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ABSTRACT

We study multi-agent reinforcement learning (MARL) for the general-sum
Markov Games (MGs) under general function approximation. In order to find
the minimum assumption for sample-efficient learning, we introduce a novel
complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for
general-sum MGs. Using this measure, we propose the first unified algorithmic
framework that ensures sample efficiency in learning Nash Equilibrium, Coarse
Correlated Equilibrium, and Correlated Equilibrium for both model-based and
model-free MARL problems with low MADC. We also show that our algorithm
provides comparable sublinear regret to the existing works. Moreover, our algo-
rithm only requires an equilibrium-solving oracle and an oracle that solves regular-
ized supervised learning, and thus avoids solving constrained optimization prob-
lems within data-dependent constraints (Jin et al., 2020a; Wang et al., 2023) or
executing sampling procedures with complex multi-objective optimization prob-
lems (Foster et al., 2023). Moreover, the model-free version of our algorithms is
the first provably efficient model-free algorithm for learning Nash equilibrium of
general-sum MGs.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has achieved remarkable empirical successes in solv-
ing complicated games involving sequential and strategic decision-making across multiple agents
(Vinyals et al., 2019; Brown & Sandholm, 2018; Silver et al., 2016). These achievements have cat-
alyzed many research efforts focusing on developing efficient MARL algorithms in a theoretically
principled manner. Specifically, a multi-agent system is typically modeled as a general-sum Markov
Game (MG) (Littman, 1994), with the primary aim of efficiently discerning a certain equilibrium
notion among multiple agents from data collected via online interactions. Some popular equilibrium
notions include Nash equilibrium (NE), correlated equilibrium (CE), and coarse correlated equilib-
rium (CCE).

However, multi-agent general-sum Markov Games (MGs) bring forth various challenges. In partic-
ular, empirical application suffers from the large state space. Such a challenge necessitates the use
of the function approximation as an effective way to extract the essential features of RL problems
and avoid dealing directly with the large state space. Yet, adopting function approximation in a
general-sum MG brings about additional complexities not found in single-agent RL or a zero-sum
MG. Many prevailing studies on single-agent RL or two-agent zero-sum MGs with the function
approximation leverage the special relationships between the optimal policy and the optimal value
function (Jin et al., 2021a; Du et al., 2021; Zhong et al., 2022; Jin et al., 2022; Huang et al., 2021;
Xiong et al., 2022). In particular, in single-agent RL, the optimal policy is the greedy policy with
respect to the optimal value function. Whereas in a two-agent zero-sum MG, the Nash equilibrium
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is obtained by solving a minimax estimation problem based on the optimal value function. Contrast-
ingly, in a general-sum MG, individual agents possess distinct value functions, and thus there exists
no unified optimal value function that characterizes the equilibrium behavior. Moreover, unlike a
zero-sum MG, a general-sum MG can admit diverse equilibrium notions, where each corresponds
to a set of policies. Consequently, methodologies developed for single-agent RL or zero-sum MGs
cannot be directly extended to general-sum MGs.

Recently, several works propose sample-efficient RL algorithms for general-sum MGs. In particular,
Chen et al. (2022b); Foster et al. (2023) propose model-based algorithms for learning NE/CCE/CE
based on multi-agent extensions of the Estimation-to-Decision algorithm (Foster et al., 2021), and
they establish regret upper bounds in terms of complexity metrics that extend Decision-Estimation
Coefficient (Foster et al., 2021) to MGs. In addition, Wang et al. (2023) study model-free RL for
general-sum MGs with the general function approximation. They focus on developing a decentral-
ized and no-regret algorithm that finds a CCE. Thus, it seems unclear how to design a provably
sample-efficient MARL algorithm for NE/CCE/CE for general-sum MGs in a model-free manner.
Furthermore, motivated by the recent development in single-agent RL (Jin et al., 2021a; Du et al.,
2021; Zhong et al., 2022; Foster et al., 2021; Liu et al., 2023), we aim to develop a unified algorith-
mic framework for MARL that covers both model-free and model-based approaches. Thus, we aim
to address the following questions:

Can we design a unified algorithmic framework for general-sum MGs such that (i) it is provably
sample-efficient in learning NE/CCE/CE in the context of the function approximation and (ii) it

covers both model-free and model-based MARL approaches?

In this paper, we provide an affirmative answer to the above questions. Specifically, we propose a
unified algorithmic framework named Multi-Agent Maximize-to-EXplore (MAMEX) for general-
sum MGs with the general function approximation. MAMEX extends the framework of Maximize-
to-Explore (Liu et al., 2023) to general-sum MGs by employing it together with an equilibrium
solver for general-sum normal-form games defined over the policy space.

Maximize-to-Explore (MEX) is a class of RL algorithms for single-agent MDP and two-agent zero-
sum MGs where each new policy is updated by solving an optimization problem involving a hy-
pothesis f , which can be regarded as the action-value function in the model-free version and the
transition model in the model-based version. The optimization objective of MEX contains two
terms — (a) the optimal value with respect to the hypothesis f and (b) a loss function computed
from data that quantifies how far f is from being the true hypothesis. Here, the term (a) reflects the
planning part of online RL and leverages the fact that the optimal policy is uniquely characterized
by the given hypothesis. On the other hand, the term (b), which can be the mean-squared Bellman
error or log-likelihood function, reflects the estimation part of online RL. By optimizing the sum
of (a) and (b) over the space of hypotheses without any data-dependent constraints, MEX balances
exploitation with exploration in the context of the function approximation.

However, the first term in MEX’s optimization objective leverages the fact that the optimal policy
can be uniquely constructed from the optimal value function or the true model, using a greedy
step or dynamic programming. Such a nice property cannot be extended to general-sum MGs,
where the relationship between the equilibrium policies and value function is more complicated, and
each agent has its own value function. As a result, it is impractical to construct a single-objective
optimization problem in the style of MEX over the hypothesis space for general-sum MGs.

Instead of optimizing over the spaces of hypotheses, MAMEX optimizes over the policy space.
Specifically, in each iteration, MAMEX updates the joint policy of all agents by solving for a desired
equilibrium (NE/CCE/CE) of a normal-form game, where the pure strategies are a class of joint
policies of the n agents, e.g., the class of deterministic joint policies. Besides, for each pure strategy
of this normal form game, the corresponding payoff function is obtained by solving a regularized
optimization problem over the hypothesis space à la MEX. Thus, policy updates in MAMEX involve
the following two steps:

(i) For each pure strategy π, construct the payoff function V i(π) for each agent i by solving
an unconstrained and regularized optimization problem;

(ii) Compute the NE/CCE/CE of the normal-form game over the space of pure strategies with
payoff functions {Vi(π)}ni=1, where n is the number of agents.
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The implementation of MAMEX only requires an oracle for solving a single-objective and un-
constrained optimization problem and an oracle for solving NE/CCE/CE of a normal-form game.
Compared to existing works that either solve constrained optimization subproblems within data-
dependent constraints (Wang et al., 2023), or complex multi-objective or minimax optimization
subproblems (Foster et al., 2023; Chen et al., 2022b), MAMEX is more amenable to practical im-
plementations. Furthermore, step (i) of MAMEX resembles MEX, which enables both model-free
and model-based instantiations.

We prove that MAMEX is provably sample-efficient in a rich class of general-sum MGs. To this end,
we introduce a novel complexity measure named Multi-Agent Decoupling Coefficient (MADC) to
capture the exploration-exploitation tradeoff in MARL. Compared to the decoupling coefficient and
its variants (Dann et al., 2021; Agarwal & Zhang, 2022; Zhong et al., 2022) proposed for the single-
agent setting, MADC characterize the hardness of exploration in MGs in terms of the discrepancy
between the out-of-sample prediction error and the in-sample training error incurred by minimizing
a discrepancy function ℓ on the historical data. MADC is defined based on the intuition that if
a hypothesis attains a small training error on a well-explored dataset, it would also incur a small
prediction error. When the MADC of an MG instance is small, achieving a small training error
ensures a small prediction error, and thus exploration is relatively easy. We prove that MAMEX
achieves a sublinear regret for learning NE/CCE/CE in classes with small MADCs, which includes
multi-agent counterparts of models with low Bellman eluder dimensions (Jin et al., 2021a; 2022;
Huang et al., 2021), Bilinear Classes (Du et al., 2021), and models with low witness ranks (Sun et al.,
2019; Huang et al., 2021). When specialized to specific members within these classes, MAMEX
yields comparable regret upper bounds to existing works.

Our Contributions. In summary, our contributions are two-fold.

• First, we provide a unified algorithmic framework named Multi-Agent Maximize-to-EXplore
(MAMEX) for both model-free and model-based MARL, which is sample-efficient in finding
the NE/CCE/CE in general-sum MGs with small MADCs. Moreover, MAMEX leverages an
equilibrium-solving oracle for normal-form games defined over a class of joint policies for pol-
icy updates, and a single-objective optimization procedure that solves for the payoff functions of
these normal-form games. To our best knowledge, the model-free version of MAMEX is the first
model-free algorithm for general-sum MGs that learns all three equilibria NE, CCE, and CE with
sample efficiency.

• Second, we introduce a complexity measure, Multi-Agent Decoupling Coefficient (MADC), to
quantify the hardness of exploration in a general-sum MG in the context of the function approxima-
tion. The class of MGs with low MADCs includes a rich class of MG instances, such as multi-agent
counterparts of models with low Bellman eluder dimensions (Jin et al., 2021a; 2022; Huang et al.,
2021), Bilinear Classes (Du et al., 2021), and models with low witness ranks (Sun et al., 2019; Huang
et al., 2021). When specialized to specific MG instances in these classes, we achieve comparable
regret upper bounds to existing works.

Related Works. Our paper is closely related to the prior research on Markov Games and MARL
with the function approximation. A comprehensive summary of the related literature is in §A.

2 MODELS AND PRELIMINARIES

2.1 MARKOV GAMES

For clarity, certain mathematical notations are provided in Appendix §B.

General-Sum Markov Games In this work, we consider general-sum Markov Games (MGs) in
the episodic setting, which is denoted by a tuple (S, H,A, {r(i)h }i∈[n],h∈[H], {Ph}h∈[H], ρ), where
n is the number of agents, H is the length of one episode, S is the state set, and A = ⊗n

i=1Ai

is the joint action set. Here, Ai is the action set of the agent i. Moreover, r(i)h : S × A 7→ R is
the known reward function1 of the agent i at step h, Ph : S × A → ∆(S) is the transition kernel
at the h-th step, and ρ ∈ ∆(S) is the distribution of the initial state s1. We assume the n agents

1Our results can be extended to the unknown stochastic reward case (Agarwal & Zhang, 2022; Zhong et al.,
2022). Note that learning the transition kernel is more difficult than learning the reward.
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observe the same state at each step and each agent i chooses an action within its own action set Ai

simultaneously. In each episode, starting from s1 ∼ p0, for each h ∈ [H], the agents choose their
joint action ah ∈ A in state sh, where ah = (a

(1)
h , . . . , a

(n)
h ). Then, each agent i receives its own

reward r(i)h (sh, ah), and the game move to the next state sh+1 ∼ Ph(sh+1 | sh, ah). Moreover, we
assume

∑H
h=1 r

(i)
h (sh, ah) ∈ [0, R] for any possible state-action sequences for some 1 ≤ R ≤ H .

