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[Auxliary Line Construction] Take A as the origin, and let the lines along AB, AD, and AF be the x-axis, 
y-axis, and z-axis, respectively, then establish the three-dimensional Cartesian coordinate system A-xyz.

GPT-4oInput diagram Gemini-2.0-flash Ground-truth

Figure 5: Comparison of two representative image editing models for constructing a three-
dimensional Cartesian coordinate system.

A THE USE OF LARGE LANGUAGE MODELS

In this paper, the authors used ChatGPT solely for language polishing, including grammar, phrasing,
and stylistic refinement. We did not use it to generate scientific content, such as research ideas,
methods, or related work. We did not provide any confidential, personal, or proprietary data to the
model. The authors take full responsibility for all scientific content, which was exclusively written
and verified by us.

B LIMITATION AND FUTURE WORK

Although our framework achieves competitive performance, it does not yet realize the ideal ap-
proach of directly rendering precise auxiliary lines on the diagram. Given the limited geometric
controllability of current image editing and diffusion models, we instead employ a cross-modal re-
ward model as a practical proxy to promote diagram-text consistency without directly editing the
diagram images. In future work, we will investigate constraint-guided diffusion in conjunction with
a geometry-constrained rendering engine to explicitly render auxiliary lines, thereby enhancing the
alignment between visual constructions and symbolic reasoning.

C QUALITATIVE COMPARISON OF IMAGE EDITING MODELS FOR
AUXILIARY-LINE GENERATION

To further highlight the limitations of current image-editing models in precise geometric construc-
tion, we present a single illustrative example comparing two representative models on a three-
dimensional coordinate system construction task. As shown in Figure 5, this comparative exam-
ple reveals a persistent difficulty in faithfully instantiating the specified auxiliary line descriptions,
namely, aligning the edits with the intended spatial constraints, which motivates our text-driven
auxiliary line construction guided by a cross-modal reward model.

D DATA CREATION

In this section, we detail the four progressive steps of our data creation pipeline.

D.1 AUTOMATED PROBLEM IDENTIFICATION

To construct the AuxSolidMath dataset, we first collect over 350 sets of high school geometry prob-
lems from publicly available online sources. Given that the dataset is intended to support construc-
tive geometric reasoning, we specifically target problems that necessitate auxiliary line constructions
as integral components of their solutions.
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To efficiently identify such problems, we design an automated two-stage filtering pipeline using
Python scripts. In the first stage, we detect problems whose solutions contain explicit mentions of
auxiliary-line constructions. Specifically, we apply regular expression patterns to locate question
number markers that are explicitly present in the exam papers and use these markers to segment the
content into individual problem units. For each problem, we examine the solution for verbs that
signal the introduction of auxiliary lines (e.g., "connect," "construct," "draw," "establish"). Prob-
lems lacking such terms are discarded, while those containing relevant cues are retained. In the
second stage, we further refine the selection by ensuring that each retained problem contains both
the original diagram and an auxiliary-line diagram. To this end, we quantify the number of diagrams
associated with each problem. Problems with fewer than two diagrams are excluded, whereas those
with at least two, which usually represent the original and modified diagrams, are preserved. This
automated pipeline enables scalable and consistent filtering of auxiliary-line geometry problems,
significantly reducing manual annotation effort.

D.2 AUTOMATED DEDUPLICATION AND DIAGRAM EXTRACTION

Upon identifying geometry problems requiring auxiliary lines, we employ an automated pipeline to
deduplicate instances and extract the associated diagrams. This step guarantees the uniqueness and
visual quality of data instances for downstream model training.

Problem Deduplication. To eliminate duplicate problems, we retain only the first occurrence of
each unique problem based on its textual content. Concretely, we initialize a global problem set as
an empty collection. We then sequentially process all Word-formatted exam papers, examining only
the problem descriptions while ignoring the associated solutions and diagrams. For each problem,
if its description is not already present in the global set, we add the problem; otherwise, we discard
it as a duplicate. This procedure ensures that identical problems, which often recur across different
examinations, are retained only once.

Diagram Extraction. Following deduplication, we extract, filter, and store the geometric diagrams
associated with each retained problem. A key challenge lies in reliably distinguishing true geometric
figures from image-embedded mathematical expressions (e.g., MathType equations), as both appear
in Word exam papers. Existing Python libraries are unable to make this distinction accurately, often
misclassifying equations as diagrams and introducing significant noise into the extraction process.
To overcome this limitation, we innovatively integrate the Apache POI library through a custom Java
implementation, enabling fine-grained control over the parsing of Word documents. This setup en-
ables reliable identification and extraction of genuine geometric diagrams while effectively filtering
out formula-rendered images. To further ensure visual quality, the extracted diagrams are then pro-
cessed using OpenCV to discard low-resolution or unclear diagrams. The remaining diagrams are
subsequently saved using a standardized naming convention that distinguishes between the original
and the annotated versions of the auxiliary lines. To be more specific, for each problem indexed by
i, we store two images: {i}.png, which contains the original diagram, and {i}_auxiliary.png, which
includes the corresponding auxiliary-line diagram. This consistent format facilitates downstream
alignment between textual and visual modalities within the multimodal processing pipeline.

