
Unifying Proportional Fairness in
Centroid and Non-Centroid Clustering

Benjamin Cookson
Department of Computer Science

University of Toronto
bcookson@cs.toronto.edu

Nisarg Shah
Department of Computer Science

University of Toronto
nisarg@cs.toronto.edu

Ziqi Yu
Department of Computer Science

University of Toronto
ziqiyu@cs.toronto.edu

Abstract

Proportional fairness criteria inspired by democratic ideals of proportional represen-
tation have received growing attention in the clustering literature. Prior work has
investigated them in two separate paradigms. Chen et al. [1] study centroid cluster-
ing, in which each data point’s loss is determined by its distance to a representative
point (centroid) chosen in its cluster. Caragiannis et al. [2] study non-centroid
clustering, in which each data point’s loss is determined by its maximum distance
to any other data point in its cluster.
We generalize both paradigms to introduce semi-centroid clustering, in which
each data point’s loss is a combination of its centroid and non-centroid losses,
and study two proportional fairness criteria—the core, and its relaxation, fully
justified representation (FJR). Our main result is a novel algorithm which achieves
a constant approximation to the core, in polynomial time, even when the distance
metrics used for centroid and non-centroid loss measurements are different. We
also derive improved results for more restricted loss functions and the weaker FJR
criterion, and establish lower bounds in each case.

1 Introduction

Clustering is a central task in AI, in which the goal is to either partition a set of n data points into k
clusters C1, . . . , Ck, or return k centroids x1, . . . , xk, or perhaps return both the clusters and their
assigned centroids. In many cases, partitioning the data points and choosing centroids are viewed as
interchangeable. For example, in the traditional clustering setting, the popular k-means loss function
(to be minimized) can be written in two equivalent forms:

min
C1,...,Ck

k∑
t=1

1

|Ct|
∑

i,j∈Ct

d(i, j)2 ≡ min
C1,...,Ck,x1,...,xk

k∑
t=1

∑
i∈Ct

d(i, xt)
2.

This is because for a given partition (C1, . . . , Ck), the optimal choice of the centroid xt for each
cluster Ct is the average of its points (this can be generalized to non-Euclidean metrics too) and
plugging in these optimal choices yields the formulation on the left.

An emerging line of research at the intersection of economics and AI focuses on applications in which
every data point represents an agent, and studies facets such as dealing with strategic manipulations

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

by selfish agents [3–7] or ensuring fairness to the agents [8–10]. Here, it is not sufficient to have only
a global loss function to be minimized; one needs to know the loss functions (i.e., preferences) of the
individual agents and different formulations of loss functions at the agent level, even if equivalent in
the aggregate, lead to different results.

Our focus is on fairness—specifically, on proportional fairness. Informally, it provides a fairness
guarantee to every possible group of agents—not just those determined by a limited set of sensitive
attributes such as race and gender, or their intersections—with the strength of the guarantee scaling
proportionally to the group’s size and cohesiveness of its members’ preferences. Proportional fairness
criteria have been applied to a growing number of problems in AI [1, 9–13].

For clustering, Chen et al. [1] initiate the study of proportional fairness for centroid clustering, in
which the loss of an agent is its distance to the centroid of its cluster. They motivate it through
facility location, in which the goal is to build k facilities; each agent naturally prefers to be close to
its assigned facility. Caragiannis et al. [2] study proportional fairness for non-centroid clustering, in
which the loss of an agent is an aggregate (e.g., average or maximum) of its distances to the other
agents in its cluster. Their motivation stems from clustered federated learning, in which data sources
(agents) are partitioned into clusters and agents in each cluster collaboratively learn a model; each
agent then wishes to be close (in terms of their data distributions) to the other agents in its cluster, so
that the model they collaboratively learn is accurate for the agent personally.

But in both these applications, and in many others, it may be natural for agents to care about both their
distance to the centroids of their clusters and their distances to the other agents in their clusters. For
example, in facility location, an individual may want their assigned facility to be close to their house
as well as other individuals using the same facility to also be from their neighborhood, which makes
it more likely to bump into friends and acquaintances. In clustered federated learning, the centroids
may represent the models collaboratively learned by the different clusters of agents. An agent may
care about both the model being effective for their own data distribution and the other agents in their
cluster having data distributions similar to their own, as such cohesion can be important to inducing
trust and cooperation within the cluster.

It may even be the case that agents’ preferences are formed out of a combination of centroid and
non-centroid losses that are induced by completely different metric spaces. When a teacher groups
students together for final class projects, students’ preferences for which group they are placed in
would depend on the project topic that group is assigned (centroid) and which other students are in
that group (non-centroid). Two students may be very close friends but have completely different
opinions on project topics.

This motivates us to initiate the study of proportional fairness for a natural generalization of centroid
and non-centroid clustering that we term semi-centroid clustering, in which the loss of each agent i is
a function of both the cluster of agents Ct it is a part of (i.e., i ∈ Ct) and the centroid xt assigned to
this cluster.

By leveraging approaches common in the works of Chen et al. [1] and Caragiannis et al. [2], along
with novel and intricate techniques we develop, we are able to attain desirable proportional fairness
guarantees for semi-centroid clustering.

1.1 Our Results

Dual Metric Loss Weighted Single Metric Loss

Core FJR Core FJR

Existential Upper Bound 3 1 min{2/λ, 3} 1

Efficient Upper Bound 3 + 2
√
3 4 min{2/λ, fλ} min{4, 2/λ, fλ}

Lower Bound 2 1 max{gλ, 2(1−λ)
2λ+1 } 1

Table 1: Core and FJR approximations for semi-centroid clustering under dual metric loss and
weighted single metric loss. Here, fλ =

√
2λ−11λ2+13+3−λ

2−2λ and gλ =
√
λ2−2λ+5−λ+1

2 .

2

A semi-centroid clustering algorithm takes a set of n data points (agents) as input and returns both a
partition (C1, . . . , Ck) of the data points and the corresponding centroids (x1, . . . , xk). The loss of
each agent i ∈ Ct is measured by a loss function ℓi(Ct, xt), which depends both on the cluster Ct it
belongs to and its centroid xt. While some of our results apply to arbitrary loss functions, most focus
on two structured families. Dual metric loss measures the sum of agent i’s distance to its centroid xt

according to a metric dc and its maximum distance to any agent j ∈ Ct in its cluster according to a
different metric dm. Weighted single metric loss is the special case in which both metrics are scaled
versions of a common metric, i.e., dc = (1− λ) · d and dm = λ · d for some metric d and λ ∈ [0, 1].

We investigate (multiplicative approximations of) two proportional fairness criteria studied in prior
work on centroid and non-centroid clustering: the core, and its relaxation, fully justified representation
(FJR). Intuitively, when forming k clusters given n data points, the core demands that there is no
set S of at least n/k agents, who proportionally deserve to be able to form a cluster, and a feasible
centroid y such that every member of S prefers (S, y) to its currently assigned cluster. FJR puts a
greater demand on successful violations: even the maximum loss of any agent i ∈ S for (S, y) should
be lower than the minimum loss of any agent i ∈ S under the algorithm’s clustering.

First, we show that none of the algorithms developed in prior work for centroid or non-centroid clus-
tering work in our more general paradigm of semi-centroid clustering, even for the restricted family
of weighted single metric loss. Then, for both loss families, we obtain core and FJR approximation
guarantees, both existential and polynomial-time attainable, by designing novel algorithms, and prove
(existential) lower bounds. Our main results are summarized in Table 1.

Finally, we also evaluate the performance of our algorithms on real-world datasets in Appendix F. We
observe that our algorithms consistently achieve near-perfect approximations of the fairness notions
we consider, beating both the theoretical worst-case bounds we establish, and the performance of
classical clustering algorithms such as k-means++. We also show that they achieve these guarantees
while sacrificing classical clustering objectives only slightly. This generalizes similar observations
for centroid and non-centroid clustering in prior work [1, 2].

1.2 Related Work

As mentioned above, there are several existing papers studying proportional fairness in clustering.
Chen et al. [1] are the first to introduce the notion of the core for centroid clustering, and use the
Greedy Capture algorithm to achieve a (1 +

√
2)-approximation to the core. Micha and Shah [14]

improve the approximation factor to 2 for the Euclidean L2 metric in the “unconstrained setting”
where the centroids can be placed anywhere in Rt. Aziz et al. [15] observe that in this unconstrained
setting, instead of the infinitely many possible centroid locations, one can focus on just the n agent
locations and achieve a constant approximation to the core in polynomial time. Li et al. [16] study
a stronger criterion than the core. Caragiannis et al. [2] study proportional fairness in non-centroid
clustering, and use a variation of the Greedy Capture algorithm to achieve 2-core with respect to
the maximum-distance loss. They also study FJR as a weakening of the core. Ebadian and Micha
[17] use the centroid clustering framework to study the problem of sortition. In this setting, they
make the set of possible centroids equal to the set of agents, and look for a lottery over centroid
clusterings with the property that each agent has an equal probability of being selected as a centroid
in the chosen clustering. They achieve such a lottery with ex-post proportional fairness guarantees
using an algorithm inspired by Greedy Capture.

Li et al. [18] study a similar graph-based problem of partitioning friends into groups, which is
equivalent to non-centroid clustering, albeit when each person has a utility (rather than a loss) of 1 for
every friend of theirs placed in their cluster. Arkin et al. [19] look at the multi-dimensional geometric
stable roommates problem, which is equivalent to the non-centroid clustering model of [2], but focus
on special cases such as k = n/3.

Finally, other fairness notions have also been investigated for clustering (see the survey by Chhabra
et al. [20]). The most prominent one assumes that every data point belongs to one of many classes,
and certain protected classes must have equal representation across the clusters [21, 22].

3

2 Preliminaries

2.1 Clustering Model

A semi-centroid clustering instance is a tuple (N ,M, {ℓi}i∈N , k), where N is a set of n agents;M
is a set of possible cluster centers; ℓi : {C ⊆ N : i ∈ C} ×M→ R⩾0 is the loss function of agent
i ∈ N , with ℓi(C, x) being the loss incurred when it is part of cluster C and assigned cluster center
x; and k ∈ N is the number of clusters to be returned by the algorithm.

A clustering algorithm takes such an instance and returns a clustering X = {(C1, x1), . . . , (Ck, xk)},
where (C1, . . . , Ck) is a disjoint partition of the set of agentsN (so, ∪t∈[k]Ct = N and Ct∩Ct′ = ∅
for all distinct t, t′ ∈ [k]). We refer to each tuple (Ct, xt) ∈ X as a cluster, with Ct as the member
set (and the agents in Ct as the members) of the cluster and xt as the center assigned to the cluster.

Given a clustering X and an agent i ∈ N , let X (i) denote the (unique) index of the cluster of
which i is a member (i.e., i ∈ CX (i)). The loss incurred by each agent i ∈ N under clustering X is
ℓi(CX (i), xX (i)), which, with slight abuse of notation, we also write as ℓi(X) for brevity.

2.2 Loss Functions

Some of our results hold for arbitrary loss functions as defined above. However, the more interesting
results are obtained for two structured families of loss functions that naturally combine previously-
studied loss functions for centroid and non-centroid clustering.

Dual metric loss: We are given two distance metrics,1 a centroid metric dc : N ×M → R⩾0

and a non-centroid metric dm : N × N → R⩾0. Given a clustering X and an agent i ∈ N , the
centroid metric induces its centroid loss ℓci (X) ≜ dc(i, xX (i)), which measures the distance of
agent i to its assigned center, and the non-centroid metric induces its non-centroid loss ℓmi (X) =
maxj∈CX(i)

dm(i, j), which measures the maximum distance of agent i to any other agent in its
cluster. The former is the canonical loss function used for centroid clustering [1, 14, 15, 23] while the
latter is a loss function for which appealing fairness guarantees have been derived for non-centroid
clustering [2].

The overall dual metric loss of agent i is the sum of the centroid and non-centroid parts:

ℓi(X) = ℓmi (X) + ℓci (X) = max
j∈CX(i)

dm(i, j) + dc(i, xX (i)).

It is worth remarking that adding scaling factors so that ℓi(X) = α · ℓmi (X) + β · ℓci (X) for some
α, β ⩾ 0 would not make the family any more general; one can instead just use d̂m = α · dm and
d̂c = β · dc as the new non-centroid and centroid metrics, respectively.

Weighted single metric loss: A special case of dual metric loss is where both centroid and non-
centroid losses use (scaled versions of) the same metric d : (N ∪M)× (N ∪M)→ R⩾0. That is,
for some λ ∈ [0, 1], we have dm(i, j) = λ · d(i, j) for all i, j ∈ N and dc(i, x) = (1− λ) · d(i, x)
for all i ∈ N and x ∈M, so that the overall loss is given by

ℓi(X) = λ · max
j∈CX(i)

d(i, j) + (1− λ) · d(i, xX (i)).

Once again, note that using arbitrary non-negative scaling factors α and β instead of λ and 1 − λ
does not offer any further generalization as one can equivalently use λ = α

α+β .

Non-centroid and centroid clustering are easily seen as special cases of the weighted single metric
loss (which is, in turn, a special case of the dual metric loss) with λ = 1 and λ = 0, respectively.
Hence, the semi-centroid clustering algorithms we design for dual metric loss and for weighted single
metric loss can be used for both centroid and non-centroid clustering.

2.3 Proportional Fairness Guarantees

We focus on two proportional fairness criteria prominently studied by prior work.
1More precisely, these are pseudometrics. A pseudometric d : X ×X → R⩾0 satisfies d(x, x) = 0 for all

x ∈ X , d(x, y) = d(y, x) for all x, y ∈ X , and d(x, y) ⩽ d(x, z) + d(z, y) for all x, y, z ∈ X .

4

Definition 1 (The Core). For α ⩾ 1, a clustering X = {(C1, x1), . . . , (Ck, xk)} is in the α-core
if there is no group of agents S ⊆ N with |S| ⩾ n/k and feasible center y ∈ M such that
α · ℓi(S, y) < ℓi(X) for all i ∈ S (if this happens, we say that coalition S deviates with center y).

