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Figure 6: Example NCA environment generation process with 50 iterations, which starts from a fixed initial
environment (Figure 6a) and iteratively generates the rest of the environments (Figures 6b to 6e).

(a) Warehouse (b) Manufacturing (c) Maze

Figure 7: Example environments of the warehouse, manufacturing, and maze domains.

A NCA Generation Process

Figure 6 shows an example NCA generation process with 50 iterations.

B Domain Details

B.1 Warehouse

Environment. We use the workstation scenario from previous work [51]. Figure 7a shows an
example. A warehouse environment has four tile types. Black tiles are shelves for storing goods
and also serve as obstacles. Blue tiles are endpoints where the agents park and interact with shelves.
White tiles are empty spaces. Pink tiles are workstations where agents interact with human staff.
Agents can traverse all non-black tiles. The goal location (= task) of each agent alternates between
randomly selected workstations and endpoints. Furthermore, the NCA generator only generates
the storage area inside the red box in Figure 7a, which contains only black, blue, and white tiles.
The non-storage area outside the red box is kept unchanged. This is because the locations of the
workstations are usually fixed along the borders of the real-world warehouses.

Domain-Specific Constraints. The constraints of the warehouse environment include: (1) all non-
black tiles are connected so that the agents can reach all endpoints and workstations, (2) each black
tile is adjacent to at least one blue tile and vice versa, ensuring that agents can interact with shelves via
endpoints, (3) the number of black tiles is equal to a predefined number (Ns or Ns_eval in Table 1) so
that all generated warehouse environments have the same storage capability, and (4) the non-storage
area is kept unchanged. The detailed MILP formulation of the constraints is included in the previous
paper [51].

Agent-based Simulator. Following previous work [51], we use Rolling-Horizon Collision Resolution
(RHCR) [28], a state-of-the-art lifelong MAPF planner, in our simulations. In lifelong MAPF, agents
are constantly assigned new tasks once they finish their previous ones. At every h timesteps, RHCR
plans collision-free paths for all agents for the next w timesteps (w � h). Following the design
recommendation from the previous work [28], we use w = 10 and h = 5. We set the initial locations
of the agents uniformly at random from the non-shelf tiles. We use two different task assigners,
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leading to two variations of the warehouse domain. First, we adopt the task assigner from the previous
work [51] that assigns the next task (workstation or endpoint) uniformly at random. We refer to this
variant as warehouse (even). Second, we extend the previous task assigner by asking it to select
the next workstation with uneven probabilities. Specifically, the workstations on the left border
are 5 times more likely to be selected than those on the right. The endpoints remain being evenly
selected. We refer to this variant as warehouse (uneven), which is more challenging than warehouse
(even) because the more frequently visited left border workstations could make the simulation to be
congested.

B.2 Manufacturing

Environment. Figure 7b shows an example of a manufacturing environment. Each manufacturing
environment has five tile types. The blue (endpoint) and white (empty space) tiles are the same as
the warehouse environments. The red, green, and yellow tiles represent three types of workstations.
Agents can traverse only blue and white tiles. The task of each agent is to go to an endpoint adjacent
to a red, green, and yellow workstation in order and stay there for tr, tg, and ty timesteps, respec-
tively. The NCA generator generates the entire environment. Since the manufacturing domain has
multiple types of workstations, one of the challenges of generating high-performance manufacturing
environments is to find a reasonable ratio of the number of different workstations.

Domain-Specific Constraints. In line with the warehouse domain, we constrain the manufacturing
environments such that (1) all blue and white tiles are connected so that the robots can reach all
endpoints, (2) each blue tile is adjacent to at least one of red, green, or yellow tiles and vice versa
so that the robots can interact with the workstations via endpoints, (3) there is at least one red, one
green, and one yellow tile to support the cyclical nature of manufacturing tasks, where a complete
cycle involves sequential visits to endpoints next to red, green, and yellow workstations.

