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Abstract

Learning with rejection is an important framework that can refrain from making1

predictions to avoid critical mispredictions by balancing between the rejection2

costs and prediction errors. Previous cost-based studies only focused on the clas-3

sification setting, which cannot handle the continuous and infinite target space4

in the regression setting. In this paper, we investigate a novel regression prob-5

lem called regression with cost-based rejection, where the model can reject to6

make predictions on some examples given certain rejection costs. To solve this7

problem, we first formulate the expected risk for this problem and then derive8

the Bayes optimal solution, which shows that the optimal model should reject to9

make predictions on the examples whose variance is larger than the rejection cost10

when the mean squared error is used as the evaluation metric. Furthermore, we11

propose to train the model by a surrogate loss function that considers rejection as12

binary classification and provides conditions for the consistency, where consistency13

implies that the Bayes optimal can be recovered by our proposed surrogate loss.14

Extensive experiments demonstrate the effectiveness of our proposed method.15

1 Introduction16

In machine learning, the learned model from training data is expected to make predictions on unknown17

test data as accurately as possible. However, it would be unreasonable for the learned model to18

make predictions on all the test instances, as there may exist some difficult instances that the learned19

model cannot give an accurate prediction. Incorrect predictions can cause severe consequences and20

even can be life-threatening, especially in risk-sensitive applications such as healthcare management,21

autonomous driving, and product inspection [4, 18, 33, 10]. Therefore, the learning with rejection22

(LwR) framework was extensively investigated, which aims to provide a reject option to not make a23

prediction in order to prevent critical false predictions at a pre-defined rejection cost [9, 8]. In this24

case, the LwR model can be learned by balancing the rejection cost and the prediction error.25

So far, most of the existing studies on LwR have focused on the classification setting, i.e., classification26

with rejection (CwR) [8, 3, 40, 10, 5, 11, 13, 17, 34]. In the CwR setting, there is a pre-determined27

rejection cost c for each instance, which must be smaller than the classification error 1. A typical28

approach for CwR is the confidence-based approach [21, 3, 40, 33, 6]. The main idea is to use29

the real-valued output of the classifier as the confidence score and decide whether to reject the30

prediction based on the confidence score and the given rejection cost c. Another effective approach is31

classifier-rejector approach [10, 11], which simultaneously trains a classifier and a rejector, and this32

approach achieves state-of-the-art performance in binary classification.33

Despite many previous studies on LwR, they only focused on the classification setting, which cannot34

handle the continuous and infinite target space in the regression setting. In many real-world scenarios,35

regression tasks with continuous real-valued targets can be commonly encountered. However, even36

state-of-the-art regression models may make incorrect predictions, and blindly trusting the model37

results may lead to critical consequences, especially in risk-sensitive applications. Therefore, it is38
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necessary to consider adding a rejection option for the regression problem to not make predictions in39

order to avoid critical mispredictions. To this end, many studies have been conducted on selective40

regression [41, 25, 38, 19, 24] that trains a regression model with a reject option given a fixed41

reject rate of predictions. However, this selective regression setting fails to consider the cost-based42

rejection scenario where a certain cost could be incurred if the model chooses to refrain from making43

a prediction for a certain instance.44

In this paper, we provide the first attempt to investigate a novel regression setting called regression45

with cost-based rejection (RcR), where the model could reject to make predictions on some instances46

at certain costs to avoid critical mispredictions. To solve the RcR problem, we first formulate the47

expected risk and then derive the Bayes optimal solution, which shows that the optimal model should48

reject to make predictions on the examples whose variance is larger than the rejection cost when49

the popular mean squared error is used as the regression loss. However, it is difficult to directly50

optimize the expected risk to derive the optimal solution, since the variance of the instances cannot51

be easily accessed. Therefore, we propose a surrogate loss function to train the model that considers52

the rejection behavior as a binary classification and we provide theoretical analyses to show that the53

Bayes optimal solution can be recovered by minimizing our surrogate loss under mild conditions.54

Our main contributions can be summarized as follows:55

• We formulate the expected risk for regression with cost-based rejection and derive the Bayes56

optimal solution, which shows that the example whose variance is greater than the rejection cost57

should be rejected for prediction when the mean squared error is used as the regression loss.58

• We propose a surrogate loss function considering rejection as a binary classification process and59

give a condition of regressor-consistent that the classification calibrated binary classification loss60

is always greater than 0. In that condition, the optimal regressor can be derived by our method.61

• We propose a definition of rejector-calibration and show that our method is rejector-calibration62

when the regressor-consistent condition is satisfied. Based on this, we further propose a weaker63

version of the condition allowing the classification calibrated binary classification loss to be greater64

than or equal to 0. In the weakened condition, the regression consistency can only be satisfied in65

the accepted instances, and regressor-consistent is still satisfied.66

• We derive the theoretical analysis of the regret transfer and estimation error bounds for our67

proposed method, and extensive experiments demonstrate the effectiveness of our method.68

2 Preliminaries69

In this section, we introduce preliminaries of ordinary regression and classification with rejection.70

2.1 Ordinary Regression71

For the ordinary regression problem, let the feature space be X ∈ Rd and the label space be Y ∈ R.72

Let us denote by (x, y) an example including an instance x and a real-valued label y. Each example73

(x, y) ∈ X × Y is assumed to be independently sampled from an unknown data distribution with74

probability density p(x, y). For the regression task, we aim to learn a regression model h : X 7→ R75

that minimizes the following expected risk:76

R(L) = Ep(x,y)[L(h(x), y)], (1)

where Ep(x,y) denotes the expectation over the data distribution p(x, y) and L : R × R 7→ R+ is77

a conventional loss function (such as mean squared error and mean absolute error) for regression,78

which measures how well a model estimates a given real-valued label.79

2.2 Classification with Rejection80

A widely studied framework in classification with rejection is the cost-based framework [8, 15] that81

aims to train a classifier f : X 7→ Z® that can reject to make a prediction, where ® denotes the reject82

option. The evaluation metric of this task is the zero-one-c loss ℓ01c defined as follows:83

ℓ01c(f(x), z) =

{
c, f(x) = ®,

ℓ01(f(x, z), otherwise,
(2)
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Then, the expected risk with ℓ01c can be represented as follows:84

R01c(f) = Ep(x,y)[ℓ01c(f(x), y)], (3)

The optimal solution for classification with rejection f⋆ = argminf∈FR01c(f) known as Chow’s85

rule [8] can be expressed as follows:86

Definition 1. (Chow’s Rule [8]) A classifier f : X → Z® is the optimal solution of expected risk (3)87

if and only if the following conditions are almost satisfied:88

f(x) =

{
®, maxzηz(x) ≤ 1− c,

argmaxzηz(x), otherwise,
(4)

where ηz(x) = p(z|x) denotes the class-prior estimation (CPE) [35, 39]. Chow’s rule shows that89

CwR can be solved when η(x) is known. However, the estimation of the posterior probability is90

difficult especially when using deep neural networks [22].91

3 Regression with Cost-based Rejection92

Let X ∈ Rd be the d-dimensional feature space and Y ∈ R be the label space. Suppose the training93

set is denoted by D = {(xi, yi)}ni=1, and each training example (xi, yi) ∈ X × Y is assumed to94

be sampled from an unknown data distribution with probability density p(x, y). In the regression95

with cost-based rejection (RcR) setting, for a given instance x, the learner has the option ® to reject96

making a prediction or to make a regression prediction. If the learner rejects an instance, the cost is a97

non-negative loss c(x). The goal of RcR is to induce a pair (h, r) where h : X 7→ R is a regressor to98

predict the accepted instance and r : X 7→ R is a rejector to determine whether to reject an instance.99

The evaluation metric of this task is the following loss function L(h, r, c,x, y):100

L(h, r, c,x, y) =
{
L(h(x), y), r(x) > 0,

c(x), otherwise,
(5)

where L(h(x), y) is a conventional regression loss function (e.g., mean squared error).101

In what follows, we will present a Bayes optimal solution to the RcR problem and provide a surrogate102

loss function to train the regressor-rejector.103

3.1 Bayes Optimal Solution104

In this paper, we only discuss the case where the loss function L(h(x), y) is the mean squared error105

(MSE), which is the most widely used regression loss function. The expected risk of L(h, r, c,x, y)106

over the data distribution can be represented as follows:107

RRcR(h, r) = Ep(x,y)[L(h, r, c,x, y)]. (6)

Let us denote by (h⋆, r⋆) = argmin(h,r)RRcR(h, r) the optimal pair of expected risk RRcR and108

we use Ep(y|x)[y] =
∫
Y p(y|x)ydy and Dp(y|x)[y] =

∫
Y p(y|x)(y − Ep(y|x)[y])2dy represent the109

expectation and variance of y over the distribution p(y|x). For a given cost function c(x), we have110

the following theorem:111

Theorem 2. Suppose the hypothesis space H and R is strong enough [16, 29] (i.e., the optimal112

solution (h⋆, r⋆) = argminh∈H,r∈RRRcR(h, r) leads to RRcR(h
⋆, r⋆) = 0). For a given instance113

x and the Bayes optimal pair (h⋆, r⋆) of risk RRcR, the following equality holds:114 {
h⋆(x) = Ep(y|x)[y],
r⋆(x) = I

(
c(x)− Dp(y|x)[y]

)
.