In MGs, the agents’ policy can be stochastic and correlated. To capture such a property, we introduce
the notion of pure policy and joint policy as follows. For each agent i, its local (Markov) policy
maps a state s to a distribution over the local action space Ai. We let Πpur

h,i ⊆ {π : S 7→ ∆(Ai)}
denote a subset of the agent i’s local policies for step h ∈ [H], which is called the set of Markov
pure policies. We then define Πpur

i = ∪h∈[H]Π
pur
h,i. We assume the agent i’s policy is a random

variable taking values in Πpur
i . Specifically, let ω ∈ Ω be the random seed. The random policy

π(i) = {π(i)
h }h∈[H] for the agent i contains H mappings π(i)

h : Ω 7→ Πpur
h,i such that π(i)

h (ω) ∈ Πpur
h,i

is a pure policy. To execute π(i), the agent i first samples a random seed ω ∈ Ω, and then follows
the policy π(i)

h (ω) for all h ∈ [H]. The joint policy π of the n agents is a set of policies {π(i)}ni=1

where ω = (ω1, · · · , ωn) are joint variables. In other words, {π(i)
h (ω)}i∈[n] ∈ ⊗n

i=1Π
pur
h,i are random

policies of the n agents whose randomness is correlated by the random seed ω. Equivalently, we
can regard π as a random variable over ⊗n

i=1Π
pur
h,i. Furthermore, a special class of the joint policy is

the product policy, where each agent executes their own policies independently. In other words, we
have ω = (ω1, . . . , ωn), where ω1, . . . , ωn are independent, and each π(i) depends on ωi only. We
let πh(a | s) denote the probability of taking action a in the state s at step h. As a result, we have
πh(a | s) =

∏n
i=1 π

(i)
h (a(i) | s) for any product policy π.

Furthermore, using the notion of pure policy and joint policy, we can equivalently view the MG as a
normal form game over Πpur = ⊗n

i=1Π
pur
i . That is, each pure policy can be viewed as a pure strategy

of the normal form game, and each joint policy can be viewed as a mixed strategy. Such a view
is without loss of generality, because we can choose Πpur

i to be the set of all possible deterministic
policies of the agent i. Meanwhile, using a general Πpur

i , we can also incorporate parametric policies
as the pure policies, e.g., log-linear policies (Xie et al., 2021; Yuan et al., 2022; Cayci et al., 2021).

The value function V (i),π
h is the expected cumulative rewards received by the agent i from step h to

step H , when all the agents follow a joint policy π, which is defined as

V
(i),π
h (s) = Eπ

[ H∑
h′=h

r
(i)
h′ (sh′ , ah′)

∣∣∣ sh = s
]
.

We let V (i),π(ρ) = Es∼ρ[V
(i),π
1 (s)] denote the agent i’s expected cumulative rewards within the

whole episode. Besides, the corresponding Q-function (action-value function) can be written as

Q
(i),π
h (s, a) = Eπ

[ H∑
h′=h

r
(i)
h′ (sh′ , ah′)

∣∣∣ sh = s, ah = a
]
. (2.1)

For a joint policy π and any agent i, we let π(−i) denote the joint policy excluding the agent i. Given
π(−i), the best response of the agent i is defined as π(i),† = argmaxν∈∆(Πpur

i ) V
(i),ν×π(−i)

(ρ),
which is random policy of the agent i that maximizes its expected rewards when other agents follow
π(−i). Besides, we denote µ(i),π = (π(i),†, π(−i)).

Online Learning and Solution Concepts We focus on three common equilibrium notions in the
game theory: Nash Equilibrium (NE), Coarse Correlated Equilibrium (CCE) and Correlated Equi-
librium (CE).

First, a NE of a game is a product policy that no individual player can improve its expected cumula-
tive rewards by unilaterally deviating its local policy.
Definition 2.1 (ε-Nash Equilibrium). A product policy π is an ε-Nash Equilibrium if
V (i),µ(i),π

(ρ) ≤ V (i),π(ρ) + ε for all i ∈ [n], where µ(i),π = (π(i),†, π(−i)) and π(i),† is the
best response policy with respect to π(−i).
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In other words, a product policy π is an ε-Nash Equilibrium if and only if

max
i∈[n]

{
max

ν∈∆(Πpur
i )
V (i),ν×π(−i)

(ρ)− V (i),π(ρ)
}
≤ ε.

In this work, we design algorithms for the online and self-play setting. That is, we control the
joint policy all agents, interact with the environment over K episodes, and aim to learn the desired
equilibrium notion from bandit feedbacks. To this end, let πk denote the joint policy that the agents
execute in the k-th episode, k ∈ [K]. We define the Nash-regret as the cumulative suboptimality
across all agents with respect to NE.
Definition 2.2 (Nash-Regret). For all k ∈ [K], let πk denote the product policy deployed in the k-th
episode, then the Nash-regret is defined as

RegNE(K) =

K∑
k=1

n∑
i=1

(
V (i),µ(i),πk

(ρ)− V (i),πk

(ρ)
)
.

By replacing the concept of NE to CCE and CE, we can define CCE-regret and CE-regret in a similar
way. The detailed definitions are provided in §C.

We note that the definitions of NE, CCE, and CE align with those defined on the normal form
game defined on the space of pure policies. That is, each agent i’s “pure strategy” is a pure policy
π(i) ∈ Πpur

i , and the “payoff” of the agent i when the “mixed strategy” is π is given by V (i),π(ρ).

2.2 FUNCTION APPROXIMATION

To handle the large state space in MARL, we assume the access to a hypothesis class F , which
captures theQ function in the model-free setting and the transition kernel in the model-based setting.

Model-Based Function Approximation In the model-based setting, the hypothesis class F contains
the model (transition kernel) of MGs. Specifically, we let Pf = {P1,f · · · ,PH,f} denote the transi-
tion kernel parameterized by f ∈ F . When the model parameters are f and the joint policy is π, we
denote the value function and Q-function of the agent i at the h-th step as V (i),π

h,f (s) and Q(i),π
h,f (s, a)

respectively. We have the Bellman equation Q(i),π
h,f (s, a) = r

(i)
h (s, a) + Es′∼Ph,f (·|s,a)[V

(i),π
h+1,f (s

′)].

Model-Free Function Approximation In the model-free setting, we let F = ⊗n
i=1F (i) =

⊗n
i=1(⊗H

h=1F
(i)
h ) be a class of Q-functions of the n agents, where F (i)

h = {f (i)h : S ×A 7→ R} is a
class ofQ-functions of the agent i at the h-th step. For any f ∈ F , we denoteQ(i)

h,f (s, a) = f
(i)
h (s, a)

for all i ∈ [n] and h ∈ [H]. Meanwhile, for any joint policy π and any f ∈ F , we define

V
(i),π
h,f (s) = Ea∼π(s)[f

(i)
h (s, a)] = ⟨f (i)h (s, ·), πh(· | s)⟩A.

For any joint policy π, agent i, and step h, we define the Bellman operator T (i),π
h by letting

(T (i),π
h (fh+1))(s, a) = r

(i)
h (s, a) + Es′∼Ph(s′|s,a)⟨fh+1(s

′, ·), πh+1(· | s′)⟩A, ∀f ∈ F (i). (2.2)

Note that the Bellman operator depends on the index i of the agent because the reward functions of
the agents are different. Such a definition is an extension of the Bellman evaluation operator in the
single-agent setting (Puterman, 2014) to the multi-agent MGs. By definition, {Q(i),π

h } defined in
(2.1) is the fixed point of T (i),π

h , i.e., Q(i),π
h = T (i),π

h (Q
(i),π
h+1 ) for all h ∈ [H].

For both the model-based and the model-free settings, we impose the realizability assumption, which
requires that the hypothesis space F is sufficiently expressive such that it contains the true transi-
tion model or the true Q-functions. Besides, for the model-free setting, we also require that the
hypothesis classes be closed with respect to the Bellman operator.
Assumption 2.3 (Realizability and Completeness). For the model-based setting, we assume the true
transition model f∗ lies in the hypothesis class F . Besides, for the model-free setting, for any pure
policy π and any i ∈ [n], we assume that Q(i),π ∈ F (i) and T (i),π

h F (i)
h+1 ⊆ F (i)

h for all h ∈ [H].
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Covering Number and Bracketing Number. When a function class F is infinite, the δ-covering
number NF (δ) and the δ-bracketing number BF (δ) serve as surrogates of the cardinality of F . We
put the definitions in §C.2.

Multi-Agent Decoupling Coefficient Now we introduce a key complexity measure — multi-agent
decoupling coefficient (MADC) — which captures the hardness of exploration in MARL. Such a
notion is an extension of the decoupling coefficient (Dann et al., 2021) to general-sum MGs.
Definition 2.4 (Multi-Agent Decoupling Coefficient). The Multi-Agent Decoupling Coefficient of
a MG is defined as the smallest constant dMADC ≥ 1 such that for any i ∈ [n], µ > 0, {fk}k∈[K] ⊆
F (i), and {πk}k∈[K] ⊆ Πpur the following inequality holds:

K∑
k=1

(V
(i),πk

fk (ρ)− V (i),πk

(ρ))︸ ︷︷ ︸
prediction error

≤ 1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk)︸ ︷︷ ︸
training error

+µ · dMADC + 6dMADCH︸ ︷︷ ︸
gap

, (2.3)

where we define V (i),πk

fk (ρ) = Es1∼ρ[V
(i),πk

1,fk (s1)], and ℓ(i),s(fk, πk) is a discrepancy function that
measures the inconsistency between fk and πk, on the historical data. The specific definitions of
{ℓ(i),s}i∈[n],s∈[K−1] under the model-free and model-based settings are given in (2.4) and (2.5).

Model-Free RL In the model-free setting, for {πk}k∈[K] ⊆ Πpur in (2.3), the discrepancy function
ℓ(i),s(f, π) for π ∈ Πpur is defined as

ℓ(i),s(f, π) =

H∑
h=1

E(sh,ah)∼πs
h
((fh − T (i),π

h (fh+1))(sh, ah))
2, ∀f ∈ F (i),∀s ∈ [K]. (2.4)

That is, ℓ(i),s(f, π) measures agent i’s mean-squared Bellman error for evaluating π, when the
trajectory is sampled by letting all agents follow policy ζs.

Model-Based RL We choose the discrepancy function ℓ(i),s in Assumption 2.5 as

ℓ(i),s(fk, πk) =

H∑
h=1

E(sh,ah)∼πs
h
D2

H

(
Ph,fk(· | sh, ah)∥Ph,f∗(· | sh, ah)

)
, (2.5)

where DH denotes the Hellinger distance and E(sh,ah)∼πs
h

means that the expectation is taken with
respect to the randomness of the trajectory induced by πs on the true model f∗. Intuitively, it
represents the expected in-sample distance of model fk and true model f∗.