D.3 STRUCTURED DATA EXTRACTION

Building on the high-quality geometric diagrams obtained in the previous step, we proceed to extract
the corresponding textual content for each geometry instance, including the problem description, the
final answer, and the auxiliary-line description. This extraction process is non-trivial, as the original
Word documents frequently embed mathematical expressions using MathType formats that are not
reliably handled by standard document parsing tools.

To address this challenge, we render the processed Word documents as images, thereby enabling
LVLMs to leverage their visual reasoning capabilities. Although this approach appears straight-
forward, open-source models such as Qwen2.5-VL-7B-Instruct (Bai et al., 2025) often struggle to
accurately parse complex geometry problems involving symbolic notation and mathematical ex-
pressions. In contrast, closed-source models like GPT-4o (Hurst et al., 2024) exhibit significantly
stronger performance, but their reliance on commercial APIs introduces substantial costs and lim-
its scalability in large-scale applications. To balance accuracy with scalability, we adopt a hybrid
strategy. More concretely, we first utilize an advanced closed-source model (i.e., GPT-4o) to gen-
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erate a small, high-quality seed dataset comprising 300 manually verified instances. This curated
dataset is then used to fine-tune an open-source LVLM (i.e., Qwen2.5-VL-7B-Instruct), resulting
in a lightweight, domain-adapted model capable of accurate and scalable text extraction. The final
output consists of the extracted problem description, the final answer, and the auxiliary-line descrip-
tion, all encapsulated in a structured JSON format. This unified representation facilitates consistent
data handling and serves as a foundation for training a robust open-source text extraction model. By
releasing this model, we aim to contribute a practical and reusable resource to the broader research
community working on geometry-aware vision-language understanding.

D.4 MANUAL VERIFICATION

To ensure the quality and reliability of the final dataset, we perform a manual verification step that
assesses each data instance in terms of accuracy, completeness, uniqueness, and semantic consis-
tency, alongside visual quality criteria such as image clarity and resolution. Two AI researchers
serve as independent checkers. Each instance is independently reviewed by both researchers. If
either checker identifies a potential issue, the instance is collaboratively revised. This process is
repeated up to three times per instance, ensuring that all errors, including subtle or ambiguous ones,
are systematically identified and corrected. Manual verification plays a critical role in resolving
complex symbolic expressions and ambiguous diagrammatic content that automated tools may mis-
interpret. Despite its relatively low cost and effort, this step remains indispensable for ensuring the
high data fidelity necessary for a reliable model.

E EXPERIMENTAL SETUP

E.1 MODELS

On the closed-source models, we include leading models such as gpt-5-mini (OpenAI, 2025),
o4-mini (OpenAI, 2025) and GPT-4o (Hurst et al., 2024), Gemini-2.0-Flash and Gemini-
2.5-Flash (DeepMind, 2025a), Claude 3.7 Sonnet (Anthropic, 2025a) and Claude Sonnet 4
20250514 (Anthropic, 2025b). These models represent the forefront of multimodal reasoning among
closed-source models, although their internal architectures remain undisclosed. On the open-source
models, we consider several publicly available high-performance models, including the Qwen2
VL (Wang et al., 2024b) and Qwen2.5 VL series (Bai et al., 2025), InternVL 3 families (Zhu et al.,
2025), LLaMA-3.2-11B-Vision-Instruct (Meta, 2024) and Llama-4-Scout-17B-16E-Instruct (Meta,
2025). These models encompass a range of design paradigms, parameter scales, and instruction
tuning strategies, providing a robust comparative foundation for evaluating multimodal reasoning
capabilities. Note that models such as Gemini-2.5 Pro (DeepMind, 2025b) and OpenAI o3 (Ope-
nAI, 2025) are excluded from our study due to limited accessibility and high inference costs.

E.2 TRAINING IMPLEMENTATION DETAILS

We adopt a two-stage training paradigm based on the Qwen2.5-VL series, including Qwen2.5-VL-
3B and Qwen2.5-VL-7B, consisting of the SFT stage and the RL stage.

SFT Stage. The SFT phase is conducted using the LLaMA-Factory framework (Zheng et al., 2024).
For Qwen2.5-VL-7B, we train the model for 5 epochs with a per-device batch size of 2 and a gradient
accumulation step of 8 (effective batch size of 16). We use the AdamW optimizer with a learning
rate of 2e-5 and apply a cosine learning rate scheduler with a warmup ratio of 0.1. The model is
trained in bf16 precision. Vision and projection modules are frozen during this stage, while the
language model remains unfrozen. For Qwen2.5-VL-3B, we adopt the same training configuration
as the 7B variant, except learning rate and training epochs. Specifically, Qwen2.5-VL-3B is trained
for 5 epochs with a learning rate of 3e-5.