In words, no group S of at least n/k agents, which proportionately deserves a cluster center represent-
ing it, can unilaterally improve by being a cluster of its own with a feasible center y.

The second criterion is a relaxation that imposes a higher bar on deviating coalitions.
Definition 2 (Fully Justified Representation (FJR)). For α ⩾ 1, a clustering X =
{(C1, x1), . . . , (Ck, xk)} is α-FJR if there is no group of agents S ⊆ N with |S| ⩾ n/k and
feasible center y ∈M such that α · ℓi(S, y) < minj∈S ℓj(X) for all i ∈ S.

That is, the new loss for each member of the deviating coalition, scaled by α, should not only be less
than its own loss prior to deviation, but less than the loss of any deviating member prior to deviation.
It is then clear that α-FJR is a relaxation of α-core for all α ⩾ 1.
Proposition 1. For every α ⩾ 1, every clustering in the α-core is also α-FJR.

Due to space constraints, proofs missing from each section of the main body are presented in the
correspondingly titled section of the appendix.

3 Greedy Capture Algorithms

In prior work on proportionally fair clustering, the Greedy Capture algorithm has been the go-to
way to achieve a constant approximation of proportional fairness criteria in both the centroid and
non-centroid worlds. Chen et al. [1] introduce it for centroid clustering and Caragiannis et al. [2]
adapt it to non-centroid clustering. The centroid and non-centroid variants, presented formally as
Algorithms 2 and 3 respectively in Appendix B, share many similarities. In both variants, every
agent starts off as “uncaptured” and a number of balls start growing at the same rate. As soon as a
ball covers at least n/k uncaptured agents, it captures them and becomes “open” (and in the centroid
variant, the center of the open ball is added as one of at most k cluster centers to be selected by the
algorithm). But the two variants differ in three key dimensions.

1. Where the balls grow: In the centroid version, a ball grows around every feasible cluster
center. In the non-centroid version, which has no centers, one grows around each agent.

2. Whether open balls keep growing: In the centroid variant, a ball continues to grow after
it opens, capturing any uncaptured agents as soon as it covers them. In the non-centroid
variant, a ball stops growing once it opens. This is intuitive because an open ball that grows
and captures an agent far away would not worsen previously-captured agents in the centroid
paradigm, but would do so in the non-centroid paradigm.

3. Whether agents switch clusters in the end: In the centroid variant, the algorithm simply
returns a set of (up to) k cluster centers and each agent’s loss is their distance to the nearest
cluster center. Note that this may not be the center of the ball that captured it as the algorithm
may have added a closer center afterwards. Hence, the set of agents captured by a ball when
it opens may not form a single cluster. In the non-centroid variant, there is no “switching”
in the end and the set of agents captured by a ball together do form a cluster. This is again
because allowing an agent to switch to a different cluster she prefers could significantly
worsen existing agents in that cluster.

Chen et al. [1] prove that centroid greedy capture yields a clustering in the (1 +
√
2)-core in the

centroid paradigm, and Caragiannis et al. [2] prove that non-centroid greedy capture yields a clustering
in the 2-core in the non-centroid paradigm. This naturally raises the question: Can some variant of
greedy capture get a constant approximation to the core in the semi-centroid clustering paradigm?

Unfortunately, we can show that solving the semi-centroid paradigm is not that simple. To see why,
it is sufficient to consider the restricted case of the weighted single metric loss, in which the loss
function is characterized by a single metric d and a parameter λ ∈ [0, 1]. Note that the greedy capture
algorithms only take in d as input, and not λ. Thus, for (some variant of) greedy capture to achieve
α-core with respect to the weighted single metric loss (for any λ ∈ [0, 1]), it must achieve α-core
with respect to the non-centroid loss (λ = 1) and the centroid loss (λ = 0) simultaneously. In our
first result, we show that no algorithm can achieve such a simultaneous guarantee.

5

Theorem 1. For every α ⩾ 1 and β ⩾ 1, there exists a semi-centroid clustering instance in which no
clustering is simultaneously in the α-core with respect to the centroid loss and in the β-core with
respect to the non-centroid loss.

4 The Core

Given Theorem 1, we switch our attention to rules that do not simply take a single metric d as input;
that is, for the weighted single metric loss, they also take λ as input, and for the more general dual
metric loss, they take both the centroid and non-centroid metrics, dc and dm, as inputs.

In Section 4.1, we present results for the dual metric loss. Later, in Section 4.2, we present improve-
ments for the restricted case of the weighted single metric loss.

4.1 Dual Metric Loss

Algorithm 1: Dual Metric Algorithm
Input: Set of agents N , set of feasible cluster centersM, non-centroid metric dm, centroid

metric dc, number of centers k, growth factor c ⩾ 1, MCC approximation factor α
Output: Clustering X = {(C1, x1), . . . , (Ck, xk)}

1 Initialize: N ′ ← N , X̂ ← ∅, t← 1;
// Phase 1: Build a tentative clustering X̂

2 while N ′ ̸= ∅ do // Uncaptured agents remain
// Find an α-MCC cluster (Ĉt, xt) and save its maximum loss as rt

3 (Ĉt, xt)← An α-most cohesive cluster (of threshold n/k) from N ′,M;
4 rt ← maxi∈Ĉt

ℓi(Ĉt, xt);

// Add the cluster to X̂ and mark its agents as captured
5 X̂ ← X̂ ∪ {(Ĉt, xt)};
6 N ′ ← N ′ \ Ĉt;
7 t← t+ 1;
// Phase 2: Selectively allow agents to switch to a better cluster

8 ∀t ∈ [k], Ct ← Ĉt;
9 for i ∈ N do

10 t← X̂ (i);
// Clusters agent i can switch to without harming its members too much

11 Vi ← {t′ ∈ [k] : ∀j ∈ Ĉt′ , d
c(j, xt′) + dm(j, i) ⩽ c · rt′};

// Among them, agent i picks one minimizing an upper bound on its loss

12 t∗ ← argmint′∈Vi

(
dc(i, xt′) + c · rt′ +minj∈Ĉt′

(dm(i, j)− dc(j, xt′))
)

;

// And switches to it if that improves the upper bound on its loss
13 if dc(i, xt∗) + c · rt∗ +minj∈Ĉt∗

(dm(i, j)− dc(j, xt∗)) < c · rt then
14 Ct ← Ct \ {i};
15 Ct∗ ← Ct∗ ∪ {i};

16 return X = {(C1, x1), . . . , (Ck, xk)}

The following two are the most significant and the most intricate results of our work.
Theorem 2. For the dual metric loss, there always exists a clustering in the 3-core.

Theorem 3. For the dual metric loss, a clustering in the (3 + 2
√
3)-core can be computed in

polynomial time.

To understand Algorithm 1, first we need to introduce the Most Cohesive Cluster problem, defined by
Caragiannis et al. [2] for non-centroid clustering. Adapted to our semi-centroid clustering setting, it
simply requires finding the cluster (C, x) with |C| ⩾ n/k that minimizes the maximum loss incurred
by any agent in C. This is defined and approximated for arbitrary loss functions as follows.

6

Definition 3 (α-MCC). For α ⩾ 1, and given a set of agents N , a set of centers M, a loss
function ℓ, and a threshold θ (typically n/k), a cluster (C ⊆ N , x ∈ M) with |C| ⩾ min(|N |, θ)
is an α-approximate most cohesive cluster (in short, an α-MCC cluster) if maxi∈C ℓi(C, x) ⩽
α ·maxi∈S ℓi(S, y) for every cluster (S ⊆ N , y ∈ M) with |S| ⩾ min(|N |, θ). When α = 1, it is
simply called a most cohesive cluster.

Caragiannis et al. [2] use this in place of the greedy capture subroutine, which finds the cluster (C, x)
with the smallest radius maxi∈C d(i, x), in order to obtain improved fairness guarantees. Theorems 2
and 3 are both obtained using Algorithm 1, which calls a subroutine that finds an α-MCC cluster;
Theorem 2 is obtained by an inefficient subroutine that finds an MCC cluster, while Theorem 3 is
obtained by plugging in an efficient subroutine we design for computing a 4-MCC cluster.

Algorithm description: Algorithm 1 is split into two phases. Phase 1 works by iteratively finding an
α-MCC cluster with respect to the dual metric loss and adding it to a tentative solution. We denote
the clustering found in Phase 1 by X̂ = {(Ĉ1, x1), . . . , (Ĉk, xk)}. For each cluster (Ĉt, xt) ∈ X̂ ,
the algorithm stores the maximum loss of any agent in that cluster as rt = maxi∈Ĉt

ℓi(Ĉt, xt).

Phase 2 takes the clustering X̂ as a starting point and allows each agent i ∈ N to switch from its t-th
cluster to any t′-th cluster subject to two careful constraints:

• Bound the loss of the agents in the new cluster: We know the original loss of every j ∈ Ĉt′

was at most rt′ . If agent i switches to this cluster, it can increase j’s loss to dc(j, xt′) +
dm(j, i). We need this to be at most c ·rt′ for some constant c given as input to the algorithm.

• Bound own loss: We show that the expression in Line 12—dc(i, xt′) + c · rt′ +
minj∈Ĉt′

(dm(i, j)− dc(j, xt′))—serves as an upper bound on the loss of agent i when
switching to the t′-th cluster, regardless of which other agents switch to the t′-th cluster
during Phase 2. This ensures that agent i’s decision to switch (or not) is independent of the
decisions made by the other agents in Phase 2, and the loss of agent i, who was originally in
Ĉt, remains bounded by c · rt throughout Phase 2, regardless of Phase 2 decisions. Agent i
makes a switch only if the new loss upper bound is lower than c · rt.

The key to establishing an approximate core guarantee lies in this selective switching administered in
Phase 2. Intuitively, this can be seen as striking a middle ground between the centroid greedy capture,
which allows an agent to switch to any other cluster because it cannot increase the centroid loss of the
agents in that cluster, and the non-centroid greedy capture, which forbids such switches completely
lest it might harm the agents in the cluster being switched to. The growth factor c carefully controls
the balance, and optimally setting this factor allows us to derive the following bound. Its proof, our
most technically deep result, is presented in Appendix D.1.
Lemma 1. Given a subroutine for computing an α-approximate most cohesive cluster, Algorithm 1,

with the growth factor set to c =
3α+
√

α(α+8)

4α , finds a clustering in the 1
2 (α+

√
α(α+ 8)+2)-core

with respect to the dual metric loss.

From Lemma 1, the proof of Theorem 2 follows easily.

While Theorem 2 ensures the existence of a clustering in the 3-core, its computation relies on itera-
tively finding the most cohesive cluster, which is already NP-hard in the non-centroid paradigm [2].
Luckily, Lemma 1 yields a fairness guarantee even if we can find only an approximate most cohesive
cluster during Phase 1 of Algorithm 1.

Next, we show how to compute a 4-approximate most cohesive cluster in polynomial time. The
algorithm, presented as Algorithm 4 in Appendix D.1, works as follows. For each feasible cluster
center y ∈ M, it runs the non-centroid greedy capture with a crafted distance metric dy, given by
dy(i, j) = dm(i, j) + dc(i, y) + dc(j, y) for all i, j ∈ N , until it produces the first cluster Cy . Then,
it returns (Cy∗ , y∗) with the lowest maximum loss, i.e., with y∗ ∈ argminy∈M maxi∈Cy

ℓi(Cy, y).
Lemma 2. For the dual metric loss, Algorithm 4 computes a 4-approximate most cohesive cluster in
polynomial time.

Plugging this into Lemma 1 gives us Theorem 3, a constant approximation to the core in polynomial
time.

7

Lower bounds: One may wonder how good these approximations are. As stated previously, semi-
centroid clustering is more challenging than both centroid and non-centroid clustering. Specifically,
one can trivially import a lower bound from either paradigm by setting dm = 0 or dc = 0 (where a
distance metric being zero means all pairwise distances are zero), which makes the dual metric loss
coincide with the centroid or non-centroid loss, respectively. For the non-centroid loss, Caragiannis
et al. [2] do not offer any lower bounds; that is, the existence of an exact core clustering with respect
to the (maximum distance) non-centroid loss remains an open question. However, Chen et al. [1]
establish a lower bound of 2-core with respect to the centroid loss, which we can import. Somewhat
surprisingly, we are unable to derive a lower bound better than 2 despite reasonable effort.

4.2 Weighted Single Metric Loss

In this section, we focus on improving the core approximation guarantees for the restricted case of
the weighted single metric loss. Recall that this is parametrized by a single metric d and a parameter
λ ∈ [0, 1] such that, for any i ∈ N and cluster (C, x), we have ℓi(C, x) = λ ·maxj∈C d(i, j) + (1−
λ) · d(i, x). We devise two algorithms that offer improvements.

The first algorithm takes non-centroid greedy capture (Algorithm 3), which grows balls around agents,
and adapts it to the semi-centroid world by assigning each cluster to the cluster center nearest to the
agent whose ball captured the cluster. The resulting efficient algorithm is presented as Algorithm 5 in
Appendix D.2, and achieves the following guarantee.

Lemma 3. For the weighted single metric loss with parameter λ ∈ (0, 1], Algorithm 5 finds a
clustering in the 2

λ -core in polynomial time.

The second algorithm, presented formally as Algorithm 6 in Appendix D.2, is similar to Algorithm 1:
in Phase 1, agents are partitioned into an initial clustering, and in Phase 2, agents are allowed to
switch to a different cluster that reduces their loss and does not significantly increase the loss of the
agents in that cluster. However, there are two key differences. First, Algorithm 6 uses the centroid
greedy capture subroutine instead of the (approximate) most cohesive cluster subroutine used by
Algorithm 1 to iteratively find clusters in Phase 1. Second, due to having a single metric, the switching
condition is much simpler and leads to better bounds for some values of λ. A careful analysis yields
the following guarantee.

Lemma 4. For the weighted single metric loss with parameter λ ∈ [0, 1), Algorithm 6 finds a
clustering in the

√
2λ−11λ2+13+3−λ

2−2λ -core in polynomial time.