Agent-based Simulator. The agent-based simulator is the same as the one used in the warehouse
domain except that (1) we ask each agent to stay for tr = 2, tg = 5, and ty = 10 timesteps after
arriving at their goal endpoints next to red, green, and yellow workstations, respectively, and (2) the
task assigner assigns the next task to an endpoint, chosen uniformly at random, near the red, green,
and yellow workstations in order.

B.3 Maze

Environment. We use the maze domain from previous works [1, 5, 9, 37]. Figure 7c shows an
example maze environment. A maze environment has two tile types: wall (gray) and empty space
(black). The yellow triangle represents the agent, and the green square is the goal location. We omit
the agent and the goal location when generating the environments.

Domain-Specific Constraints. We do not have any domain-specific constraints for the maze domain.

Agent-based Simulator. We use a trained ACCEL agent [9]. The observation space is a 5 ⇥ 5 grid
in front of it. The agent can turn left or right in its current tile, move forward to the adjacent tile, or
stay in the current tile. We assign the start and goal locations of the agent to the first and last tile
of the longest shortest path in the environment. We limit the time horizon to 2 times the number of
tiles in the environment, which is 648 for environments of size S, and 8,712 for environments of size
Seval, respectively. We stop the simulation early if the agent reaches the goal.

C Experiment Details

C.1 NCA Setup

C.1.1 NCA Generator Architecture

Figure 8 shows the model architecture of the NCA generator. The generator has 3 convolutional layers
of kernel size 3, stride 1 and padding 1. The first 2 convolutional layers have 32 output channels and
are followed by a ReLU activation. The last layer has 3 output channels and is followed by a sigmoid
function. This configuration guarantees that the width, height, and number of channels of the input
and output tensors are the same.
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Figure 8: Architecture of the NCA generator. Starting with a fixed onehot-encoded initial environment, the
generator transforms an initial environment iteratively to generate the final environment.

(a) Warehouse (b) Manufacturing (c) Maze

Figure 9: Initial environments of NCA generation.

C.1.2 Initial Environments

Figure 9 shows the initial environments of size S for all domains. They are characterized by a small
central block of non-empty-spaces surrounded by empty spaces. The initial environments of size
Seval maintains the same central blocks and are surrounded by more expansive empty spaces.

C.1.3 Postprocessing Generated Environments

After generating an environment and before repairing it, we may need to postprocess the environment
to prepare for repairing.

Warehouse. In the warehouse domain, we generate a 32 ⇥ 33 and 98 ⇥ 101 storage area and add
fixed non-storage area to the left and right side to form an environment of size S = 36 ⇥ 33 and
Seval = 102⇥ 101, respectively.

Manufacturing. In the manufacturing domain, we directly generate environments of size S = 36⇥33
and Seval = 102⇥ 101.

Maze. In the maze domain, we generate a 16 ⇥ 16 environment and surround it with walls to create a
S = 18⇥ 18 environment. Similarly, we generate a 64 ⇥ 64 environment and surround it with walls
to create a Seval = 66⇥ 66 environment.

C.2 QD Setup

C.2.1 Objective

Warehouse. We use fres and fopt in Section 4 as the objective functions. We set pi = 1 for all i,
meaning that all tiles have the same weight while computing the similarity score.

Manufacturing. We use fres and fopt in Section 4 as the objective functions. We set ↵ = 5 as it
results in the most scalable environments in the warehouse domain. Suppose xi denotes the ith tile of
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Baseline

(a) Human-designed (b) DSAGE (even) (c) DSAGE (uneven)

CMA-MAE with
warehouse (even)

(d) CMA-MAE (↵ = 0) (e) CMA-MAE (↵ = 1) (f) CMA-MAE (↵ = 5)

CMA-MAE with
warehouse (uneven)

(g) CMA-MAE (↵ = 0) (h) CMA-MAE (↵ = 1) (i) CMA-MAE (↵ = 5)

Figure 10: Baseline and NCA-generated warehouse environments of size S.

the environment x 2 X. For the objective functions, we let pi = 5 if (xin)i is a workstation, and
pi = 1 otherwise. Intuitively, we give more rewards to the environments in which workstations are
not changed during MILP repair.

