below in general. For each X.., we
want to show there exists a suitable probability measure v; such that we can write P(X;..|UP;..) =

J ngl p(Xin|PAin, 0;)dv;(0;). Then substitute back into Equation 11 we will have Causal de
Finetti.

Theorem 7 (Causal Conditional de Finetti). Let {(X;.0, Xit1in, - - - Xdin) tnen satisfies conditions
1) and 2) in Causal de Finetti. Then there exists a suitable probability measure v such that the
conditional probability can be written as

P(Xi;:

N
UPi;:) = / H p(Xi;n|PAi;na O)dl/(e) (12)
n=1

where 0 is a vector where its index represents a unique combination for P A; values. We can thus
consider p(Xi,n|PAi;n, 0) = 7o, (Xy.n) where j is the index of P Ay, in all possible realizations of
PA; and 7, is a Bernoulli probability measure parameterized by p € [0, 1].
Lemma 3. Let {(X;.,, Xit1.n, - - - Xdin) tnen satisfies conditions 1) and 2) in Causal de Finetti.
Then for every permutation 7 of {1,2, ..., N}:

P(Xsa, ..., Xin|UPi 1, ..., UP;N)

(13)
:]P(Xi;w(l); ey Xi;ﬂ'(N) |U}Di;7r(1)7 ey UPi;Tr(N))

Proof of Lemma 3. Since {(X;.n, Xit1:n, - - - Xan) fnen is exchangeable, it is clear by marginaliz-
ing { Xi.», }nen from definition we have {U P;,, }en is also exchangeable.
P(X1,..., Xin|UPia, ..., UP;N)
P(X:1,UP; 1, ..., Xi.n, UP;N)
~  P(UP,,...UPyy)
_ P(Xiir (1), UPiir (1), - Xisn(v), UPiim ()
P(UP;r(1y, s UPM(N))

:P(Xi;ﬁ(l)’ () X’i;w(N) |U}Di;7'r(1)7 ey UPz,Tr(N))

Note since we reorder the index of multivariate random variables according to reversed topological
ordering, we have PA;,, C UP,;.,, so given U P;.,, we would know PA;,,. This lemma implies for
every conditional distribution we can always choose a permutation such that we can group values with
identical P A;’s realizations together. For example, when |PA;| = 1, then we can permute such that
all observations with PA;.,, = 0 comes first and observations with PA;., = 1 come second. Let’s
order all possible realizations of PA; into a list of length K := 2/74i| and index each realization.
Then from observations we have IVj, pairs which have P A; takes values as the index k’s realization.
Here we assume we observe enough samples to see every realization of P A;. This is possible because
K is finite. Then we can rearrange such that

P(X1, ..., Xi;n|UPia, ..., UPN)
:P({{in} }k 1|{{U zn}n 1Jk= 1)

where X%, denotes that its parents PA; i:n takes realizations the same as index k indicates and U Pt
denotes that the random vector U P;,,, contains PA; which takes realizations the same as 1ndex k
indicates. O
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Corollary 1. For any K-tuple permutations (w1, o, . .., T ) where m, permutes {1, ..., N }:

PH{XE e e (U m}n o)
=P({{X; ﬂk(n)}Nkl}k 1|{{U 57 ( )}n:i}kK:l)

Proof of Corollary 1. Follows directly from Lemma 1. O
Lemma 4. Recall condition 2) in Causal de Finetti states that Vi,¥n € N:
Xin) L NDjyjn), N Dy 1 | P Ay
By exchangeability, it is equivalent to
Xi;1 L NDj;g, NDj|PA; 1
where I is any set and m & 1.

Lemma 5. Let {(Xi;n, Xit1:n, - - -, Xdin) tnensatisfies conditions 1) and 2) in Causal de Finetti.

There exists K -infinitely exchangeable sequence {{Xﬁ:}neN}le such that for every N, € N,Vk
we have:

PIXE s 1)
:P({{in} }k 1|{{U 1n}n 1Jk= 1)

where k is the index for P A;’s particular realization.