(7)

The proof of Theorem 2 is provided in Appendix A. Theorem 2 shows the expected optimal pair115

(h⋆, r⋆) of risk RRcR where the rejector r⋆ should reject making a prediction if the variance of the116

distribution of labels y associated with x is so large that it exceeds a given rejection cost c(x). This117

is intuitive and easy to understand. Unfortunately the probability density function p(y|x) is usually118

unknown, meaning that obtaining the variance Dp(y|x)[y] and expectation Ep(y|x)[y] is difficult or119
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even impossible. If the variance and expectation can be obtained, most of the regression tasks can120

be easily solved. Many previous studies adopted specific assumptions to avoid this problem (e.g.,121

homoscedasticity [24, 37, 36] and heteroscedasticity) [26, 27, 7, 28], while all of them have certain122

constraints. Therefore, the key challenge of RcR is how to learn the optimal solution (h⋆, r⋆) without123

the expectation and the variance.124

3.2 Surrogate Loss Function of Training Regressor-Rejector125

From Theorem 2, we know how the optimal pair (h⋆, r⋆) makes rejection and prediction for an126

unknown instance, but since the expectation and the variance are difficult to obtain, we cannot directly127

derive the optimal regressor and rejector. Let us reconsider the RcR loss function L(h, r, c,x, y) by128

the following equation:129

L(h, r, c,x, y) = (h(x)− y)2I[r(x) > 0] + c(x)I[r(x) ≤ 0], (8)

where I[·] denotes the indicator function. We cannot directly derive a regressor h and a rejector r130

by the above loss since the loss function contains non-convex and discontinuous parts I[r(x) > 0]131

and I[r(x) ≤ 0]. In order to efficiently optimize the target loss, using surrogate loss is preferred. It132

is noteworthy that the behavior of the rejector is similar to binary classification due to the only two133

options reject and accept. We may consider it directly as a binary classification where Z = {+1,−1},134

+1 means accept and −1 means reject. Then we have the following surrogate loss function:135

ψ(h, r, c,x, y) = (h(x)− y)2ℓ(r(x),−1) + c(x)ℓ(r(x),+1), (9)

where ℓ(·) is an arbitrary binary classification loss function such as hinge loss. Then the expected136

risk with our surrogate loss ψ can be represented as follows:137

RψRcR(h, r) = Ep(x,y)[ψ(h, r, c,x, y)]. (10)

The intuition behind this is that when the squared error is less than the given cost, we expect its138

weight ℓ(r(x),−1) to be larger i.e. the smaller ℓ(r(x),+1) is. It is worth noting that not all binary139

classification losses are valid, and in the following sections we will show the conditions for our140

method to satisfy consistency.141

4 Theoretical Analysis142

4.1 Regressor-Consistent and Rejector-Calibration143

The rejector-calibration we are talking about here is the classification-calibration [1, 42, 14] due144

to the fact that the rejector is actually a classifier. The notion of calibration for surrogate loss is145

defined as the minimum requirement to ensure that a risk-minimizing classifier satisfies the Bayes146

optimal classifier, which is a pointwise version of consistency, implying that the minimization of147

surrogate loss yields a target loss for each possible instance. We further give the definition of rejector148

calibration.149

Definition 3. (Rejector-Calibration) We say a surrogate loss Φ is rejector-calibration if and only if150

for the optimal regressor r⋆Φ = argminr∈RR
Φ
RcR(h

⋆, r) , we have sign(r⋆Φ(x)) = sign(r⋆(x)) for151

all x ∈ X such that r⋆(x) ̸= 0.152

The definition of rejector calibration indicates that we do not need to obtain the optimal rejector based153

on the difficult to obtain variance, we just need to ensure that our rejector makes the same decisions154

as the optimal rejector.155

We say a method is regressor-consistent, meaning that the regressor h learned by the method converges156

to the optimal regressor h⋆. Here we demonstrate that our method is regressor-consistent and we157

have the following theorem:158

Theorem 4. Suppose the classification calibrated binary classification loss ℓ(r(x), z) can be159

achieved: ∀x ∈ X , ℓ(r(x), z) > 0. For given non-negative cost c(x), the optimal regressor160

h⋆ψ = argminh∈HR
ψ
RcR(h, r) is equivalent to the optimal regressor h⋆ = argminh∈HRRcR(h, r).161

The proof of Theorem 4 is provided in Appendix B.1. Theorem 4 shows that the optimal regressor h162

learned from our method can converge to the optimal regressor h⋆. Then we demonstrate that our163

method is rejector-calibration. We have the following theorem:164
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Theorem 5. Suppose the classification calibrated binary classification loss ℓ(r(x), z) can be165

achieved: ∀x ∈ X , ℓ(r(x), z) > 0. For the given non-negative cost c(x), the optimal rejector166

r⋆ψ = argminr∈RR
ψ
RcR(h, r) satisfies sign(r⋆ψ(x)) = sign(r⋆(x)) where r⋆ is the optimal rejector167

of RRcR.168

The proof of Theorem 5 is provided in Appendix B.2. Theorem 5 shows that our method is rejector-169

consistent in the condition that ℓ(r(x), z) > 0 holds. When ℓ(r(x), z) ≤ 0, the regressor will show170

abandonment and aversion to some instances, the condition implying that the regressor needs to171

ensure that the autonomous learning capability avoids being fully controlled by the rejector. It is172

worth noting that there is a special case ℓ(r(x),−1) = 0, in which case the regressor actually ignores173

the instance. Here we show a weakened version of consistency, we have the following theorem:174

Theorem 6. Suppose the classification calibrated binary classification loss ℓ(r(x), z) can be175

achieved: ∀x ∈ X , ℓ(r(x), z) ≥ 0. For given non-negative cost c(x), the optimal pair176

(h⋆ψ, r
⋆
ψ) = argmin(h,r)∈H×RR

ψ
RcR(h, r) satisfies rejector-calibration and satisfies the regressor-177

consistent for all ∀x ∈ X , r⋆(x) > 0, where r⋆ is the optimal rejector of RRcR.178

The proof of Theorem 6 is provided in Appendix B.3. Theorem 6 gives a weakened version of179

consistency, where regressor-consistent is satisfied only for accepted samples.180

4.2 Regret Transfer and Estimation Error Bounds181

In the previous section, we have given the Bayes consistency analysis of our method, i.e., if the182

minimizer of our proposed risk can be the optimal one in Theorem 2. However, such a result does not183

guarantee the performance of models which are close to but not the minimizer of the RψRcR, which184

occurs commonly since we usually minimize the empirical risk in practice. We give a guarantee for185

such cases by showing the following regret transfer bound:186

Theorem 7. For any classification calibrated binary classification loss ℓ, suppose that the variance187

Dp(y|x)[y] ≤M almost surely, the following bound holds:188

RRcR(h, r)−R∗
RcR ≤ ξ(C(RψRcR(h, r)−Rψ∗RcR)),

where ∗ denotes the minimum w.r.t. h and r. C =M + c, and ξ is a function where ξ(0) = 0. For189

example, when ℓ is sigmoid loss and hinge loss, ξ(u) = u. When ℓ is logistic loss or square loss,190

ξ(u) =
√
u.191

The proof of Theorem 7 is provided in Appendix C.1. This theorem guarantees that even if the192

obtained (h, r) is not exactly the minimizer of RψRcR, we can also expect them to have a good193

performance as long as they have low RψRcR. Then we can further get the following estimation error194

bound:195

Theorem 8. Suppose the hypothesis space H and R is strong enough. Given empirical risk minimizer
ĥ and r̂, there exists α1, α2 > 0 that make the following bound holds with probability at least 1− δ:

RRcR(ĥ, r̂)−R∗
RcR ≤ ξ

(
C

(
α1Rn(H) + α2Rn(R) +

√
log(1/δ)

2n

))
,

where n is the i.i.d. sample size and Rn is the Rademacher complexity [2].196

The proof of Theorem 8 is provided in Appendix C.2. Given the fact that Rademacher complexity197

usually decays at the rate of O(1/n), we can finally conclude that the performance of our model can198

approximate its optimal performance with the increasing size of the training set.199

5 Experiments200

5.1 Implementation Details201

When using deep neural networks as the model and using gradient descent optimization, we consider202

a possible scenario where the regressor h predicts any instance x with such a large error that203
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ℓ(h(x), y) >> c(x). In this case the rejector r expects to reject all instances to make the empirical204

risk minimal. However, when the rejector r converges quickly to reject all train instances, i.e.,205

ℓ(r(x),−1) → 0 for all train instances, the surrogate lossψ will be constant equal to c(x)ℓ(r(x),+1).206

At that point the gradient of the regressor h suffers from gradient vanishing. The main reason for207

this situation is that the regressor h has not learned the distribution of the label, but the rejector r has208

converged, which means that the regressor is not ready. Fortunately, we can avoid such a situation by209

training the rejector after the regressor is ready, and we name such a method Slow-Start. Specifically,210

Slow-Start prioritizes training the regressor h without training the rejector r, and then co-trains the211

regressor h and rejector r when the regressor h is capable of making predictions.212

5.2 Datasets and Backbone Models213

We conduct experiments on seven datasets, including one computer vision dataset (AgeDB [32]), one214

healthcare dataset (BreastPathQ [30]), and five datasets from the UCI Machine Learning Repository215