Maze. We use the same binary objective from the previous work [1].

C.2.2 Archive Dimensions

Warehouse. We use a 100 ⇥ 100 archive for the warehouse domain. We set the range of the
connected shelf components to be [140, 240], following previous work [51], and the range of the
environment entropy to be [0, 1]. In DSAGE, we follow previous work to downsample the archive
to get a subset of elites [1, 51]. We set the downsampled archive dimension to be [50, 25], with 50
on the dimension of the number of connected shelf components and 25 on the environment entropy
dimension. We use an irregular dimension because DSAGE fails to diversify the environment entropy
measure (introduced in Appendix E.5) and we need to use a higher downsampling resolution on the
number of connected shelf components to sample a reasonable number of elites.

Manufacturing. We use a 100 ⇥ 100 archive for the manufacturing domain. We set the range of the
number of workstations to be [0, 600] to allow CMA-MAE to explore a wide range of environments
with different number of workstations, and the range of the environment entropy to be [0, 1]. We use
an irregular 25 ⇥ 10 downsampled archive with higher resolution on the number of workstations for
the same reason as the warehouse domain

Maze. Following previous work [1], we use a 256 ⇥ 162 archive. We set the range of the number of
walls to be [0, 256], where 256 is the total number of tiles in the environments of size S (excluding
the appended walls around the border), and the range of average agent path length to be [0, 648],
where 648 is the time horizon of the agent-based simulation in environments of size S.
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Baseline

(a) Human-designed

(b) DSAGE

NCA-generated (Repaired)

(c) CMA-MAE (↵ = 5, comp
DSAGE)

(d) CMA-MAE (↵ = 5, opt)

NCA-generated (Unrepaired)

(e) CMA-MAE (↵ = 5, comp
DSAGE)

(f) CMA-MAE (↵ = 5, opt)

Figure 11: Baseline and NCA-generated manufacturing environments of size S.

C.2.3 CMA-MAE

For the warehouse and manufacturing domains, we use an archive learning rate of 0.01, while, for the
maze domain, we use 0.5. We use a higher archive learning rate for the maze domain because a higher
learning rate promotes CMA-MAE to explore the measure space. Since the binary objective function
of the maze domain (introduced in Section 5) can be trivially optimized, we promote CMA-MAE
to do more exploration than exploitation in the maze domain. In all domains, the initial batch of
solutions is sampled from a multivariate Gaussian distribution with a mean of 0 and a standard
deviation of 0.2.

C.3 Compute Resource

We run our experiments on 4 local machines and 2 high performing clusters, namely (1) a local
machine with a 16-core AMD Ryzen 9 5950X CPU, 32 GB of RAM, and a Nvidia RTX 3080 GPU,
(2) a local machine with a 64-core AMD Ryzen Threadripper 3990X, 192 GB of RAM, and an Nvidia
RTX 3090Ti GPU, (3) a local machine with a 64-core AMD Ryzen Threadripper 3990X, 64 GB of
RAM, and an Nvidia RTX A6000 GPU, (4) a local machine with a 64-core AMD Ryzen Threadripper
3990X, 64 GB of RAM, and an Nvidia RTX 3090 GPU, (5) a high-performing clusters with a V100
GPU, 200 Xeon CPUs each with 4 GB of RAM, and numerous 32-core AMD EPYC 7513 CPUs,
each with up to 248 GB of RAM, (6) a high-performing cluster with a V100 GPU and heterogeneous
CPUs. We perform our experiments in different machines because our experiments are not sensitive
to runtime and require massive parallelization. We measure all CPU runtimes in machine (1).

