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1 Method

1.1 Algorithm

Our proposed aligned structured sparsity learning (ASSL) algorithm is summarized in Algorithm 1.

2 Experimental Results

2.1 Regularization Visualization

More plots of the pruning process of our ASSL approach on the EDSR_baseline network are shown
in Fig. 1. There are in total 16 residual blocks in EDSR_baseline. We evenly pick 5 blocks to plot
here (layer name is texted as title in each sub-plot). The free Conv layers are plotted in the left
and constrained Conv layers plotted in the right. As seen, similar to layer model.body.8.body.0
depicted in the main text, all the other plots pose the same trend that pruned WN scales are compressed
towards zero and the kept WN scales arise accordingly to compensate the signal energy loss. This
spontaneous reaction of the kept WN scale parameters prevents the network from catastrophic
expressivity damage, hence the performance superiority of our method against the counterparts.

2.2 Visual Comparisons

We provide more visual comparisons in Fig. 2. For example, in the right part of img_005, we can
observe that most of the compared methods cannot recover structural details with proper directions.
In contrast, our ASSLN can better recover more structural details. In img_033, most compared
methods suffer from blurring artifacts. While, our ASSLN can better alleviate the blurring artifacts.
We can find similar observations in other images. These visual comparisons are consistent with
the quantitative results shown in the main paper, demonstrating the superiority of our method. Our
ASSLN learns the aligned structured sparsity from a large network and prunes it to a much smaller
one, but still maintains most representation ability.

3 Explanations for Checklist

3.1 Limitations

In this work, we mainly focus on the most commonly used network module: residual block (RB). For
other basic modules, like dense connection [4], we have not investigated yet.
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Algorithm 1: Aligned Structural Sparsity Learning (ASSL)
1 Input: Pretrained SR network Θ, regularization increment ∆, interval T , penalty ceiling limit τ , iterations

of SSA NSSA.
2 Output: Small model Θ′.
3 Init: α = 0 for all filters; iteration i = 0; constrained Conv layer set C.
4 Init: Insert a weight normalization layer after each convolutional layer.
5 Init: for l = 1 ∼ L do
6 Set S(l) by L1-norm sorting of the filter norms, if l not in C.
7 end
8 Pruning:
9 while True do

10 for l = 1 ∼ L do
11 if l not in C then
12 if i%T = 0 then
13 α

(l)
j = min(α

(l)
j + ∆, τ) for j ∈ S(l).

14 end
15 Add LSI (Eq. (4), LSI = α

∑L
l=1

∑
i∈S(l) γ

2
i ) to the total loss.

16 end
17 else
18 if i < NSSA then
19 Add LSSA (Eq. (5), LSSA = − 1

K

∑K
k=1(MMT )k) to the total loss.

20 end
21 if i = NSSA then
22 Set S(l) by L1-norm sorting of the filter norms.
23 end
24 if i > NSSA then
25 if i%T = 0 then
26 α

(l)
j = min(α

(l)
j + ∆, τ) for j ∈ S(l).

27 end
28 Add LSI (Eq. (4), LSI = α

∑L
l=1

∑
i∈S(l) γ

2
i ) to the total loss.

29 end
30 end
31 end
32 Loss backward and parameter update by SGD.
33 Iteration adds up: i += 1.
34 if α’s in all layers reach τ then
35 break. // all layers finished pruning
36 end
37 end
38 Remove the filters in S(l) for each l-th layer. Remove all weight normalization layers (scales merged with

filter weights). Rebuild to obtain the pruned model.
39 Finetune the pruned model and output the final model as Θ′.

3.2 Potential Negative Societal Impacts

We believe that our efficient image super-resolution (SR) technique: ASSL would benefit to both
academic and industry. We think there has few potential negative societal impacts.
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(a) Free Conv layers (b) Constrained Conv layers

Figure 1: Illustration of the pruning process of five free Conv layers (a) and constrained Conv layers
(b) in EDSR_baseline. The weight normalization (WN) mean scale of pruned or kept filters are
plotted to the left y-axis (in black); Sparsity-inducing (SI) regularization co-efficient is plotted to the
right y-axis (in red). In the main paper, layer “model.body.8.body.0” is presented.
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Urban100: img_002 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Urban100: img_003 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Urban100: img_005 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Urban100: img_015 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Urban100: img_024 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Urban100: img_033 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Urban100: img_046 (×4)

HQ Bicubic SRCNN [2] FSRCNN [3] VDSR [6]

LapSRN [7] MemNet [8] CARN [1] IMDN [5] ASSLN (ours)

Figure 2: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.
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