RL Stage. The RL phase is performed using the EasyR1 framework (Zheng et al., 2025) with the
GRPO algorithm. For the Qwen2.5-VL-7B model, training and validation data are loaded from
Parquet files containing question-diagram pairs, with a maximum response length of 8192. Both
rollout and validation batch size are set to 16. The actor is optimized using AdamW (learning
rate 2e-6, weight decay 1e-2, no warmup). KL regularization is applied using the low_var_kl
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penalty with a coefficient of 1e-2. Training runs for 6 epochs using bf16 precision, with gradient
checkpointing and partial FSDP offloading enabled for memory efficiency.

Rewards. The overall reward is the sum of a cross-modal auxiliary-line consistency reward and
a final-answer accuracy reward, where the auxiliary-line component is weighted by α = 0.1. For
Qwen2.5-VL-3B, we adopt the same RL configuration as the 7B model, with adjustments to the
batch size and the number of training epochs. Specifically, Qwen2.5-VL-3B is trained for 4 epochs
with a batch size of 8.

All training was conducted on a server equipped with two NVIDIA A100 80GB and two NVIDIA
A800 80GB GPUs. The SFT stage was performed on the A100 GPUs, while the full set of four
GPUs was utilized during the reinforcement learning stage.

F RELATED WORK

In this section, we also review benchmarks and datasets for geometric reasoning. Most benchmarks
and datasets for geometric problem solving focus on plane geometry, where diagrams and prob-
lems involve two-dimensional figures. Well-known resources in this area include Geometry3K (Lu
et al., 2021), GeoQA (Chen et al., 2021a), UniGeo (Chen et al., 2022), and GeomRel (Wang et al.,
2025b), which primarily cover plane geometry problems. A concurrent benchmark, GeoLaux (Fu
et al., 2025), explores the use of auxiliary lines in plane geometry, but is limited to simple cases
and lacks engagement with the spatial complexity of solid geometry. Nonetheless, there remains a
lack of dedicated resources for solid geometry, even though solving such problems often requires
interpreting three-dimensional relationships and drawing auxiliary lines to uncover hidden spatial
structures. While SolidGeo (Wang et al., 2025a) is a recent benchmark that focuses exclusively on
solid geometry, it does not explicitly require auxiliary lines for solving its problems, leaving this
important aspect of spatial reasoning underexplored. Similarly, other benchmarks such as Math-
Vista (Lu et al., 2024), MathVision(Wang et al., 2024a), and MathVerse (Zhang et al., 2024) contain
only a limited number of solid geometry problems, and these also do not require auxiliary lines to
reach the solution. As a result, these resources fall short of evaluating a model’s ability to solve
complex solid geometry problems where auxiliary lines are essential for uncovering implicit spatial
relationships. To address this gap, we present AuxSolidMath, the first dedicated dataset for solid
geometry problems that require auxiliary lines to solve. It offers comprehensive multimodal super-
vision, including the original diagram, the problem statement, textual descriptions of the required
auxiliary lines, the final answer, and a corresponding diagram annotated with those lines, enabling
models to learn how the auxiliary lines facilitate solid geometry reasoning.

G PROMPTS

G.1 PROMPTS FOR SUPERVISED FINE-TUNING

The following presents the two-part prompt template used in our supervised dataset. The sys-
tem prompt assigns the solver role and enforces formatting: auxiliary lines must be wrapped in
[AUX]...[/AUX] and the final answer must appear as plain text in Final Answer:.... The user
prompt is multimodal, pairing a diagram referenced by the <image> token with the natural language
question {question}, which yields explicit reasoning steps and a final answer.

SYSTEM_PROMPT_FOR_SFT

SYSTEM_PROMPT_FOR_SFT = """
You are a mathematician skilled in solving geometry problems through step-by-step reasoning. Solve
the given geometry problem based on a geometric diagram and a natural language question. Use
‘[AUX]...[/AUX]’ to indicate auxiliary constructions, such as establishing coordinate systems or con-
structing auxiliary lines. Finally, provide your final answer within ‘Final Answer:...’.
"""
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USER_PROMPT_FOR_SFT

USER_PROMPT_FOR_SFT = """
Image: <image>
Question: {question}
"""

G.2 PROMPTS FOR CROSS-MODAL REWARD MODEL

Using the prompt below, the cross-modal reward model compares the description of the auxiliary line
generated by the policy model against a pair of diagrams, the original image I and its auxiliary-line
counterpart I+, and returns a single line justification and a calibrated score in [0, 1] that measures
visual–textual agreement. The instruction emphasizes the correctness of auxiliary-line constructions
and adherence to geometric constraints. Higher scores indicate stronger alignment.

SYSTEM_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL

SYSTEM_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL = """
You are a professional geometry reasoning evaluator. Your task is to evaluate whether a given textual
description of auxiliary lines accurately explains the visual difference between the original diagram and
the auxiliary-line diagram.