C.4 Implementation

We implement CMA-MAE with Pyribs [45], the NCA generators in PyTorch [38], and the MILP
solver with IBM’s CPLEX library [21] in Python.

Compute Constraint of MILP. In the CPLEX MILP solver, we constrain the maximum number
of threads to 1 and 28 for environments of size S and Seval, respectively. We set the deterministic
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Warehouse (even)

(a) CMA-MAE (↵ = 0)

(b) CMA-MAE (↵ = 1)

(c) CMA-MAE (↵ = 5)

Warehouse (uneven)

(d) CMA-MAE (↵ = 0)

(e) CMA-MAE (↵ = 1)

(f) CMA-MAE (↵ = 5)

Figure 12: NCA-generated warehouse environments of size Seval.
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(a) Unrepaired. (b) Repaired.

Figure 13: NCA-generated manufacturing environment of size Seval with CMA-MAE (↵ = 5).

(a) Warehouse (b) Manufacturing

Figure 14: Human-designed warehouse and manufacturing environments of size Seval.

runtime limit to be 6e4 ticks for size S and 3.6e6 ticks for size Seval in CPLEX. The deterministic
runtime limit in CPLEX is a metric that provides a consistent measure on the “effort” made by the
MILP solver, measured in “ticks”, a CPLEX abstract unit.

D Baseline and NCA-generated Environments

D.1 NCA-generated Environments

Warehouse. Figures 10d to 10i show the NCA-generated warehouse environments of size S.
Figure 12 shows those of size Seval. For the environments of warehouse (even), larger ↵ values lead
the optimal NCA generators in the result archives to generate environments with clearer patterns.
Specifically, with ↵ = 0 (Figure 10d), the environment has a large area of empty spaces at the bottom.
With ↵ = 1 (Figure 10e), the area of empty spaces is gone but the distribution of shelves is not
even. With ↵ = 5 (Figure 10f), the generated environment is mostly filled with repeated blocks of
1 ⇥ 2 shelves and the space in between the block is filled with endpoints. The trend is similar for
environments of size Seval in the warehouse (even) domain (Figures 12a to 12c). With ↵ = 5, the
generated environment possesses the most regularized pattern.
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Figure 15: Baseline maze environments of size Seval.

For the warehouse (uneven) domain, larger ↵ values do not always generate clearer patterns. Specif-
ically, with size S, the environments generated with ↵ = 0 (Figure 10g) and ↵ = 5 (Figure 10i)
have similar patterns. Both environments have fewer shelves on the left part of the environments and
cluster more shelves on the right so that the agents have more traversable tiles to resolve conflicts
near the more frequently visited workstations on the left border. Such pattern can also be found in
size Sevals (Figures 12d and 12f). Notably, however, with size Seval, the environment with ↵ = 5
has more traversable tiles near the workstations on the left border than that with ↵ = 0, resulting in
higher success rate as shown in Table 2 of Section 6.

Manufacturing. Figures 11c and 11d show the NCA-generated environments of size S. The one
generated by the optimal NCA generator (Figure 11d) possesses more regularized patterns than
the one used to compare with DSAGE (Figure 11c). However, in their corresponding unrepaired
environments (Figures 11e and 11f), the NCA generators only generate empty spaces and endpoints
and rely on the MILP solver to put the workstations in the environment. We conjecture that for the
manufacturing domain, the number of endpoints is more important than the ratio between different
types of workstations because more endpoints allow the agents to perform tasks in parallel around the
workstations. Similarly, Figure 13 shows the unrepaired and repaired NCA-generated environments
of size Seval. The unrepaired environment (Figure 13a) has no workstations at all, while the repaired
environment has randomly placed workstations by the MILP solver.