Combining the bounds from Lemmas 3 and 4, together with the existential 3-core (Theorem 2) and
the polynomial-time (3 + 2

√
3)-core (Theorem 3) guarantees that we can import from dual metric

loss, yields the following existential and efficiently attainable bounds.

Theorem 4. For the weighted single metric loss with parameter λ ∈ [0, 1], a clustering in the
min{ 2λ , 3}-core always exists, and a clustering in the min{ 2λ ,

√
2λ−11λ2+13+3−λ

2−2λ }-core can be
found in polynomial time.

Lower bounds: Similarly, we also derive two lower bounds on the core approximation under the
weighted single metric loss. The first bound interpolates between (

√
5 + 1)/2 at λ = 0 (centroid)

and 1 at λ = 1 (non-centroid). Since Chen et al. [1] prove a lower bound of 2 for λ = 0 (centroid),
which is better than (

√
5 + 1)/2, adapting their counterexample to semi-centroid clustering yields a

better lower bound when λ is close to 0.

Theorem 5. For the weighted single metric loss with parameter λ ∈ [0, 1], no clustering algorithm
can achieve a core approximation better than max{

√
λ2−2λ+5−λ+1

2 , 2(1−λ)
2λ+1 }.

5 Fully Justified Representation

Let us turn our attention to the weaker criterion of fully justified representation (FJR), a relaxation of
the core originally introduced by Peters et al. [24] in the context of participatory budgeting. While
we can already achieve a (small) constant approximation to the core even under the dual metric loss
(Theorems 2 and 3), we show that this relaxation offers several advantages.

8

Caragiannis et al. [2] study FJR for non-centroid clustering, and show that iteratively finding an α-
approximate most cohesive cluster produces an α-FJR clustering, even under arbitrary loss functions.
The same result, with an almost identical proof, holds in our more general semi-centroid clustering
setup. For completeness, in Appendix E, we formally present the algorithm as Algorithm 7 and
provide a complete proof. This gives us the existence of a 1-FJR clustering under arbitrary loss
functions, and polynomial-time computation of a 4-FJR clustering under the dual metric loss when
plugging in our polynomial-time algorithm for computing a 4-MCC cluster (Lemma 2).
Theorem 6. For arbitrary losses and α ⩾ 1, Algorithm 7, which iteratively finds an α-approximate
most cohesive cluster, returns an α-FJR clustering. Hence, a 1-FJR clustering exists for arbitrary
losses and, due to Lemma 2, a 4-FJR clustering can be computed in polynomial time for the dual
metric loss.

In Section 3, we noticed that for a clustering, being in the α-core with respect to both centroid and
non-centroid losses simultaneously is (trivially) a necessary condition for it to be in the α-core with
respect to the weighted single metric loss for all λ ∈ [0, 1].

For FJR, this is clearly still the case, and unfortunately, we can show that a simultaneous FJR
approximation with respect to centroid and non-centroid losses induced by two different metrics is
still infeasible.
Theorem 7. For any α ⩾ 1 and β ⩾ 1, there exists an instance in which no clustering is both α-FJR
with respect to the centroid loss and β-FJR with respect to the non-centroid loss, when the two loss
functions are allowed to use different metrics.

When both losses are induced by a common metric d, a surprisingly simple algorithm turns out to
achieve a constant approximation to FJR with respect to both centroid and non-centroid losses. This
is in contrast to the core, for which no simultaneous finite approximation is feasible, even for a single
metric (Theorem 1).

The algorithm is Algorithm 5, which runs non-centroid greedy capture with metric d followed by a
greedy centroid selection step. We presented it in Section 4.2 and proved that it yields 2/λ-core for all
λ ∈ [0, 1]. Note that this achieves 2-core (and hence, 2-FJR) with respect to the non-centroid loss
(λ = 1). However, its approximation to the core becomes unbounded as λ approaches 0 (the centroid
loss), which is inevitable given Theorem 1. However, we show that its approximation to the weaker
criterion of FJR still remains bounded by 5.
Theorem 8. Algorithm 5, given metric d, finds, in polynomial time, a clustering that is 5-FJR with
respect to the centroid loss and 2-FJR with respect to the non-centroid loss, both defined using d.

6 Discussion

Our work leaves open a number of immediate technical questions, which can be gleaned from the gaps
between upper and lower bounds in Table 1. Future work can also investigate generalizations such as
non-additive combinations of centroid and non-centroid losses and several exciting applications.

One particularly important special case of this model that we leave largely unexplored is when
M = N . As mentioned previously, this restriction applied to centroid clustering is what Ebadian
and Micha [17] use to model the problem of sortition (randomly selecting a committee of agents that
represents the whole population), and can also be used to model many problems where one wishes
to group a set of n datapoints into k clusters, and return a single point to serve as a representative
point for that cluster. This can have numerous applications such as coreset selection [25], scalable
LLM fine-tuning [26], feature selection [27], and dimensionality reduction [28]. However, our
semi-centroid algorithms offer no guarantees that the centroid it selects for a cluster will be a point
that is in that cluster, which may be desirable in all these cases. Exploring algorithms with this
additional constraint would be an interesting future direction.

Some of these applications may be large scale, for which our polynomial-time algorithms may not
suffice and near-linear time algorithms may need to be devised. Investigating proportional fairness
guarantees attainable via such ultra-fast algorithms remains an uncharted territory.

9

Acknowledgments and Disclosure of Funding

This work was supported by an NSERC Discovery Grant and an NSERC-CSE Research Communities
Grant. Researchers funded through the NSERC-CSE Research Communities Grants do not represent
the Communications Security Establishment Canada or the Government of Canada. Any research,
opinions or positions they produce as part of this initiative do not represent the official views of the
Government of Canada.

References
[1] Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clustering.

In Proceedings of the 36th International Conference on Machine Learning (ICML), pages
1032–1041, 2019.

[2] Ioannis Caragiannis, Evi Micha, and Nisarg Shah. Proportional fairness in non-centroid
clustering. In Proceedings of the 38th Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 19139–19166, 2024.

[3] Javier Perote and Juan Perote-Peña. Strategy-proof estimators for simple regression. Mathemat-
ical Social Sciences, 47:153–176, 2004.

[4] Ofer Dekel, Felix Fischer, and Ariel D. Procaccia. Incentive compatible regression learning.
Journal of Computer and System Sciences, 76(8):759–777, 2010.

[5] Reshef Meir, Ariel D. Procaccia, and Jeffrey S. Rosenschein. Algorithms for strategyproof
classification. Artificial Intelligence, 186:123–156, 2012.

[6] Yiling Chen, Chara Podimata, Ariel D Procaccia, and Nisarg Shah. Strategyproof linear
regression in high dimensions. In Proceedings of the 19th ACM Conference on Economics and
Computation (EC), pages 9–26, 2018.

[7] Safwan Hossain and Nisarg Shah. The effect of strategic noise in linear regression. Autonomous
Agents and Multi-Agent Systems, 35(2):21, 2021.

[8] Maria-Florina Balcan, Travis Dick, Ritesh Noothigattu, and Ariel D Procaccia. Envy-free
classification. In Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 1238–1248, 2019.

[9] Anilesh Krishnaswamy, Zhihao Jiang, Kangning Wang, Yu Cheng, and Kamesh Munagala. Fair
for all: Best-effort fairness guarantees for classification. In Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 3259–3267, 2021.

[10] Bhaskar Ray Chaudhury, Aniket Murhekar, Zhuowen Yuan, Bo Li, Ruta Mehta, and Ariel D
Procaccia. Fair federated learning via the proportional veto core. In Proceedings of the 41st
International Conference on Machine Learning (ICML), pages 42245–42257, 2024.

[11] Safwan Hossain, Evi Micha, and Nisarg Shah. Fair algorithms for multi-agent multi-armed
bandits. In Proceedings of the 34th Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 24005–24017, 2021.

[12] Ziming Fan, Nianli Peng, Muhang Tian, and Brandon Fain. Welfare and fairness in multi-
objective reinforcement learning. In Proceedings of the 22nd International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1991–1999, 2023.

[13] Guojun Zhang, Saber Malekmohammadi, Xi Chen, and Yaoliang Yu. Proportional fairness in
federated learning. Transactions on Machine Learning Research, 109(4):219–224, 2023.

[14] Evi Micha and Nisarg Shah. Proportionally fair clustering revisited. In Proceedings of the
47th International Colloquium on Automata, Languages and Programming (ICALP), pages
85:1–85:16, 2020.

[15] Haris Aziz, Barton E Lee, Sean Morota Chu, and Jeremy Vollen. Proportionally representative
clustering. In Proceedings of the 20th Conference on Web and Internet Economics (WINE),
2024. Forthcoming.

10

[16] Bo Li, Lijun Li, Ankang Sun, Chenhao Wang, and Yingfan Wang. Approximate group fairness
for clustering. In Proceedings of the 38th International Conference on Machine Learning
(ICML), pages 6381–6391, 2021.

[17] Soroush Ebadian and Evi Micha. Boosting sortition via proportional representation. In Pro-
ceedings of the 24th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 667–675, 2025.

[18] Lily Li, Evi Micha, Aleksandar Nikolov, and Nisarg Shah. Partitioning friends fairly. In
Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI), pages 5747–5754,
2023.

[19] Esther M. Arkin, Sang Won Bae, Alon Efrat, Kazuya Okamoto, Joseph SB Mitchell, and
Valentin Polishchuk. Geometric stable roommates. Information Processing Letters, 109(4):
219–224, 2009.

[20] Anshuman Chhabra, Karina Masalkovaitė, and Prasant Mohapatra. An overview of fairness in
clustering. IEEE Access, 9:130698–130720, 2021.

[21] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. In Proceedings of the 30th Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 5029–5037, 2017.

[22] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms
for clustering. In Proceedings of the 32nd Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 4955–4966, 2019.

[23] Leon Kellerhals and Jannik Peters. Proportional fairness in clustering: A social choice perspec-
tive. In Proceedings of the 37th Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 111299–111317, 2024.

[24] Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory budgeting
with additive utilities. In Proceedings of the 34th Annual Conference on Neural Information
Processing Systems (NeurIPS), page 12726–12737, 2021.

[25] Chengliang Chai, Jiayi Wang, Nan Tang, Ye Yuan, Jiabin Liu, Yuhao Deng, and Guoren Wang.
Efficient coreset selection with cluster-based methods. In Proceedings of the 29th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 167–178, 2023.

[26] Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l):
Scalable data selection for fine-tuning large language models by summarizing training trajec-
tories of small models. In Proceedings of the 37th Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 83465–83496, 2024.

[27] Huawen Liu, Xindong Wu, and Shichao Zhang. Feature selection using hierarchical feature
clustering. In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management (CIKM), pages 979–984, 2011.

[28] D Napoleon and S Pavalakodi. A new method for dimensionality reduction using k-means clus-
tering algorithm for high dimensional data set. International Journal of Computer Applications,
13(7):41–46, 2011.

[29] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning repository.
https://archive.ics.uci.edu, 2025. Accessed: 2025-05-15.

[30] Saba Ahmadi, Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern,
Pattara Sukprasert, and Ali Vakilian. Individual preference stability for clustering, 2022. URL
https://arxiv.org/abs/2207.03600.

11

https://archive.ics.uci.edu
https://arxiv.org/abs/2207.03600

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide proofs for all the theoretical claims that we make, and provide
results for the experiments we talk about in the introduction and abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss limitations of our model in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

12

Justification: We provide a detailed and formal description of our model in Section 2, and
provide formal theorem statements and proofs for each claim that we make.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we outline in detail the setup of our experiment, include which datasets
were used, how we sampled from those datasets, and how we implemented the algorithms
we were testing. Our experiments can be fully reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

13

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code as part of the supplementary material, and the datasets
we use are openly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we outline all the parameters of our experiments in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, for all our expierments, we plot the mean of a number of trials, and
include confidence intervals in our plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, our experiments do not require a large amount of compute and can be
executed on a personal computer. In the section where we outline our experiments, we
mention the steps that were computational bottlenecks, but even these were not a large
undertaking to run on a laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our results are mainly theoretical and contain no ethics violations. Our
experiments are run against commonly used, publicly available datasets and also cause no
ethical issues.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We talk about the impacts and applications of our work in Sections 1 and 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

15

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite the datasets that we use for our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

16

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

17

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for editing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

Appendix

A Missing Proofs from Section 2

Proposition 1. For every α ⩾ 1, every clustering in the α-core is also α-FJR.

Proof. For contradiction, assume this is false. For some instance, there is a clustering X =
{(C1, x1), . . . , (Ck, xk)} and an α ⩾ 1 such that X is in the α-core, but is not α-FJR. By the
FJR definition, this means that there is a group of agents S ⊆ N with |S| ⩾ n/k and a center y ∈M
such that α · ℓi(S, y) < minj∈S ℓj(X) for all i ∈ S.

It is simple to see that for each i ∈ S, α · ℓi(S, y) < minj∈S ℓj(X) implies that α · ℓi(S, y) < ℓi(X),
meaning that (S, y) induces an α-core violation as well, yielding a contradiction.

B Greedy Capture Algorithms

Algorithm 2: Centroid Greedy Capture [1]
Input: N ,M, d, k;
Output: X = {(C1, x1), . . . , (Ck, xk)}.
Initialize: N ′ ← N , X ← ∅, δ ← 0
// Uncaptured agents remain
while N ′ ̸= ∅ do

Increase δ smoothly
// Ball opens at a center
if ∃x ∈M, C ⊆ N ′ s.t. |C| ⩾ n/k

and d(i, x) ⩽ δ for all i ∈ C then
X ← X ∪ {(C, x)}
N ′ ← N ′ \ C

// Open balls keep growing
if ∃(C, x) ∈ X , i ∈ N ′ s.t.
d(i, x) ⩽ δ then
(C, x)← (C ∪ {i}, x)
N ′ ← N ′ \ {i}

// Agents switch clusters
P ← {x ∈M : (C, x) ∈ X for some C}
∀i ∈ N , xi ∈ argminx∈P d(i, x)

∀x ∈ P, Ĉx ← {i ∈ N : xi = x}
X ← {(Ĉx, x) : x ∈ P}
return X

Algorithm 3: Non-Centroid Greedy Capture [2]
Input: N , d, k;
Output: X = {C1, . . . , Ck}.
Initialize: N ′ ← N , X ← ∅, δ ← 0
// Uncaptured agents remain
while N ′ ̸= ∅ do

Increase δ smoothly
// Ball opens at an agent
if ∃i ∈ N ′, C ⊆ N ′ s.t.
|C| ⩾ min(|N ′|, n/k) and d(i, i′) ⩽ δ for
all i′ ∈ C then
X ← X ∪ {C}
N ′ ← N ′ \ C

// Open balls don’t grow
// Agents don’t switch clusters
return X

In the three dimensions discussed in Section 3, which induce eight variants of greedy capture, centroid
greedy capture (Algorithm 2) makes the following choices:

(1) The balls grow around the centroids.