Score the description on a scale from 0 to 1:
1. 1 indicates a fully accurate and helpful description.
2. 0 indicates a completely irrelevant or misleading description.
3. Intermediate values (e.g., 0.25/ 0.50/ 0.75) reflect partial relevance or minor issues.

Return exactly one line:
<brief justification>. Score: <s>.
"""

USER_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL

USER_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL = """
Image (original diagram): <image I>
Image (auxiliary-line diagram): <image I+>
Auxiliary-line description: {generated_aux_description}
"""

H REPRESENTATIVE EXAMPLES

As illustrad in Figure 6 present qualitative examples from the AuxSolidMath dataset, including the
question, the final answer, the auxiliary-line description, the original diagram, and the auxiliary-line
diagram. The examples showcase diverse strategies for constructing auxiliary lines and demonstrate
that explicit annotations reveal the key spatial constraints.
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Auxiliary-line Description: Connect A₁C₁, which intersects B₁D₁at O₁, then connect OO₁. Take O as the origin, and let 
the lines along OB, OC, and OO₁be the x-axis, y-axis, and z-axis, respectively, then establish the three-dimensional Cartesian 
coordinate system O-xyz.

Final Answer: √6/3 Original Diagram

Question: As shown in the diagram, consider the regular truncated 
quadrilateral pyramid ABCD - A₁B₁C₁D₁.  Given that ∠B₁BA = 
60°，AB = 2A₁B₁ = 4, and E is the midpoint of segment CD,  
determine the sine of the angle between line ED₁and plane ABB₁A₁.

Auxiliary-line Diagram

Auxiliary-line Description: Through point P, construct PO perpendicular to the base ABCD at point O, intersecting the plane 
A₁B₁C₁D₁at point O₁. Through point B₁, construct B₁E perpendicular to the base ABCD at point E.

Final Answer: 4√6/3 Original Diagram

Question: As shown in the diagram, consider the regular truncated quadrilateral 
pyramid ABCD - A₁B₁C₁D₁. The edge lengths of the upper and lower 
bases are 2 and 3, respectively, and the lateral edge length is √2.  By extending 
AA₁, BB₁, CC₁, DD₁, they intersect at point P.  Determine the volume of 
the quadrilateral pyramid P - A₁B₁C₁D₁. 

Auxiliary-line Diagram

Auxiliary-line Description: Let M be the midpoint of AC and N be the midpoint of A₁C₁. Then connect MN, BM, and NB₁. 
Through point B₁, construct B₁H perpendicular to MN, intersecting MN at point H, then connect DH.

Final Answer: √15 / 5 Original Diagram

Question: Given the geometric solid shown in the diagram, the base ABC is an 
equilateral triangle with a side length of 4.  The lateral face AA₁C₁C is a 
square, and the plane AA₁C₁C is perpendicular to the plane ABC.  Point D 
lies on edge CC₁, with CD = (1/4) * CC₁, and BB₁ = 3CD.  Determine the 
sine of the angle between line B1D and plane AA₁C₁C.

Auxiliary-line Diagram

Auxiliary-line Description: Connect AC, which intersects BD at point O, connect CN, which intersects BM at point G, and then 
connect OG. Construct NH parallel to BM, intersecting PC at point H.

Final Answer: 2 Original Diagram

Question: As shown in the diagram, consider the quadrilateral pyramid P - 
ABCD, where the base ABCD is a parallelogram.  Points M and N are located 
on segments PC and PB, respectively.  Given that PM:MC = 3:1 and AN ∥ 
plane BDM, determine the ratio PN:NB.

Auxiliary-line Diagram

Auxiliary-line Description: Draw BO perpendicular to AD intersecting AD at O, and connect OF. Take point O as the origin, and 
let the lines OB, OD, and OF be the x-axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate 
system O - xyz.

Final Answer: 4√3/13 Original Diagram

Question: As shown in the diagram, in a pentahedron with vertices A, B, C, D, 
E, F, quadrilaterals ABCD and ADEF are both isosceles trapezoids. It is given 
that EF is parallel to AD, BC is parallel to AD, AD = 4, AB = BC = EF = 2, ED 
= √10, FB =  2√3, and M is the midpoint of AD. Find the sine of the dihedral 
angle F-BM-E.

Auxiliary-line Diagram

Figure 6: Representative examples from the AuxSolidMath dataset.
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I CASE STUDY

I.1 SUCCESSFUL CASES

In this section, we present representative cases produced by GeoVLMath-7B (see Figure 7). The
examples illustrate how valid auxiliary-line constructions capture essential spatial constraints, which
in turn lead to correct final answers. Collectively, these results provide concrete evidence of both
the effectiveness of our training framework and the model’s capacity to tackle complex geometric
reasoning requiring robust visual understanding and precise symbolic inference.