Note that the discrepancy between fk, πk in (2.3) is summed over s ∈ [k − 1]. Thus, in both the
model-free and model-based settings, the training error can be viewed as the in-sample error of fk
on the historical data collected before the k-th episode. Thus, for an MG with a finite MADC, the
prediction error is small whenever the training error is small. Specifically, when the training error is
O(Kα) for some α ∈ (0, 2), then by choosing a proper µ, we know that the prediction error grows
as O(

√
Kα · dMADC) = o(K). In other words, as K increases, the average prediction error decays

to zero. In single-agent RL, when we adopt an optimistic algorithm, the prediction error serves as
an upper bound of the regret (Dann et al., 2021; Zhong et al., 2022; Jin et al., 2021a). Therefore,
by quantifying how the prediction error is related to the training error, the MADC can be used to
characterize the hardness of exploration in MARL.

Compared to the decoupling coefficient and its variants for the single-agent MDP or the two-player
zero-sum MG Dann et al. (2021); Agarwal & Zhang (2022); Zhong et al. (2022); Xiong et al. (2022),
MADC selects the policy πk in a different way. In the single-agent setting, the policy πk is always
selected as the greedy policy of fk, hence V πk

1,fk(ρ) is equivalent to the optimal value function. In
the zero-sum MG, the policy pair πk is always selected as the Nash policy and the best response
(Xiong et al., 2022). On the contrary, in our definition, the policy πk is not necessarily the greedy
policy of fk. In fact, {πk}k∈[K] can be any pure policy sequence that is unrelated to {fk}k∈[K].
Assumption 2.5 (Finite MADC). We assume that the MADC of the general-sum MG of interest
is finite, denoted by dMADC. As we will show in Section D, the class of MGs with low MADCs
include a rich class of MG instances, including multi-agent counterparts of models with low Bellman
eluder dimensions (Jin et al., 2021a; 2022; Huang et al., 2021), bilinear classes (Du et al., 2021),
and models with low witness ranks (Sun et al., 2019; Huang et al., 2021).
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3 ALGORITHM AND RESULTS

In this section, we first introduce a unified algorithmic framework called Multi-Agent Maximize-to-
EXplore (MAMEX). Then, we present the regret and sample complexity upper bounds of MAMEX,
showing that both the model-free and model-based versions of MAMEX are sample-efficient for
learning NE/CCE/CE under the general function approximation.

3.1 ALGORITHM

Algorithm 1 Multi-Agent Maximize-to-EXplore (MAMEX)
1: Input: Hypothesis class F , parameter η > 0, and an equilibrium solving oracle EQ.
2: for k = 1, 2, · · · ,K do
3: Compute V

k
i (π) defined in (3.1) for all π ∈ Πpur and all i ∈ [n].

4: Compute the NE/CCE/CE of the normal-form game defined on Πpur with payoff functions
{V k

i (π)}ni=1: πk ← EQ(V
k
1 , V

k
2 , · · · , V

k
n).

5: Sample a pure joint policy ζk ∼ πk, and collect a trajectory {skh, ak
h}h∈[H] following ζk.

6: Update {L(i),k}ni=1 according to (3.2) (model-free) or (3.3) (model-based).
7: end for

In this subsection, we provide the MAMEX algorithm for multi-agent RL under the general function
approximation, which extends the MEX algorithm (Liu et al., 2023) to general-sum MGs. Recall
that the definitions of NE/CCE/CE of general-sum MGs coincide with those defined in the normal-
form game with pure strategies being the pure policies in Πpur. Thus, when we know the payoffs
{V (i),π(ρ)}i∈[n] for all π ∈ Πpur, we can directly compute the desired NE/CCE/CE given an equi-
librium solving oracle for the normal-form game. However, each V (i),π(ρ) is unknown and has to
be estimated from data via online learning. Thus, in a nutshell, MAMEX is an iterative algorithm
that consists of the following two steps:

(a) Policy evaluation: For each k ∈ [K], construct an estimator V
k

i (π) of V (i),π(ρ) for each pure
policy π ∈ Πpur and the agent i ∈ [n] in each episode based on the historical data collected in the
previous k−1 episodes. Here, the policy evaluation subproblem can be solved in both the model-free
and model-based fashion.

(b) Equilibrium finding: Compute an equilibrium (NE/CCE/CE) for the normal-form game over the
space of pure policies with the estimated payoff functions {V k

i (π)}ni=1. The joint policy returned
by the equilibrium finding step is then executed in the next episode to generate a new trajectory.

By the algorithmic design, to strike a balance between exploration and exploitation, it is crucial to
construct {V k

i (π)}ni=1 in such a way that promotes exploration. To this end, we solve a regularized
optimization problem over the hypothesis class F (i) to obtain V

k

i (π), where the objective function
balances exploration with exploitation. We introduce the details of MAMEX as follows.

Policy Evaluation. For each k ∈ [K], before the k-th episode, we have collected k − 1 trajectories
τ1:k−1 = ∪k−1

t=1 {st1, at1, rt1, · · · , stH , atH , rtH}. For any i ∈ [n], π ∈ Πpur and f ∈ F (i)2, we can
define a data-dependent discrepancy function L(i),k−1(f, π, τ1:k−1). Such a function measures the
in-sample error of the hypothesis f with respect a policy π, evaluated on the historical data τ1:k−1.
The specific form of such a function differs under the model-free and model-based settings. In par-
ticular, as we will show in (3.2) and (3.3) below, under the model-free setting, L(i),k−1(f, π, τ1:k−1)

is constructed based on the mean-squared Bellman error with respect to the Bellman operator T (i),π
h

in (2.2), while under the model-based setting, L(i),k−1(f, π, τ1:k−1) is constructed based on the
negative log-likelihood loss. Then, for each π ∈ Πpur and i ∈ [n], we define V

k

i (π) as

V
k

i (π) = sup
f∈F(i)

{
V̂ (i),π,k(f) := V

(i),π
f (ρ)︸ ︷︷ ︸

(a)

−η · L(i),k−1(f, π, τ1:k−1)︸ ︷︷ ︸
(b)

}
. (3.1)

2For ease of notation, under the model-based setting, we denote F (i) = F for all agent i ∈ [n].
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Equilibrium Finding. Afterwards, the algorithm utilizes the equilibrium oracle EQ (Line 4 of
Algorithm 1) to compute an equilibrium (NE/CCE/CE) for the normal-form game over Πpur with
payoff functions {V k

i (π)}ni=1. The solution to the equilibrium oracle is a mixed strategy πk, i.e., a
probability distribution over Πpur.

Finally, we sample a random pure policy ζk from πk and execute ζk in the k-th episode to generate
a new trajectory. See Algorithm 1 for the details of MAMEX. Here, we implicitly assume that
Πpur is finite for ease of presentation. For example, Πpur is the set of all deterministic policies.
When Πpur is infinite, we can replace Πpur by a 1/K-cover of Πpur with respect to the distance
d(i)(π(i), π̃(i)) = maxs∈S ∥π(i)(· | s)− π̃(i)(· | s)∥1.

Furthermore, the objective V̂ (i),π,k(f) in (3.1) is constructed by a sum of (a) the value function
V

(i),π
f (ρ) of π under the hypothesis f and (b) a regularized term −η · L(i),k−1(f, π, τ1:k−1), and

the payoff function V
k

i (π) is obtained by solving a maximization problem over F (i). The two
terms (a) and (b) represent the ”exploration” and ”exploitation” objectives, respectively, and the
parameter η > 0 controls the trade-off between them. To see this, consider the case where we
only have the term (b) in the objective function. In the model-based setting, (3.1) reduces to the
maximum likelihood estimation (MLE) of the model f given the historical data τ1:k−1. Then πk

returned by Line 4 is the equilibrium policy computed from the MLE model. Thus, without term
(a) in V̂ (i),π,k(f), the algorithm only performs exploitation. In addition to fitting the model, the
term (a) also encourages the algorithm to find a model with a large value function under the given
policy π, which promotes exploration. Under the model-free setting, only having term (b) reduces
to least-squares policy evaluation (LSPE) (Sutton & Barto, 2018), and thus term (b) also performs
exploitation only.

Comparison with Single-Agent MEX (Liu et al., 2023). When reduced to the single-agent MDP,
MAMEX can be further simplified to the single-agent MEX algorithm (Liu et al., 2023). In par-
ticular, when n = 1, equilibrium finding is reduced to maximizing the function defined in (3.1)
over single-agent policies, i.e., maxπ maxf∈F V̂

π,k(f). By exchanging the order of the two max-
imizations, we obtain an optimization problem over the hypothesis class F , which recovers the
single-agent MEX (Liu et al., 2023). In contrast, in general-sum MGs, the equilibrium policy can
no longer be obtained by a single-objective optimization problem. Hence, it is unviable to directly
extend MEX to optimize over hypothesis space in MARL. Instead, MAMEX solves an optimization
over F in the style of MEX for each pure policy π ∈ Πpur, and then computes the NE/CCE/CE of
the normal-form game over the space of pure policies.

Comparison with Existing MARL Algorithms with Function Approximation Previous RL al-
gorithms for MGs with the general function approximation usually require solving minimax opti-
mization (Chen et al., 2022b; Zhan et al., 2022a; Foster et al., 2023) or constrained optimization
subproblems within data-dependent constraints (Wang et al., 2023). In comparison, the optimiza-
tion subproblems of MEX are single-objective and do not have data-dependent constraints, and thus
seem easier to implement. For example, in practice, the inner problem can be solved by a regularized
version of TD learning (Liu et al., 2023), and the outer equilibrium finding can be realized by any
fast method to calculate equilibrium (Hart & Mas-Colell, 2000; Anagnostides et al., 2022).

In the following, we instantiate the empirical discrepancy function L(i),k−1 for both the model-free
setting and the model-based setting.

Model-Free Algorithm Under the model-free setting, we define the empirical discrepancy function
L as follows. For any h ∈ [H] and k ∈ [K], let ξkh = {skh, akh, skh+1}. For any i ∈ [n], π ∈ Πpur and
f ∈ F (i), we define

L(i),k−1(f, π, τ1:k−1) =

H∑
h=1

k−1∑
j=1

[(
l
(i)
h (ξjh, f, f, π)

)2 − inf
f ′
h∈F(i)

h

(
l
(i)
h (ξjh, f

′, f, π)
)2]

, (3.2)

where l(i)h (ξjh, f, g, π) = (fh(s
j
h, a

j
h) − r

(i)
h (sjh, a

j
h) − ⟨gh+1(s

j
h+1, ·), πh+1(· | sjh+1)⟩A)2 is the

mean-squared Bellman error involving fh and gh+1.
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In Lemma E.1, we can show that L(i),k−1(f, π, τ1:k−1) is an upper bound of
∑k−1

s=1 ℓ
(i),s(f, π),

where ℓ(i),s is defined in (2.4). Thus, the function L(i),k−1 can be used to control the training error
in the definition of MADC.

Model-Based Algorithm For the model-based setting, we define L(i),k−1 as the negative log-
likelihood:

L(i),k−1(f, π, τ1:k−1) =

H∑
h=1

k−1∑
j=1

− logPh,f (s
j
h+1 | sjh, a

j
h). (3.3)

As we will show in Lemma E.3, the function L(i),k−1 can be used to control the training error in
(2.3), where ℓ(i),s is defined in (2.5).