(2) After a ball “captures” a group of n/k points and opens, it continues to grow and capture any
uncaptured points as soon as it contains them.

(3) After all agents have been captured, each agent gets an opportunity to switch to the cluster
containing the centroid that is closest to it.

We can show that the (1 +
√
2)-core guarantee of this algorithm with respect to the centroid loss is

retained even when disabling one of the features (2) and (3).

Theorem 9. Consider a variant of greedy capture in which balls grow around the agents, and open
balls keep growing and/or agents are allowed to switch clusters at the end of the algorithm (at least

19

one of the two holds). Then, it always returns a clustering in the (1 +
√
2)-core with respect to the

centroid loss.

Proof. For contradiction assume this is false, let X = {(C1, x1), . . . , (Ck, xk)} be the clustering
found by such an algorithm, and suppose that there is a deviating cluster (S, y) where |S| ⩾ ⌈nk ⌉ and
(1 +

√
2) · d(i, y) < d(i, xX (i)) for every i ∈ S.

Let i = argmini′∈S X (i′) be the first agent in S that was captured by the algorithm, and let
t = X (i). We know that xt ̸= y, or i would clearly not be a part of the deviating cluster S. Let
j = argmaxj′∈S d(j′, y) be the agent in S that is farthest from y, and let X (j) = t′.

First, note that we must have d(j, y) ⩾ d(i, xt). If this were false, and d(j, y) < d(i, xt), then by the
way that greedy capture functions, the cluster (S, y) would be captured prior to i being captured by
xt, which would give a contradiction.

With the above inequality, we can show that t ̸= t′. If this were not the case, and t = t′, then we
could say the following:

(1 +
√
2) · d(j, y) < d(j, xt′) = d(j, xt)

⩽ d(i, xt) + d(i, y) + d(j, y) //Triangle inequality

< d(i, xt) +
1

1 +
√
2
· d(i, xt) + d(j, y)

⩽

(
1

1 +
√
2
+ 2

)
· d(j, y).

Hence, 1 +
√
2 < 1

1+
√
2
+ 2 = 1 +

√
2, which is a contradiction.

We can also show that d(j, xt) ⩾ d(j, xt′). We can do this by considering two cases.

Case 1: Open balls keep growing. If open balls keep growing in the greedy capture variant under
consideration, and if d(j, xt) < d(j, xt′), then the fact that xt captures i prior to xt′ capturing j
implies that at the point in the algorithm when xt′ captures j, xt will have already captured i, and j
will have already been in the radius of xt’s ball at a previous value of δ. This would mean that xt

must have initially captured j. But this would contradict X (j) = t′, since regardless of if agents are
allowed to switch clusters in the last step of the algorithm, j could not end up in the t′-th cluster at
the end of the algorithm.

Case 2: Agents can switch clusters. If agents can switch clusters at the end of the greedy capture
variant under consideration, and if d(j, xt) < d(j, xt′), then regardless of whether open balls continue
to grow, j would always want to switch to xt over xt′ , contradicting the fact that X (j) = t′.

With this inequality, we can say the following:

(1 +
√
2) · d(j, y) < d(j, xt′)

⩽ d(j, xt)

⩽ d(i, xt) + d(i, y) + d(y, j)

< d(i, xt) +
1

1 +
√
2
· d(i, xt) + d(j, y)

⩽

(
1

1 +
√
2
+ 2

)
· d(j, y),

Again yielding 1 +
√
2 < 1

1+
√
2
+ 2 = 1 +

√
2, which is a contradiction.

C Missing Proofs from Section 3

Theorem 1. For every α ⩾ 1 and β ⩾ 1, there exists a semi-centroid clustering instance in which no
clustering is simultaneously in the α-core with respect to the centroid loss and in the β-core with
respect to the non-centroid loss.

20

a

b

c

e

f

d1

p

p

∞
p

p

1

Figure 1: A semi-centroid clustering instance in which no clustering yields a finite approximation to
the core with respect to both the centroid and non-centroid losses simultaneously.

Proof. Fix any α ⩾ 1, β ⩾ 1, and p > max{α, β}. Consider the instance in Figure 1. Here
N = {a, b, c, d, e, f},M = N , k = 3, and let dm = dc = d, where d is defined by the distances
shown in the diagram,2 with each distance that is not shown assumed to be the maximum possible
allowed under the triangle inequality. Since n/k = 2, a deviating coalition must contain 2 or more
agents.

For contradiction, assume that there exists a clustering in this instance that is simultaneously in the
α-core in the centroid paradigm and in the β-core in the non-centroid paradigm.

Non-centroid β-core: We claim that {a, b} must be one of the clusters. If not, then either a and b are
each in a cluster with a different agent, or at least one of them is a singleton cluster. In the former
case, {a, b} can deviate and improve the non-centroid loss of each member by a factor of p > β,
which is a contradiction. In the latter case, since k = 3, by the pigeonhole principle, there must exist
a cluster C with |C| ⩾ 3 (which means C ∩ {d, e, f} ̸= ∅). If C ∩ {a, b, c} ̸= ∅, then the larger of
C ∩ {a, b, c} and C ∩ {d, e, f}, which must contain at least two agents, can deviate and each of its
members would improve by an infinite factor, again a contradiction. The only remaining possibility is
that C = {d, e, f}, in which case {e, f} can deviate and improve each member by a factor of p > β,
a contradiction.

Hence, {a, b}must be one of the clusters. By symmetry, {e, f}must also be a cluster, so the remaining
cluster must be {c, d}. Thus, the only clustering that can be in the β-core in the non-centroid paradigm
is {({a, b}, x1), ({c, d}, x2), ({e, f}, x3)} for some x1, x2, x3 ∈ N .

Centroid α-core: If x1 /∈ {a, b}, then {a, b} can deviate with either of a or b as the cluster center
and improve the centroid loss of each by a factor at least p > α, a contradiction. Without loss of
generality, assume x1 = a. Similarly, assume without loss of generality that x3 = e. Now, either
x2 ∈ {a, b, c} or x2 ∈ {d, e, f}. In the former case, {d, f} can deviate with a center at f , and in the
latter case, {b, c} can deviate with a center at b, in each case improving each member by a factor at
least p > α, which is a contradiction.

This concludes the proof.

D Missing Proofs from Section 4

D.1 Dual Metric Loss

Here, we present the missing proof of our central result, Lemma 1, which establishes an approx-
imate core guarantee for Algorithm 1 with access to an oracle for an α-approximate maximum
cohesive cluster. In the main body, we use it to prove our existential and polynomial-time attainable
approximate core guarantees for the dual metric loss (Theorems 2 and 3). Let us recall the statement.
Lemma 1. Given a subroutine for computing an α-approximate most cohesive cluster, Algorithm 1,

with the growth factor set to c =
3α+
√

α(α+8)

4α , finds a clustering in the 1
2 (α+

√
α(α+ 8)+2)-core

with respect to the dual metric loss.

We begin by establishing several useful properties of Algorithm 1. These properties bound the loss
incurred by the agents when they (or other agents) switch (or choose not to switch) clusters during
Phase 2 of Algorithm 1.

Recall that Phase 1 produces a tentative clustering X̂ , with rt = maxi∈Ĉt
ℓi(Ĉt, xt) being the

maximum loss in the t-th tentative cluster, (Ĉt, xt). Then, in Phase 2, each agent i ∈ Ĉt is given the
2The infinite distances can be replaced by very large distances without affecting the proof, but we keep them

infinite for simplicity.

21

opportunity to switch to the t′-th cluster for every t′ ∈ Vi. For each such cluster, the agent evaluates
the expression

Φ(i, t′) ≜ dc(i, xt′) + c · rt′ + min
j∈Ĉt′

(dm(i, j)− dc(j, xt′)),

picks its minimizer t∗ ∈ argmint′∈Vi
Φ(i, t′), and switches to it if Φ(i, t′) < c · rt. The following

claims shed light into the reasoning behind this specific step.

The first lemma establishes that if an agent is part of the t-th cluster at the end of both Phase 1 and
Phase 2 (i.e., it does not switch clusters during Phase 2), then its loss, which is at most rt at the end of
Phase 1, remains bounded by c · rt at the end of Phase 2. The increase may come from other agents
possibly switching into the t-th cluster during Phase 2.

Lemma 5. For each i ∈ N , if X̂ (i) = X (i) = t, then ℓi(X) = ℓi(Ct, xt) ⩽ c · rt.

Proof. Our goal is to show that dc(i, xt) + dm(i, j) ⩽ c · rt for all j ∈ Ct. Consider any j ∈ Ct.

Case 1: j ∈ Ct ∩ Ĉt. By the definition of rt, we must have dc(i, xt) + dm(i, j) ⩽ rt ⩽ c · rt, where
the last inequality holds because c ⩾ 1. In words, such an agent does not increase the loss of agent i
even slightly.

Case 2: j ∈ Ct \ Ĉt. Because agent j was allowed to switch to the t-th cluster, we must have t ∈ Vj .
Then, Line 11 in Algorithm 1 ensures that dc(i, xt) + dm(i, j) ⩽ c · rt; this is the condition that
forbids an agent from joining a cluster if it would significantly hurt a “core member” of that cluster.

This concludes the proof.

The next lemma shows that if agent i switches to the t∗-th cluster during Phase 2, its final loss ℓi(X)
would be bounded by Φ(i, t∗).

Lemma 6. For each i ∈ N , if X (i) = t∗ ̸= X̂ (i), then

ℓi(X) = ℓi(Ct∗ , xt∗) ⩽ Φ(i, t∗) = dc(i, xt∗) + c · rt∗ + min
j∈Ĉt∗

(dm(i, j)− dc(j, xt∗)).

Proof. Let i′ = argmaxj∈Ct∗ d
m(i, j) be the agent in Ct∗ that is the farthest from i. Then, we

have ℓi(Ct∗ , xt∗) = dc(i, xt∗) + dm(i, i′). We want to show that this is at most Φ(i, t∗). Let
j∗ = argminj∈Ĉt∗

(dm(i, j)−dc(j, xt∗)), so Φ(i, t∗) = dc(i, xt∗)+c·rt∗+dm(i, j∗)−dc(j∗, xt∗).
Let us simplify our goal:

dc(i, xt∗) + dm(i, i′) ⩽ dc(i, xt∗) + c · rt∗ + dm(i, j∗)− dc(j∗, xt∗)

⇔ dm(i, i′) ⩽ c · rt∗ + dm(i, j∗)− dc(j∗, xt∗). (1)

Case 1: i′ ∈ Ĉt∗ . Then, by the fact that j∗ ∈ Ĉt∗ is also true, we must have that dc(j∗, xt∗) +

dm(j∗, i′) ⩽ ℓj∗(Ĉt∗ , xt∗) ⩽ rt∗ , which yields dm(j∗, i′) ⩽ rt∗ − dc(j∗, xt∗).

Case 2: i′ /∈ Ĉt∗ . Then, since agent i′ switched to the t∗-th cluster during Phase 2, we must have
t∗ ∈ Vi′ . Line 11 of Algorithm 1 and the fact that j∗ ∈ Ĉt∗ ensure that dc(j∗, xt∗) + dm(j∗, i′) ⩽
c · rt∗ , i.e., dm(j∗, i′) ⩽ c · rt∗ − dc(j∗, xt∗).

Since c ⩾ 1, we get dm(j∗, i′) ⩽ c · rt∗ − dc(j∗, xt∗) in both cases. Using the triangle inequality,
we get

dm(i, i′) ⩽ dm(i, j∗) + dm(j∗, i′) ⩽ dm(i, j∗) + c · rt∗ − dc(j∗, xt∗),

which is the desired Equation (1), concluding the proof.

Here is what we know now. During Phase 2, if agent i remains in its original cluster X̂ (i) = t, its loss
remains upper bounded by c·rt (Lemma 5), and if it switches to a cluster t′ ∈ Vi, its loss remains upper
bounded by Φ(i, t′). This explains why agent i switches to the cluster t∗ ∈ argmint′∈Vi Φ(i, t

′),
only if Φ(i, t∗) < c · rt: the agent is simply picking the cluster that offers the smallest upper bound
on its eventual loss. This is captured by the next lemma.
Lemma 7. For each i ∈ N and t′ ∈ Vi, we have ℓi(X) ⩽ Φ(i, t′) = dc(i, xt′) + c · rt′ +
minj∈Ĉt′

(dm(i, j)− dc(j, xt′)).

22

Proof. Let t = X̂ (i) and t∗ ∈ argmint′∈Vi Φ(i, t
′). If agent i switches to the t∗-th cluster during

Phase 2 of Algorithm 1, then the claim follows from the fact that Φ(i, t∗) ⩽ Φ(i, t′) for all t′ ∈ Vi. If
agent i does not make a switch during Phase 2 and remains in the t-th cluster, this must be because
c · rt ⩽ Φ(i, t∗) due to Line 13 of Algorithm 1. The claim again follows from Φ(i, t∗) ⩽ Φ(i, t′) for
all t′ ∈ Vi.

Similarly to the proof of Lemma 7, we can see that if agent i was in the t-th cluster at the end of
Phase 1, then c · rt also remains an upper bound on its eventual loss, regardless of whether the agent
stays in the t-th cluster or switches to a t∗-th cluster during Phase 2. This is because the agent only
switches to the t∗-th cluster if it provides a smaller upper bound on the loss.