[12] (Abalone, Airfoil, Auto-mpg, Housing and Concrete). For each dataset, we randomly split the216

original dataset into training, validation, and test sets by the proportions of 60%, 20%, and 20%,217

respectively. It is worth noting that our approach has no restrictions on the regressor h and rejector r,218

so h and r can be two separate parts or share parameters.219

AgeDB is a regression dataset on age prediction [20] collected by [32]. It contains 16.4K face images220

with a minimum age of 0 and a maximum age of 101. Age prediction is not an easy task, especially221

when only a single photo is available. Lighting, clothing, makeup, and facial expressions all tend to222

affect the intuitive age, and even friends can hardly say they can identify the age in a photo. Rejecting223

predictions for photos with complex environments can avoid large errors. We employ ResNet-50 [23]224

as our backbone network for AgeDB, and the regressor h and rejector r share parameters. We use225

the Adam optimizer to train our method for 100 epochs where the slow-start is set to 40 epochs, the226

initial learning rate of 10−3 and fix the batch size to 256.227

BreastPathQ [30] is a healthcare dataset collected at the Sunnybrook Health Sciences Centre, Toronto.228

The dataset contains 2579 patch images, each patch has been assigned a tumor cellularity score score229

of 0 to 1 by 1 expert pathologist. Currently, this task is performed manually and relies upon expert230

interpretation of complex tissue structures. Moreover, cancer cellularity scoring is extremely risky231

and the use of automated methods could lead to irreversible disasters. Regression with rejection can232

improve this problem very well by predicting only the accepted samples and leaving the rejected233

samples back to the experts for evaluation. We use the same network as AgeDB and train 300 epochs234

using Adam optimizer where the slow-start is set to 50 epochs, the initial learning rate of 10−3 and235

fix the batch size to 128.236

We conducted experiments on five UCI benchmark datasets including Abalone, Airfoil, Auto-mpg,237

Housing and Concrete. All of these datasets can be downloaded from the UCI Machine Learning238

[12]. Since our proposed method do not depend on a specific model, and we train two types of base239

models including the linear model and the multilayer perceptron (MLP) to support the flexibility240

of our method on choosing a model, where the MLP model is a five-layer (d-20-30-10-1) neural241

network with a ReLU activation function. For the rejector r and regressor h, we consider them as242

two separate parts with the same structure. For both the linear model and the MLP model, we use the243

Adam optimization method with the batch size set to 1024 and the number of training epochs set to244

1000 where the slow-start is set to 200 epochs. The learning rate for all UCI benchmark datasets is245

selected from {10−1, 10−2, 10−3}.246

5.3 Evaluation Metrics247

For evaluation metrics, we use the RcR loss (RcRLoss) in Eq. (5) and rejection ratio (RR). In248

order to further investigate how the model work, we propose additional metrics. Accepted loss249

(AL) and rejection loss (RL) denote losses on accepted instances and rejected instances, and they250

are defined as
∑n

i=1 I[r(xi)>0](h(xi)−yi)2∑n
i=1 I[r(xi)>0] and

∑n
i=1 I[r(xi)≤0](h(xi)−yi)2∑n

i=1 I[r(xi)≤0] . We also present the false251

rejection ratio (AR) and false acceptance ratio (RA) similar to false negative and false positive, which252

denote the ratio of instances that should be accepted that are rejected and the ratio of instances that253

should be rejected that are accepted, and they are defined as
∑n

i=1 I[(h(xi)−yi)2<c(xi)]I[r(xi)≤0]∑n
i=1 I[(h(xi)−yi)2<c(xi)]

and254 ∑n
i=1 I[(h(xi)−yi)2≥c(xi)]I[r(xi)>0]∑n

i=1 I[(h(xi)−yi)2≥c(xi)]
. It is worth noting that the optimal pair (h⋆, r⋆) is unknown, so255
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Table 1: Test performance (mean and std) of our surrogate loss equipped MAE on BreastPathQ. We repeat the
sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100 and Sup, RcRLoss, AL and
RL are all magnified by a factor of 1000.

Cost Sup RcRLoss AL RL RR AR RA

5 4.37 2.70 31.51 72.53 52.61 6.53
(0.17) (1.07) (2.29) (4.44) (5.10) (2.66)

10 8.22 5.50 37.14 60.08 43.14 11.01
(0.70) (1.98) (4.43) (4.34) (4.49) (4.22)

15 16.77 11.11 6.84 40.39 53.49 38.39 15.46
(1.22) (0.55) (1.43) (1.67) (3.39) (2.86) (3.97)

20 13.84 9.53 43.41 40.65 29.98 29.02
(0.62) (1.69) (5.34) (7.28) (6.58) (9.81)

25 16.01 12.91 46.62 24.47 17.46 48.97
(1.32) (2.48) (9.43) (4.26) (4.96) (8.00)

Table 2: Test performance (mean and std) of our surrogate loss equipped MAE on AgeDB. We repeat the
sampling-and-training process 5 times. The metrics RR, AR and RA are scaled to 0-100.

Cost Sup RcRLoss AL RL RR AR RA

60 59.80 54.25 156.81 95.40 93.13 2.51
(0.31) (4.41) (23.21) (2.88) (4.30) (1.56)

70 69.00 61.56 151.04 86.22 81.41 8.12
(0.39) (4.10) (12.05) (2.94) (3.07) (2.49)

80 77.10 67.32 150.52 76.00 70.63 16.11
(1.72) (2.21) (12.36) (15.71) (16.36) (13.20)

90 100.34 85.36 73.07 162.44 73.38 67.33 17.20
(3.73) (2.23) (3.21) (12.45) (11.50) (12.07) (9.08)

100 92.94 82.89 170.04 58.35 52.15 30.56
(3.02) (7.47) (20.53) (12.51) (11.59) (12.48)

110 95.08 79.62 166.07 52.15 46.13 34.38
(5.62) (5.44) (13.75) (14.96) (14.76) (13.40)

120 96.80 82.44 173.14 37.11 32.54 51.31
(7.45) (2.40) (12.58) (22.64) (21.42) (23.96)

AR and RA are for the current regressor and rejector. We also provide the results under supervised256

regression method (Sup) that directly trains the model with MSE from fully training set.257

5.4 Formulation of Surrogates and Setting of Rejection Cost258

In our experiments, we consider a variety of binary classification loss functions, such as mean259

squared error (MAE), square loss, logistic loss, sigmoid and hinge loss. The rejection cost c(x) is260

considered as a constant, which is the most commonly considered scenario in learning with rejection261

[5, 6, 33, 10]. For each dataset, we set various rejection cost c including extreme cases and unstressed262

cases depending on the supervised loss. The complete experiments are provided in Appendix D.263

5.5 Experimental Performance264

Table 1, Table 2, Table 3, and Table 4 show some of the experimental results on the AgeDB,265

BreastPathQ, and UCI datasets, respectively. From the four tables, we have the following observations:266

(1) Our proposed method significantly outperforms the supervised regression method in almost all267

cases, which validates the ability of our method to reject difficult test instances demonstrating the268

effectiveness of our method. (2) In most cases, the average loss of our method in the accepted test269

instances (AL) is always smaller than the average loss of the supervised regression model (Sup) in all270

test instances. This further indicates the ability of our method to identify hard-to-predict samples271

and reject them. (3) As the rejection cost c increases, we can clearly see the following trends in all272

datasets: RcR loss (RcRLoss) decreases; Rejection rate (RR) decrease; Accepted test data loss (AL)273

increases; This is because as the prediction error we can accept increases, the rejector will accept274

more instances leading to a decrease in the rejection rate. However, the regressor capacity remains275
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Table 3: Test performance (mean and std) of our surrogate loss on five UCI datasets trained with the MLP model.
We repeat the sampling-and-training process 10 times. The metrics RR, AR, and RA are scaled to 0-100.

Datasets Cost Sup RcRLoss AL RL RR AR RA

Abalone

3 2.41 1.99 8.13 42.04 32.82 33.33
(0.12) (0.21) (1.08) (3.18) (3.44) (3.22)

4 2.88 2.30 11.37 33.70 25.56 39.27
4.44 (0.13) (0.21) (1.70) (2.47) (2.81) (3.71)

5 (0.46) 3.22 2.66 10.30 23.43 16.83 48.98
(0.23) (0.35) (1.25) (2.94) (2.41) (5.90)

6 3.53 2.93 12.13 19.32 13.81 53.20
(0.25) (0.35) (1.69) (3.47) (3.33) (5.67)

Airfoil

9 7.20 4.23 37.80 62.23 41.49 11.60
(0.35) (0.86) (2.95) (3.73) (5.73) (3.29)

12 8.11 5.39 51.51 40.33 23.37 25.88
(0.36) (0.86) (10.51) (7.95) (7.20) (9.04)

16 9.15 6.84 72.80 24.92 11.92 38.17
12.96 (0.43) (0.70) (20.79) (5.67) (6.93) (5.02)

20 (2.60) 11.32 8.83 58.28 21.53 13.70 48.66
(0.75) (1.47) (8.87) (7.71) (5.34) (18.08)

25 11.47 9.24 74.38 14.19 8.08 52.11
(1.54) (1.35) (16.07) (5.11) (3.60) (12.32)

30 11.68 11.17 96.55 2.52 1.38 86.35
(3.07) (3.20) (16.60) (3.81) (1.78) (20.06)

Auto-mpg

4 3.64 2.99 13.98 56.92 46.80 28.74
(0.29) (0.83) (4.16) (13.00) (15.49) (10.51)

6 4.83 3.83 18.04 37.31 29.01 42.42
(0.93) (1.70) (5.95) (14.10) (12.74) (19.54)

8 8.34 6.75 6.14 25.59 22.95 19.26 64.99
(2.16) (1.93) (2.41) (12.48) (19.88) (18.27) (23.95)