3.2 THEORETICAL RESULTS

In this subsection, we present our main theoretical results and show that MAMEX (Algorithm 1) is
sample-efficient for learning NE/CCE/CE in the context of general function approximation.

Theorem 3.1. Let the discrepancy function ℓ(i),s in (2.3) be defined in (2.4) and (2.5) for model-free
and model-based settings, respectively. Suppose Assumptions 2.3 and 2.5 hold. By setting K ≥ 16
and η = 4/

√
K ≤ 1, with probability at least 1 − δ, the regret of Algorithm 1 after K episodes is

upper bounded by

RegNE,CCE,CE(K) ≤ Õ
(
nH

√
KΥF,δ + ndMADC

√
K + ndMADCH

)
,

where Õ(·) hides absolute constants and polylogarithmic terms in H and K, and ΥF,δ is a
term that quantifies the complexity of the hypothesis class F . In particular, we have ΥF,δ =
R2 log(maxi∈[n] NF(i)(1/K) · |Πpur|/δ) in the model-free setting and ΥF,δ = log (BF (1/K)/δ)
in the model-based setting.

Theorem 3.1 shows that our MAMEX achieves a sublinear
√
K-regret for learning NE/CCE/CE,

where the multiplicative factor depends polynomially on the number of agents n and horizon H .
Thus, MAMEX is sample-efficient in the context of the general function approximation. More-
over, the regret depends on the complexity of the hypothesis class via two quantifies – the MADC
dMADC, which captures the inherent challenge of exploring the dynamics of the MG, and the quan-
tity ΥF,δ , which characterizes the complexity of estimating the true hypothesis f∗ based on data.
To be more specific, in the model-free setting, since we need to evaluate each pure policy, ΥF,δ con-
tains log |Πpur| due to uniform concentration. When reduced to the tabular setting, we can choose
Πpur to be the set of deterministic policies, and both ΥF,δ and dMADC are polynomials of |S| and
|A|. Furthermore, when specialized to tractable special cases with function approximation and some
special pure policy class such as log-linear policy class Cayci et al. (2021), we show in §D that The-
orem D.8 yields regret upper bounds comparable to existing works. Moreover, using the standard
online-to-batch techniques, we can transform the regret bound into a sample complexity result. We
defer the details to §E.3.

4 CONCLUSION

In this paper, we study multi-player general-sum MGs under the general function approximation.
We propose a unified algorithmic framework MAMEX for both model-free and model-based RL
problems with the general function approximation. Compared with previous works that either solve
constrained optimization subproblems within data-dependent sub-level sets (Wang et al., 2023), or
complex multi-objective minimax optimization subproblems (Chen et al., 2022b; Foster et al., 2023),
the implementation of MAMEX requires only an oracle for solving a single-objective unconstrained
optimization problem with an equilibrium oracle of a normal-form game, thus being more amenable
to empirical implementation. Moreover, we introduce a complexity measure MADC to capture the
exploration-exploitation tradeoff for general-sum MGs. We prove that MAMEX is provably sample-
efficient in learning NE/CCE/CE on RL problems with small MADCs, which covers a rich class of
MG models. When specialized to the special examples with small MADCs, the regret of MAMEX
is comparable to existing algorithms that are designed for specific MG subclasses.
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Appendix

A RELATED WORK

Markov Games Markov Game (MG) (Littman, 1994) is a popular model of multi-agent reinforce-
ment learning, which generalizes the Markov decision process to multiple agents. A series of recent
works design the sample-efficient algorithm for two-agent zero-sum games (Wei et al., 2017; Zhang
et al., 2020; Xie et al., 2020; Bai et al., 2020; Bai & Jin, 2020; Bai et al., 2021; Zhao et al., 2021;
Huang et al., 2021; Jin et al., 2022; Chen et al., 2022b;d). For instance, Bai & Jin (2020) provide a
sample-efficient algorithm in an episodic MG based on optimistic value iteration. Xie et al. (2020);
Chen et al. (2022d) mainly focus on zero-sum MGs with a linear structure. Huang et al. (2021);
Jin et al. (2022); Chen et al. (2022b) further consider the two-player zero-sum MGs under general
function approximation, and provide algorithms with a sublinear regret. Another line of research
focuses on general-sum MGs with multiple players (Jin et al., 2020a; Liu et al., 2021; Tian et al.,
2021; Jin et al., 2021b; Song et al., 2021; Liu et al., 2022b; Daskalakis et al., 2022; Zhan et al.,
2022a; Cui et al., 2023; Wang et al., 2023). Some of previous works (Liu et al., 2021; Tian et al.,
2021; Liu et al., 2022b) consider learning all three equilibrium notions — NE, CCE, and CE —
and their regret or sample complexity results are exponential in the number of agents. To break this
exponential curse, some existing works propose decentralized algorithms for learning CCE or CE
rather than NE (Jin et al., 2021b; Daskalakis et al., 2022; Zhan et al., 2022a; Cui et al., 2023; Wang
et al., 2023).

Moreover, there are also some works to study how to learn the equilibrium from a practical per-
spective. The EGTA (Wellman, 2006) uses a graph to represent the deviation for all profiles and
identify the Nash equilibrium and whether a profile is relatively stable. Note if we want to evaluate
all profiles and construct the whole graph, we need many samples to estimate the payoff functions
for each profile, and then identify all the deviations and construct the graph. The author also men-
tions that one may apply machine learning techniques to fit a payoff function over the entire profile
space given the available data. In fact, we use the function approximation technique to derive an
estimate of all the profiles without estimating all the profiles. Thus, our approach can be considered
as a learning approach to evaluate all the profiles.

Some previous works (Lanctot et al., 2017; Marris et al., 2021) propose a practical algorithm PSRO
to compute the equilibrium in Markov Games, which also needs an equilibrium-solving oracle to
learn the equilibrium. To be more specific, the PSRO learns the equilibrium in the following way:
At first, every player chooses a uniform policy as their strategy. The algorithm then calculates the
equilibrium by a meta-solver and trains an oracle that outputs the best response πi of the equilibrium
for player i. After that, the algorithm adds πi into the strategy space of the player i. Last, the
algorithm simulates all the new joint policy and construct a new normal-form game for the next
iteration. However, in each iteration, it should simulate all the new joint policies and estimate
the return. Consequently, the sample complexity increases exponentially as the iteration rounds
increase. Different from PSRO, MAMEX utilizes the function approximation technique to the value
function. The precise characterization of the structure of the value function can help us to evaluate
the policy without actually simulating the environment with more samples. To be more specific,
at each round, instead of simulating the environment and getting a Monte-Carlo return of each
joint policy, MAMEX only needs to solve a regularized optimization problem over the function
space of the value function. The solution of the optimization problem is used to be a payoff for
the normal-form game. Since solving this optimization subproblem does not need to additional
samples, MAMEX bypasses the requirement for exponential samples to simulate the environment
and estimate the value for each joint policy π. This characteristic enhances its sample efficiency in
comparison to PSRO.

MARL with Function Approximation There are many papers working on multi-player general-
sum MGs with the function approximation (Zhan et al., 2022a; Ni et al., 2022; Chen et al., 2022b;
Wang et al., 2023; Cui et al., 2023; Foster et al., 2023) that build upon previous works for function
approximation in the single-agent setting (Jiang et al., 2017; Sun et al., 2019; Jin et al., 2020b;
Wang et al., 2020b; Dann et al., 2021; Du et al., 2021; Jin et al., 2021a; Foster et al., 2021; Chen
et al., 2022c; Agarwal & Zhang, 2022; Zhong et al., 2022; Liu et al., 2023). In recent years, Xiong
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et al. (2022) consider the multi-agent decoupling coefficient in the two-player zero-sum MGs, and
provide the posterior sampling algorithm. However, unlike a zero-sum MG, a general-sum MG
can have various equilibrium concepts, each of which aligns with a specific set of policies. Hence,
their definition of the multi-agent decoupling coefficient cannot be extended to the general-sum
setting. Chen et al. (2022b) and Foster et al. (2023) generalize the complexity measure Decision-
Estimation Coefficient (DEC), and learn the equilibria in model-based general-sum MGs. Ni et al.
(2022) provide both a model-based algorithm and a model-free algorithm for the low-rank MGs.
Some previous works (Zhan et al., 2022a; Wang et al., 2023; Cui et al., 2023) provide model-free
algorithms that learn CCE and CE with polynomial sample complexity. Compared to their works,
this paper provides a unified algorithmic framework for both model-free and model-based MARL
problems, which learns NE/CCE/CE efficiently under general function approximation and provides
comparable regret to existing works. In particular, our work provides the first model-free algorithm
for learning NE/CCE/CE of general-sum MGs in the context of the general function approximation.

B NOTATION

For n sets F1, · · · ,Fn, we let ⊗n
i=1Fi denote F1 × · · · × Fn. For a set A, we denote ∆(A) as

a set of probability distributions over A. For a vector x ∈ Rn, we denote ∥x∥1 =
∑n

i=1 |xi|,
∥x∥2 =

√∑n
i=1 x

2
i and ∥x∥∞ = maxni=1 |xi|. For a function f : X 7→ Y , we denote

∥f∥∞ = supx∈X |f(x)| as the infinity norm. For two functions f, g : A 7→ R, we denote
⟨f, g⟩A = Ea∈A[f(x)g(x)] as the inner product with respect to the set A. For a Hilbert space
V and f, g ∈ V , we denote ⟨f, g⟩V as the inner product defined in the Hilbert space V, and ∥f∥V
is the norm defined in Hilbert space V. For two distributions over P,Q ∈ ∆(X ), the Hellinger dis-
tance is defined asD2

H(P∥Q) = 1
2Ex∼P [(

√
dP (x)/dQ(x)−1)2]. For a vector x ∈ Rd, the softmax

mapping is denoted by Softmax(x) ∈ Rd with
(
Softmax(x)

)
i
= exi/

∑
i∈[d] e

xi .

C ADDITIONAL DEFINITIONS

C.1 NE/CCE/CE-REGRET

In the following, we provide the definitions of Coarse Correlated Equilibrium (CCE), Correlated
Equilibrium (CE), and the corresponding regret CCE-regret and CE-regret. A Coarse Correlated
Equilibrium is a joint policy π such that no agent can achieve higher rewards by only changing its
local policy. Compared with a NE, a CCE allows different agents to be correlated, while NE only
considers product policies.
Definition C.1 (ε-Coarse Correlated Equilibrium). A joint policy π is a ε-Coarse Correlated Equi-
librium if V (i),µ(i),π

(ρ) ≤ V (i),π(ρ) + ε for all i ∈ [n].

Here, the definition of ε-CCE is similar to that of an ε-NE. But here π is a joint policy, i.e., the
randomness of the local policies of the n agents can be coupled together. As a result, CCE is a more
general equilibrium notion than NE. Similarly, we can define the CCE-regret, which represents the
cumulative suboptimality across all agents with respect to CCE.
Definition C.2 (CCE-Regret). For all k ∈ [K], let πk denote the joint policy that is deployed in the
k-th episode, then the CCE-regret is defined as

RegCCE(K) =

K∑
k=1

n∑
i=1

(
V (i),µ(i),πk

(ρ)− V (i),πk

(ρ)
)
.