Lemma 8. For each i ∈ N , if X̂ (i) = t, then ℓi(X) ⩽ c · rt.

Proof. If X (i) = t (i.e., the agent stays in the t-th cluster during Phase 2), then the claim reduces
to Lemma 5. If X (i) = t∗ ̸= t, then by Lemma 6, we have ℓi(X) ⩽ Φ(i, t∗). However, due to
Line 13, agent i only switches to the t∗-th cluster if Φ(i, t∗) < c · rt, which implies ℓi(X) ⩽ c · rt,
as needed.

Together, Lemmas 7 and 8 give us two different ways to upper bound the loss of agent i, in terms of
the t-th cluster that agent i was part of at the end of Phase 1, and in terms of every t′-th cluster in
Vi that agent i had the opportunity to switch to during Phase 2. With these bounds, we are ready to
prove the central lemma.

Proof. Proof of Lemma 1

Fix an α ⩾ 1 and let β = 1
2 (α+

√
α(α+ 8) + 2).

For contradiction, assume that in some clustering X = {(C1, x1), . . . , (Ck, xk)} returned by the
algorithm, there is some deviating cluster (S, y) such that for all i ∈ S, ℓi(S, y) < 1

β ℓi(X). Let

i = argmini∈S X̂ (i) be the agent from this deviating cluster that was captured first during phase 1
of Algorithm 1. Let X̂ (i) = t. Let j = argmaxj∈S ℓj(S, y) be the agent from S that has the highest
loss among all agents in the deviating cluster.

First note that it must be the case that ℓj(S, y) ⩾ 1
αrt. If this were not the case, it would contradict

the fact that (Ĉt, xt) was a α-approximation of the most cohesive cluster at that step of the algorithm.

Next, we can show that X̂ (j) ̸= t, and that j did not have the opportunity to switch into the t-th
cluster during the second phase of the algorithm.

Showing that X̂ (j) ̸= t is easy. If X̂ (j) = t were true, then by Lemma 8, we must have that
ℓj(X) ⩽ c · rt. Since j wants to deviate to (S, y), we also must have that ℓj(S, y) < 1

β ℓj(X) ⩽
c
β rt.

By plugging in the correct values of β and c, it can be seen that c
β < 1

α whenever α ⩾ 1, so this
would contradict that ℓj(S, y) ⩾ 1

αrt.

With a bit more work, we can also show that j did not have the opportunity to switch to the t-th
cluster during the second phase of the algorithm. If j did have this opportunity, then by Lemma 7
we must have that ℓj(X) ⩽ dc(j, xt) + c · rt +mini′∈Ĉt

{dm(i′, j)− dc(i′, xt)}. Since i ∈ Ĉt, this
also gives us ℓj(X) ⩽ dc(j, xt) + c · rt + dm(i, j)− dc(i, xt).

By the triangle inequality, we have that dc(j, xt) ⩽ dc(j, y) + dc(i, y) + dc(i, xt). Plugging this into
our bound on j’s loss gives us:

ℓj(X) ⩽ c · rt + dm(i, j) + dc(j, y) + dc(i, y)

Notice that since i and j are both in S, dm(i, j) + dc(j, y) ⩽ ℓj(S, y). Also, we must have that
dc(i, y) ⩽ ℓi(S, y) <

1
β ℓi(X) ⩽

c
β rt, where the last inequality follows from Lemma 8. Plugging

these in to our inequality gives us:

ℓj(X) < ℓj(S, y) +

(
c+

c

β

)
· rt.

23

This implies that when j deviates to (S, y), it can only improve its loss by a factor of at most:

ℓj(S, y) +
(
c+ c

β

)
· rt

ℓj(S, y)
.

The fact that ℓj(S, y) ⩾ 1
αrt allows us to upper-bound this as

1
α · rt +

(
c+ c

β

)
· rt

1
α · rt

= 1 + c · α ·
(
1 +

1

β

)
.

By substituting in the values of c and β in terms of α, this comes out to be 1
2 (α+

√
α(α+ 8) + 2),

which gives a contradiction.

Thus, it must be the case that j does not have the opportunity to switch to the t-th cluster during
the second phase of the algorithm. Therefore, there must be some i′ ∈ Ĉt such that dc(i′, xt) +
dm(i′, j) > c · rt, which can be rearranged to get dm(i′, j) > c · rt − dc(i′, xt). As the final part of
the proof, we can show that this also leads to a contradiction.

By the triangle inequality, we have that dm(i′, j) ⩽ dm(i′, i) + dm(i, j). This can be rearranged
to get dm(i, j) ⩾ dm(i′, j)− dm(i′, i). Plugging dm(i′, j) > c · rt − dc(i′, xt) into this inequality
gives us dm(i, j) > c · rt − (dc(i′, xt) + dm(i′, i)). Since i and i′ are both in Ĉt, we have that
dc(i′, xt)+ dm(i′, i) ⩽ ℓi′(Ĉt, xt) ⩽ rt, which gives us dm(i, j) > (c− 1)rt. Since i and j are both
in S, this tells us that ℓi(S, y) ⩾ dm(i, j) > (c− 1)rt.

Finally, since i ∈ Ĉt, by Lemma 8 we know that ℓi(X) ⩽ c · rt. This means that when i deviates to
(S, y), they are only improving their loss by a factor less than c·rt

(c−1)rt
= 1

2 (α +
√
α(α+ 8) + 2),

giving another contradiction and completing the proof.

From Lemma 1, the proof of Theorem 2 follows rather easily.
Theorem 2. For the dual metric loss, there always exists a clustering in the 3-core.

Proof of Theorem 2. Set α = 1 (i.e., let Algorithm 1 iteratively compute a most cohesive cluster in
Phase 1) in Lemma 1, which sets the growth factor to c = 3/2 and yields a 3-approximation to the
core.

Next, we present Algorithm 4, which efficiently computes a 4-MCC cluster for the dual metric loss
by running the non-centroid greedy capture algorithm on a carefully crafted distance metric, once for
each feasible center.

Algorithm 4: 4-Approximate Most Cohesive Clustering Algorithm
Input: Set of agents N , set of feasible centersM, non-centroid metric dm, centroid metric dc,

number of clusters k
Output: Cluster (C, x)

1 for y ∈M do
2 ∀i, j ∈ N : dy(i, j)← dm(i, j) + dc(i, y) + dc(j, y); // Craft the metric
3 Cy ← First cluster produced by Algorithm 3 with input (N , dy, k); // Run greedy

capture
4 ry ← maxi∈Cy

ℓi(Cy, y); // ℓi = dual metric loss

5 y∗ ← argminy∈M ry; // Best center
6 return (Cy∗ , y∗)

The proof of its approximation guarantee follows.
Lemma 2. For the dual metric loss, Algorithm 4 computes a 4-approximate most cohesive cluster in
polynomial time.

24

Proof. For any instance, fix some y ∈M and let dy be a metric distance function over N , where for
any distinct i, j ∈ N , dy(i, j) = dm(i, j)+ dc(i, y)+ dc(j, y) (if i = j then we assign dy(i, j) = 0).

We can first show that dy indeed induces a metric space over N . To show this, we just need to show
that the triangle inequality holds, as clearly dy will meet the other two metric axioms.

For any i, i′, j ∈ N , we should have that dy(i, j) ⩽ dy(i, i
′) + dy(i

′, j). By the definition of dy , this
is equivalent to saying dm(i, j) + dc(i, y) + dc(j, y) ⩽ dm(i, i′) + dc(i, y) + dc(i′, y) + dm(i′, j) +
dc(i′, y) + dc(j, y). By the fact that dm is a metric, we have that dm(i, j) ⩽ dm(i, i′) + dm(i′, j).
Therefore, we just need to show that dc(i, y) + dc(j, y) ⩽ dc(i, y) + dc(i′, y) + dc(i′, y) + dc(j, y).
Clearly, this holds as well, since dc(i, y) + dc(j, y) appears on the right-hand side of the inequality.

Algorithm 4 runs the non-centroid greedy capture algorithm on the agents, using the distance metric
dy , for every y ∈M, then considers that cluster in the original dual metric setting with y as its center,
and selects the most cohesive cluster found this way.

For contradiction, assume that Algorithm 4 does not find a 4-approximation of the most cohesive
cluster. Let (S, y) be the most cohesive cluster for an instance inputted to Algorithm 4. Define
r = maxi∈S ℓi(S, y) as the maximum loss felt by any agent in S. Assume that Algorithm 4 returns
the cluster (C∗, x∗), where r∗ = maxi∈C∗ ℓi(C

∗, x∗) > 4r.

Take the distance metric dy , and let Cy be the non-centroid cluster that Algorithm 4 finds while using
dy as its distance function. First, note that maxi∈Cy

ℓi(Cy, y) ⩾ r∗. Otherwise, Algorithm 4 would
have returned (Cy, y) rather than (C∗, x).

Next, consider the maximum non-centroid loss with respect to dy for any agent in the mem-
ber set S. We will have ∀i ∈ S,maxj∈S dy(i, j) = maxj∈S {dm(i, j) + dc(i, y) + dc(j, y)} ⩽
maxj∈S dm(i, j)+ dc(i, y)+maxj∈S dc(j, y) ⩽ r+maxj∈S dc(j, y). For all j ∈ S, we must have
that dc(j, y) ⩽ r, which gives us maxj∈S dy(i, j) ⩽ 2r.

Caragiannis et al. [2] prove that in any non-centroid clustering instance, Algorithm 3 achieves a
2-approximation of the most cohesive cluster with respect to non-centroid loss for that instance. Since
Cy was found by running Algorithm 3 onN with distance function dy , Cy must be a 2-approximation
to the most cohesive non-centroid cluster in that instance. Particularly, this implies that the maximum
non-centroid loss with respect to dy loss felt by any agent in Cy must be no more than two times the
maximum such loss felt by an agent in any member set C ′ ⊆ N with |C ′| ⩾ n/k. With respect to S,
this implies that maxi,j∈Cy dy(i, j) ⩽ 2maxi,j∈S dy(i, j) ⩽ 2(2r) = 4r.

Finally, note that for any member set of agents C, the maximum non-centroid loss for that member
set felt by any agent i ∈ C with respect to the metric dy will be an upper bound on the dual-
metric loss agent i will feel under the cluster (C, y). To see this, note that i’s non-centroid loss
under C with respect to dy will be equal to maxj∈C dy(i, j) = maxj∈C(d

m(i, j) + dc(i, y) +
dc(j, y)) ⩾ maxj∈C dm(i, j) + dc(i, y) = ℓi(C, y). In the case of Cy, this tells us that r∗ ⩽
maxi∈Cy ℓi(Cy, y) ⩽ maxi∈Cy maxj∈Cy dy(i, j) ⩽ 4r, which gives a contradiction, concluding the
proof.

Plugging this into Lemma 1 gives us a constant approximation to the core in polynomial time.

Theorem 3. For the dual metric loss, a clustering in the (3 + 2
√
3)-core can be computed in

polynomial time.

Proof. From Lemma 2, Algorithm 4 computes a 4-MCC cluster. Let Algorithm 1 iteratively use it in
Phase 1 and set α = 4 in Lemma 1. Then, the growth factor is set to c = 3 +

√
3 and we obtain a

core approximation of 1
2 (4 +

√
48 + 2) = 3 + 2

√
3. Each call to Algorithm 4 runs in polynomial

time, and it is clear that the rest of Algorithm 1 also runs in polynomial time.

D.2 Weighted Single Metric Loss

Lemma 3. For the weighted single metric loss with parameter λ ∈ (0, 1], Algorithm 5 finds a
clustering in the 2

λ -core in polynomial time.

25

Algorithm 5: Non-Centroid Greedy Capture With Greedy Centroid Selection
Input: Set of agents N , set of feasible centersM, metric d, number of clusters k
Output: Clustering X = {(C1, x1), . . . , (Ck, xk)}

1 Initialize: N ′ ← N , X ← ∅,δ ← 0;
// Uncaptured agents remain

2 while N ′ ̸= ∅ do
3 Increase δ smoothly;

// Non-centroid ball found
4 if ∃i ∈ N ′, C ⊆ N ′ s.t. |C| ⩾ min(|N ′|, n/k) and d(i, i′) ⩽ δ for all i′ ∈ C then
5 x← argminx∈M d(i, x); // Centroid closest to the ball’s center
6 X ← X ∪ {(C, x)};
7 N ′ ← N ′ \ C;

8 return X

Proof. For contradiction, assume this is false, and there exists some instance such that the greedy
clustering solution X = {(C1, x1), . . . , (Ck, xk)} is not in the 2

λ -core. This means there exists some
deviating cluster (S, y) such that for all i ∈ S, 2

λ · ℓi(S, y) < ℓi(X).

Let i = argmini′∈S X (i′) be the first agent from S captured by Algorithm 5. Let X (i) = t. Let
j ∈ Ct be the agent that “captured” the cluster Ct (meaning that at the time when Ct was captured
by the algorithm, d(i′, j) ⩽ δ for all i′ ∈ Ct was true), and let rt = maxi∈Ct

d(i, j) be the value of
δ at the point when Ct was captured.

Due to the triangle inequality, we have that for any i′ ∈ Ct, d(i, i
′) ⩽ d(i, j) + d(j, i′) ⩽ 2rt. With

this, we have that ℓi(X) ⩽ (1− λ)d(i, xt) + λ2rt.

Note that there must be some i′ ∈ S with d(i, i′) ⩾ rt. If this were not the case, then Algorithm 5
would have captured S prior to capturing Ct, with i being the “capturing” agent of S. Thus, we also
have that ℓi(S, y) ⩾ (1− λ)d(i, y) + λrt.