10 7.14 6.11 23.29 24.07 17.15 48.47
(1.64) (2.24) (9.54) (6.58) (5.12) (15.98)

13 8.13 7.42 35.49 12.56 10.38 71.52
(2.41) (2.83) (23.74) (6.83) (6.14) (14.52)

Housing

9 8.80 6.25 40.28 84.46 77.60 9.72
(0.34) (3.22) (17.30) (11.67) (15.88) (5.91)

12 9.52 7.40 58.94 44.65 33.30 31.25
12.57 (0.75) (1.48) (25.98) (8.69) (8.99) (8.64)

16 (3.43) 10.12 8.35 88.14 22.38 14.21 51.84
(1.84) (1.58) (44.53) (8.90) (6.81) (14.41)

20 10.50 9.59 184.24 8.51 5.81 73.40
(3.32) (3.50) (109.35) (6.82) (5.32) (13.11)

Concrete

20 18.03 13.17 82.17 69.42 54.06 12.34
(1.32) (4.91) (14.58) (6.92) (9.37) (4.47)

30 24.20 19.29 112.13 44.08 27.43 26.80
(1.85) (3.85) (30.32) (8.81) (8.55) (7.90)

40 34.44 28.63 23.12 136.51 31.50 18.32 39.49
(3.05) (2.56) (4.59) (46.59) (8.98) (7.30) (12.07)

50 32.48 27.90 168.19 19.76 10.54 53.82
(2.76) (4.31) (41.73) (7.54) (4.51) (13.74)

60 34.33 30.33 197.26 12.82 5.67 60.95
(3.50) (4.89) (49.03) (6.62) (3.21) (14.99)

the same and more instances (containing difficult instances) also face more challenges, so RcRLoss276

and AL increase but remain smaller than Sup. (4) For setting the rejection cost c we consider many277

extreme cases, i.e., the rejection cost is much smaller and much larger than the average loss in the278

supervised regression. In such extreme cases, our approach is still effective to identify and reject279

difficult test instances. (5) The false acceptance ratio (RA) is usually not large in most cases which280

verifies that our approach prefers rejection to avoid critical mispredictions.281

6 Conclusion282

In this paper, we investigated a novel regression problem called regression with cost-based rejection,283

which aims to learn a model that can reject predictions to avoid critical mispredictions at a certain284
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Table 4: Test performance (mean and std) of our surrogate loss on five UCI datasets trained with the Linear
model. We repeat the sampling-and-training process 10 times. The metrics RR, AR, and RA are scaled to 0-100.

Datasets Cost Sup RcRLoss AL RL RR AR RA

Abalone

3 2.80 2.00 5.88 79.07 72.81 9.92
(0.09) (0.36) (0.62) (4.68) (6.64) (1.72)

4 3.51 2.57 6.34 63.99 57.24 19.14
4.92 (0.14) (0.42) (0.63) (3.67) (3.85) (4.27)

5 (0.51) 3.48 2.88 10.93 28.96 21.83 44.72
(0.30) (0.37) (2.85) (9.71) (10.34) (8.64)

6 3.83 3.52 15.00 13.20 8.54 65.48
(0.26) (0.33) (3.16) (2.82) (2.33) (5.95)

Airfoil

9 8.81 6.33 27.22 86.84 80.28 6.65
(0.27) (1.60) (2.25) (2.31) (3.86) (1.16)

12 11.39 7.52 29.39 79.20 71.55 10.80
(0.40) (1.62) (2.92) (6.42) (8.17) (4.27)

16 14.43 10.75 33.24 60.23 51.78 25.06
23.32 (0.84) (1.68) (2.53) (5.69) (6.44) (5.21)

20 (1.54) 16.90 12.28 34.24 55.42 47.90 28.38
(1.02) (2.22) (2.44) (3.93) (4.24) (5.39)

25 19.47 15.04 37.36 39.77 33.82 44.50
(2.25) (4.09) (3.34) (11.48) (10.56) (15.28)

30 22.91 21.59 34.64 14.05 12.28 79.58
(1.49) (2.22) (6.99) (5.68) (5.23) (8.60)

Auto-mpg

4 4.07 7.24 13.63 99.85 99.49 3.17
(0.04) (5.03) (2.49) (0.40) (0.94) (0.99)

6 5.97 5.93 16.42 67.18 61.05 25.19
(1.09) (4.00) (4.89) (11.12) (11.77) (10.63)

8 11.66 7.29 6.78 21.23 43.33 36.64 44.11
(2.26) (1.50) (2.67) (9.00) (6.80) (9.99) (13.91)

10 8.17 7.20 22.30 34.61 30.37 53.76
(1.51) (2.28) (9.41) (7.62) (7.93) (15.04)

13 9.47 8.65 34.57 16.41 13.14 69.31
(1.83) (2.33) (18.96) (7.88) (7.85) (13.26)

Housing

9 9.18 7.61 35.54 86.14 81.44 10.83
(0.53) (3.15) (13.93) (16.32) (19.72) (10.55)

12 10.91 9.67 58.37 48.22 39.40 34.95
24.08 (0.76) (1.87) (19.08) (9.97) (10.83) (10.02)

16 (5.34) 13.98 12.28 63.37 36.44 30.84 49.01
(2.97) (4.47) (18.75) (9.35) (9.52) (10.22)

20 16.73 14.93 69.52 27.82 22.64 54.32
(4.61) (6.55) (23.34) (7.06) (6.88) (11.36)

Concrete

20 19.85 5.94 115.92 98.91 97.09 0.81
(0.11) (2.66) (11.06) (0.72) (1.92) (0.23)

30 29.93 16.85 114.93 99.24 98.49 1.00
(0.22) (16.90) (11.72) (0.92) (1.84) (0.34)

40 111.12 40.18 29.88 117.29 98.71 98.50 1.96
(8.01) (1.02) (33.68) (14.30) (2.46) (2.37) (2.94)

50 50.44 50.07 130.44 93.98 93.21 5.92
(1.36) (22.99) (23.58) (6.19) (6.77) (5.74)

60 58.69 45.84 150.10 85.33 81.90 10.25
(2.88) (16.77) (52.86) (9.28) (10.75) (7.20)

rejection cost. In order to solve this problem, we first formulate the expected risk for regression with285

cost-based rejection and derive the Bayes optimal solution for the expected risk, which shows that286

we should reject instances where the variance is greater than the rejection cost. Since the variance287

is difficult to obtain, we propose a surrogate loss function that considers the rejection process as a288

binary classifition problem. Further, we provide consistency conditions for our method, implying289

that the optimal solution can be recovered by our method. More, we propose a weakened version of290

consistency where regression-consistent is satisfied only in the accepted instances. Finally, we derive291

the regret transfer and an estimation error bound for our method and conduct extensive experiments292

on various datasets to demonstrate the effectiveness of our proposed method. We expect that our first293

study of a simple but theoretically grounded method to regression with rejection will inspire more294

interesting research work on this new task.295
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A Proof of Theorem 2383

For an instance x, we have the following expected risk for x:384

RRcR|x(h, r) = Ep(y|x)[L(h, r, c,x, y)]

=

∫
Y
p(y|x)L(h, r, c,x, y)dy

If we refuse to make a prediction for x, i.e., r(x) < 0, the above expected risk transforms into the385

following equation:386

RRcR|x,r(x)<0(h, r) =

∫
Y
p(y|x)L(h, r, c,x, y)dy

=

∫
Y
p(y|x)c(x)dy

= c(x).

If we want to make a prediction for x, i.e., r(x) > 0, the above expected risk transforms into the387

following equation:388

RRcR|x,r(x)>0(h, r) =

∫
Y
p(y|x)L(h, r, c,x, y)dy

=

∫
Y
p(y|x)(h(x)− y)2dy

=

∫
Y
p(y|x)(h(x)2 − 2yh(x) + y2)dy

=

∫
Y
p(y|x)h(x)2dy −

∫
Y
p(y|x)2yh(x)dy +

∫
Y
p(y|x)y2dy

= h2(x)− 2h(x)Ep(y|x)[y] + Ep(y|x)[y2]
= h2(x)− 2h(x)Ep(y|x)[y] + E2

p(y|x)[y] + Dp(y|x)[y]

= (h(x)− Ep(y|x)[y])2 + Dp(y|x)[y]

When h(x) = Ep(y|x)[y] makes RRcR|x,r(x)>0 = Dp(y|x)[y] minimum. It is easy to know that389

RRcR|x,r(x)>0 < RRcR|x,r(x)<0 when c(x) − Dp(y|x)[y] > 0 and RRcR|x,r(x)>0 > RRcR|x,r(x)<0390

when c(x) − Dp(y|x)[y] < 0 which means that RRcR|x is minimum when the following equation391

holds.392

r⋆(x) = I(c(x)− Dp(y|x)[y]).