Last, the Correlated Equilibrium has been extensively studied in previous works for MARL (Jin
et al., 2020a; Chen et al., 2022b; Cui et al., 2023; Wang et al., 2023). To introduce the concept of
CE, we need first to introduce the strategy modification. A strategy modification for the i-th agent
is a mapping ϕi : Π

pur
i → Πpur

i . Given any random policy π, the best strategy modification for i-th
agent is defined as argmaxϕi

Eυ∼π[V
ϕi(υ

(i))×υ(−i)

(ρ)]. A CE is a joint policy π such that no agent
can achieve higher rewards by only changing its local policy through strategic modification.
Definition C.3 (ε-Correlated Equilibrium). A joint policy π is a ε-Correlated Equilibrium if
maxϕi Eυ∼π[V

ϕi(υ
(i))×υ(−i)

(ρ)] ≤ V π(ρ) + ε for any agent i ∈ [n].
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We can similarly define CE-regret as the sum of suboptimality terms with respect to CE.

Definition C.4 (CE-Regret). For any k ∈ [K], let πk denote the joint policy that is deployed in the
k-th episode, the CE-regret is defined as

RegCE(K) =

K∑
k=1

n∑
i=1

(
max
ϕi

Eυ∼πk

(
V (i),ϕi(υ

(i))×υ(−i)

(ρ)
)
− V (i),πk

(ρ)

)
.

Compared to the NE/CCE regret, the strategy modification of one agent in CE can be correlated to
the policies of other agents. Instead, the best response is independent of the other agents.

C.2 COVERING NUMBER AND BRACKETING NUMBER

When a function class F is infinite, the δ-covering number and the δ-bracketing number serve as
surrogates of the cardinality of F . Intuitively, the δ-covering number is the minimum number of
balls of radius δ required to cover a set.

Definition C.5 (δ-Covering Number). The δ-covering number of a function class F with respect to
distance metric d, denoted as NF (δ, d), is the minimum integer q satisfying the following property:
there exists a subset F ′ ⊆ F with |F ′| = q such that for any f1 ∈ F we can find f2 ∈ F ′ with
d(f1, f2) ≤ δ. To simplify the notation, we write NF (δ, ∥ · ∥∞) as NF (δ).

Definition C.6 (δ-Bracketing Number). A δ-bracket of size N is a bracket {gi1, gi2}Ni=1, where gi1
and gi2 are functions mapping any policy π and trajectory τ to R, such that for all i ∈ [N ], π ∈ Π
we have ∥gi1(π, ·) − gi2(π, ·)∥ ≤ δ. Also, for any f ∈ F , there must exist an i ∈ [N ] such that
gi1(π, τH) ≤ Pπ

f (τH) ≤ gi2(π, τH) for all possible τH and π. The δ-bracketing number of F , denoted
by BF (δ), is the minimum size of a δ-bracket.

D RELATIONSHIPS BETWEEN MADC AND TRACTABLE RL PROBLEMS

In this section, we show that the class of MGs with finite MADCs contains a rich class of models.
Thus, when applied to these concrete MARL models, Theorem 3.1 shows that MAMEX learns
NE/CCE/CE with provable sample efficiency.

In the sequel, we instantiate the discrepancy function ℓ(i),s for both model-free and model-based
MARL, and introduce some concrete general-sum MG models that satisfy Assumption 2.5.

D.1 MODEL-FREE MARL PROBLEMS

Now we provide function classes with small MADCs including multi-agent counterparts of models
with low Bellman eluder dimensions (Jin et al., 2021a; Huang et al., 2021) and Bilinear Classes (Du
et al., 2021). Then, we introduce some concrete examples in these members and show that the regret
upper bound of MAMEX in Theorem 3.1, when specialized to these special cases, are comparable
to existing works.

Multi-Agent Bellman Eluder Dimension Recently, Jin et al. (2021a) introduce a model-free
complexity measure called Bellman Eluder dimension (BE dimension)and show that function
classes with low BE dimensions contain a wide range of RL problems such as linear MDP (Jin
et al., 2020b), kernel MDP (Jin et al., 2021a) and function classes with low eluder dimension (Wang
et al., 2020a). In this subsection, we extend the notion of BE dimension to MARL. First, we intro-
duce the definition of ε-independence between distributions and the concept of distribution eluder
dimension.

Definition D.1 (ε-Independent Distributions). Let G be a function class on X , and υ, µ1, · · · , µn

are probability distributions over X . We called υ is ε-independent of {µ1 · · ·µn} with respect to G
if there exists a function g ∈ G such that

√∑n
i=1(Eµi [g])

2 ≤ ε and |Eυ[g]| > ε.

By this definition, if ν is ε-dependent of {µ1, · · · , µn}, then whenever we have
√∑n

i=1(Eµi
[g])2 ≤

ε for some g ∈ G, we also have |Eυ[g]| ≤ ε.
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Definition D.2 (Distribution Eluder Dimension). Let G be a function class on X and D be a family
of probability measures over X . The distributional eluder dimension dimDE(G,D, ε) is the length
of the longest sequence ρ1, · · · , ρn ⊆ D such that there exists ε′ ≥ ε where ρi is ε′-independent of
{ρ1, · · · , ρi−1} for all i ∈ [n].

In other words, distributional eluder dimension dimDE(G,D, ε) is the length of the longest se-
quences of distributions in D such that each element is ε′-independent of its predicessors with
respect to G, from some ε′ ≥ ϵ. Such a notion generalizes the standard eluder dimension Russo
& Van Roy (2013) to the distributional setting. When we set D to be the set of Dirac measures
{δx(·)}x∈X , the distributional eluder dimension dimDE(G −G,D, ε) reduces to the standard eluder
dimension introduced in Russo & Van Roy (2013). Here, G − G = {g1 − g2 : g1, g2 ∈ G}.

For any agent i and any pure policy π ∈ Πpur, we denote the function class of the Bellman residual
as F (i),π

h = {fh − T (i),πfh+1 | f ∈ F (i)}. Now we introduce the definition of the multi-agent BE
dimension with respect to a class of distributions.
Definition D.3 (Multi-Agent Bellman Eluder Dimension). Let D = {Dh}h∈[H] be a set of H
classes of distributions over S×A, one for each step of an episode. The multi-agent Bellman eluder
(BE) dimension with respect to D is defined as

dimMABE(F ,D, ε) = max
h∈[H]

max
i∈[n]

{
dimDE

( ⋃
π∈Πpur

F (i),π
h ,Dh, ε

)}
. (D.1)

In other words, the multi-agent BE dimension is defined as the maximum of the distribution eluder
dimensions with respect toDh, based on the agent-specific Bellman residue classes

⋃
π∈Πpur F (i),π

h .
Compared with the BE dimension for single-agent RL (Jin et al., 2021a), the multi-agent version
takes the maximum over the agent index i ∈ [n], and the function class involves the union of the
function class F (i),π

h for all π ∈ Πpur. In comparison, leveraging the facts that the optimal policy is
the greedy policy of the optimal value function, and that the optimal value function is the fixed point
of the Bellman optimality operator, it suffices to only consider residues of the Bellman optimality
operator in the definition of single-agent BE dimension. In contrast, for general-sum MGs, finding
the desired equilibrium policies is not a single-objective policy optimization problem, and the notion
of the Bellman optimality operator is not well-defined. As a result, to extend the concept of Bellman
eluder dimension to general-sum MGs, in the function class, we take into account F (i),π

h for all
π ∈ Πpur, which correspond to evaluating the performance of all the pure policies. Besides, in
(D.1), we also take the maximum over all agents i ∈ [n] and all steps h ∈ [H], which aligns with
the definition of single-agent BE dimension.

Furthermore, in the definition of multi-agent BE dimension, we need to specify a set of distributions
D = {Dh}h∈[H] over S×A. We consider two classes. First, letD∆ = {D∆,h}h∈[H] denote a class
of probability measures over S × A with D∆,h = {δ(s,a)(·) | (s, a) ∈ S × A}, which contains all
the Dirac measures that put mass one to a state-action pair at step h. Second, given the set of pure
policies Πpur, we let DΠ = {DΠ,h}h∈[H] denote a class of probability measures induced Πpur as
follows. For any π ∈ Πpur, when all the agents follow π on the true MG model, they generate a
Markov chain {sh, ah}h∈[H] whose joint distribution is determined by π, denoted by Pπ . Then, for
any h ∈ [H], we define DΠ,h = {ρ ∈ ∆(S × A) | ρ(·) = Pπ((sh, ah) = ·), π ∈ Πpur}, i.e., DΠ,h

denotes the collection of all marginal distributions of (sh, ah) induced by pure policies.

In the following, to simplify the notation, we denote

dimMABE(F , ε) = min
{
dimMABE(F ,D∆, ε), dimMABE(F ,DΠ, ε)

}
. (D.2)

The following theorem shows that, when F satisfies realizability and completeness (Assumption
2.3), for a general-sum MG with a finite multi-agent BE dimension given by (D.2), its multi-agent
decoupling coefficient (Definition 2.4) is also bounded. In other words, Assumption 2.5 holds any
general-sum MG model with a low multi-agent BE dimension. As a result, the class of MGs with fi-
nite multi-agent BE dimensions is a subclass of MGs with finite multi-agent decoupling coefficients.
Theorem D.4 (Low Multi-Agent BE Dimension ⊆ Low MADC). Let K any integer and let F be a
hypothesis class under the model-free setting, i.e., a class of Q-functions. Assume that F satisfy the
realizability and completeness condition specified in Assumption 2.3. Suppose that F has a finite
multi-agent BE dimension d = dimMABE(F , 1/K), then with the discrepancy function ℓ(i),s given
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in (2.4), the multi-agent decoupling coefficient of F satisfies dMADC = O(dH logK), where O(·)
omits absolute constants.

Proof. See §F.1 for a detailed proof.

Combining Theorem 3.1 and Theorem D.4, we obtain that MAMEX achieves a sublinear
Õ(ndH

√
K+ndH2+nHR2

√
K logΥF,δ) regret for function classes with a finite multi-agent BE

dimension d. It remains to see that that function classes with low multi-agent BE dimensions contain
a wide range of RL problems. To this end, we prove that if the eluder dimension (Russo & Van Roy,
2013) of the function class F (i)

h is small for all h ∈ [H] and i ∈ [n], then F = ⊗n
i=1(⊗H

h=1F
(i)
h )

has a low multi-agent BE dimension. Function classes with finite eluder dimension contains linear,
generalized linear, and kernel functions (Russo & Van Roy, 2013), and thus contains a wide rage of
MG models. On these MG problems, the model-free version of MAMEX achieve sample efficiency
provably.

Theorem D.5. Suppose F satisfies Assumption 2.3. For any i ∈ [n] and h ∈ [H], let dimE(F (i)
h , ε)

denote the eluder dimension of F (i)
h , which is a special case of the distributional eluder dimension

introduced in Definition D.2. That is, dimE(F (i)
h , ε) is equal to dimDE(F (i)

h −F (i)
h , D∆, ε), where

F (i)
h − F (i)

h = {g : g = f1 − f2, f1, f2 ∈ F (i)
h } and D∆ contains the class of dirac measures on

S ×A. Then, the multi-agent BE dimension defined in (D.2) satisfy

dimMABE(F , ε) ≤ max
h∈[H]

max
i∈[n]

dimE(F (i)
h , ε).