Due to the way that Algorithm 5 greedily selects a center for each cluster, it must be the case
that d(j, y) ⩾ d(j, xt), since otherwise, y would have been selected as the center for Ct rather
than xt. From the triangle inequality, we have that d(i, xt) ⩽ d(i, j) + d(j, xt) ⩽ r + d(j, y) ⩽
r + d(i, j) + d(i, y) ⩽ 2r + d(i, y). This allows us to conclude that d(i, xt) ⩽ 2r + d(i, y)

The above inequality allows us to bound ℓi(X) ⩽ (1− λ)d(i, xt) + λ2r ⩽ (1− λ)(2r + d(i, y)) +
λ2r = 2r + (1− λ)d(i, y). This means that i improves their loss by deviating by at most a factor of:

2rt + (1− λ)d(i, y)

(1− λ)d(i, y) + λrt
=

(2− λ)rt
(1− λ)d(i, y) + λrt

+ 1 ⩽
(2− λ)rt

λrt
+ 1 =

2

λ

This gives the desired contradiction.

Lemma 4. For the weighted single metric loss with parameter λ ∈ [0, 1), Algorithm 6 finds a
clustering in the

√
2λ−11λ2+13+3−λ

2−2λ -core in polynomial time.

Proof. When running Algorithm 6, we set the growth factor c = q
λ , where q =

√
2λ−11λ2+13+5λ−1

6 .

Let X = {(C1, x1), . . . , (Ck, xk)} be the clustering returned by Algorithm 6. Further, let X̂ =

{(Ĉ1, x1), . . . , (Ĉk, xk)} be the clustering found by Algorithm 6 after it has completed phase 1.

First, we will show that for any agent i ∈ N , if X̂ (i) = t, then ℓi(X) will be no more than
(1−λ)d(i, xt)+λ(d(i, xt)+

q
λrt) = d(i, xt)+ q · rt. This can be seen by analyzing how the second

phase of the algorithm works.

In phase 2 of Algorithm 6, each agent i ∈ N can choose to switch from the cluster they were
originally assigned to by the algorithm, to a new cluster. However, they can only switch to a cluster
(Ct′ , xt′) if d(i, xt′) ⩽ crt′ . In the algorithm, c is called the “growth factor”, as the second phase can

26

Algorithm 6: Semi-Ball-Growing Algorithm
Input: Set of agents N , set of feasible centersM, distance metric d, parameter λ ∈ [0, 1],

number of clusters k, growth factor c ⩾ 1
Output: Clustering X = {(C1, x1), . . . , (Ck, xk)}

1 Initialize: N ′ ← N , X̂ ← ∅, δ ← 0, t← 0;
// Phase 1: Build a tentative clustering via centroid greedy capture

2 while N ′ ̸= ∅ do // Uncaptured agents remain
3 Increase δ smoothly;
4 if ∃xt ∈M, Ĉt ⊆ N ′ s.t. |Ĉt| ⩾ min(|N ′|, n/k) and d(i, xt) ⩽ δ for all i ∈ Ĉt then
5 X̂ ← X̂ ∪ {(Ĉt, xt)};
6 rt ← δ;
7 N ′ ← N ′ \ Ĉt;
8 t← t+ 1

// Phase 2: Selectively allow agents to switch clusters
9 ∀t ∈ [k], Ct ← Ĉt;

10 for i ∈ N do
// Allowed cluster with the best upper bound on loss

11 t′ ← argmint∈[k]:d(i,xt)⩽c·rt{(1− λ) · d(i, xt) + c · λ · 2rt};
12 t∗ ← X̂ (i);

// Switch if it improves the upper bound on loss
13 if (1− λ) · d(i, xt′) + c · λ · 2rt′ < d(i, xt∗) + c · λ · rt∗ then
14 Ct∗ ← Ct∗ \ {i};
15 Ct′ ← Ct′ ∪ {i};

16 return X = {(C1, x1), . . . , (Ck, xk)}

be thought of as the radius of each of the cluster balls increasing by a factor of c, then each agent
choosing to change to a new cluster that they are within the radius of. Also note that each agent
judges whether some new cluster (Ct′ , xt′) will provide it less loss than its current cluster based on
the worst-case loss i could possibly feel after switching to (Ct′ , xt′). This is reflected in the term
c · λ · 2rt on Line 11 of Algorithm 6. Due to the fact that the non-centroid part of each agent’s loss
function will change based on which clusters other agents choose to switch into during the second
phase of the algorithm, each agent will only switch to a new cluster if, regardless of how other agents
switch, their loss under that new cluster is still guaranteed to be less than their current loss.

For any i ∈ N with X̂ (i) = t, if i were to not switch to a new cluster in the second phase of the
algorithm, then we can show that its final loss will be less than d(i, xt) + q · rt. To see this, assume i
does not switch clusters in phase 2, and thus X (i) = t. Because we know that i did not switch, it must
be the case that the distance from i to the centroid of its final cluster is d(i, xt) ⩽ rt. Further, from the
way that agents were allowed to switch clusters in the second phase, we know that all for any j ∈ Ct,
we must have d(j, xt) ⩽ c ·rt. By the triangle inequality, this means that for j = maxj∈Ct d(j, i), the
agent from Ct that is farthest away from i, we must have d(i, j) ⩽ d(i, xt)+d(j, xt) ⩽ d(i, xt)+c·rt.
Putting these together and plugging in that c = q

λ we have that:

ℓi(X) = (1− λ) · d(i, xt) + λ · d(i, j) ⩽ (1− λ) · d(i, xt) + λ · (d(i, xt) + c · rt) = d(i, xt) + q · rt

Similarly, we can bound i’s loss if they do choose to switch clusters in phase 2. Assume now that i
does switch such that after the second phase of the algorithm X (i) = t′.

By similar logic as above, we can upper bound i’s loss as:

ℓi(X) = (1− λ)d(i, xt′) + λℓmi (X) ⩽ (1− λ)d(i, xt′) + λ2crt′ = (1− λ)d(i, xt′) + 2qrt′

27

Here, the second transition follows from the fact that every agent in Ct′ is at most a distance of
crt′ away from xt′ . This along with a similar triangle inequality argument as above allows us to
bound ℓmi (Ct′ , xt′) ⩽ 2crt′ . Notice that this is worse than the bound we were able to establish on
i’s non-centroid loss in the case when it did not switch. This is because when i did not switch, we
knew that d(i, xt) ⩽ rt, where in the case where i did switch, all we know is the weaker bound of
d(i, xt′) ⩽ c · rt.
From line 13 of Algorithm 6, we can see that an agent i will only switch from their first phase cluster
to a new cluster if the upper-bounded loss from this new cluster is less than the upper-bounded loss
of their original cluster. Thus, no matter what i does during the second phase, we can guarantee that
their loss will not be more than d(i, xt) + q · rt.
With this bound on each agent’s loss established, we can prove the required core guarantee. Assume
for contradiction that this is false, and that Algorithm 6 produces a clusteringX such that there is some
deviating cluster (S, y) with S ⊆ N , |S| ⩾ ⌈nk ⌉, and y ∈ M with

√
2λ−11λ2+13+3−λ

2−2λ ℓi(S, y) <

ℓi(X) for all i ∈ S.

Let i = mini∈S X̂ (i) be the agent from S that was captured first by phase 1 of the algorithm, and let
X̂ (i) = t. We know that d(i, xt) ⩽ rt. Let j = argmaxj∈S d(j, y) be the agent in S that is farthest
away from y. We know that d(j, y) ⩾ rt must be true, otherwise, the first phase of the algorithm
would have captured (S, y) prior to capturing (Ĉt, xt).

First, we will consider the case where d(j, xt) ⩽ c ·rt. This means that in the phase 2 of the algorithm,
j will have the opportunity to switch to the t-th cluster. The maximum loss that j could feel under
the cluster centered at xt is (1 − λ)d(j, xt) + 2qrt, and since j will switch to the cluster with the
lowest upper-bounded loss, this means that j deviating to (S, y) can improve its loss by at most a
factor of (1−λ)d(j,xt)+2qrt

(1−λ)d(j,y) . Note that this can be upper bounded as

(1− λ)d(j, xt) + 2qrt
(1− λ)d(j, y)

⩽
(1− λ)(d(j, y) + d(i, y) + d(i, xt)) + 2qrt

(1− λ)d(j, y)

⩽
(1− λ)d(j, y) + (1− λ)(d(i, y) + rt) + 2qrt

(1− λ)d(j, y)

⩽
(1− λ)rt + (1− λ)(d(i, y) + rt) + 2qrt

(1− λ)rt

=
(2(1− λ) + 2q)rt + (1− λ)d(i, y)

(1− λ)rt

⩽
2(1− λ) + 2q

(1− λ)
+

d(i, y)

rt
. (2)

For i, we must have that ℓmi (S, y) ⩾ (1 − λ)d(i, y), and ℓmi (X) cannot be more than i’s upper-
bounded loss under (Ĉt, xt), meaning that i deviating cannot improve its loss by more than a factor
of

d(i, xt) + q · rt
(1− λ)d(i, y)

⩽
(1 + q)rt

(1− λ)d(i, y)
. (3)

Combining Equations (2) and (3), we get the following bound:

min

{
1 + q

1− λ
· rt
d(i, y)

,
2(1− λ) + 2q

(1− λ)
+

d(i, y)

rt

}
⩽ max

z⩾0
min

{
1 + q

1− λ
z,

2(1− λ) + 2q

(1− λ)
+

1

z

}
=

√
λ2 − 3λ(q + 1) + q2 + 3q + 2− λ+ q + 1

1− λ
,

where the last transition can be derived by equating the two expressions in z and solving the resulting
quadratic equation in z. Substituting the chosen value of q and simplifying gives us the following
bound: √

2λ− 11λ2 + 13 + 3− λ

2− 2λ
.

28

This yields a contradiction. This shows that it must be true that d(j, xt) > c · rt, meaning that j
cannot switch to the t-th cluster during the second phase of Algorithm 6.

Using this along with the triangle inequality, we can say that q
λrt < d(j, xt) ⩽ d(j, i) + d(i, xt) ⩽

d(j, i) + rt. Rearranging we get that d(i, j) > (qλ − 1)rt = (q−λ
λ)rt.

With this, we can say that ℓi(S, y) ⩾ λd(i, j) > λ q−λ
λ rt = (q − λ)rt.

Combining this with the fact that ℓi(X) ⩽ d(i, xt) + q · rt ⩽ (q + 1)rt, we get that in this case, i
deviating to (S, y) cannot improve its loss by more than a factor of q+1

q−λ .

Substituting in our chosen value of q and simplifying once again gives us:

√
2λ− 11λ2 + 13 + 3− λ

2− 2λ

which is a contradiction, and concludes the proof.

Lemma 9. For the weighted single metric loss with parameter λ ∈ [0, 1], no clustering algorithm
can achieve a core approximation better than

√
λ2−2λ+5−λ+1

2 .

Proof. We will analyze the instance in Figure 1, with p =
√
λ2−2λ+5+λ−1

2λ . We will limit our analysis
to the section of the instance containing {a, b, c}, where, since k = 3, we can assume without loss of
generality that one cluster center is placed.

If the cluster ({a, b, c}, b) is initially selected, then a will have a loss of (1− λ)d(a, b) + λd(a, c) =
(1−λ)+λp, and b will have a loss of (1−λ)0+λp = λp. If a and b deviate to the cluster ({a, b}, b),
then they will improve their loss by a factor of (1− λ) + λp and p respectively. This deviation will
lead to a violation of core with a factor of (1− λ) + λp =

√
λ2+2λ+5−λ+1

2 . The same argument can
show that ({a, b, c}, a) would also not work as a cluster, and clearly, ({a, b, c}, c) would also not
work, as a and b’s losses would only get worse then before.

If the cluster ({a, b}, b) is initially selected, then note that a will have a loss of (1 − λ)d(a, b) +
λd(a, b) = 1. In contrast, under the clustering ({a, c}, a), a will have a loss of (1−λ)0+λd(a, c) =
λp. This means that by deviating, a will decrease its loss by a factor of 1

λp = 2√
λ2−2λ+5+λ−1

=
√
λ2+2λ+5−λ+1

2 . Since we assume that only one point from {a, b, c} is selected as a center, this
deviation must also improve c’s loss by an infinite factor. Note that the same analysis holds if a was
selected as the centroid in the initial cluster rather than b. Again, clearly the center c would not work
with this cluster either, as it would just make both agents no better off.

Next, note that the cluster ({a, c}, a) cannot be selected. a would have a loss of (1− λ)0 + λp = λp.
But under the clustering ({a, b}, a) a’s loss would be (1− λ)0 + λ = λ, so deviating would improve
a’s loss by a factor of p ⩾

√
λ2+2λ+5−λ+1

2 . b would also improve their loss by an infinite factor.
Clearly trying this cluster with any other center would not help, as it would only make a’s initial loss
worse. This argument can also be used to show that the cluster with member set {b, c} will not work.

This eliminates the possibility of any cluster of the 3 agents of size greater than 1. Finally, we cannot
have more than 2 of these agents involved in a singleton cluster, as since k = 3, all the agents on the
other side would have to all belong to the same cluster, and we could apply a similar argument as the
second paragraph of this proof to find a deviating set there.

Lemma 10. For the weighted single metric loss with parameter λ ∈ [0, 1], no clustering algorithm
can achieve a core approximation better than 2(1−λ)

2λ+1 .

Proof. Take the instance from Claim 1 of Chen et al. [1]. N = {a1, . . . , a6},M =
{y1, . . . , y6}, k = 3. The distances between agents are given as d(a1, a2) = d(a1, a3) = d(a2, a3) =
3 and d(a4, a5) = d(a4, a6) = d(a5, a6) = 3, with all other pairs having distance∞. The distances
between agents and centers are given by the below table (which can also be seen in claim 1 of Chen
et al. [1]).

29

y1 y2 y3 y4 y5 y6

a1 4 1 2 ∞ ∞ ∞
a2 2 4 1 ∞ ∞ ∞
a3 1 2 4 ∞ ∞ ∞
a4 ∞ ∞ ∞ 4 1 2
a5 ∞ ∞ ∞ 2 4 1
a6 ∞ ∞ ∞ 1 2 4

Chen et al. [1] show that in this instance, it is impossible to achieve a centroid core approximation
better than 2.