The proof is completed.393
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B Proofs of Consistent and Calibration394

B.1 Proof of Theorem 4395

First, we prove that the optimal regressor h⋆ is also the optimal regressor for RψRcR as follows.396

RψRcR(h
⋆, r)

= Ep(x,y)[ψ(h⋆, r, c,x, y)]
= Ep(x,y)[(h⋆(x)− y)2ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]

= Ep(x,y)[(h⋆(x)2 − 2yh⋆(x) + y2)ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]

=

∫
X

∫
Y
p(x, y)[(h⋆(x)2 − 2yh⋆(x) + y2)ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]dydx

=

∫
X

∫
Y
p(y|x)p(x)[(h⋆(x)2 − 2yh⋆(x) + y2)ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]dydx

=

∫
X
p(x)[(h⋆(x)2 −

∫
Y
2yh⋆(x)p(y|x)dy +

∫
Y
y2p(y|x)dy)ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]dx

=

∫
X
p(x)[(h⋆(x)2 − 2h⋆(x)Ep(y|x)[y] + Ep(y|x)[y2])ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]dx

=

∫
X
p(x)[(h⋆(x)2 − 2h⋆(x)Ep(y|x)[y] + E2

p(y|x)[y] + Dp(y|x)[y])ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]dx

=

∫
X
p(x)[((h⋆(x)2 − Ep(y|x)[y])2 + Dp(y|x)[y])ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]dx

=

∫
X
Dp(y|x)[y]ℓ(r(x),−1)p(x) + c(x)ℓ(r(x),+1)p(x)dx. (11)

When ∀x ∈ X , ℓ(x, z) ≥ 0, the risk loss is minimal for an any rejector r. Therefore h⋆ is the397

optimal regressor for risk RψRcR. On the other hand, we prove that h⋆ is the only optimal regressor if398

condition: ∀x ∈ X , ℓ(r(x), z) > 0 is achieved.399

Suppose given an instance x0 and a rejector r′ such that ℓ(r′(x0),−1) = 0. Then we have at least400

one other regressor h′ such that RψRcR(h
′, r′) = RψRcR(h

⋆, r′) and h′(x0) ̸= h⋆(x0) due to the401

following equation holds.402

Dp(y|x0)[y]ℓ(r
′(x0),−1) = 0. (12)

Therefore when condition: ∀x ∈ X , ℓ(r(x), z) > 0 is achieved, there is one, and only one minimizer403

of RψRcR, which is the same as the optimal regressor h⋆. The proof is completed.404

B.2 Proof of Theorem 5405

Fixing the regressor h, it is easy to see that the conditional optimal r should have the same sign with406

Ep(y|x)[(h(x)−y)2]−c(x) due to the definition of classification calibrated binary loss. Then it is easy407

to see the rejector calibration holds when Dp(y|x)[y] ≥ c(x) since Ep(y|x)[(h(x)−y)2] ≥ Dp(y|x)[y].408

When Dp(y|x)[y] < c(x), it is easy to show that409

min
r(x)

(Ep(y|x)[(h′(x)− y)2]ℓ(r(x),−1) + c(x)ℓ(r(x),+1))

≥ min
r(x)

(Ep(y|x)[(h′′(x)− y)2]ℓ(r(x),−1) + c(x)ℓ(r(x),+1))

when the expected square loss of h′ is larger than h′′. Furthermore, when h′(x)’s expected square
loss is equal to c(x), it can be learned from the property of binary classification calibrated losses that

min
r(x)

(Ep(y|x)[(h′(x)− y)2]ℓ(r(x),−1) + c(x)ℓ(r(x),+1))

> min
r(x)

(Ep(y|x)[(h′′(x)− y)2]ℓ(r(x),−1) + c(x)ℓ(r(x),+1)),
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and thus we can conclude that the optimal h must have expected square loss that is lower than c(x).410

Then the optimal rejector must have a negative sign, which is the same as the Bayes optimal one.411

Combining the conclusions above and we can complete the proof.412

B.3 Proof of Theorem 6413

We suppose that for any classification calibrated binary classification loss function ℓ(r(x), z), when414

ℓ(r(x),−1) = 0, r(x) < 0, i.e. the classification is correct. Let us go back to the discussion of415

Eq. (11):416

RψRwR(h
⋆, r) =

∫
X
[((h⋆(x)2 − Ep(y|x)[y])2 + Dp(y|x)[y])ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]p(x)dx

=

∫
X
Dp(y|x)[y]ℓ(r(x),−1)p(x) + c(x)ℓ(r(x),+1)p(x)dx.

Similar to the proof of Theorem 2, the optimal regressor h⋆ still minimizes risk loss for any rejector.417

However, it is easy to know that for a rejector r0 when there exists an instance x0 such that418

ℓ(r′(x0),−1) = 0, there exists at least one other regressor h′ such that RψRcR(h
′, r′) = RψRcR(h

⋆, r′)419

and h′(x0) ̸= h⋆(x0) due ((h(x)2 − Ep(y|x)[y])2 + Dp(y|x)[y])ℓ(r(x),−1) = 0 holds. Therefore420

the optimal regressor h⋆ is not the only optimal solution. Fortunately, we can still show that it is421

regressor-consistent for some instances in this case.422

For a binary classification loss function ℓ, We denote by X 1
ℓ the space where ∀x ∈ X 1

ℓ , ℓ(r(x),−1) ̸=423

0 for any rejector r. Then we have the following equation:424

RψRwR(h, r) =

∫
X
[((h(x)− Ep(y|x)[y])2 + Dp(y|x)[y])ℓ(r(x),−1) + c(x)ℓ(r(x),+1)]p(x)dx

=

∫
X 1

ℓ

(h(x)− Ep(y|x)[y])2ℓ(r(x),−1)p(x)dx

+

∫
X 1

ℓ

Dp(y|x)[y]ℓ(r(x),−1)p(x) + c(x)ℓ(r(x),+1)p(x)dx.

When for all x ∈ X 1
ℓ , we have The above risk is minimised when h(x) = Ep(y|x)[y] for all x ∈ X 1

ℓ .425

It is worth noting that when ℓ(r(x),−1) = 0, r(x) < 0, so the rejector remains consistent. The426

proof is completed.427

C Proofs of Regret Transfer and Estimation Error Bound428

C.1 Proof of Theorem 7429

Proof. For each point x, we can learn that its excess risk can be decomposed below if the model430

misrejects a sample:431

Ep(y|x)[(h(x)− y)2]ℓ(r(x),−1) + c(x)ℓ(r(x),+1)− (h⋆(x)− y)2ℓ(r⋆(x),−1)− c(x)ℓ(r⋆(x),+1)

≥ Dp(y|x)[y]ℓ(r(x),−1) + c(x)ℓ(r(x),+1)−Dp(y|x)[y]ℓ(r
⋆(x),−1)− c(x)ℓ(r⋆(x),+1)

≥
(
Dp(y|x)[y] + c(x)

)
ξ−1

(
c(x)−Dp(y|x)[y](
Dp(y|x)[y] + c(x)

))
When a sample is correctly accepted, the lower bound is[

Ep(y|x)[(h(x)− y)2]−Dp(y|x)[y]
]
α,

where α = minr(x≤0) ℓ(r(x),−1) and when it is misaccepted:

(
Dp(y|x)[y] + c(x)

)
ξ−1

(
Dp(y|x)[y]− c(x)(
Dp(y|x)[y] + c(x)

))+
[
Ep(y|x)[(h(x)− y)2]−Dp(y|x)[y]

]
α,

When sigmoid loss is used, ξ(u) = u, and we can learn that α = 1/2, then we can learn that the432

excess risk of the surrogate at this point is larger can upper bound that of the original loss. When433
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logistic loss is used, ξ(u) =
√
u and α = log 2, we can use the same method to show that the excess434

risk of the surrogate can bound the square root of the excess risk of original loss, which concludes435

the proof.436

437

C.2 Proof of Theorem 8438

Definition 9. (Rademacher complexity) Let Z1, · · · , Zn be n i.i.d. random variables drawn from439

a probability distribution µ and F = {f : Z → R} be a class of measurable functions. Then the440

expected Rademacher complexity of function class F is given as follow:441

Rn(F) = EZ1,··· ,Zn∼µEσ

[
supf∈F

1

n

n∑
i=1

σif(Zi)

]
, (13)

where σ1, · · · , σn are the Rademacher variables that take the value from {−1,+1} uniformly.442

Then we can begin proving Theorem 8.443

Proof. Suppose that the loss is bounded by M1 and ρ-Lipschitz continuous, |h|, c(x), and |y| is444

bounded by M2, then we can learn that the loss is bounded by C = (4M2
2 +M2)M1, and is L1-445

Lipschitz continuous w.r.t. (h, r), where L1 =
√
(4M2

1 ρ+M1ρ)2 + 16M4
1M

2
2 . By applying the446

McDiarmid’s inequality, it is routine to show that the following inequalities hold with probability at447

least 1− δ
2 , respectively:448

sup
h,r∈H,R

(
RψRwR(h, r)− R̂ψRwR(h, r)

)
≤ E

x1,··· ,xn

[
sup

h,r∈H,R

(
RψRwR(h, r)− R̂ψRwR(h, r)

)]
+ C

√
log 2

δ

2n

sup
h,r∈H,R

(
R̂ψRwR(h, r)−RψRwR(h, r)

)
≤ E

x1,··· ,xn

[
sup

h,r∈H,R

(
R̂ψRwR(h, r)−RψRwR(h, r)

)]
+ C

√
log 2

δ

2n

By applying Talagrand’s contraction lemma [31], we can learn that:449

E
x1,··· ,xn

[
sup

h,r∈H,R

(
R̂ψRwR(h, r)−RψRwR(h, r)

)]
≤

√
2L1(Rn(H) +Rn(R))

and this conclusion also holds for another direction. Plugging this conclusion into the former450

inequalities and using the union bound, we can learn this inequality holds with probability at least451

1− δ:452

sup
h,r∈H,R

∣∣∣R̂ψRwR(h, r)−RψRwR(h, r)
∣∣∣ ≤ √

2L1(Rn(H) +Rn(R)) + C

√
log 2

δ

2n

According to the definition of empirical risk minimization and identifiable condition, we can get the453

following conclusion:454

RψRwR(ĥ, r̂)− min
h,r∈H,R

RψRwR(h, r) = RψRwR(ĥ, r̂)−Rψ∗RwR(h
∗, r∗)

=
(
RψRwR(ĥ, r̂)− R̂ψRwR(ĥ, r̂)

)
+
(
R̂ψRwR(ĥ, r̂)− R̂ψRwR(h

∗, r∗)
)
+
(
R̂ψRwR(h

∗, r∗)−Rψ∗RwR(h
∗, r∗)

)
≤
(
RψRwR(ĥ, r̂)− R̂ψRwR(ĥ, r̂)

)
+
(
R̂ψRwR(h

∗, r∗)−Rψ∗RwR(h
∗, r∗)

)
≤ 2 sup

h,r∈H,R

∣∣∣R̂ψRwR(h, r)−RψRwR(h, r)
∣∣∣

combining Theorem 5 and we can conclude the proof.455
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Table 5: Test performance (mean and std) of our surrogate loss equipped hinge loss on BreastPathQ. We repeat
the sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100 and Sup, RcRLoss, AL
and RL are all magnified by a factor of 1000.