Proof. See §F.2 for a detailed proof.

Multi-Agent Bilinear Classes Bilinear Classes (Du et al., 2021) consists of MDP models where
the Bellman error admits a bilienar structure. On these models, Du et al. (2021) propose online RL
algorithms that are provably sample-efficient. Thus, Bilinear Classes is a family of tractable MDP
models with general function approximation. In the sequel, we extend Bilinear Classes to general-
sum MGs and show that such an extension covers some notable special cases studied in the existing
works. Then, we prove that multi-agent Bilinear Classes have a small MADC, thus satisfying the
Assumption 2.5. Therefore, when applied to these problems, MAMEX provably achieves sample
efficiency.

Definition D.6 (Multi-Agent Bilinear Classes). Let V be a Hilbert space and let ⟨·, ·⟩V and ∥ · ∥V
denote the inner product and norm on V . Given a multi-agent general-sum MG with a hypothesis
class F satisfying Assumption 2.3, it belongs to multi-agent Bilinear Classes if there exist H func-
tions {W (i)

h : F (i) × Πpur 7→ V}Hh=1 for each agent i ∈ [n] and {Xh : Πpur 7→ V}Hh=1 such that
the Bellman error of each agent i can be factorized using W (i)

h and Xh. That is, for each i ∈ [n],
f ∈ F (i), h ∈ [H], π, π′ ∈ Πpur, we have∣∣∣E(sh,ah)∼π′

[
fh(sh, ah)− r

(i)
h (sh, ah)− Es′∼Ph(s′|sh,ah)⟨fh+1(s

′, ·), πh+1(· | s′)⟩A
]∣∣∣

=
∣∣∣〈W (i)

h (f, π)−W
(i)
h (f (i),µ

(i),π

, µ(i),π), Xh(π
′)
〉
V

∣∣∣, (D.3)

where µ(i),π = (π(i),†, π(−i)) is the best response for i-th agent given that the other agents all follow
π. Here, the function f (i),µ

(i),π

is the fixed point of T (i),µ(i),π

, i.e.,

f
(i),µ(i),π

h = T (i),µ(i),π

fµ
(i),π

h+1 . (D.4)

Moreover, we require that {W (i)
h , Xh}h∈[H] satisfy a regularity condition

sup
π∈Πpur,h∈[H]

∥Xh(π)∥V ≤ 1, sup
i∈[n],f∈F(i),π∈Πpur,h∈[H]

∥W (i)
h (f, π)∥V ≤ BW , (D.5)

where BW is a constant.
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In this definition, for any π ∈ Πpur and f ∈ F (i),

fh(sh, ah)− r
(i)
h (sh, ah)− Es′∼Ph(s′|sh,ah)⟨fh+1(s

′, ·), πh+1(· | s′)⟩A

is the Bellman error of f at (sh, ah) for evaluating policy π on behalf of agent i. On the left-hand side
of (D.3), we evaluate such a Bellman error with respect to the distribution induced by another policy
π′. Equation (D.3) shows that this error can be factorized into the inner product between W (i)

h and
X

(i)
h , where both W (i)

h only involves (f, π) while X(i)
h only involves π′. Thus, multi-agent Bilinear

Classes specifies a family of Markov games whose Bellman error satisfies a factorization property.
Furthermore, recall that the best response π(i),† = maxν∈∆(Πpur

i ) V
ν,π(−i)

is attained at some pure

policy, thus we have µ(i),π ∈ Πpur. Under Assumption 2.3, the fixed point f (i),µ
(i),π

in (D.4) is
guaranteed to exist and belongs to F .

We define Xh = {Xh(π) : f ∈ F , π ∈ Πpur} and X =
⋃H

h=1 Xh. The complexity of the multi-
agent bilinear class essentially is determined by the complexity of the Hilbert space V . To allow V be
infinite-dimensional, we introduce the notion of information gain, which characterizes the intrinsic
complexity of V in terms of exploration.

Definition D.7 (Information Gain). Suppose V is a Hilbert space and X ⊆ V . For ε > 0 and integer
K > 0, the information gain γK(ε,X ) is defined by

γK(ε,X ) = max
x1,··· ,xK∈X

log det

(
I +

1

ε

K∑
k=1

xkx
⊤
k

)
.

The following theorem shows that multi-agent Bilinear Classes with small information gain have
low MADCs.

Theorem D.8 (Multi-Agent Bilinear Classes ⊆ Low MADC). For a general-sum MG in the multi-
agent bilinear class with a hypothesis class F , let γK(ε,X ) =

∑H
h=1 γK(ε,Xh) be the information

gain. Then, Assumption 2.5 holds with the discrepancy function ℓ(i),s given in (2.4). In particular,
we have

dMADC ≤ max
{
1, 8R2 · γK(1/(KB2

W ),X )
}
,

where BW is given in (D.5) and R ∈ (0, H] is an upper bound on
∑H

h rh.

Proof. See §F.3 for a detailed proof.

Now we introduce some concrete members of multi-agent Bilinear Classes, which are general-sum
MGs with linear function approximation. In single-agent RL, linear Bellman complete MDPs (Wang
et al., 2019) assume that the MDP model satisfies the Bellman completeness condition with respect
to linear Q-functions. We can extend such a model to general-sum MGs.

Example D.9 (Linear Bellman Complete MGs). We say a Markov Game is a linear Bellman com-
plete MG of dimension d, if for any step h ∈ [H] there exists a known feature ϕh : S × A 7→ Rd

with ∥ϕh(s, a)∥ ≤ 1 for all (s, a) ∈ S × A such that Assumption 2.3 holds for linear functions of
ϕh. In other words, the Markov game satisfies Assumption 2.3 with F (i)

h ⊆ {ϕ⊤h θ | θ ∈ Rd, ∥θ∥2 ≤√
dθ}for all i ∈ [n] and h ∈ [H], where dθ > 0 is a parameter.

It is easy to see that Linear Bellman complete MGs belong to multi-agent Bilinear Classes by choos-
ing

Xh(π) = Eπ[ϕ(sh, ah)] ∈ Rd, W
(i)
h (f, π) = θf,h − w

(i)
f,h,

where θf,h satisfies that f(sh, ah) = θ⊤f,hϕh(sh, ah), and w(i)
f,h satisfies that3

(w
(i)
f,h)

⊤ϕh(sh, ah) = r
(i)
h (sh, ah) + Es′∼Ph(·|sh,ah)⟨fh+1(s

′, ·), πh+1(· | s′)⟩A

= T (i),π(fh+1) ∈ F (i)
h .

3If there are multiple θ satisfying the requirement, we can break the tie arbitrarily.
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Then, we have Xh ⊆ V = {ϕ ∈ Rd : ∥ϕ∥2 ≤ 1} for all h ∈ [H] and BW = 2
√
d. It can be shown

that the logarithm of 1/K-covering number of F is log(NF (1/K)) = Õ(d), and the information
gain can bounded by

γK(1/B2
WK,X ) =

H∑
h=1

γK(1/B2
WK,Xh) ≤

H∑
h=1

γK(1/4dK,Xh) = Õ(Hd),

where Õ omits absolute constants and logarithmic factors (Du et al., 2021; Wang et al., 2020b).
Thus, by Theorem 3.1, MAMEX achieves a Õ(ndHR2

√
K + nHR2

√
K log |Πpur| + ndH2) re-

gret. For the single-agent setting, comparing to the state-of-the-art Õ(dH
√
K) regret when R = 1

(Zanette et al., 2020; Chen et al., 2022c), our result matches their results in terms of d,H and K
with an extra factor |Πpur| in the logarithmic term. Note that when the pure policy set of i-th agent
is selected as some particular policy classes such as log-linear policy

Πpur
h,i = {πϑ : πϑ(· | s) = Softmax(ϑ⊤ψ(s, ·)), ∥ϑ∥2 ≤ 1, ∥ψ(·, ·)∥ ≤ 1, ϑ ∈ Rdπ},

we can select a cover by

Θ̂ = {ϑ̂ : ϑ̂i = ⌊ϑi/ε⌋ × ε, ∥ϑ∥2 ≤ 1, ϑ ∈ Rdπ}.
Zanette et al. (2021) prove that the logarithm of cardinality of the induced covering {πϑ : ϑ ∈ Θ̂}H
is bounded by Õ(nHdπ), and then MAMEX provides a Õ((nd+n2dπ)H

2R2
√
K+ndH2) regret.

In particular, as one of the examples of Linear Bellman Complete MGs, Xie et al. (2020) consider a
similar linear structure for two-player zero-sum games.
Example D.10 (Zero-Sum Linear MGs (Xie et al., 2020)). In a zero-sum linear MG, for each
(s, a, b) ∈ S × A × B and h ∈ [H], we have reward rh(s, a, b) ∈ [0, 1], and there is a known
feature map ϕ : S ×A× B → Rd, H known vectors θh ∈ Rd and a vector of d unknown measures
µh = {µh,d′}d′∈[d] on S such that ∥ϕ(·, ·, ·)∥2 ≤ 1, ∥θh∥2 ≤

√
d, ∥µh(S)∥2 ≤

√
d and

rh(s, a, b) = ϕ(s, a, b)⊤θh, Ph(· | s, a, b) = ϕ(s, a, b)⊤µh(·).
Zero-sum linear MGs is a special case of linear Bellman complete MG with two players and dθ =

2H
√
d, and our algorithm provides a Õ(dH3

√
K+H3

√
K log(|Πpur|)) regret by choosingR = H

and the fact that logN (i)
F (1/K) = Õ(d). The previous work provides a Õ(d3/2H2

√
K) sublinear

regret (Xie et al., 2020) and a Ω(dH3/2
√
K) information-theoretic lower bound (Chen et al., 2022d)

for zero-sum linear MGs. Thus, our regret matches the lower bound in terms of d, has a higher order
in H compared to Xie et al. (2020) and an extra factor log |Πpur|. Again, we can adopt the class of
log-linear policies with a policy cover, which leads to log |Πpur| = Õ(dπ). Thus, MAMEX yields a
Õ((dH3 + dπH

4)
√
K) regret.