Solution: \n[AUX]1. Construct auxiliary lines: Take the midpoint E of BC₁, and connect A₁E and D₁E. [/AUX]\n2. 
Determine parallel lines: Since ABC-A₁B₁C₁ is a regular triangular prism, AB ∥ C₁D₁ and AB = C₁D₁. So 
quadrilateral ABC₁D₁ is a parallelogram.\n3. Identify equal lengths: Given the side length of the base is 2 and the lateral edge 
length is √3, triangle C₁DC is equilateral with side length 2.\n4. Calculate the volume: Since ABC–A₁B₁C₁ is a regular 
triangular prism and triangle ABC is equilateral with side length 2, the height of the pyramid from D to the plane A₁C₁B can be 
calculated as √3. The area of the triangular base A₁C₁B is (√3)/4 * (2)² = √3. Therefore, the volume of the pyramid is (1/3) * 
base area * height = (1/3) * √3 * √3 = 1.\n\nFinal Answer: 1.

Question: As shown in the diagram, in the regular triangular prism ABC – A₁B₁C₁, the side length of 
the base is 2, and the lateral edge length is √3. D is the midpoint of AC. Find the volume of the triangular 
pyramid D - A₁C₁B.

 

Solution: \n [AUX]1. Construct auxiliary lines: Take the midpoint H of AB, and connect DH. [/AUX]\n 2. Since ∠BAD = 
60° and AB = AD = 2, triangle ABD is equilateral.\n 3. Since H is the midpoint of AB, AH = 1. By Pythagoras theorem in right 
triangle ADH, DH = √(AD^2 - AH^2) = √(2^2 - 1^2) = √3.\n 4. Since ABCD is a rhombus with AB = BC = CD = DA = 2 and 
∠ADC = 120°, we can calculate DC. Using cosine rule in triangle ADC, DC^2 = AD^2 + AC^2 - 2*AD*AC*cos(120°) = 2^2 
+ (2*2) - 2*2*2*cos(π/3) = 4 + 4 - 4 = 1. So DC = 1.\n 5. Triangle CDE has vertices: C, D, E. E is the midpoint of SB. Since S is 
the apex and SD ⊥ plane ABCD, plane SAB ⊥ plane ABCD. Therefore, DE ⊥ plane ABCD. Since CH lies in plane ABCD, we 
conclude DE ⊥ CH.\n 6. Since AB = BC = CD = DA = 2, and H is the midpoint of AB, AC ⊥ BH. Similarly, since CD ⊥ DA 
(because AD^2 + CD^2 = 2^2 + 1^2 = 5, AC^2 = 2^2 - 1^2 = 3) and DC = 1, we can deduce CH ⊥ CD. Thus CH ⊥ plane 
CDE.\n  7. The area of triangle CDE is:\n   Area(CDE) = (1/2) * DC * DE = (1/2) * 1 * 2 = 1.\n  8. The height of the pyramid C-
DEF is CH. We need to find CH. In triangle CDB, DB = 2√2 (by Pythagoras theorem). So CH = AC sin(60°) = 2 * (√3 / 2) = 
√3.\n  9. The volume of pyramid C-DEF is:\n   Volume(C-DEF) = (1/3) * Area(CDE) * CH = (1/3) * 1 * √3 = √3 / 3.\n\n
Final Answer: √3/3.

Question: As shown in the diagram, in the quadrilateral pyramid S - ABCD, SD is perpendicular to the 
plane ABCD. The base ABCD is a rhombus, with E and F being the midpoints of SB and AD, respectively. 
If ∠BAD = 60°, SD = 4, and AB = 2, find the volume of the triangular pyramid C - DEF.

 

Solution: \n [AUX]1. Construct auxiliary lines: Take the midpoint M of AB, and connect MD and MC.[/AUX]\n2. 
Determine the base area of the triangular pyramid: Since AB ⊥ CD and AB = CD = 3 (diameter), the area of the triangular base 
ABCD is given by:\n   Area = (1/2) * AB * CD = (1/2) * 3 * 3 = 4.5\n\n3. Determine the height of the pyramid: The height of the 
triangular pyramid A-BCD is the perpendicular distance from A to the plane BDC. Given that AB ⊥ plane BDC, the height is AB 
itself, which is given as 4 (slant height).\n\n4. Calculate the volume of the triangular pyramid A-BCD:\n   Volume = (1/3) * Area 
of base * Height = (1/3) * 4.5 * 4 = 6\n\nFinal Answer: 6.