Cost Sup RR AL RL Rej AR RA

5 4.74 3.51 53.05 80.86 60.37 4.19
(0.38) (1.96) (20.33) (4.17) (6.70) (2.36)

10 8.32 4.58 58.90 68.99 46.63 5.91
(0.21) (1.74) (13.15) (4.71) (6.45) (2.54)

15 11.89 6.44 49.42 62.45 46.86 10.69
16.77 (0.31) (1.82) (8.12) (4.76) (5.12) (3.84)

20 (1.22) 15.07 9.53 49.58 52.33 38.04 17.88
(0.33) (1.15) (8.10) (3.94) (3.47) (5.36)

25 16.54 10.36 58.39 41.23 29.71 25.34
(0.78) (2.39) (19.85) (8.36) (7.36) (12.36)

Table 6: Test performance (mean and std) of our surrogate loss equipped huber loss on AgeDB. We repeat the
sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100.

Cost Sup RR AL RL Rej AR RA

60 59.99 44.80 177.36 97.30 95.84 1.43
(0.10) (13.97) (40.19) (2.16) (3.19) (1.17)

70 70.24 71.81 185.68 92.41 88.90 4.32
(0.50) (4.61) (26.75) (1.20) (1.75) (0.74)

80 79.67 76.43 185.14 87.23 82.63 7.83
(1.40) (12.86) (18.51) (2.08) (2.63) (1.88)

90 100.34 88.71 76.78 166.84 83.43 79.46 11.19
(3.73) (1.08) (8.93) (5.90) (11.01) (12.07) (9.13)

100 96.95 77.02 182.70 84.78 80.39 9.14
(0.67) (7.46) (13.20) (6.77) (7.29) (5.49)

110 104.29 85.84 192.05 73.52 67.73 17.41
(0.31) (6.98) (26.75) (10.39) (10.33) (9.56)

120 111.54 92.59 186.50 67.31 61.11 21.74
(2.23) (4.79) (13.73) (11.60) (11.56) (10.43)

D Additional Information of Experiments456

D.1 Evaluation Metrics457

We describe in detail all the evaluation metrics we used in our experiments.458

RcR loss. The RcR loss (RcRloss) is the main evaluation metric for RcR. For a given example459

(x, y) and rejection cost c(x), the RcR loss defined as if r(x) > 0, L(h, r, c,x, y) = (h(x)− y)2,460

otherwise L(h, r, c,x, y) = c(x).461

Rejection rate. The rejection rate (RR) is defined as
∑n

i=1 I[r(x)≤0]

n . RR indicates the ratio of462

rejection of our model on the test dataset.463

Accepted loss. The accepted loss (AL) is defined as
∑n

i=1 I[r(xi)>0](h(xi)−yi)2∑n
i=1 I[r(xi)>0] . AL denotes the464

average loss of our regressor on the accepted test dataset.465

Rejected loss. The rejected loss (RL) is defined as
∑n

i=1 I[r(xi)≤0](h(xi)−yi)2∑n
i=1 I[r(xi)≤0] . RL denotes the average466

loss of our regressor on the rejected test dataset.467

False rejection ratio. The false rejection ratio (AR) is defined as
∑n

i=1 I[(h(xi)−yi)2<c(xi)]I[r(xi)≤0]∑n
i=1 I[(h(xi)−yi)2<c(xi)]

.468

AR denotes the ratio of instances that should be accepted that are rejected.469

False acceptance ratio. The false acceptance ratio (RA) denotes the ratio of instances that should be470

rejected that are accepted, and is defined as
∑n

i=1 I[(h(xi)−yi)2≥c(xi)]I[r(xi)>0]∑n
i=1 I[(h(xi)−yi)2≥c(xi)]

.471
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Table 7: Test performance (mean and std) of our surrogate loss equipped hinge loss on five UCI datasets trained
with the MLP model. We repeat the sampling-and-training process 10 times. The metrics RR, AR, and RA are
scaled to 0-100.

Datasets Cost Supervised RR AL RL Rej AR RA

Abalone

3 2.38 1.89 9.01 46.59 37.18 28.54
(0.13) (0.23) (1.10) (3.33) (3.63) (2.69)

4 2.86 2.32 9.39 33.17 25.58 40.22
4.44 (0.13) (0.21) (1.24) (2.87) (3.23) (2.75)

5 (0.46) 3.21 2.61 9.78 26.30 19.52 45.19
(0.18) (0.29) (1.31) (2.46) (2.73) (4.04)

6 3.51 2.93 10.88 19.51 13.92 52.65
(0.32) (0.47) (1.39) (3.28) (3.11) (6.12)

Airfoil

9 6.57 4.62 49.82 43.99 23.67 24.12
(0.24) (0.53) (5.98) (4.98) (4.17) (6.29)

12 7.73 5.50 67.45 34.09 17.15 29.99
(0.36) (0.49) (12.27) (4.62) (4.32) (4.70)

16 8.71 6.50 83.75 23.16 9.11 36.32
12.96 (0.54) (0.61) (14.26) (3.91) (3.41) (5.25)

20 (2.60) 9.71 7.21 85.55 19.44 7.73 38.29
(0.50) (0.46) (12.55) (3.46) (3.51) (3.92)

25 10.81 8.29 100.88 14.75 5.23 39.74
(0.59) (1.15) (15.42) (4.51) (3.43) (12.43)

30 11.49 8.73 102.39 12.86 4.74 38.79
(0.87) (0.95) (13.94) (3.10) (2.15) (6.14)

Auto-mpg

4 3.67 2.75 12.89 64.74 55.24 23.23
(0.24) (0.92) (3.57) (14.08) (15.24) (12.85)

6 4.91 3.53 16.61 45.38 37.09 37.16
(0.82) (1.73) (5.28) (20.47) (20.75) (22.28)

8 8.34 7.18 6.57 26.85 23.72 20.58 66.51
(2.16) (1.70) (2.28) (15.92) (20.39) (18.82) (23.79)

10 7.19 6.88 37.08 8.85 6.63 77.04
(1.68) (1.85) (24.48) (3.41) (2.24) (13.17)

13 8.11 7.74 33.34 6.79 5.44 80.38
(2.01) (2.67) (22.63) (3.49) (2.70) (10.46)

Housing

9 10.05 9.63 37.68 61.58 55.68 30.18
(1.56) (5.05) (19.06) (24.70) (28.35) (17.22)

12 10.58 9.38 73.71 34.46 27.79 48.53
12.57 (2.54) (3.92) (53.32) (25.18) (26.17) (21.27)

16 (3.43) 10.34 9.56 118.43 10.56 7.10 72.29
(3.13) (3.56) (65.06) (4.96) (4.57) (13.43)

20 10.57 9.80 161.32 6.63 4.67 77.31
(3.07) (3.46) (122.64) (3.91) (3.60) (14.72)

Concrete

20 18.18 14.89 136.33 59.13 40.79 19.17
(1.28) (3.78) (62.30) (8.28) (12.28) (5.93)

30 24.31 20.48 164.20 38.83 22.39 33.07
(1.59) (3.04) (54.64) (6.48) (5.30) (8.57)

40 34.44 28.46 24.26 212.30 26.07 11.65 43.60
(3.05) (3.00) (4.32) (65.52) (8.47) (4.46) (11.08)

50 30.70 26.59 222.34 17.38 7.07 51.86
(3.49) (4.32) (60.20) (6.32) (3.46) (8.93)

60 35.56 32.32 215.29 11.70 5.48 64.22
(4.36) (5.10) (81.58) (3.06) (2.13) (7.87)

D.2 Some Results for Hinge Loss472

In this section, we show some experimental results of the surrogate loss function equipped with hinge473

loss, which can be formulated as follows:474

ψ(h, r, c,x, y) = (h(x)− y)2max(0, 1 + r(x)) + c(x)max(0, 1− r(x)).

475

Table 5, Table 6 and Table 7 show some of the experimental results on the AgeDB, BreastPathQ, and476

UCI datasets with MLP model equipped hinge loss, respectively. From this table, we can see that477

RcRloss and AL is always lower than Sup in almost all experiments, which means that our method is478

effective in identifying test instances should be accepted and test instances should be rejected. It is479
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Table 8: Test performance (mean and std) of our surrogate loss equipped logistic loss on five UCI datasets
trained with the Linear model. We repeat the sampling-and-training process 10 times. The metrics RR, AR, and
RA are scaled to 0-100.