D.2 MODEL-BASED RL PROBLEMS

Sun et al. (2019) provide a complexity measure — witness rank — to characterize the exploration
hardness of the model-based RL problems. In the following, we extend the notion of the witness
rank to MARL.
Example D.11 (Multi-Agent Witness Rank). Let V = {Vh : S × A × S 7→ [0, 1]}h∈[H] denote
a class of discriminators and let F be a hypothesis class such that the true model, denoted by f∗,
belongs to F . We say a multi-agent witness rank of a general-sum MG is at most d, if for any model
f ∈ F and any policy π ∈ Πpur there exist mappings {Xh : Πpur → Rd}Hh=1 and {Wh : F →
Rd}Hh=1

max
v∈Vh

E(sh,ah)∼π[(Es′∼Ph,f (·|sh,ah) − Es′∼Ph,f∗ (·|sh,ah))v(sh, ah, s
′)] ≥ ⟨W (i)

h (f), Xh(π)⟩,

(D.6)

κwit · E(sh,ah)∼π[(Es′∼Ph,f (·|sh,ah) − Es′∼Ph,f∗ (·|sh,ah))V
(i),π
h+1,f (s

′)] ≤ ⟨W (i)
h (f), Xh(π)⟩ (D.7)

for all h ∈ [H], where κwit is a parameter. Here, V (i),π
h+1,f is the value function of π associated with

agent i under model f . Moreover, these mappings satisfy the following regularity condition:

sup
h∈[H],π∈Πpur

∥Xh(π)∥ ≤ 1, sup
h∈[H],f∈F,i∈[n]

∥W (i)
h (f)∥ ≤ BW .
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Compared with the single-agent witness rank (Sun et al., 2019), the policy π in the mapping Xh(π)
and the expectation E(sh,ah)∼π in (D.6) and (D.7) can be an arbitrary pure policy instead of the opti-
mal policy πf of the model f . This stricter assumption is essential for general-sum MGs because we
are interested in various equilibrium notions and each equilibrium can be non-unique. The following
theorem shows that model classes with small multi-agent witness ranks have small MADCs.

Theorem D.12 (Multi-Agent Witness Rank ⊆ Low MADC). Let F be a class of general-sum MGs
whose multi-agent witness rank is no more than d. Then, for any f∗ ∈ F , we have dMADC =

Õ(Hd/κ2wit), where dMADC is the multi-agent decoupling coefficient of f∗.

Proof. See §F.4 for detailed proof.

This theorem shows that the multi-agent decoupling coefficient is upper bounded by the multi-agent
witness rank, which shows that the class of MG models with a finite multi-agent decoupling coef-
ficient contains models with a finite multi-agent witness rank. Hence, many concrete MG models
such as the multi-agent version of factor MDP and linear kernel MDP all have finite multi-agent
decoupling coefficients. Therefore, applying Theorem 3.1 to models with a finite Multi-Agent wit-
ness rank, the model-based version of MAMEX achieves a Õ(nHd

√
K/κ2wit + nH

√
K) regret

with witness rank d. Note that for the model-based RL problems, our regret does not have the term
log(|Πpur|), because the discrepancy function ℓ(i),s in 2.5 is independent with πk. When applying
our results to the single-agent setting, Theorem D.12 provides a similar regret result as in previous
works (Sun et al., 2019; Zhong et al., 2022).

Another example of model-based RL problems is the linear mixture MG (Chen et al., 2022d),
which assumes that the transition kernel P(s′ | s, a) is a linear combination of d feature mappings
{ϕi(s′, s, a)}i∈[d], i.e. P(s′ | s, a) =

∑d
i=1 θiϕi(s

′, s, a), where a is a joint action.

Example D.13 (Multi-Agent Linear Mixture MGs). We call one general-sum MG is a linear mixture
MG with dimension d, if there exist h vectors {θh ∈ Rd}h∈[H] and a known feature ϕ(s′ | s, a) ∈ Rd

such that ∥θh∥2 ≤
√
d and Ph(s

′ | s, a) = ⟨θh, ϕ(s′ | s, a)⟩ for any state-action pair (s′, s, a) ∈
S × S ×A.

The following theorem shows that a linear mixture general-sum MG has a finite multi-agent decou-
pling coefficient. Thus, MAMEX can be readily applied to these models with sample efficiency.

Theorem D.14 (Multi-Agent Linear Mixture MGs ⊂ Low MADC). For a linear mixture MG with
dimension d, we have dMADC = Õ(dHR4), where R is an upper bound on

∑H
h=1 rh.

Proof. See §F.5 for a detailed proof.

Chen et al. (2022d) provides a minimax-optimal Õ(dH
√
K) regret for two-player zero-sum MGs

for rh ∈ [0, 1]. Now choose Fh = {θh ∈ Rd}. Combining with Theorem D.14 and Theorem 3.1,
and the fact that log(BF (1/K)) = Õ(Hd) (Liu et al., 2022a), MAMEX achieves a Õ(ndH5

√
K +

ndH4) regret, where we set R = H . Compared with their regret upper bound, when applying our
result to two-player zero-sum MGs by choosing n = 2, the leading term of our regret Õ(dH5

√
K)

matches the minimax-optimal result in terms of d and K but with an extra multiplicative factor H2.

E PROOF OF MAIN RESULTS

E.1 PROOF OF MODEL-FREE VERSION OF THEOREM 3.1

Proof. We first consider learning Nash equilibrium and coarse correlated equilibrium.

NE/CCE First, by Assumption 2.3, for any pure joint policy υ, there exists a function f (i),υ ∈ F (i)

satisfies that it has no Bellman error with Bellman operator T (i),υ for any pure joint policy υ, i.e.

T (i),υ
h f

(i),υ
h+1 = f

(i),υ
h . (E.1)

23



Published as a conference paper at ICLR 2024

Hence, {f (i),υh }h∈[H] is the Q-function of the agent i when all agents follow the policy υ. Thus, we
have

V
(i),υ

f(i),υ (ρ) = Es1∼ρ,a∼υ(s1)[f
(i),υ
1 (s, a)] = Es1∼ρ,a∼υ(s1)[Q

(i),υ
1 (s, a)] = V (i),υ(ρ). (E.2)

Also, denote f̂ (i),υ = arg supf∈F(i) V̂ υ
i (f) as the optimal function with respect to the regularized

value V̂ (i),π(f) for the pure joint policy π and agent i. Now we have

Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− ηL(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
= Eυ∼πk

[
sup

f∈F(i)

V̂ (i),υ(f)
]

≥ max
υ(i)∈Πpur

Eυ∼υ(i)×π(−i),k

[
sup

f∈F(i)

V̂ (i),υ(f)
]
. (E.3)

The inequality holds because of the property of Nash Equilibrium or Coarse Correlated Equilibrium.
Then, since the best response π(i),k,† is a pure policy, we have

max
υ(i)∈Πpur

Eυ∼υ(i)×π(−i),k

[
sup

f∈F(i)

V̂ (i),υ(f)
]

≥ Eυ∼π(i),k,†×π(−i),k

[
sup

f∈F(i)

V̂ (i),υ(f)
]
= Eυ∼π(i),k,†×π(−i),k

[
V̂ (i),υ(f (i),υ)

]
≥ E

υ∼µ(i),πk

[
V

(i),υ

f(i),υ (ρ)− ηL(i),k−1(f (i),υ, υ, τ1:k−1)
]
, (E.4)

where υ ∈ Πpur
i , µ(i),πk

= (π(i),k,†, π(−i),k) and π(i),k,† is the best response given the action of
other agents π(−i),k. Thus, combining (E.3) and (E.4), we can derive

E
υ∼µ(i),πk

[
V

(i),υ

f(i),υ (ρ)
]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]

≤ ηE
υ∼µ(i),πk

[
L(i),k−1(f (i),υ, υ, τ1:k−1)

]
− ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
. (E.5)

Now we provide the concentration lemma, which shows that the empirical discrepancy function
L(i),k(f, π, τ1:k) is an estimate of the true discrepancy function

∑k−1
s=0 ℓ

(i),s(f, π).

Lemma E.1 (Concentration Lemma). For any k ∈ [K] pure joint policy π, and {ζs}k−1
s=1 ∈ Π that

be executed in Algorithm 1 in the first k − 1 episodes, with probability at least 1− δ,

L(i),k−1(f, π, τ1:k−1)− 1

4

(
k−1∑
s=0

ℓ(i),s(f, π)

)
≥ −εconc,

where εconc = max{O(HR2 log(HKmaxi∈[n] NF(i)(1/K)|Πpur|/δ)), H} and

ℓ(i),s(f, π) =

H∑
h=1

E(sh,ah)∼ζs
h

[
((fh − T (i),π

h fh+1)(sh, ah))
2
]
.

Proof. See §F.6 for a detailed proof.

In other words, if we define the event as

E1 =

{
L(i),k(f, π, τ1:k)− 1

4

(
k−1∑
s=0

ℓ(i),s(f, π)

)
≥ εconc,∀f ∈ F (i), π ∈ Πpur, k ∈ [K]

}
,

we have Pr{E1} ≥ 1− δ. Note that the εconc contains log(|Πpur|/δ) in the logarithmic term, which
arises from our policy-search style algorithm.
Lemma E.2 (Optimal Concentration Lemma). For all index i ∈ [n], all π ∈ Πpur and function
f (i),π ∈ F (i) such that T (i),πf (i),π = f (i),π , with probability at least 1− δ, we have

L(i),k(f (i),π, π, τ1:k) ≤ εconc.
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Proof. See §F.7 for a detailed proof.

In other words, if we define the event as

E2 = {∀ i ∈ [n], π ∈ Πpur, L(i),k(f (i),π, π, τ1:k) ≤ εconc},
we have Pr{E2} ≥ 1 − δ. Lemma E.2 shows that the empirical discrepancy function
L(i),k(f, π, τ1:k) is small if the function f and the policy π are consistent, i.e. f = f (i),π . Now by
(E.5) and Lemma E.2, for any i ∈ [n], under the event E2,

E
υ∼µ(i),πk

[
V (i),υ(ρ)

]
− Eυ∼πk

[
V (i),υ(ρ)

]
= E

υ∼µ(i),πk

[
V

(i),υ

f(i),υ (ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
= E

υ∼µ(i),πk

[
V

(i),υ

f(i),υ (ρ)
]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]

︸ ︷︷ ︸
(a)

+Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
.

By (E.5) and Lemma E.2, under event E2, (a) can be bounded by

(a) ≤ ηE
υ∼µ(i),πk

[
L(i),k−1(f (i),υ, υ, τ1:k−1)

]
− ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
(E.6)

≤ ηεconc − ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
. (E.7)

Now by Assumption 2.5, on the events E1 and E2 we have

Reg(K) =

K∑
k=1

n∑
i=1

(
V (i),µ(i),πk

(ρ)− V (i),πk

(ρ)
)

=

K∑
k=1

n∑
i=1

(
E
υ∼µ(i),πk

[
V (i),υ(ρ)

]
− Eυ∼πk

[
V (i),υ(ρ)

])
≤

K∑
k=1

n∑
i=1

(
ηεconc − ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
+ Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

])
. (E.8)

Now since f̂ (i),υ = argmaxf∈F(i)

[
V

(i),υ
f (ρ)− ηL(i),k−1(f, υ, τ1:k−1)

]
is the optimal function

with respect to the regularized value, under the event E2 we have

V
(i),υ

f̂(i),υ
(ρ)− ηL(i),k−1(f̂ (i),υ, υ, τ1:k−1) ≥ V

(i),υ

f(i),υ (ρ)− ηL(i),k−1(f (i),υ, υ, τ1:k−1),

then we have ηL(i),k−1(f̂ (i),υ, υ, τ1:k−1) ≥ 0 and by η ≤ 1,

ηL(i),k−1(f̂ (i),υ, υ, τ1:k−1) ≤ V
(i),υ

f̂(i),υ
(ρ)− V

(i),υ

f(i),υ (ρ) + ηL(i),k−1(f (i),υ, υ, τ1:k−1)