(14)

Proof of Lemma 5. To show such sequence exists, we need to show it is well-defined and the inductive
defining sequence is consistent.
To show it is well-defined:

P{IXE I U PE D 1 1>
:P({{ zn} }k 1|{{PAzn}}n 1Jk= 1)
:P({{Xk *}71 1Jk= 1)

Using Lemma 4, let I = {{(k;n)}"* /< | and we have UP; C N D; since any particular reversed
topological sort will place node i’s decendants before itself. Then condition 2) implies X;.; L

1 ﬁi; 1|PA;.; by decomposition rule in conditional independence. Because index k already
characterizes the value of PA; so result follows by definition.

consistent: We write {{-}"*, }J<  as {{-}} for abbreviation. For any k, consider

P({{X;}})
=P({{X5 B} HUPEYD)
=P({({XEHUPE Y UPlN, 1)
= Z ({{in}} XzNk+l|{{UPi]?n}}aUPi’;€Nk+l)

Xllc;Nk+1

= Z P({{Xk*}} sz]\jk+1)

)%
Xk Np+1— =0

The first equality holds by well-defindedness. Let I = {{(k;n)}2%,} | and m = (k; Ny, + 1).
Note UP; C ND;. Lemma 4 implies the second equality holds. The third equality holds by marginal
property of probability distribution. The fourth equality follow from well-definedness. Infinite
exchangeability of {X f: }nen, Vk follows from Corollary 1. O

Definition 10 (Causal Conditional de Finetti measure) Using the notation introduced in Lemma
5, we define a random vector Q where Qy, = Nk ZN’“ X k*  Let the Jjoint distribution of Q be

UNy:....Ny OF in shorthand vy where N := [Ny, ..., Ng]. Ifl/N converges to a probability measure
v as N — oo, Vk, we call v the Causal conditional de Finetti measure.
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Lemma 6. Let { A; }ien be an infinitely exchangeable random binary process. Given a list of indices
{i1,...,in}, let us denote the number of unique elements with p(iy, . .., i,). For every arbitrary list
of indices, the following holds:

E[A;, Agy ..o Ai ] = E[A1As . Apy i) 15)

Proof of Lemma 6. For binary variables, we have E[Al] = E[A;], VI > 1. So the product from left
hand side is a product of p(iy, ..., 1,) different A;’s. Due to exchangeability, we have right hand
side. O

Lemma 7. Let {{Ay.;}ien 5, be K infinitely joint exchangeable random binary processes. For
every K arbitrary list of indices {{ix}}X_,, where iy := (i1, - . ,ik.N, ) denotes the sequence of
indices selected for k-th process and Ny, is the number of indices. the following holds:

]E[H H Ak;i]

k=1i€iy
K p(ix)

:E[H H Ap;il

k=1 i=1

(16)

Proof. Since the two sequences are jointly exchangeable, for K sets of indices, we can independently
perform the argument in Lemma 6. Hence only the number of unique indices in each set matters,
which is the same on both sides. O

Theorem 8. If we allow N — oo,Vk, the probability measure vy converges to a probability
distribution v. The measure v has the following joint moments:

K  ug
My HHin

k=1n=1

Proof. We will first examine the mixed moments of vxs.

i
NG

Ko Nk u
:E[N@m(gj o <ZlX£“’i> )
= ]E{Nllinoc Nuk Z H

ix n€ik
1,3,
. i,k 0\ Uj
Jim (5 (2 X500
£k 7 J n=1

The second equality is possible by Lebesgue dominated convergence theorem and we have |Qy| <
1,Vk, N. The third equality is due to the product of limits is the limit of products. Next for any £,
we focus on understanding each individual limit.

N}}Lnoo (N“" Z H X )

ix n€ik

1 *
- N}Clgoo N* ( Z H Xk

ik:p(ix) <uy n€ik

1 *
+ N}clgoo Nuk ( Z H szn

ik: p(lk)—uk nEix

17



When N, — oo, since X * are binary variable, the first term becomes:

1 -
e X (I
©dkep(ik)<ur  nEik
1 (17)
<

<gmo > !

ko ip(in) <up

The number of possible tuples of indices ix with p(ix) < ug is at most (u — 1)"* N,?’”‘fl. Because

we have NN, ;C”“'*l possibilities to choose the possible candidates for (ix.1, .. ., %k N, ) as long as we fix
the last remaining index to one of the indices we have already chosen, we will still satisfy p(ix) < .
Then for each of the uy positions in the u; — tuple we may choose one out of u; — 1 candidates
that we have chosen which gives (uy — 1)“* possibilities. This covers also tuples with less than
uy, — 1 different indices as some of the candidates may not appear in the final tuple. Therefore, if
N}, — o0, the expectation in Equation 17 to 0. Also note the number of possible tuples of indices ix

with p(ix) = ug is (ZJI’:) Hence the moment converges to:

i) 5[ T 1 ]

k=1n=1

N
The equality follows from Lemma 7 and we know lim y, 0 N“—{f,? = constant,Vk. Without loss of
k

generality, consider the constant to be 1, the remaining argument will not change. Using Theorem 6,

we have there exists a probability measure v such that m,(v) = E [ e P [ . n} O

Lemma 8. Let {{Ay.;}ien}E_| be K infinitely joint exchangeable random binary processes. For
any K binary sequence {ay.1,. .., ar.n, }1_, with Zﬁfil Al = TE:

P({{Ak'n = ak'n}gkl}kK 1)

Nk
( E Aln—’rl,..., E AK;HZT}()
Hk 1 n=1 n=1

Proof of Lemma 8. We can distribute the 1’s for each sequence in H kel ( ) different ways. Due to
K sequences being exchangeable, all of them have the same probability. O

Next, we will prove Causal conditional de Finetti.

Proof of Theorem 7. Let v be Causal conditional de Finetti measure for {{ X 11 (see Definition

10) and define K random binary processes {{Z%},en}i_ | with the followmg finite dimensional
distribution:

({{Zkfzk}n 1S k= 1)

K Ny

/HH% dv (6

k=1n=1

Note from the definition, the series {{Z*},en}, is infinitely joint exchangeable. We will prove
{{Xz’Z}neN}ff L and {{ZF}en}tE have the same finite dimensional distribution. Define the

following random vector R where Ry, = N ZN’“ Z*. By Lemma 8, it suffices to show that Q (as

in Definition 10) and R have the same dlstrlbutlons for all N, € N and for all £ and by the second
statment in Theorem 6, we know two probability distributions are identical if their moments agree.
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1)
S S Y B

ug
Hk‘:lNk a1=1 arg=1 Vk,ixk: k=1n=1
plix)=ak

The last equality follows from Lemma 7. From Theorem 8, we know the above expectations are in
fact the moments of the probability measure v:

B{TT 1] X5 = matv

k=1n=1

-/ [Te)avte)
/HHmk“w>

k=1n=1
=E[H Hzﬁ]
k=1n=1

Hence continuing Equation 18 and reverting the steps taken in Equation 18 and using Lemma 7 we
have:

(15) - S5 Y s[4

ug
Hk lN ay1=1 ax=1 Vk,ik: k=1n=1
plik)=ak

Hence the moments of the joint distribution of Q and R are the same, therefore the joint distributions
must agree. O

Proof of Causal de Finetti. Recall {(X1., Xo.p, ... Xa:n) }nen is an infinite exchangeable sequence
and satisfies condition 2 in Causal de Finetti. Without loss of generality, we reorder the variables
according to reversed topological ordering, i.e. a node’s parents will always be placed after the node
itself. Note a reversed topological ordering is not unique, but it must satisfy a node’s non-descendants
will come before itself. Then by Kolmogorov’s chain rule, we can always write the joint probability
distribution as

d
P({(Xl;mX?;nv i 'Xdﬂb)}f’b\[:l) = HP(Xi;:|UPi;:) (19)
i=1
Recall UP;.. := (X;41.:, ..., X4;:), which contains all random variables that have higher variable

index value than ¢, i.e. upstream of node <.
For each X;.., we want to show there exists a suitable probability measure v; such that we can write

P(X;.[UP;;) = [ Hf:[:l p(Xin|PAin, 0;)dv;(0;). This has been shown in Theorem 7. Hence the
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joint distribution becomes:

P({(Xl;na X2;n7 e Xd;n)}r]val)
N d

= / H Hp(Xi;n‘PAi;naOi)d’/i(ei)

n=11i=1

and we complete the proof. O

C Proof of Identifiability result

C.1 Identifiability under i.i.d

Let’s first see why under i. 1. d regime, it is only possible to differentiate the causal structure up to a
Markov equivalence class.

Definition 11 (Z-map). Let P be a distribution, Z(P) denotes the set of conditional independence
relationships of the form X LY | Z that hold in P. Let G be a DAG, Z(G) denotes the set of
conditional independence assumptions encoded in G which can be directly read-off via d-separation
(Pearl, 1988).

Definition 12 (Bayesian network structure). A Bayesian network structure G is a directed acyclic
graph whose nodes represent random variables X1, ..., X,. Let PA? denotes the parents of X; in
G, and N DZ-Q denotes the variables in the graph that are not descendants of X;.

Definition 13 (Global markov property). Given a DAG G and a joint distribution P, this distribution
is said to satisfy global markov property with respect to the DAG G if Z(G) C Z(P) (Pearl, 2009).
Alternatively, we say P is Markovian with respect to G.