Fix some clustering X = {(C1, x1), (C2, x2), (C3, x3)}. From Chen et al. [1], there must be
some pair of agents that would want to deviate in the centroid world for a core improvement of at
least 2. More specifically, since there are 3 clusters, and the instance consists of two “groups” of
agents/centers, which are separated by a distance of∞, one of the groups must have at most 1 center
from that group selected as one of the centers in X .

Without loss of generality, assume that the group {a1, a2, a3} only has one center from their group
selected by X , and assume y1 is that center (because of the symmetry of the instance, we could pick
either group, and any center of that group, and an identical argument would hold). In this scenario,
the other two centers from X are distance∞ away from a1 and a2. a1 and a2 are either in the cluster
with y1, or in a cluster with a center farther away from them than y1. Therefore, we must have that
ℓa1(X) ⩾ (1− λ)d(a1, y1) = 4(1− λ) and ℓa2(X) ⩾ (1− λ)d(a2, y1) = 2(1− λ).

Now consider the deviating cluster (S = {a1, a2}, y3). a1 and a2 will have the following losses
under that cluster:

ℓa1
(S, y3) = λd(a1, a2) + (1− λ)d(a1, y3) = 3λ+ 2(1− λ)

ℓa2
(S, y3) = λd(a1, a2) + (1− λ)d(a2, y3) = 3λ+ 1(1− λ)

These, along with our lower bounds on the agents’ loss under X allow us to conclude that a1 would be
able to make an improvement of at least 4(1−λ)

3λ+2(1−λ) by deviating, and a2 would see an improvement

of at least 2(1−λ)
3λ+1(1−λ) .

It can easily be verified that 4(1−λ)
3λ+2(1−λ) ⩾

2(1−λ)
3λ+1(1−λ) for all λ ∈ [0, 1], meaning that this would lead

to a core violation of 2(1−λ)
3λ+1(1−λ) =

2(1−λ)
2λ+1 , completing the proof.

With the above two lower-bounds, we can make the following general statement.
Theorem 5. For the weighted single metric loss with parameter λ ∈ [0, 1], no clustering algorithm
can achieve a core approximation better than max{

√
λ2−2λ+5−λ+1

2 , 2(1−λ)
2λ+1 }.

Proof. The result for λ ∈ (0, 1) follows directly from Lemmas 9 and 10. The edge cases follow from
known lower bounds from the centroid (lower bound of 2 [1]) and non-centroid (lower bound of 1
[2]) worlds.

E Missing Proofs from Section 5

First, we provide the missing proof of Theorem 6, which shows that Algorithm 7 yields an α-FJR
clustering, guaranteeing the existence of an (exact) FJR clustering for arbitrary loss functions and the
polynomial-time computability of a 4-FJR clustering for the dual metric loss.
Theorem 6. For arbitrary losses and α ⩾ 1, Algorithm 7, which iteratively finds an α-approximate
most cohesive cluster, returns an α-FJR clustering. Hence, a 1-FJR clustering exists for arbitrary
losses and, due to Lemma 2, a 4-FJR clustering can be computed in polynomial time for the dual
metric loss.

30

Figure 2: Single Metric Core Bounds Visualized as λ varies from 0 to 1. For exact bounds, see
Table 1

Algorithm 7: Iterative α-MCC Clustering
Input: Set of agents N , set of feasible centersM, agents’ loss functions (ℓi)i∈N , number of

centers k, approximation factor α ⩾ 1;
Output: Clustering X = {(C1, x1), . . . , (Ck, xk)}

1 Initialize: N ′ ← N , X ← ∅;
// Uncaptured agents remain

2 while N ′ ̸= ∅ do
3 (C, x)← An α-MCC cluster (with threshold n/k) from N ′,M ; // Find an α-MCC

cluster
4 X ← X ∪ {(C, x)}; // Add it to the clustering
5 N ′ ← N ′ \ C; // Mark its agents as captured
6 return X

Proof. For contradiction, assume that Algorithm 7 does not always yield an α-FJR clustering.
Then, there exists an instance in which the clustering X = {(C1, x1), . . . , (Ck, xk)} returned by
Algorithm 7 admits a deviating cluster (S, y) such that for all i ∈ S,

α · ℓi(S, y) < minj∈S ℓj(X). (4)

Let i∗ ∈ argmini∈S X (i) be the first agent in S that was “captured” (i.e., removed from N ′) by the
algorithm, ties broken arbitrarily. Let t = X (i∗). Then, from Equation (4), we get that for all i ∈ S,

α · ℓi(S, y) < minj∈S ℓj(X) ⩽ ℓi∗(X) ⩽ maxi∈Ct
ℓi(X) = maxi∈Ct

ℓi(Ct, xt).

Hence, α · maxi∈S ℓi(S, y) < maxi∈Ct ℓi(Ct, xt). Since all agents in S were uncaptured prior
to (Ct, xt) being added to X , this contradicts (Ct, xt) being an α-MCC cluster at that time. This
concludes the proof that Algorithm 7 always yields an α-FJR clustering.

Since an MCC cluster exists by definition, plugging in α = 1 yields the existence of an FJR clustering.
And for the dual metric loss, since a 4-MCC cluster can be computed efficiently via Algorithm 4
(Lemma 2), we obtain that a 4-FJR clustering can be computed in polynomial time.

Next, we provide the missing proof of Theorem 7, which shows that such a simultaneous approxima-
tion is impossible when using different centroid and non-centroid metrics.
Theorem 7. For any α ⩾ 1 and β ⩾ 1, there exists an instance in which no clustering is both α-FJR
with respect to the centroid loss and β-FJR with respect to the non-centroid loss, when the two loss
functions are allowed to use different metrics.

Proof. Consider an instance with a set of 6 agents N = {a, b, c, d, e, f}, a set of two feasible cluster
centersM = {x1, x2}, and k = 3.

Non-centroid metric: Let dm(a, b) = dm(c, d) = dm(e, f) = 0, and let the non-centroid distance
between every other pair of agents be∞.3

3Here, we use ∞ for the ease of exposition, but it can be replaced by a suitably large number.

31

Centroid metric: Let dc(a, x1) = dc(c, x1) = dc(e, x1) = 0, let dc(b, x2) = dc(d, x2) =
dc(f, x2) = 0, and let the centroid distance between every other agent-center pair be∞.

Finite non-centroid FJR approximation: First, note that the only clustering that leads to a finite FJR
approximation with respect to the non-centroid loss is the one that partitions the set of agents as
X = {{a, b}, {c, d}, {e, f}}.
To see this, consider any C ∈ X . If C is “broken” (i.e., not a cluster by itself), then at least one
member of C must be a singleton cluster; the only other possibility would be that C is a strict subset
of a cluster, in which case C can deviate, improving both its members from infinite loss to zero loss,
yielding infinite FJR approximation.

Hence, every unbroken pair in X forms a cluster of size two, and (at least) one member from every
broken pair in X forms a singleton cluster. Since there are three pairs in X , this already uses up
k = 3 clusters, leaving the other members from the broken pairs in X not included in the partition,
which is impossible. Hence, there must not be any broken pairs, which shows that the partition must
be X = {{a, b}, {c, d}, {e, f}}.
Finite centroid FJR approximation: Now, let us try to assign a center to each cluster in X in a way
that yields a finite approximation with respect to the centroid loss. Since there are only two feasible
centers x1 and x2, at least one of them must be assigned to at most one of the clusters in X . Without
loss of generality, assume this center is x1. There are three agents, a, c, and e, which are at distance 0
away from x1 under the centroid metric. However, they are in different clusters. Hence, at least two
of them must be assigned to x2, and can deviate together with x1 and improve both their centroid
losses from non-zero to zero, resulting in an infinite FJR approximation with respect to the centroid
loss. If we had assumed x2, we could have made the same argument with agents b, d, and f .

This shows that there is no clustering that achieves finite FJR approximations with respect to both the
centroid and non-centroid losses, concluding the proof.

Next, we provide the missing proof of Theorem 8, which shows that simultaneous approximation is
possible if both centroid and non-centroid losses use the same underlying metric. Since our algorithm
(Algorithm 5) builds on non-centroid greedy capture, its FJR approximation with respect to the
non-centroid loss is borrowed easily; the key difficulty is establishing its FJR approximation with
respect to the centroid loss.
Lemma 11. Algorithm 5, given metric d, yields a clustering that is 5-FJR with respect to the centroid
loss induced by d.

Proof. For contradiction, assume this is false. Then, there exists an instance in which Algorithm 5
returns a clustering X = {(C1, x1), . . . , (Ck, xk)} that admits a deviating cluster (S, y) such that

∀q ∈ S : 5 · d(q, y) < min
p∈S

ℓcp(X). (5)

Let i ∈ S be the agent from S that was captured first by Algorithm 5. Denote the cluster containing
agent i as (C, x) ≜ (CX (i), xX (i)) for brevity. Because Algorithm 5 runs non-centroid greedy capture
to create the partition of the set of agents, C must have been captured by a ball centered at some
agent j ∈ C. Note that the center x selected by Algorithm 5 for C must be the closest feasible center
to agent j. Let r = maxi′∈C d(j, i′) be the radius of the ball centered at j when it captured C.

First, we show that d(i, x) ⩽ 2r + d(i, y). To see this, note that

d(i, x) ⩽ d(i, j) + d(j, x) ⩽ d(i, j) + d(j, y) ⩽ d(i, j) + d(i, j) + d(i, y) ⩽ 2r + d(i, y),

where the first and third inequalities use the triangle inequality, the second inequality uses the fact
that x is the closest center to agent j (hence, d(j, x) ⩽ d(j, y)), and the last inequality follows from
the definition of r.

Now, from Equation (5), we have that

∀q ∈ S : 5 · d(q, y) < min
p∈S

ℓcp(X) ⩽ ℓci (X) = d(i, x) ⩽ 2r + d(i, y).

In particular, substituting q = i, we get that 5 · d(i, y) < 2r + d(i, y), which yields d(i, y) < r/2.
Then, for every other agent q ∈ S, we have that 5 · d(q, y) < 2r + d(i, y) < 5r/2, which yields
d(q, y) < r/2.

32

By the triangle inequality, we have that, for all p, q ∈ S, d(p, q) ⩽ d(p, y) + d(q, y) < r/2 + r/2 = r.
But this is a contradiction because this would imply that in the execution of Algorithm 5, the ball
centered at any agent in S would have captured S before the ball centered at agent j captured C.

The proof of our simultaneous FJR approximation guarantee (Theorem 8) is now straightforward.

Theorem 8. Algorithm 5, given metric d, finds, in polynomial time, a clustering that is 5-FJR with
respect to the centroid loss and 2-FJR with respect to the non-centroid loss, both defined using d.

Proof. 5-FJR with respect to the centroid loss ℓc is established in Lemma 11.

Caragiannis et al. [2] show that non-centroid greedy capture achieves 2-FJR with respect to the
non-centroid loss ℓm. It is easy to see that because Algorithm 5 runs non-centroid greedy capture and
uses the partition (C1, . . . , Ck) of the set of agents N that it produces, it retains this 2-FJR guarantee
with respect to the non-centroid loss ℓm.

F Experiments

In this section, our goal is to empirically compare proportionally fair algorithms designed in this
work to classical clustering methods, in terms of both proportional fairness metrics and traditional
metrics that the classical methods optimize.

Because the classical methods take only a single distance metric d as input, we limit our empirical
analysis to weighted single metric loss, which depends on a single metric d along with a parameter
λ ∈ [0, 1].

Algorithms. We evaluate four algorithms.

• GC: Algorithm 5, which runs non-centroid greedy capture followed by greedy centroid
selection, and attains 2

λ -core (Lemma 3). We denote it by ’GC’.

• SemiBall: Algorithm 6, which mimics centroid greedy capture but with limited cluster
switching, and attains

√
2λ−11λ2+13+3−λ

2−2λ -core (Lemma 4). We denote it by ’SemiBall’.

• k-means++: This classical algorithm approximately optimizes the k-means objective,∑
i∈N d(i,X (i))2.

• k-medoids: This classical algorithm approximately optimizes the k-medoids objective,∑
i∈N d(i,X (i)).

The k-means++ and k-medoids implementations are based on the Scikit-learn package in Python.4

It is worth remarking that three of the four algorithms—GC, k-means++, and k-medoids—take only
the distance metric d as input and not the parameter λ. Hence, the clustering returned by these
methods is independent of λ, although its approximations to proportional fairness metrics would
depend on λ.

Datasets. We use three datasets from the UCI Machine Learning Repository [29]: Iris, Pima Indians
Diabetes, and Adult. These are the three datasets used by Caragiannis et al. [2] for their experiments
with non-centroid clustering.

• The Iris dataset contains 150 data points with measurements of sepal and petal dimensions
across three species of iris flowers.

• The (Pima Indians) Diabetes dataset includes health-related indicators such as insulin dosage,
glucose level, and number of pregnancies.

• The Adult dataset consists of 48,842 instances, with both categorical features (such as
race and education) and numerical features (such as age and hours worked per week). It
is typically used for the classification task of predicting whether an individual’s income

4Scikit-learn: https://scikit-learn.org

33

https://scikit-learn.org

GC SemiBall k-means++ k-medoids

0.2 0.4 0.6 0.8
Weighted Loss Parameter

4

8

12

16

Co
re

 V
io

la
tio

n

0.2 0.4 0.6 0.8
Weighted Loss Parameter

4

8

12

16

FJ
R

Vi
ol

at
io

n

0.2 0.4 0.6 0.8
Weighted Loss Parameter

0

1

2

3

4

k-
m

ea
ns

 O
bj

ec
tiv

e

1e11

0.2 0.4 0.6 0.8
Weighted Loss Parameter

0.8

1.2

1.6

2.0

k-
m

ed
oi

ds
 O

bj
ec

tiv
e

1e6

0.2 0.4 0.6 0.8
Weighted Loss Parameter

0.50

0.75

1.00

1.25

W
ith

in
-C

lu
st

er
 D

ist
an

ce

1e6

5 10 15 20 25
Number of Clusters k

4

8

12

16

Co
re

 V
io

la
tio

n

5 10 15 20 25
Number of Clusters k

4

8

12

16

FJ
R

Vi
ol

at
io

n

5 10 15 20 25
Number of Clusters k

0

2

4

6

k-
m

ea
ns

 O
bj

ec
tiv

e

1e11

5 10 15 20 25
Number of Clusters k

1

2

3

4

k-
m

ed
oi

ds
 O

bj
ec

tiv
e

1e6

5 10 15 20 25
Number of Clusters k

0.6

1.2

1.8

2.4

W
ith

in
-C

lu
st

er
 D

ist
an

ce

1e6

Figure 3: Results for the Adult (Census Income) dataset. The common legend appears at the top. The
top five plots compare the algorithms on our five metrics when varying λ ∈ {0.1, 0.2, . . . , 0.9} and
fixing k = 15, and the bottom five plots correspond to fixing λ = 0.5 and varying k ∈ {5, 6, . . . , 25}.

exceeds a specified threshold, but here it is used for clustering the individuals. We apply a
one-hot encoding to all categorical features.5

5Categorical features encoded as numerical values (e.g., 1, 2, 3, . . .) yield misleading distances in the absence
of the one-hot encoding.