D.2 Baseline Environments

Warehouse. Figure 10a shows the human-designed warehouse environment of size S for both
variants of warehouse domains. It is taken from the previous works [29, 28, 51], where 1 ⇥ 10 blocks
of shelves are repeatedly placed, and each shelf is surrounded by two endpoints from the top and
bottom of it. We scale this pattern to create the human-designed warehouse environment of size Seval,
shown in Figure 14a. Figures 10b and 10c shows the DSAGE-optimized warehouse environments
of size S for warehouse (even) and warehouse (uneven), respectively. Both of them have no clear
regularized patterns.

Manufacturing. Figures 11a and 14b show the human-designed manufacturing environments of
size S and Seval, respectively. We create the human-designed environment of size S (Figure 11a)
such that (1) the number of workstations mirrors that in the DSAGE-optimized environment so that
approximately the same number of agents can operate in parallel around the workstations, and (2) the
ratio of different types of stations approximates tr : tg : ty = 2 : 5 : 10 so that the environment has
more workstations that require agents to stay longer.

To create these human-designed environments, we draw insights from some NCA-generated environ-
ments. Notably, the warehouse (even) environment with ↵ = 5 (Figure 10f) has the best scalability
(shown in Section 6). This informs the design of the human-designed manufacturing environment
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Figure 16: Example result archives of CMA-MAE + NCA in warehouse domains with different ↵ values.

of size S, displayed in Figure 11a, where we evenly distribute blocks of workstations and position
endpoints around each for parallel agents operation.

In the size of Seval, the NCA-generated manufacturing environment (Figure 13b) features stan-
dalone workstations surrounded by endpoints. We imitate this pattern to create the human-designed
manufacturing environment of size Seval, shown in Figure 14b. Similar to the human-designed
environment of size S, we additionally let the ratio of different types of workstations to approximate
tr : tg : ty = 2 : 5 : 10 and the total number of workstations are similar.

Given these human-designed manufacturing environments have NCA-inspired designs, we anticipate
them to outperform their counterparts in the warehouse domain, compared to the NCA-generated
ones.

Maze. Figure 15 shows two example baseline environments using the method described Section 6.
Compared to the NCA-generated maze environment of size Seval shown in Figure 5b, both of them
have no clear regularized patterns. Running the ACCEL agent in these two environments for 100
times results in success rates of 0% and 8%, respectively.

E Additional Results

In this section, we include the following additional results: (1) we compare the result archives
with different ↵ values to discuss the effect of ↵ on patterns, (2) we show the number of finished
tasks over time in the NCA-generated and baseline environments of size S in the warehouse and
manufacturing domains, analyzing the occurrence of congestion in these environments, (3) we show
the scalability of the trained NCA generators in environment sizes other than S and Seval, (4) we
compare our method with an additional baseline of tiling environments of size S to create those
of size Seval, (5) we show the QD-score and archive coverage of CMA-MAE + NCA comparing
with MAP-Elites [34, 47] + NCA to demonstrate the advantage of CMA-MAE in terms of training a
diverse collection of NCA generators, (6) we show the QD-score and archive coverage of CMA-MAE
+ NCA comparing with DSAGE with direct tile search [1, 51] to demonstrate the advantage of NCA
in terms of generating environments with regularized patterns, and (7) we compare CMA-MAE with
a derivative-free single-objective optimizer CMA-ES [20] to demonstrate that optimizing without
diversifying measures can more easily lead to local optima.

E.1 On the Effect of ↵ on Patterns

Figure 16 shows the result archives of warehouse domains with different values of ↵. We observe
that a larger ↵ value is correlated with better archive coverage in the low environment entropy area in
the archive. Since a lower value of environment entropy corresponds to clearer regularized patterns
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(c) Manufacturing

Figure 17: Number of finished tasks per timestep with Na = 200 agents. The solid lines are the average while
the shaded area shows the 95% confidence interval.
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(b) Warehouse (uneven)
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(c) Manufacturing

Figure 18: Scalability of NCA-generated environments in the warehouse (even), warehouse (uneven), and
manufacturing domains. To determine maximum scalability, we incrementally add agents and run 50 simulations,
each with 5000 timesteps, for each count, monitoring average throughput. Once throughput drops, we identify
the agent count corresponding to the peak mean throughput as the maximum scalability.

and thus a possibly more scalable NCA generator, a reasonably large ↵ value can give users more
freedom in choosing trained NCA generators from the result archive.