Definition 14 (Faithfulness). Given a DAG G and a joint distribution P, P is faithful to the DAG G
if Z(P) C Z(G) (Pearl, 2009).

We denote M(G) to be the set of distributions that are Markovian and faithful with respect to G:
M(G) ={P I(P)=1(9)}

Two DAGs G, G, are Markov equivalent if M(G;) = M(Gs).

Lemma 9 (Graphical criteria for Markov Equivalence (Peters et al., 2017)). Two DAGs G; and G»
are Markov equivalent if and only if they have the same skeleton and the same v-structures.

This means for any suitably 7.4.d generated distribution P, one cannot uniquely determine the
underlying graph that generates this distribution but can only determine up to d-separtion equivalence.

C.2 Identifiability under exchangeable

Definition 15 (Acyclic Directed Mixed Graph (ADMG)). A graph M is acyclic if it contains no
directed cycles, i.e a sequence of edges of the form x — --- — x. There are two types of edge
between a pair of vertices in ADMG: directed (xr — y) or bi-directed (x <> y). In particular, there
could be two edges between a pair of vertices, but in this case at least one edge must be bi-directed
to avoid a directed cycle.

Definition 16 (ICM operator on a DAG). Let U be the space of all DAGs whose nodes represent
X1,...,Xq4. Let V be the space of ADMGs whose nodes represent {(X;.,)}, where i € [d],n € N.
A mapping F from U to'V is an ICM operator if F(G) satisfies:

» F(G) restricted to the subset of vertices {X1.p, ..., Xan} is a DAG G, for any n € N,
* Xi.n <> X, whenever n # m for all i € [d]

* there are no other edges other than stated above

We denote the resulting ADMG as ICM (G). Let PAgn denote the parents of X,;.,, in ICM(G) and

similarly for NDig;n for corresponding non-descendants.
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Theorem 9 (Markov equivalence criterion for ADMGs (Spirtes and Richardson, 1997)). Two ADMGs
over the same set of vertices are Markov equivalent if and only if

1. They have the same skeleton
2. They have the same v-structures

3. If a path u is a discriminating path for a vertex B in both graphs, then B is a collider on the
path in one graph if and only if it is a collider on the path in the other:

Here we do not specify the details for condition 3 as it is not used in below proofs, for more details
please refer to (Spirtes and Richardson, 1997).

We inherit the argument used in finding correct causal structure in the i.i.d. regime where we match
conditional independence assumptions encoded in the graph with observed conditional independence
relationships in distributions.

Corollary 2.
Z(ICM(G1)) = Z(ICM(Go)) < G1 = Ga

Proof. The direction for the case G; = Go is trivial. We are left to show that when G; # G,
Z(ICM(G1)) # Z(ICM(Gy)).

Suppose G1, G2 are BNs over the same set of random variables with length n. Suppose further
G1 # Go, and is not markov equivalent, i.e. Z(G;) # Z(Gs). Be definition of ICM(G), we have
Z(G) C Z(ICM(G)) .Thus Z(G1) # Z(G2) implies Z(ICM(G1)) # Z(ICM(Gs)).

Consider the case G; # G, but they are Markov equivalent. We know two DAGs are Markov
equivalent if and only if they have the same skeleton and same v-structures. Thus, Gy, Go differs in
some node X; where the orientation of its edge to some node X is different while not deleting or
creating new v-structures within G; and Go. Wlog, let X;,, — X, in G; and X;,,, < X, in Go.
Note ICM(G, ) and ICM(G,) have different v-structures: X;.,, — X, <> Xj.41 is a v-structure in
ICM(G:), but not in ICM(Gs) as X, <= X, ¢+ Xj.5n1. Thus by Theorem 9, result follows. [J

Denote £(G) to be the set of distributions that are Markovian and faithful to ICM(G):

E(G) :={P:Z(P)=Z(ICM(G))}
Two DAGs Gy, Go are Markov equivalent under ICM generative process if £(G1) = £(Gz). By
Corollary 2, £(G1) = £(G2) if and only if G; = Gs.

D Algorithm

D.1 Proof

Assume there exists no unobserved latent variables and our observed data is indeed generated from
some ICM generative process. Algorithm 1 can identify the underlying DAG. Below we show its
main steps.

1. Identify the topological ordering of observed variables
2. Identify edges between different topological orders.

Definition 17 (n-order sinks). Given a DAG, X;.,, denotes the n-th sample in one environment and
i-th variable in n-th sample:

* A node X, is a first-order sink Sy if it does not have any outgoing edges.