34

GC SemiBall k-means k-medoids

0.2 0.4 0.6 0.8
Weighted Loss Parameter

3

6

9

12

Co
re

 V
io

la
tio

n

0.2 0.4 0.6 0.8
Weighted Loss Parameter

3

6

9

12

FJ
R

Vi
ol

at
io

n

0.2 0.4 0.6 0.8
Weighted Loss Parameter

30000

45000

60000

75000

90000

k-
m

ea
ns

 O
bj

ec
tiv

e

0.2 0.4 0.6 0.8
Weighted Loss Parameter

1050

1200

1350

1500

k-
m

ed
oi

ds
 O

bj
ec

tiv
e

0.2 0.4 0.6 0.8
Weighted Loss Parameter

640

720

800

880

W
ith

in
-C

lu
st

er
 D

ist
an

ce

5 10 15 20 25
Number of Clusters k

3

6

9

12

Co
re

 V
io

la
tio

n

5 10 15 20 25
Number of Clusters k

3

6

9

12

FJ
R

Vi
ol

at
io

n

5 10 15 20 25
Number of Clusters k

0

150000

300000

450000

k-
m

ea
ns

 O
bj

ec
tiv

e

5 10 15 20 25
Number of Clusters k

800

1600

2400

3200

k-
m

ed
oi

ds
 O

bj
ec

tiv
e

5 10 15 20 25
Number of Clusters k

400

800

1200

1600

2000

W
ith

in
-C

lu
st

er
 D

ist
an

ce

Figure 4: Results for the Diabetes dataset. The common legend appears at the top. The top five plots
compare the algorithms on our five metrics when varying λ ∈ {0.1, 0.2, . . . , 0.9} and fixing k = 15,
and the bottom five plots correspond to fixing λ = 0.5 and varying k ∈ {5, 6, . . . , 25}.

Metrics. We evaluate the four algorithms above on five metrics.

35

GC SemiBall k-means++ k-medoids

0.2 0.4 0.6 0.8
Weighted Loss Parameter

4

8

12

Co
re

 V
io

la
tio

n

0.2 0.4 0.6 0.8
Weighted Loss Parameter

4

8

12

FJ
R

Vi
ol

at
io

n

0.2 0.4 0.6 0.8
Weighted Loss Parameter

24

30

36

42

k-
m

ea
ns

 O
bj

ec
tiv

e

0.2 0.4 0.6 0.8
Weighted Loss Parameter

54

57

60

63

66

k-
m

ed
oi

ds
 O

bj
ec

tiv
e

0.2 0.4 0.6 0.8
Weighted Loss Parameter

34

36

38

40

42

W
ith

in
-C

lu
st

er
 D

ist
an

ce

5 10 15 20 25
Number of Clusters k

3

6

9

12

Co
re

 V
io

la
tio

n

5 10 15 20 25
Number of Clusters k

3

6

9

12

FJ
R

Vi
ol

at
io

n

5 10 15 20 25
Number of Clusters k

60

120

180

240

k-
m

ea
ns

 O
bj

ec
tiv

e

5 10 15 20 25
Number of Clusters k

50

75

100

125

k-
m

ed
oi

ds
 O

bj
ec

tiv
e

5 10 15 20 25
Number of Clusters k

30

45

60

75

90

W
ith

in
-C

lu
st

er
 D

ist
an

ce

Figure 5: Results for the Iris dataset. The common legend appears at the top. The top five plots
compare the algorithms on our five metrics when varying λ ∈ {0.1, 0.2, . . . , 0.9} and fixing k = 15,
and the bottom five plots correspond to fixing λ = 0.5 and varying k ∈ {5, 6, . . . , 25}.

The first two metrics are core and FJR violations (i.e., the smallest α such that the clustering is in
α-core or α-FJR); these two are proportional fairness metrics. We compute the exact violations of
core and FJR by solving integer linear programs, which, given a clustering, find a deviating cluster
(C, x) recording the largest possible violation of the corresponding metric.

36

The next three metrics are the k-means objective (stated above), the k-medoids objective (stated
above), and average within-cluster distance,

∑
t∈[k]

1
|Ct|

∑
i,j∈Ct

d(i, j) [30], which is another popu-
lar objective; these three can be considered efficiency metrics. These metrics are easy to compute
given a clustering.

Experimental setup. Following Chen et al. [1], Caragiannis et al. [2], we assume N =M, and use
the Euclidean L2 distance metric. We vary two parameters: the number of clusters k ∈ {5, 6, . . . , 25}
and the weighted loss parameter λ ∈ {0.1, 0.2, . . . , 0.9}. Specifically, we report experimental results
when varying λ ∈ {0.1, 0.2, . . . , 0.9} while fixing k = 15, and when varying k ∈ {5, 6, . . . , 25}
while fixing λ = 0.5.

While our algorithms (and the traditional baselines) scale well, solving integer linear programs to
compute the exact core and FJR violations of the clustering they return is computationally intensive.
Hence, for the two larger datasets, namely Adult and Diabetes, we randomly sample 100 data points
in each of 40 independent trials. For the Iris dataset, since k-means++ uses a randomized initialization
step, we run it 20 times. Our plots show the five metrics above on average along with 95% confidence
intervals.

Results. The results for Adult, Diabetes, and Iris datasets are presented in Figures 3 to 5, respectively.
The qualitative takeaways are similar across the three datasets, so we use the Adult dataset (Figure 3)
as an example to illustrate them.

First, our two algorithms, GC and SemiBall, achieve near-exact core and FJR, which is significantly
better than their worst-case approximation guarantees from Lemmas 3 and 4. The classical algorithms,
k-means++ and k-medoids, admit notable core and FJR violations, and their fairness deteriorates as
k increases; this may be because k is still less than n/2, so an increase in k increases the number
of small coalitions (of size close to n/k) that can deviate. In particular, k-means++ is highly unfair,
especially for larger values of k and smaller values of λ (i.e., when the centroid loss is dominant).
Interestingly, k-medoids is reasonably fair; Caragiannis et al. [2] observe it to be unfair for the setting
of λ = 1 (non-centroid loss), but our results show that its fairness improves as λ decreases, and it
becomes almost as fair as GC and SemiBall, producing near-exact core and FJR clustering, when
λ→ 0 (centroid loss).

The increased fairness of GC and SemiBall comes at the cost of decreased efficiency metrics as
compared to k-means++ and k-medoids. The efficiency loss is, however, small, especially when
either k is large or λ is small. Among our two algorithms, SemiBall seems to consistently perform
better in efficiency metrics (and equal in fairness metrics).

Hence, our main takeaway is that SemiBall and k-medoids are compelling algorithmic choices for
semi-centroid clustering; the choice between the two may rely on the value of k and λ, as well as the
principal’s desired fairness-efficiency tradeoff.

G Impossibility Results for Balanced Clustering

In this section, we provide two impossibility results for balanced clustering in our semi-centroid
world. Informally, balancedness dictates that the partition of the set of agents contain clusters of
roughly equal size. In many applications such as creating groups of students for class projects or
designing oral presentation sessions at a conference, this may be a desirable criterion.

Formally, one may refer to a clustering X = {(C1, x1), . . . , (Ck, xk)} as balanced if |Ct| ∈
{⌊n/k⌋, ⌈n/k⌉} for all t ∈ [k] (equivalently, ||Ct| − |Ct′ || ⩽ 1 for all t, t′ ∈ [k]). However, both our
impossibility results hold even under the following weaker criterion.
Definition 4 (Balanced Clustering). We call a clustering X = {(C1, x1), . . . , (Ck, xk)} balanced if,
when k divides n, |Ct| = n/k for all t ∈ [k].

It may be encouraging that non-centroid greedy capture indeed produces a balanced clustering under
this weak version.6 The centroid greedy capture, however, offers no such guarantees. This is because,
while it still opens balls as soon as they capture ⌈n/k⌉ uncaptured agents, (i) open balls continue to

6It may be possible that as soon as a ball covers at least ⌈n/k⌉ uncaptured agents, it actually covers many more
agents due to them being equidistant from the center. However, in this case, one can modify the algorithm to let
the ball capture exactly ⌈n/k⌉ of the uncaptured agents contained in the ball, leaving the rest on the boundary to

37

grow and capture more agents, and (ii) agents are reassigned to the nearest center in the end. At
least the second aspect is retained to some degree in both our algorithm for the dual metric loss
(Algorithm 1) and one of our algorithms for the weighted single metric loss (Algorithm 6). This
makes the final sizes of the clusters rather unpredictable (and not necessarily roughly equal).

That said, Algorithm 5, which runs non-centroid greedy capture followed by a greedy centroid
selection step, does in fact produce a balanced clustering and achieves 2

λ -core with respect to the
weighted single metric loss. Unfortunately, this becomes unbounded when λ approaches 0 (the
centroid world). The next result shows that this is impossible to avoid when requiring a balanced
clustering. Hence, our use of Algorithm 6, which computes an imbalanced clustering to achieve a
finite core approximation in the small λ regime (thus yielding a finite core approximation across the
entire spectrum of λ ∈ [0, 1]) is necessary.
Theorem 10. For the weighted single metric loss with parameter λ ∈ [0, 1], there exists an instance
in which no balanced clustering is in the α-core for any α < 1√

λ
.

Proof. Consider the instance from Figure 1. Note that k = 3 divides n = 6. Set p = 1√
λ

. For
contradiction, assume that there exists a balanced clustering X = {(C1, x1), (C2, x2), (C3, x3)}
with |C1| = |C2| = |C3| = 2, which is in the α-core for some α < 1√

λ
.

First, note that {a, b} must be one of the clusters. Suppose for contradiction that this is not the
case. Then, at most one of agents a and b can be clustered with c (i.e., at most one of X (a) = X (c)
and X (b) = X (c) is true). Without loss of generality, suppose that agent a is clustered with c (a
symmetric argument holds when agent b is clustered with c). Then, ℓa(X) ⩾ λ · p =

√
λ; this lower

bound holds due to the non-centroid loss part alone. Since agent b is clustered with an agent in
{d, e, f} that it is infinitely far from, ℓb(X) = ∞. Then, consider the deviating cluster ({a, b}, a),
which yields ℓa({a, b}, a) = λ and ℓb({a, b}, a) = 1. Compared to X , agent b improves its loss by
an infinite factor and agent a improves its loss by a factor of

√
λ
λ = 1√

λ
, which contradicts the fact

that X is in the α-core for some α < 1√
λ

.

Therefore, {a, b} must be one of the clusters and at least one of agents a and b is not the centroid of
this cluster. Without loss of generality, assume that the centroid is not at agent b. Then, consider the
deviating cluster ({b, c}, b). ℓb({b, c}, b) = λ ·p =

√
λ and ℓc({b, c}, b) = p. In contrast, ℓb(X) ⩾ 1,

so agent b improves by a factor of at least 1√
λ

. Further, since {a, b} is a cluster, agent c must be
clustered with an agent from {d, e, f} that it is infinitely far from, yielding ℓc(X) =∞. This means
agent c improves by an infinite factor. This contradicts the fact that X is in the α-core for some
α < 1√

λ
. This completes the proof.

Since the broader class of dual metric loss contains the weighted single metric loss for all λ ∈ [0, 1],
it follows that one cannot hope to design a balanced clustering algorithm that achieves any finite
approximation to the core with respect to the dual metric loss.
Theorem 11. Under the dual metric loss, no algorithm that always produces a balanced clustering
can achieve α-core for any α ⩾ 1.

Proof. Suppose for contradiction that there exists an algorithm that always produces a balanced
clustering in the α-core with respect to the dual metric loss. Then, consider the instance from Figure 1,
and set the non-centroid metric as dm = λ · d and the centroid metric as dc = (1 − λ) · d for any
λ < 1/α2. The induced dual metric loss is ℓi(C, x) = λ ·maxj∈C d(i, j) + (1− λ) · d(i, x), which
is precisely the weighted single metric loss induced by distance metric d and parameter λ. From
Theorem 10, the core approximation achieved by any balanced clustering, including the one produced
by the algorithm, must be at least 1√

λ
> α, which is the desired contradiction.

be captured by other balls in the future. This modification does not affect any of the guarantees achieved by the
algorithm. Further, it produces a balanced clustering as per Definition 4. Note that when k does not divide n, the
last non-empty cluster may contain fewer than even ⌊n/k⌋ agents.

38

	Introduction
	Our Results
	Related Work

	Preliminaries
	Clustering Model
	Loss Functions
	Proportional Fairness Guarantees

	Greedy Capture Algorithms
	The Core
	Dual Metric Loss
	Weighted Single Metric Loss

	Fully Justified Representation
	Discussion
	Missing Proofs from Section 2
	Greedy Capture Algorithms
	Missing Proofs from Section 3
	Missing Proofs from Section 4
	Dual Metric Loss
	Weighted Single Metric Loss

	Missing Proofs from Section 5
	Experiments
	Impossibility Results for Balanced Clustering