Datasets Cost Supervised RR AL RL Rej AR RA

Abalone

3 2.52 1.94 7.84 54.77 44.76 24.00
(0.08) (0.21) (1.06) (2.66) (3.45) (1.93)

4 2.99 2.39 9.83 36.93 27.94 36.55
4.92 (0.11) (0.19) (1.44) (2.78) (3.02) (2.83)

5 (0.51) 3.38 2.80 11.78 25.90 18.43 46.24
(0.18) (0.25) (1.86) (2.27) (2.08) (3.20)

6 3.69 3.19 13.81 17.80 11.89 55.08
(0.26) (0.31) (2.00) (1.98) (1.45) (4.19)

Airfoil

9 8.83 7.55 26.44 85.58 78.07 7.24
(0.35) (2.64) (1.99) (6.10) (8.53) (3.99)

12 11.31 8.76 27.59 79.93 71.90 9.74
(0.49) (2.18) (2.06) (3.65) (5.57) (1.97)

16 14.46 10.90 30.60 69.47 60.88 17.14
23.32 (0.51) (1.46) (2.13) (6.49) (7.17) (5.66)

20 (1.54) 17.10 13.01 33.51 58.54 50.38 26.19
(0.83) (1.79) (4.17) (5.07) (5.67) (6.54)

25 19.62 15.95 35.26 39.30 34.28 47.29
(1.26) (2.52) (3.40) (5.76) (5.41) (8.82)

30 20.94 17.60 42.36 25.38 21.35 61.14
(1.84) (3.18) (7.32) (8.07) (6.97) (12.70)

Auto-mpg

4 3.92 2.78 15.05 79.87 73.18 15.28
(0.26) (1.68) (4.12) (11.10) (14.13) (7.25)

6 5.73 5.25 17.98 58.97 52.23 32.06
(0.70) (1.63) (6.14) (8.50) (9.69) (10.05)

8 11.66 6.73 5.72 21.58 42.56 36.08 43.16
(2.26) (0.52) (0.92) (7.67) (7.84) (8.66) (11.24)

10 7.37 5.94 26.05 31.28 25.72 53.96
(0.95) (1.61) (11.45) (12.77) (10.98) (21.76)

13 8.75 7.72 28.93 19.62 17.31 69.71
(1.64) (1.94) (12.64) (4.69) (4.60) (13.77)

Housing

9 8.65 6.95 33.87 67.92 58.56 19.28
(0.75) (3.16) (12.62) (11.51) (14.04) (7.94)

12 10.27 8.19 40.93 58.32 48.25 23.32
24.08 (1.08) (2.90) (16.74) (10.20) (13.11) (5.75)

16 (5.34) 12.34 9.20 50.31 45.35 36.24 31.42
(1.14) (2.03) (19.14) (6.04) (6.00) (6.77)

20 14.19 10.48 55.08 38.42 32.22 42.45
(1.67) (2.72) (23.26) (6.08) (6.62) (12.64)

Concrete

20 19.80 10.00 204.20 97.57 95.25 1.55
(0.29) (6.44) (63.34) (2.04) (4.29) (0.86)

30 29.51 24.08 227.13 91.17 87.60 6.02
(0.92) (12.35) (99.54) (4.57) (6.54) (3.11)

40 111.12 38.09 28.95 282.98 80.34 73.83 12.05
(8.01) (1.38) (7.18) (96.63) (6.60) (7.46) (6.39)

50 46.94 34.22 242.13 75.34 68.94 15.98
(1.82) (9.57) (98.34) (10.15) (11.79) (7.51)

60 51.96 41.36 370.24 56.26 45.96 25.26
(2.08) (5.76) (113.24) (2.61) (2.24) (4.63)

worth noting that in most experiments, there is a low RA, which means that there is a higher tendency480

to reject hard-to-predict test instances to avoid serious errors when equipping hinge loss.481

D.3 Some Results for Logistic Loss482

In this section, we show some experimental results of the surrogate loss function equipped with483

logistic loss, which can be formulated as follows:484

ψ(h, r, c,x, y) = (h(x)− y)2log(1 + exp(r(x))) + c(x)log(1 + exp(−r(x))).

Table 10, Table 9 and Table 8 show some of the experimental results on the BreastPathQ, and UCI485

datasets with MLP model and Linear model equipped logistic loss, respectively. Our proposed method486
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Table 9: Test performance (mean and std) of our surrogate loss equipped logistic loss on five UCI datasets
trained with the MLP model. We repeat the sampling-and-training process 10 times. The metrics RR, AR, and
RA are scaled to 0-100.

Datasets Cost Supervised RR AL RL Rej AR RA

Abalone

3 2.41 1.95 8.34 43.14 33.37 33.32
(0.10) (0.18) (0.87) (2.84) (3.34) (2.81)

4 2.87 2.33 9.68 32.29 24.28 41.96
4.44 (0.18) (0.29) (1.18) (3.28) (3.29) (3.29)

5 (0.46) 3.20 2.59 10.86 25.25 17.86 45.15
(0.20) (0.29) (1.34) (2.15) (2.02) (3.61)

6 3.48 2.82 11.54 20.44 14.74 51.48
(0.25) (0.35) (1.53) (1.72) (1.42) (4.63)

Airfoil

9 6.78 5.05 51.45 43.68 20.35 23.75
(0.47) (0.82) (4.32) (5.19) (5.21) (3.96)

12 7.96 5.79 59.74 35.05 12.94 26.90
(0.64) (0.82) (3.53) (3.02) (2.79) (3.03)

16 9.04 7.46 68.20 18.57 7.36 48.00
12.96 (0.56) (0.47) (10.78) (4.08) (3.14) (7.21)

20 (2.60) 9.64 7.81 74.27 15.05 5.83 47.91
(0.74) (0.44) (10.19) (7.76) (1.91) (11.27)

25 10.47 8.50 80.28 12.03 3.78 49.00
(1.08) (0.52) (27.67) (4.43) (1.89) (17.65)

30 10.95 8.95 89.30 9.50 2.93 50.67
(1.11) (0.78) (31.58) (3.86) (1.10) (18.37)

Auto-mpg

4 3.85 3.22 11.99 62.44 54.18 25.19
(0.56) (1.51) (3.81) (10.72) (9.53) (13.29)

6 5.33 4.67 15.08 43.01 35.19 41.25
(0.82) (1.36) (3.83) (16.01) (16.09) (15.35)

8 8.34 6.53 5.86 19.34 29.49 23.19 53.57
(2.16) (1.18) (1.53) (7.60) (13.45) (13.60) (14.78)

10 7.06 6.42 21.71 17.95 14.15 65.59
(1.60) (1.91) (8.88) (3.63) (3.48) (11.17)

13 7.80 7.04 28.55 13.59 11.05 70.15
(1.90) (2.09) (14.96) (5.35) (5.32) (14.83)

Housing

9 8.60 8.43 45.60 26.57 19.05 66.95
(2.49) (3.15) (27.02) (5.78) (5.63) (10.39)

12 9.50 8.63 63.52 25.44 17.38 52.68
12.57 (1.56) (2.10) (26.15) (6.43) (5.84) (12.58)

16 (3.43) 9.30 8.03 90.19 15.45 10.84 62.99
(1.37) (1.70) (38.08) (4.30) (3.87) (9.05)

20 9.67 8.33 103.55 11.18 8.71 70.06
(1.40) (1.77) (54.73) (2.97) (2.70) (8.59)

Concrete

20 18.65 14.32 58.33 68.93 57.72 16.19
(1.41) (4.80) (15.88) (13.47) (17.08) (9.45)

30 25.64 23.16 80.43 32.85 19.30 48.23
(2.50) (4.95) (14.47) (12.82) (10.81) (15.91)

40 34.44 29.79 25.25 107.54 30.24 19.97 44.38
(3.05) (2.33) (3.55) (22.18) (8.58) (7.91) (9.87)

50 31.63 25.79 120.02 24.22 15.29 47.42
(4.29) (4.22) (24.12) (11.22) (10.47) (10.35)

60 34.04 33.26 165.71 2.77 2.14 92.59
(4.48) (4.55) (62.18) (5.13) (2.93) (12.85)

significantly outperforms the supervised regression method in almost all cases, which verifies the487

ability of our method to reject difficult test instances demonstrating the effectiveness of our method.488

In most cases, the average loss of our method in the accepted test instances (AL) is always smaller489

than the average loss of the supervised regression model (Sup) in all test instances. This further490

indicates the ability of our method to identify hard-to-predict samples and reject them. On both MLP491

and Linear models, our method is effective in avoiding serious errors, which verifies that our method492

can be adapted to different models.493
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Table 10: Test performance (mean and std) of our surrogate loss equipped logistic loss on BreastPathQ. We
repeat the sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100 and Sup,
RcRLoss, AL and RL are all magnified by a factor of 1000.

Cost Sup RcRloss AL RL RR AR RA

5 4.41 2.92 35.59 71.56 47.48 5.71
(0.35) (1.51) (7.36) (3.20) (5.95) (3.02)

10 7.99 4.72 41.34 61.72 40.69 10.30
(0.47) (1.01) (9.74) (9.54) (4.90) (1.02)

15 16.77 11.52 7.98 42.67 50.48 35.50 20.18
(1.22) (0.36) (1.36) (5.87) (5.85) (4.61) (7.72)

20 13.69 8.92 63.51 43.65 31.11 22.61
(0.81) (1.05) (49.02) (5.24) (5.00) (5.72)

25 16.64 12.96 35.27 29.84 23.63 44.77
(0.94) (2.28) (2.63) (5.93) (5.42) (10.54)

Table 11: Test performance (mean and std) of our surrogate loss equipped square loss on BreastPathQ. We repeat
the sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100 and Sup, RcRLoss, AL
and RL are all magnified by a factor of 1000.