* A node Xy, is an k + 1-order sink Sy41, if all of its outgoing edges are to l-order sink
(where | < k + 1) and at least one of them is a k-order sink.

We denote the set of k-order sinks as Sy, and Uf;ll S; = Sck.
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Algorithm 1 "Causal-de-Finetti" Algorithm: causal discovery in ICM-generative processes

Input: For e € £, we have (X7, ... ,Xg;n)fy;l where X[, denotes the i-th variable of n-th sample
in environment e and N, is the number of samples in environment e. Assume N, > 2, Ve.

Output: A directed acyclic graph G

Step 1: Identify variables’ topological ordering. Initiate index list L := [1,...,d] and an empty
dictionary of lists S with keys from L. Set starting index k& = 1.

while L is not empty do

fori € Ldo
if X7 L X5 | {XG ke, Vi # i then
| Append 7 in S[k] and remove i from L
end

end
k=k+1
end
Step 2: Identify edges. Set ¢t := 1 and reset £ := 1. Here since each sample shares the same
underlying causal graph, we abbreviate X;.,, with X; where n can be any number.
whilet < d —1do
while k < d—t¢t—1do
for eachi € Sy and j € Sk do
if £ = 1 then
‘ Test X; L X; | Upsiet Uies,, Xis if it holds then there exist no edge, else
Xj;n — Xim,V’I’L.
end
if ¢t > 1 then
Define Z contains three set of nodes: (J,,,<11; Uics, Xis PAi N Scptt, Skre\ X

Test X; I X, | Z, if it holds then there exists no edge, else X ., — X;.,,, Vn.

end
end

end
end

In Step 1 of the algorithm, we aim to use appropriate conditional independence tests to determine the
topological ordering of our observed variables. The main idea is we iteratively find the first-order
sinks S; and then remove them to find the next first-order sinks, and so on.

Lemma 1. A node X;.,, € S if and only if for every m # nand j # i, X;.n L Xjim | {Xkin Foi-

Proof of Lemma I. Let X;., € S;. We first examine all the possible paths between X, and
Xj;m. There are two cases for any such paths: it starts by Xj.,, — Xp., — ... for some k # ¢, or
Xin — 0; — X, for some p # n. In the first case, since X, is a first-order sink, the first edge is
outgoing from Xj.,, and hence is blocked by conditioning on Xj,. In the second case, we cannot
continue from X, since it does not have any outgoing edges and the path would then include a
collider and we thus did not condition on X.,.

To prove the converse, assume that X;,,, is not a first-order sink but still satisfies the conditional
independence. However, this would mean that X;.,, has an outgoing edge to X}, for some k # 1.
Then the path X;,, = Xj.,, < 0 = Xi.n is activated by conditioning on Xj.,,, and hence the
conditional independencies cannot hold. O

This lemma provides us with a test to search for first-order sinks. We can state a similar lemma for
k-order sinks (note that conceptually the lemma is equivalent to iteratively find first order sinks after
removing the original lower order sinks).

Lemma 10 (k-order sink condition). A node X;.,, is a k-order sink if and only if the following holds
foreverym #nand j #iand X, € S>p:
Xi:,n 1 Xj;m | {Xl;n}l?fi — Sk

Using Lemma 1 and 10, we can iteratively determine the set of S, for all k. Note, that these sets
represent a topographic ordering of observable variables: edges can only run from higher order sinks
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to lower order sinks. Hence, the only thing remaining is to determine for every k and every pair of
nodes X;.,, € Sy and X, € Sy, if they are connected by an edge. Since each sample shares the
same underlying causal structure, without loss of generality, we abbreviate X;.,, with X;.

Lemma 2. Let node X; € S, and X; € S,, where m < n. Set k := n —m. There does not
exist a directed edge from X; to X; if and only if when k = 1, X; L X, | Ssn; and when k > 1:
X, L X;|Z where Z = S5, U(PA; N S<p) U (S \ X))

Proof of Lemma 2. First, we prove direction (=) and suppose there is no direct edge, i.e. X; — X.
If there is no path connecting X; and X, then X; I X;. The result trivially holds. Next, we assume
there is a path p connecting X; and X ;. The path must satisfy one of the two conditions: Either (case
1) there exists X}, in the path p such that X, € S, or (case 2) all variables in the path € S<,,.