E.2 Number of Finished Tasks Over Time

To understand the gap in the performance of the environments in the warehouse and manufacturing
domains, we run 100 simulations with Na agents in all of the environments of size S and plot the
number of finished tasks at each timestep. We do not stop the simulation even if the agents encounter
congestion. Figure 17 shows the number of finished tasks over 5,000 timesteps. All NCA-generated
environments maintain a stable number of finished tasks throughout the simulation.

E.3 Scalability in More Environment Sizes

To further demonstrate the scalability of our method, we use trained NCA generators from Section 6
to generate progressively larger environments and run simulations. Figure 18 shows the result.
The y-axis illustrates two metrics: maximum mean throughput over 50 simulations (right) and the
maximum scalability, defined as the agent count at this maximum (left).
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(a) Warehouse (even) tiling environment (b) Warehouse (even) tile-usage map

(c) Warehouse (uneven) tiling environment (d) Warehouse (uneven) tile-usage map

(e) Manufacturing tiling environment (f) Manufacturing tile-usage map

Figure 19: Baseline environments as well as tile-usage maps of size Seval obtained by tiling smaller environments
of size S.
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Domain Algorithm QD-score Archive Coverage

Maze w/o env entropy
CMA-MAE + NCA 22,299.00 ± 612.46 0.54 ± 0.01

DSAGE 16,446.60 ± 42.27 0.40 ± 0.00
MAP-Elites + NCA 12,446.80 ± 2,207.08 0.30 ± 0.05

Maze w/ env entropy
CMA-MAE + NCA 12,468.20 ± 342.09 0.77 ± 0.02

DSAGE 1,444.20 ± 52.60 0.09 ± 0.00
MAP-Elites + NCA 9,288.80 ± 590.13 0.57 ± 0.04

Warehouse (even)
CMA-MAE + NCA 20,366.07 ± 653.46 0.33 ± 0.01

DSAGE 914.60 ± 33.09 0.02 ± 0.00
MAP-Elites + NCA 6,893.49 ± 1,291.68 0.15 ± 0.03

Warehouse (uneven)
CMA-MAE + NCA 19,985.23 ± 493.98 0.33 ± 0.01

DSAGE 926.69 ± 23.42 0.02 ± 0.00
MAP-Elites + NCA 5,906.86 ± 1,027.29 0.14 ± 0.02

Manufacturing
CMA-MAE + NCA 6,449.56 ± 1,106.83 0.18 ± 0.02

DSAGE 378.33 ± 4.69 0.02 ± 0.00
MAP-Elites + NCA 2,398.99 ± 422.61 0.14 ± 0.02

Table 4: QD-score and Archive coverage. x± y denotes an average value of x and a standard error of y over 5
runs. All algorithms use ↵ = 5. “Maze w/ env entropy” refers to using environment entropy and average agent
path length as the measures in the maze domain, while “Maze w/o env entropy refers to using number of walls
and average agent path length as the measures.

We see an increasing trend for both maximum scalability and maximum mean throughput as the
environment size increases. The NCA-generated environments generally scale better than the human-
designed ones.

We see two exceptions: the maximum mean throughput in the 69⇥69 warehouse (uneven) envi-
ronment and both metrics in the 57⇥58 manufacture environment. We can attribute this to the
interaction between the MILP and the specific environment generated by the NCA. Since MILP
makes numerous changes to the generated environments in these domains, certain combinations of
generated environments and MILP random seeds can lead to repaired layouts that create congestion.
However, if we encounter such issues in practice, we can either leverage a different NCA generator
from the archive or re-run the MILP repair with a different random seed.