Question: As shown in the diagram, the diameter of the base of the cylinder is 3, and the slant height is 4. 
AB and CD are the diameters of the upper and lower bases of the cylinder, respectively, and AB ⊥ CD. 
Find the volume of the triangular pyramid A-BCD.
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Solution: \n[AUX]1. Establish coordinate system: Take point D as the origin, and let the lines DA, DC, and DD₁ be the x-
axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system D-xyz. [/AUX]\n2. 
Determine coordinates of points: Since the edge length of the cube ABCD – A₁B₁C₁D₁ is 2, we have the coordinates of the 
vertices as follows:\n    D = (0, 0, 0)\n    A = (2, 0, 0)\n    C = (0, 2, 0)\n    B = (2, 2, 0)\n    D₁ = (0, 0, 2)\n    A₁ = (2, 0, 2)\n    
C₁ = (0, 2, 2)\n    B₁ = (2, 2, 2)\n3. Find the coordinates of point E: E is the midpoint of BD. The coordinates of B are (2, 2, 0) 
and D are (0, 0, 0). The midpoint E is the average of the coordinates of B and D:\n    E = ((2+0)/2, (2+0)/2, (0+0)/2) = (1, 1, 0).\n4. 
Find the vector BD: We have point B = (2, 2, 0) and point D = (0, 0, 0).\n    Vector BD = D - B = (0 - 2, 0 - 2, 0 - 0) = (-2, -2, 
0).\n5. Find a normal vector to the plane ACD₁: To find the normal vector, we need two vectors in the plane ACD₁.\n    Vector 
AC = C - A = (0 - 2, 2 - 0, 0 - 0) = (-2, 2, 0).\n    Vector AD₁ = D₁ - A = (0 - 2, 0 - 0, 2 - 0) = (-2, 0, 2).\nNormal vector n to the 
plane ACD₁ is the cross product of AC and AD₁:\n    n = AC × AD₁ = (-2, 2, 0) × (-2, 0, 2) = (2*2 - 0*0, 0*(-2) - (-2)*2, (-
2)*0 - 2*(-2)) = (4, 4, 4).\nWe can take a simpler normal vector by dividing by 4, so we can take n = (1, 1, 1).\n6. Calculate the 
sine of the angle between line BD and plane ACD₁: The sine of the angle θ between line BD and plane ACD₁ is given by the 
absolute value of the cosine of the angle between vector BD and normal vector n.\n    sin(θ) = |cos(angle between BD and n)| = 
|(BD · n) / (|BD| * |n|)|.\n    BD · n = (-2, -2, 0) · (1, 1, 1) = (-2)(1) + (-2)(1) + (0)(1) = -2 - 2 + 0 = -4.\n    |BD| = √((-2)² + (-2)² + 0²) 
= √(4 + 4) = √8 = 2√2.\n    |n| = √(1² + 1² + 1²) = √(1 + 1 + 1) = √3.\n    sin(θ) = |-4 / (2√2 * √3)| = |-4 / (2√6)| = |-2/√6| = 2/√6 = 
2√6 / 6 = √6 / 3.\n\nFinal Answer: √6/3.

Question: As shown in the diagram, the edge length of the cube ABCD – A₁B₁C₁D₁ is 2. Find the 
sine of the angle between line BD and plane ACD₁.

Solution: \n[AUX]1. Establish coordinate system: Take point D as the origin, and let the lines DA, DC, and DD₁ be the x-
axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system D-xyz. [/AUX]\n2. 
Determine coordinates of points: Since ABCD–A₁B₁C₁D₁ is a regular quadrilateral prism with base side length AB = 2 and 
height AA₁ = 4, we have the coordinates of the vertices as follows:\n    D = (0, 0, 0)\n    A = (2, 0, 0)\n    C = (0, 2, 0)\n    B = (2, 
2, 0)\n    D₁ = (0, 0, 4)\n    C₁ = (0, 2, 4)\n    A₁ = (2, 0, 4)\n    M is the midpoint of AA₁, so M = ((2+2)/2, (0+0)/2, (0+4)/2) 
= (2, 0, 2).\n3. Find normal vectors of planes C₁BD and MBD:\n    For plane C₁BD, we need two vectors in the plane: C₁D 
and C₁B.\n    Vector C₁D = D - C₁ = (0, 0, 0) - (0, 2, 4) = (0, -2, -4).\n    Vector C₁B = B - C₁ = (2, 2, 0) - (0, 2, 4) = (2, 0, -
4).\n    The normal vector n₁ of plane C₁BD is the cross product of C₁D and C₁B:\n    n₁ = C₁D × C₁B = (0, -2, -4) × 
(2, 0, -4) = ((-2)(-4) - (-4)(0), (-4)(2) - 0*(-4), 0(0) - (-2)(2)) = (8, -8, 4).\n    We can take a simpler normal vector by dividing by 4, 
so n₁' = (2, -2, 1).\n    For plane MBD, we need two vectors in the plane: MB and MD.\n    Vector MB = B - M = (2, 2, 0) - (2, 0, 
2) = (0, 2, -2).\n    Vector MD = D - M = (0, 0, 0) - (2, 0, 2) = (-2, 0, -2).\n    The normal vector n₂ of plane MBD is the cross 
product of MB and MD:\n    n₂ = MB × MD = (0, 2, -2) × (-2, 0, -2) = (2(-2) - (-2)(0), (-2)(-2) - 0(-2), 0(0) - 2(-2)) = (-4, 4, 
4).\n    We can take a simpler normal vector by dividing by 4, so n₂' = (-1, 1, 1).\n4. Calculate the cosine of the dihedral angle:\n    
The cosine of the dihedral angle θ is the cosine of the angle between the normal vectors n₁' and n₂':\n    cos(θ) = |(n₁' · n₂') / 
(|n₁'| * |n₂'|)|.\n    n₁' · n₂' = (2, -2, 1) · (-1, 1, 1) = 2(-1) + (-2)(1) + 1(1) = -2 - 2 + 1 = -3.\n    |n₁'| = √(2² + (-2)² + 1²) = √(4 + 
4 + 1) = √9 = 3.\n    |n₂'| = √((-1)² + 1² + 1²) = √(1 + 1 + 1) = √3.\n    cos(θ) = |-3 / (3 * √3)| = |-3 / (3√3)| = |-1/√3| = 1/√3 = 
√3/3.\n\nFinal Answer: √3/3.