When k£ = 1: Under case 1), let W be the set containing all variables belong to S-,,. Note |[IW| > 1
by condition. Then there exists a non-collider X € W. Suppose all variables in W are colliders
and W # (), then there must 3X; € p and X; ¢ W that has an edge outgoing to some variable
contained in W. Since W # (), call that variable as X, and X,, € S~,,. By definition of sink
orders, X; € Ssp+1, X; € W. So W is incomplete. Contradiction. Under case 2), we show that
there exists a collider in the path. Suppose there is no collider on the path, then all the edge are
directed edges in one direction. Since edges can only go from higher sink orders to lower sink
orders, the edges can only go from X; to X; in one direction. Since the path is also not a 1-arrow
direct path, there 3X, € p,a # {i,j}. Choose X, € PA;, since it has a 1-arrow direct path to
Xj, X4 € S>my1. Further since X; is an ancestor of X, X; € S>p42. Heren = m + 1, so
X; € S>n41. Contradicts the condition that X; € S,,. Given the path connecting X; and X; either
contains variables in higher sink orders and there exist a non-collider X, € p and X}, € S<,,., such
path can be blocked by conditioning on the set S ,,; or the path only contains variables in S<,, and
the path must exist a collider, which we block the path by not conditioning on any variables in S<,.
Hence the proposed conditional independence holds by d-separation. By Markov assumption, the
conditional independence also holds in distribution.

when k£ > 1: Similarly, under case 1), by same argument as above, there exist a non-collider X € p
and X}, € S<,,. Therefore conditioning on all variables in S~,, blocks the set of paths under case 1.
Under case 2) when all variables in the path belong to S<,,, then the parent of X in this path, here
we call it X, either (case 2.1) X,, € PA; N Sy, or (case 2.2) X, € PA; N S,,. Under case 2.1, X,
is a non-collider in the path, since it has one outgoing edge. Then conditioning on PA; N .S, blocks
the set of paths under case 2.1. Under case 2.2), for any variable X,,, € S,, on the path p, X,,, only
has outgoing edges since all variables on the path belong to S<,,. X, is also a non-collider, thus
conditioning on S, blocks the set of paths satisfying case 2.2). Similarly, the proposed conditional
independence holds by d-separation. By Markov assumption, the conditional independence also
holds in distribution.

Finally, we prove the other direction (<): suppose the proposed conditional independence holds,
then there does not exist a 1-arrow direct path from X; to X;. Suppose there exists a 1-arrow directed
path and conditional independence holds, then conditioning on the proposed set does not d-separate
the path. By faithfulness, conditional independence does not hold in distribution and the result
follows. O

E Relation to causality in time-series

Recall temporal SCMs: let V; = (V,}, ..., V;V) represent the dynamic process variables underlying
a multivariate time series. The structural assignments are:

V= f(pa(VY),nl),V Vi € Vyand t € Z (20)
with jointly independent random variables 77{ . The causal parents pa(th ) are direct causes and a

subset of {Vy,..., Vi P\ {V/} with 7,0, > 0.

The non-negative integer 7,,,, means sequential data has directional influence, i.e., no future events
could influence the current. Zero is included, as there may be contemporaneous causal influences

Vi— th . One could assume such SCM is causally stationary, i.e., the causal relationships and noise
distributions are assumed to be invariant in time.
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Consider an ICM-generative process, the sample index is exchangeable, i.e., the order of observation
does not matter. This is in contradiction to causality in time series as only earlier or contemporaneous
samples could constitute potential causal parents of one variable.

When one interprets the sample index in the ICM-generative process as time steps, for example in
bivariate cases. Xy — Y, Xyy1 — Yiq1, Xy < Xig1, Ve & Yiy1, V. Firstly, it follows a degree
of causally stationary assumption, i.e., the causal relationships are assumed to be invariant in time.
Secondly, all sequences of time series have unobserved confounders that influence all the variables
in time series. Sometimes, one may interpret such temporal SCMs as the out-of-variable problem,
i.e. one lacks the observation of the unobserved confounder 6,, if it exists in the physical world.
Suppose we observe 6, 1y, Vt, then ICM-generative process with sample index as time-steps can
be rewritten as Ht — Xt — Y; — th,ot_;,_l — Xt+1 — Y;+1 < 1/)H_1,0t — Xt+1;1/}t — th-i-h
with 0; = 0y, ¥y = 1, Vt. Thus, it follows the temporal SCM formulation. It suggests data with
less structure can be modelled by formulations for data with more complex structure with the right
instantiation - this is the case for exchangeable sequences with i.i.d. data, and so is the case for
time-series data with exchangeable data.
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