E.4 Tiling Environments of size S

Due to the similarity incurred in the NCA-generated environments of different sizes, one may argue
that tiling small environments can create larger environments with competitive performance as the
NCA-generated ones. To test this argument, we add a new baseline. We tile the environments of
size S, namely Figure 10f (warehouse (even)), Figure 10i (warehouse (uneven)), and Figure 11d
(manufacturing) in Appendix C.1, to create environments of size Seval . We then use MILP to enforce
constraints.

We run 50 simulations with Na_eval agents specified in Table 1. The new baseline achieves a success
rate of only 0% and 23% in the warehouse (even) and warehouse (uneven) domains, respectively.
Figure 19 displays the tiled environments of size Seval and their tile-usage maps, which show the
usage frequency of each tile in the simulation. As shown in Figures 19b and 19d, the agents are
congested, resulting in low success rates. In contrast, for the manufacturing domain, the baseline
matches our method, with a success rate of 100% and an average throughput of 22.73. This is because
the tiling of Figure 11d, creating Figure 19e, resembles the NCA-generated patterns in Figure 13b.
Thus, the tiling baseline may be a good method for the manufacturing domain, yet it falls short in the
warehouse domains.

E.5 QD Score and Archive Coverage

Figure 20 shows the QD-score and the archive coverage over the number of evaluations during
training. Table 4 shows the corresponding numerical results. Figure 21 then shows the result archive
of one of the runs.
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CMA-MAE + NCA DSAGE MAP-Elites + NCA

(a) Warehouse (even) domain with environment entropy
and number of connected shelf components measures.

(b) Warehouse (uneven) domain with environment en-
tropy and number of connected shelf components mea-
sures.

(c) Manufacturing domain with environment entropy
and number of workstations measures.

(d) Maze domain with number of walls and average
agent path length measures.

(e) Maze domain with environment entropy and average
agent path length measures.

Figure 20: QD-score and archive coverage of CMA-MAE + NCA, compared with MAP-Elites + NCA and
DSAGE. The solid line shows the average and the shaded area shows the 95% confidence interval. All algorithms
use ↵ = 5.

We compare CMA-MAE with MAP-Elites [34] to show the benefit of using CMA-MAE to train NCA.
We use the state-of-the-art Iso+LineDD mutation operator [47] on MAP-Elites with �line = 0.2 and
�iso = 0.01. We also compare CMA-MAE + NCA with DSAGE to demonstrate the benefit of using
NCA to generate environments with regularized patterns. In the maze domain, in addition to the
combination of diversity measures discussed in Section 5 (number of walls and average agent path
length), we run experiments with the environment entropy measure, paired with average agent path
length, to demonstrate the effect of the environment entropy measure on the QD-score and archive
coverage.

We observe that CMA-MAE achieves the best QD-score and the best archive coverage in all domains,
generating solutions with the best quality and diversity. We also observe from the result archives that
CMA-MAE covers the largest number of cells. Notably, in all domains, DSAGE fails to diversify
environment entropy, covering only the high entropy area of the archives and not exploring the low
entropy region. This happens because we directly optimize environments instead of training NCA
generators in DSAGE. Without NCA, DSAGE cannot generate candidate environments with low
entropy (i.e., with regularized patterns). As a result, despite being high-quality, the DSAGE-optimized
environments lack regularized patterns and cannot be scaled to arbitrary sizes.

E.6 Compare CMA-ES with CMA-MAE

Derivative-free single objective optimizers such as CMA-ES [20] that do not diversify a given set of
measures can also be used to train the NCA generators. To demonstrate the effect of diversifying
measures on the trained NCA generators, we run CMA-ES in the warehouse and manufacturing
domains with ↵ = 5 and compare the trained NCA generator with those trained by CMA-MAE.
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Algorithm: CMA-MAE + NCA MAP-Elites + NCA DSAGE
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Figure 21: Example result archives of all domains. All algorithms use ↵ = 5.