Question: As shown in the diagram, in the regular quadrilateral prism ABCD−A₁B₁C₁D₁, M is the 
midpoint of AA₁, AB = 2, AA₁ = 4. Find the cosine value of the dihedral angle C₁-BD-M.

Solution: \n[AUX]1. Establish coordinate system: Take point O as the origin, and let the lines OA, OB, and OP be the x-
axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system O-xyz. [/AUX]\n2. 
Determine coordinates of points: Since the rhombus ABCD has side length 2 and ∠BAD = 60°, triangle ABD is equilateral, and 
triangle BCD is also equilateral. The diagonals AC and BD are perpendicular bisectors of each other. Given AB = 2, we have AO 
= OC = 1 and BO = OD = √(2^2 - 1^2) = √3. Thus, the coordinates are:\n    O = (0, 0, 0)\n    A = (1, 0, 0)\n    C = (-1, 0, 0)\n    B = 
(0, √3, 0)\n    Since PA = PC and PA = sqrt((1-0)^2 + (0-h)^2 + k^2), PC = sqrt((-1-0)^2 + (0-h)^2 + k^2).\n    Squaring both PA 
and PC and equating them:\n    (1-h)^2 + k^2 = (-1-h)^2 + k^2\n h = 0\n    Substituting h = 0 into PA^2 = (1-0)^2 + (0-0)^2 + k^2 
= 1 + k^2 = 1^2 = 1 + (h^2 =0) = PB^2.\n    So z coordinate of P = OM = sin(60°) = sqrt(3)/2\n    M is the midpoint of PD, M = 
((0+0)/2, (0+0)/2, sqrt(3)/2 + sqrt(3)/2)/2 = (0, 0, sqrt(3)/2)\n    B = (0, sqrt(3), 0)\n    P = (0, 0, sqrt(3))\n    A = (1, 0, 0), B = (0, √3, 
0), C = (-1, 0, 0), D = (0, -√3, 0), P = (0, 0, √3), M = (0, 0, √3/2)\n3. Find normal vectors of plane PAD and plane PBC:\n    For 
plane PAD, we need vectors PA and PD.\n    PA = A - P = (1, 0, -√3)\n    PD = D - P = (0, -√3, -√3)\n    Normal vector n1 of plane 
PAD is the cross product of PA and PD:\n    n1 = PA x PD = (1, 0, -√3) x (0, -√3, -√3) = (-3, √3, -√3)\n    For plane PBC, we need 
vectors PB and PC.\n    PB = B - P = (0, √3, -√3)\n    PC = C - P = (-1, 0, -√3)\n    Normal vector n2 of plane PBC is the cross 
product of PB and PC:\n    n2 = PB x PC = (0, √3, -√3) x (-1, 0, -√3) = (-3, √3, √3)\n4. Calculate the cosine of the dihedral angle:\n    
The cosine of the dihedral angle θ :\n    cos(θ) = |(n1 · n2) / (|n1| * |n2|)|\n    n1 · n2 = (-3)(-3) + (√3)(√3) + (-√3)(√3)= 9\n    |n1| = 
√((-3)^2 + (√3)^2 + (-√3)^2) = √15\n    |n2| = √((-3)^2 + (√3)^2 + (√3)^2) = √15\n    cos(θ) = |9 / (√15 * √15)| = 9 / 15 = 3 / 5\n5. 
Calculate the sine of the dihedral angle:\n    sin^2(θ) = 1 - cos^2(θ) = 16 / 25\n    sin(θ) = √(16 / 25) = 4/5 \nFinal Answer: 4/5.

Question: In the quadrilateral pyramid P-ABCD, the quadrilateral ABCD is a rhombus, with AC and BD 
intersecting at point O. PA = PC, PB = PD, ∠BAD = 60°, AB = 2, and M is the midpoint of segment PD. 
If the angle between line OM and plane ABCD is 60°, find the sine of the dihedral angle between plane 
PAD and plane PBC.

 

Figure 7: Successful cases generated by GeoVLMath-7B.
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I.2 FAILURE CASES

In this section, we illustrate typical failure cases generated by GeoVLMath-7B (see Figure 8). The
observed failures are exemplified by mis-specified coordinate systems and auxiliary-line descrip-
tions that are irrelevant to the diagram, both of which fail to capture essential spatial constraints and
may yield incorrect final answers. To mitigate such errors, we will explore diffusion-based drawing
modules that render auxiliary lines directly on the original diagram and support iterative correction
as part of future work.