Cost Sup RcRloss AL RL RR AR RA

5 4.67 3.60 36.70 69.23 44.09 6.26
(0.41) (1.17) (4.46) (4.94) (4.16) (3.25)

10 8.13 5.30 43.66 59.69 37.47 10.42
(0.38) (0.73) (6.95) (2.59) (2.40) (2.60)

15 12.02 8.83 39.83 51.70 36.78 17.65
16.77 (1.09) (2.14) (8.27) (2.56) (0.80) (2.03)

20 (1.22) 14.58 9.66 43.69 44.72 33.20 24.21
(0.57) (2.55) (7.58) (9.54) (7.89) (11.09)

25 15.75 11.98 45.65 27.57 19.94 43.73
(0.76) (2.59) (7.18) (8.62) (7.86) (12.04)

D.4 Some Results for Square Loss494

In this section, we show some experimental results of the surrogate loss function equipped with495

square loss, which can be formulated as follows:496

ψ(h, r, c,x, y) = (h(x)− y)2(r(x) + 1)2 + c(x)(r(x)− 1)2.

497

Table 11 and Table 12 show some of the experimental results on the BreastPathQ, and UCI datasets498

with MLP model equipped square loss, respectively. When the rejection cost c is small, both RcRloss499

and AL are significantly smaller than Sup. When the rejection cost c is large, RcRloss and AL are500

close to Sup but always smaller, which shows the effectiveness of our method to deal with regression501

with cost-based rejection.502

D.5 Some Results for Sigmoid503

In this section, we show some experimental results of the Sigmoid function equipped with sigmoid,504

which can be formulated as follows:505

ψ(h, r, c,x, y) = (h(x)− y)2sigmoid(r(x)) + c(x)sigmoid(−r(x)).

Unlike other binary classification losses, sigmoid can be viewed as weight balancing prediction loss506

and rejection cost due to sigmoid(r(x)) + sigmoid(−r(x)) = 1. Table 13 and Table 14 show some507

of the experimental results on the BreastPathQ, and AgeDB equipped sigmoid, respectively. RcRloss508

and AL are always smaller than Sup, verifying the effectiveness of our method.509

In our experiments, we used multiple binary classification losses (MAE, hinge loss, logistic loss,510

square loss and sigmoid) and different datasets including two deep datasets (BreastPathQ and511
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Table 12: Test performance (mean and std) of our surrogate loss equipped square loss on five UCI datasets
trained with the MLP model. We repeat the sampling-and-training process 10 times. The metrics RR, AR, and
RA are scaled to 0-100.

Datasets Cost Supervised RR AL RL Rej AR RA

Abalone

3 2.39 1.96 7.82 42.54 32.79 32.58
(0.10) (0.19) (0.63) (2.49) (2.69) (2.63)

4 2.84 2.33 8.79 31.82 23.72 40.81
4.44 (0.16) (0.25) (0.97) (1.87) (2.14) (2.77)

5 (0.46) 3.18 2.60 9.89 25.37 18.32 45.65
(0.18) (0.27) (1.15) (2.13) (2.07) (4.21)

6 3.50 2.89 10.40 20.38 14.37 49.83
(0.29) (0.42) (1.11) (2.17) (1.85) (5.47)

Airfoil

9 6.40 4.36 51.93 43.65 22.05 22.22
(0.25) (0.36) (5.13) (3.26) (2.93) (3.71)

12 7.46 5.11 61.13 33.75 15.04 27.05
(0.31) (0.38) (5.83) (2.90) (3.10) (2.74)

16 8.57 5.81 70.20 26.98 10.54 28.83
12.96 (0.40) (0.30) (7.82) (3.23) (3.08) (1.79)

20 (2.60) 9.27 6.66 76.90 19.34 7.70 35.09
(0.42) (0.43) (10.02) (2.34) (1.54) (4.65)

25 9.97 7.23 87.37 15.35 5.19 32.96
(0.60) (0.51) (9.07) (2.44) (1.38) (5.61)

30 10.33 7.82 85.67 11.23 3.92 37.40
(0.86) (0.79) (18.03) (1.95) (1.25) (8.27)

Auto-mpg

4 3.65 2.83 11.93 62.31 51.76 22.05
(0.26) (0.90) (3.22) (11.46) (12.43) (10.30)

6 5.19 4.31 18.00 39.62 33.51 47.55
(0.77) (1.47) (7.69) (21.51) (21.46) (24.43)

8 8.34 6.51 5.82 22.62 29.10 22.28 52.29
(2.16) (1.35) (1.74) (8.96) (14.57) (13.86) (16.21)

10 6.80 6.08 23.57 17.82 13.91 65.62
(1.16) (1.43) (9.41) (2.84) (1.93) (9.09)

13 7.28 6.45 30.51 12.69 10.05 71.16
(1.30) (1.36) (15.46) (3.74) (3.46) (15.70)

Housing

9 8.41 8.22 53.44 28.22 21.42 56.77
(1.56) (2.10) (20.25) (7.81) (7.35) (9.38)

12 9.03 8.36 76.10 17.13 12.16 66.75
12.57 (1.26) (1.64) (47.37) (5.71) (5.11) (11.99)

16 (3.43) 8.52 7.64 109.61 10.10 7.30 73.14
(1.35) (1.62) (60.72) (3.67) (2.71) (13.36)

20 9.40 8.56 148.19 7.03 5.09 73.76
(1.94) (2.16) (98.03) (3.30) (2.31) (16.54)

Concrete

20 19.95 18.77 75.19 55.10 43.24 28.28
(2.56) (5.05) (11.68) (13.77) (14.20) (11.92)

30 25.22 22.44 103.99 33.45 22.25 43.75
(3.22) (5.34) (18.06) (6.93) (6.21) (9.93)

40 34.44 31.21 28.84 127.77 21.17 12.47 56.12
(3.05) (1.50) (1.84) (19.65) (5.11) (4.12) (7.44)

50 29.55 25.00 147.99 18.01 9.87 52.49
(2.97) (3.80) (36.87) (4.62) (3.88) (9.18)

60 33.07 28.81 158.65 13.64 7.28 59.55
(3.51) (3.94) (33.36) (3.71) (2.91) (8.52)

AgeDB) and five uci datasets (Abalone, Airfoil, Auto-mpg, Housing and Concrete), and our method512

outperformed supervised regression in most cases, which demonstrates the effective of our method.513

E Limitations514

In Theorem 4 and Theorem 5 we show that there is a limitation in our proposed method that requires515

the binary classification loss ℓ(r(x), z) to be always greater than 0. This is easily satisfied by the516

design of the binary classification loss such as logistic(r(x), z) to max(α, logistic(r(x), z)), where517

α > 0 is the minimum value of loss. However, to avoid the modification of the binary classification518

loss, we further propose Theorem 6, which only requires the binary classification loss to be greater519
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Table 13: Test performance (mean and std) of our surrogate loss equipped sigmoid on BreastPathQ. We repeat
the sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100 and Sup, RcRLoss, AL
and RL are all magnified by a factor of 1000.

Cost Sup RR AL RL Rej AR RA

5 4.42 2.40 43.86 79.22 56.41 2.81
(0.17) (1.01) (10.60) (1.54) (4.19) (0.92)

10 8.44 5.09 51.35 69.34 47.12 6.39
(0.46) (1.64) (7.30) (2.56) (3.83) (1.83)

15 11.63 6.30 58.40 60.23 41.23 10.88
16.77 (0.38) (1.83) (14.79) (6.75) (5.42) (5.57)

20 (1.22) 14.31 8.91 57.83 49.19 33.84 17.31
(0.66) (1.26) (9.11) (4.68) (5.32) (3.13)

25 16.61 9.09 95.10 47.38 29.46 17.78
(0.60) (1.53) (59.42) (2.92) (4.84) (4.73)

Table 14: Test performance (mean and std) of our surrogate loss equipped sigmoid on AgeDB. We repeat the
sampling-and-training process 5 times. The metrics RR, AR, RA are scaled to 0-100.

Cost Sup RR AL RL Rej AR RA

60 60.20 60.82 129.91 88.93 85.88 7.40
(0.51) (4.67) (19.72) (7.18) (8.82) (4.89)

70 69.10 61.91 136.57 83.85 79.98 10.74
(0.71) (6.75) (32.45) (6.63) (6.76) (5.51)

80 78.33 64.22 131.88 80.01 76.58 12.74
(1.08) (12.63) (12.46) (7.91) (9.37) (5.69)

90 100.34 84.47 73.65 134.06 68.11 63.56 22.91
(3.73) (3.22) (6.28) (8.45) (11.43) (12.32) (8.91)

100 88.52 75.22 140.65 61.67 55.55 25.22
(2.36) (11.21) (8.00) (12.36) (12.55) (10.65)

110 94.16 83.70 156.32 36.81 32.37 52.43
(3.24) (5.36) (22.43) (18.24) (16.93) (20.40)

120 99.69 90.63 158.91 28.43 25.67 64.54
(5.18) (3.51) (26.86) (20.46) (21.76) (27.32)

than or equal to 0, and this is easily satisfied. Extensive experiments on various datasets demonstrate520

the effectiveness of our proposed method.521
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