Table 5 shows the numerical results, and Figure 22 shows the throughput over different numbers of
agents.
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(f) Seval: Manufacturing

Figure 22: Throughput with an increasing number of agents in environments of sizes S and Seval generated by
CMA-ES + NCA and CMA-MAE + NCA. The NCA generators trained by CMA-ES fail to generate environments
of size Seval in the warehouse (even) and manufacturing domains because the unrepaired environments deviate
too much from the domain-specific constraints. The solid lines are the average throughput while the shaded area
shows the 95% confidence interval.

Size S with Na agents Size Seval with Na_eval agents
Domain Algorithm Success Rate Throughput Success Rate Throughput

warehouse (even) CMA-ES + NCA 100% 6.51 ± 0.00 N/A N/A
CMA-MAE + NCA 100% 6.74 ± 0.00 90% 16.01 ± 0.00

warehouse (uneven) CMA-ES + NCA 100% 6.62 ± 0.00 0% N/A
CMA-MAE + NCA 100% 6.82 ± 0.00 84% 12.03 ± 0.00

Manufacturing CMA-ES + NCA 98% 6.81 ± 0.01 N/A N/A
CMA-MAE + NCA 94% 6.82 ± 0.00 100% 23.11 ± 0.01

Table 5: Success rates and throughput of environments of sizes S and Seval generated by CMA-ES + NCA and
CMA-MAE + NCA. Both algorithms use ↵ = 5. We run 50 simulations for all environments except for the
warehouse (uneven) environment of size Seval generated by CMA-ES + NCA, for which we run 20 simulations.
We measure the throughput of only successful simulations and report both average and standard error.

With an environment size of S, CMA-ES is competitive with CMA-MAE in all domains. In fact,
CMA-ES ends up being slightly more scalable than CMA-MAE in the warehouse (uneven) domain
with size S. However, CMA-MAE is significantly more scalable than CMA-ES with size Seval. In
particular, the MILP solver cannot find solutions for warehouse (even) and manufacturing domains of
size Seval in the given computational budget (introduced in Appendix C.4).

Figure 23 shows the unrepaired environments of size Seval in the warehouse (even) and manufacturing
domains for CMA-ES. Both environments have a large number of endpoints. As a result, they rely on
the MILP solver to both satisfy the domain-specific constraints and generate patterns, which takes a
significant amount of time because almost no constraints are satisfied in the unrepaired environments.
Given the deviation of the unrepaired environments, CMA-ES fails to optimize the similarity score,
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(a) Warehouse (even) (b) Manufacturing

Figure 23: Unrepaired NCA-generated environments of size Seval in the warehouse (even) and manufacturing
domains for CMA-ES + NCA (↵ = 5).

converging to a local optima while optimizing only the throughput. In comparison, CMA-MAE is
less prone to falling into the deceptive local optima because of the diversity measures.

F Societal Impact

We propose using QD algorithms to generate arbitrarily large environments that enhance throughput
beyond state-of-the-art environment optimization methods and human-designed environments. This
is achieved by optimizing a diverse collection of NCA generators. Our method can be applied to
generate any multi-robot system as long as an agent-based simulator is available for evaluation.
Large companies such as Amazon and Alibaba have deployed multi-robot systems in warehouses
to transport packages or inventory pods. Therefore, one real world application of our method is
optimizing the layout of the automated warehouses to improve throughput. Since our method is
agnostic to the specific agent simulator and only requires metrics such as throughput post-simulation,
we can plug-in different simulators and apply our environment generation algorithm. Improving the
throughput of their warehouses can present a significant economic impact on the industry.

Our method may have negative impacts. While designing a real-world automated warehouse or
manufacturing environment and deploying large-scale multi-robot systems in reality, we shall take
into account other factors such as safety measures. In our method, however, we ignore all factors
except for the throughput and scalability of the environment. Consequently, while our method can
contribute to optimizing operational efficiency, caution should be exercised to ensure that other crucial
parameters are not compromised in real-world applications.
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