Solution: \n [AUX]1. Establish coordinate system: Take point A as the origin, and let the lines AB, AD, and AP be the x-axis, 
y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system A-xyz. [/AUX]\n2. Determine 
the coordinates of the vertices: Let the side length of the square ABCD be 2. Since A is the origin, A = (0, 0, 0). As AB is along 
the x-axis and B is to the right of A with length 2, B = (2, 0, 0). As AD is along the y-axis and D is above A with length 2, D = (0, 
2, 0). Since ABCD is a square, C = (2, 2, 0). As PA is a line from A in the z-direction upwards and triangle PAD is an equilateral 
triangle with side length 2, the height from P to the base ABCD must be √(2^2 - 1^2) = √3. So, P = (0, 0, √3).\n3. Find the vector 
PB: We have P = (0, 0, √3) and B = (2, 0, 0). The vector PB = B - P = (2, 0, 0) - (0, 0, √3) = (2, 0, -√3).\n4. Find the normal vector 
of the plane PCD: We need two vectors in the plane PCD, for example, vector PC and vector PD.\nVector PC = C - P = (2, 2, 0) - 
(0, 0, √3) = (2, 2, -√3).\nVector PD = D - P = (0, 2, 0) - (0, 0, √3) = (0, 2, -√3).\nThe normal vector n of the plane PCD is the cross 
product of PC and PD:\nn = PC × PD = (2, 2, -√3) × (0, 2, -√3) = (2*(-√3) - (-√3)*2, (-√3)*0 - 2*(-√3), 2*2 - 2*0) = (-2√3 + 2√3, 
0 + 2√3, 4 - 0) = (0, 2√3, 4).\nTo take a simpler normal vector, we can use n' = (0, √3, 2).\n5. Calculate the sine of the angle 
between line PB and plane PCD: The sine of the angle θ between line PB and plane PCD is given by the absolute value of the 
cosine of the angle between vector PB and normal vector n':\nsin(θ) = |cos(angle between PB and n')| = |(PB · n') / (|PB| * 
|n'|)|.\nPB · n' = (2, 0, -√3) · (0, √3, 2) = 2*0 + 0*√3 + (-√3)*2 = -2√3.\n|PB| = √(2^2 + 0^2 + (-√3)^2) = √(4 + 0 + 3) = √7.\n|n'| = 
√(0^2 + (√3)^2 + 2^2) = √(0 + 3 + 4) = √7.\nsin(θ) = |-2√3 / (√7 * √7)| = |-2√3 / 7| = 2√3 / 7.\n\nFinal Answer: 2√3/7.

Question: As shown in the diagram, in the quadrilateral pyramid P-ABCD, the base ABCD is a square, 
PAD is an equilateral triangle, and PC = AC. Find the sine of the angle between line PB and plane PCD.

Ground Truth: √6/4
Analysis: The A–xyz coordinate system is incorrectly established—AP is not orthogonal to AB or AD, 
violating the pairwise orthogonality required for a three-dimensional Cartesian system. Consequently, 
the coordinates assigned to points and lines are invalid, leading to an incorrect final answer.

Solution: \n[AUX]1. Construct auxiliary lines: Take the midpoint M of AB, and connect OM. [/AUX]\n2. Identify 
perpendicularity: Since O is the center of the circle, OM ⊥ AB. Also, PO ⊥ OM because PO is the height of the cone and O is on 
the base circle. Since AB ∩ PO = O, and AB and PO are in plane PAB, we conclude OM ⊥ plane PAB.\n3. Determine angle: The 
angle between line PC and plane ABC is the angle between line PC and its projection onto plane ABC. Since OM ⊥ plane PAB, the 
projection of point P onto plane ABC lies on line OM. The projection of line PC onto plane ABC is segment AC.\n4. Calculate 
angle: To find the angle between line PC and plane ABC, we need to find the sine of the angle. Given PO = 2 and OA = 1, we have 
AC = √(PA² - AO²) = √(2² - 1²) = √3.\n\nFinal Answer: arcsin(√3 / 3)

Question: As shown in the diagram, the given solid consists of half of a cone and a triangular pyramid. 
The base of the cone is a circle with center O and radius 1, and the height of the cone satisfies PO = 2. 
The triangular pyramid P-ABC has its base ABC as an isosceles right triangle, where AB is the 
hypotenuse and coincides with the diameter of the cone's base circle. The base ABC lies on the same 
plane as the cone's base. Determine the angle between line PC and plane ABC.

Ground Truth: arctan 2 
Analysis: The generated auxiliary-line description leaves the geometric configuration unchanged. 
Consequently, the subsequent reasoning proceeds from a spurious auxiliary premise rather than from 
added geometric constraints, leading to an incorrect final answer.

Figure 8: Failure cases generated by GeoVLMath-7B.
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