≤ R+ ηεconc ≤ 2εconc,

where the last inequality follows the Lemma E.2. If we define

L
(i),k−1
2εconc

(f̂ (i),υ, υ, τ1:k−1) = L(i),k−1(f̂ (i),υ, υ, τ1:k−1) · I{ηL(i),k−1(f̂ (i),υ, υ, τ1:k−1) ≤ 2εconc}
and the event as

E3 =
{
∀ i ∈ [n], υ ∈ Πpur, L

(i),k−1
2εconc

(f̂ (i),υ, υ, τ1:k−1) = L(i),k−1(f̂ (i),υ, υ, τ1:k−1)
}
,

we will have E3 ⊆ E2. Since the policy ζk that algorithm executes is sampled from πk, then the
sequence {Yk}Kk=1 that is defined by

Yk = Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− V (i),υ(ρ)− ηL

(i),k−1
2εconc

(f̂ (i),υ, υ, τ1:k−1)
]

−
(
V

(i),ζk

f̂(i),ζk
(ρ)− V (i),υ(ρ)− ηL

(i),k−1
2εconc

(f̂ (i),ζ
k

, ζk, τ1:k−1)
)
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is a martingale difference sequence. Now by Azuma-Hoeffding’s inequality and Yk ≤ R+2εconc ≤
3εconc, with probability at least 1− δ we have∣∣∣∣∣

K∑
k=1

[
Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− V (i),υ(ρ)− ηL

(i),k−1
2εconc

(f̂ (i),υ, υ, τ1:k−1)
]

−
(
V

(i),ζk

f̂(i),ζk
(ρ)− V (i),υ(ρ)− ηL

(i),k−1
2εconc

(f̂ (i),ζ
k

, ζk, τ1:k−1)
)] ∣∣∣∣∣ ≤ O(εconc

√
K). (E.9)

Define the event E4 as the (E.9) holds. Now by choosing η
4 = 1

µ = 1√
K

and taking the union bound
over the event E1, E2, E3 and E4, with probability at least 1− 4δ, we can get

Reg(K)

≤
n∑

i=1

K∑
k=1

(
ηεconc − ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
+ Eυ∼πk

[
V

(i),υ

f̂(i),υ (ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

])
=

n∑
i=1

K∑
k=1

(
ηεconc − ηEυ∼πk

[
L

(i),k−1
2εconc

(f̂ (i),υ, υ, τ1:k−1)
]
+ Eυ∼πk

[
V

(i),υ

f̂(i),υ (ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

])
≤

n∑
i=1

K∑
k=1

(
ηεconc − ηL(i),k−1(f̂ (i),ζk , ζk, τ1:k−1) + V

(i),ζk

f̂(i),ζk
(ρ)− V (i),ζk (ρ)

)
︸ ︷︷ ︸

(b)

+Õ(nεconc
√
K).

(E.10)

The first inequality holds because of Eq (E.8). The equality in the second line holds under Lemma
E.2 (event E3 ⊆ E2). The second inequality is derived from Azuma-Hoeffding’s inequality (event
E4). Now using Lemma E.1 and MADC assumption, we can get

(b) ≤ −
n∑

i=1

K∑
k=1

(
η

4

(
k−1∑
s=0

ℓ(i),s(f, ζk)

))
+

n∑
i=1

K∑
k=1

(
V

(i),ζk

f̂(i),ζk
(ρ)− V (i),ζk

(ρ)
)
+ 4n

√
K · ηεconc

≤ nµ · dMADC + 6dMADCH + 4n
√
Kεconc.

The second inequality uses Assumption 2.5. Now the regret can be bounded by

Reg(K) ≤ n
√
K · dMADC + 6dMADCH + 4n

√
Kεconc +O(nεconc

√
K)

= O(nεconc
√
K + ndMADCH + ndMADC

√
K).

Hence, we complete the proof by noting that εconc = Õ(HR2 logΥF,δ).

CE By changing the best response to the strategy modification, we can derive a proof for Cor-
related Equilibrium (CE). We simplify the notation of strategy modification as ϕi(υ(i)) × υ(−i) as
ϕi(υ). Now we have

Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− ηL(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
= Eυ∼πk

[
sup

f∈F(i)

V̂ (i),υ(f)
]

= max
ϕi

Eυ∼πk

[
sup

f∈F(i)

V̂ (i),ϕi(υ
(i))×υ(−i)

(f)
]
. (E.11)

The second equality holds because of the property of Correlated Equilibrium. Now we have

max
ϕi

Eυ∼πk

[
sup

f∈F(i)

V̂ (i),ϕi(υ
(i))×υ(−i)

(f)
]

≥ max
ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)− ηL(i),k−1(f (i),ϕi(υ), ϕi(υ), τ
1:k−1)

]
≥ max

ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)− ηεconc)
]
. (E.12)

26



Published as a conference paper at ICLR 2024

The first equality holds by f (i),ϕi(υ) ∈ F (i) in (E.1), and the last inequality is derived from
Lemma E.2 and ϕi(υ) is a pure joint policy. Then, by combining (E.11) and (E.12), we can get

max
ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)
]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]

≤ ηεconc − ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, υ, τ1:k−1)

]
.

Hence, we can upper bound the regret of the agent i at k-th episode as

max
ϕi

Eυ∼πk

[
V (i),ϕi(υ

(i))×υ(−i)

(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
= max

ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
= max

ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)
]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
+ Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
≤ ηεconc − ηEυ∼πkL(i),k−1(f̂ (i),υ, υ, τ1:k−1) + Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
.

The rest of the proof is the same as in NE/CCE after (E.7).

E.2 PROOF OF MODEL-BASED VERSION OF THEOREM 3.1

Proof. We first consider NE/CCE.

NE/CCE Denote f̂ (i),π = arg supf∈F V̂
π
i (f) as the optimal model with respect to the regularized

value V̂ (i),π(f). Since for model-based RL problems, the empirical discrepancy function L(f, π, τ)
and ℓ(i),s(f, π) is independent with policy π, we simplify it as L(f, τ) and ℓ(i),s(f). Then, from the
definition of regularized value function V̂ (i),π(f), we have

Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− ηL(i),k−1(f̂ (i),υ, τ1:k−1)

]
= Eυ∼πk

[
sup
f∈F

V̂ (i),υ(f)
]
≥ max

υ(i)∈Πpur
Eυ∼υ(i)×π(−i),k

[
sup
f∈F

V̂ (i),υ(f)
]
. (E.13)

The inequality holds by the fact that πk is the NE/CCE of the regularized value function V̂ (i),π(f).
Now since the best response π(i),k,† is a pure policy, we have

max
υ(i)∈Πpur

Eυ∼υ(i)×π(−i),k

[
sup
f∈F

V̂ (i),υ(f)
]

≥ Eυ∼π(i),k,†×π(−i),k

[
sup
f∈F

V̂ (i),υ(f)
]

≥ E
υ∼µ(i),πk

[
V

(i),υ
f∗ (ρ)− ηL(i),k−1(f∗, τ1:k−1)

]
. (E.14)

Thus, by combining E.13 and E.14, we have

E
υ∼µ(i),πk

[
V

(i),υ
f∗ (ρ)

]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]

≤ ηL(i),k−1(f∗, τ1:k−1)− ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, τ1:k−1)

]
. (E.15)

Now we provide our concentration lemma for model-based RL problems.
Lemma E.3 (Concentration Lemma for Model-Based RL Problems). With probability at least 1−δ,
for any k ∈ [K], f ∈ F , for the executed policy {ζs}k−1

s=1 in Algorithm 1, we have

L(i),k−1(f∗, τ1:k−1)− L(i),k−1(f, τ1:k−1) ≤ −
k−1∑
s=1

ℓ(i),s(f) + κconc, (E.16)

where κconc = max{2H log HBF (1/K)
δ , H}, where BF (1/K) is the 1/K-bracketing number of the

model class F . We also define the event E5 as the situation when (E.16) holds.
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Proof. See §F.8 for detailed proof.

By Lemma E.3, for any i ∈ [n],

E
υ∼µ(i),πk

[
V (i),υ(ρ)

]
− Eυ∼πk

[
V (i),υ(ρ)

]
= E

υ∼µ(i),πk

[
V

(i),υ
f∗ (ρ)

]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ (ρ)
]

︸ ︷︷ ︸
(a)

+Eυ∼πk

[
V

(i),υ

f̂(i),υ (ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
. (E.17)

Now substitute into equation (E.15),

(a) ≤ ηL(i),k−1(f∗, τ1:k−1)− ηEυ∼πk

[
L(i),k−1(f̂ (i),υ, τ1:k−1)

]
= Eυ∼πk

[
ηL(i),k−1(f∗, τ1:k−1)− ηL(i),k−1(f̂ (i),υ, τ1:k−1)

]
. (E.18)

Hence, combining with (E.17) and (E.18), we can get

E
υ∼µ(i),πk

[
V (i),υ(ρ)

]
− Eυ∼πk

[
V (i),υ(ρ)

]
≤ (a) + Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
≤ Eυ∼πk

[
ηL(i),k−1(f∗, τ1:k−1)− ηL(i),k−1(f̂ (i),υ, τ1:k−1) + V

(i),υ

f̂(i),υ
(ρ)− V (i),υ(ρ)

]
.

(E.19)

By summing over k ∈ [K] and I ∈ [n], the regret can be obtained by

Reg(K)

≤
n∑

i=1

K∑
k=1

Eυ∼πk

[
ηL(i),k−1(f∗, τ1:k−1)− ηL(i),k−1(f̂ (i),υ, τ1:k−1) + V

(i),υ

f̂(i),υ (ρ)− V (i),υ(ρ)
]
.

(E.20)

Now we want to use Azuma-Hoeffding’s inequality to transform υ ∼ πk to executed policy ζk. To
achieve this goal, note that by Lemma E.3, under event E5, we have

L(i),k−1(f∗, τ1:k−1)− L(i),k−1(f̂ (i),υ, τ1:k−1) ≤ κconc. (E.21)

Moreover, since f̂ (i),υ achieves the maximum value of the regularized value function V̂ (i),π(f) =

V
(i),υ
f (ρ)− L(i),k−1(f∗, τ1:k−1), we have

L(i),k−1(f∗, τ1:k−1)− L(i),k−1(f̂ (i),υ, τ1:k−1) ≥ E
υ∼µ(i),πk

[
V

(i),υ
f∗ (ρ)

]
− Eυ∼πk

[
V

(i),υ

f(i),υ (ρ)
]

≥ −R ≥ −κconc.

Thus, if we define

L(i),υ
ε =

(
L(i),k−1(f∗, τ1:k−1)− L(i),k−1(f̂ (i),υ, τ1:k−1)

)
· I
{
|L(i),k−1(f∗, τ1:k−1)− L(i),k−1(f̂ (i),υ, τ1:k−1)| ≤ ε

}
,

we can have |L(i),υ
κconc | ≤ κconc is bounded under event E5. Then, with probability at least 1 − δ,

L(i),υ
κconc = L(i),k−1(f∗, τ1:k−1)− L(i),k−1(f̂ (i),υ, τ1:k−1). Then, we can apply Azuma-Hoeffding’s

inequality to transform the expectation to the executed policy ζk.∣∣∣∣∣
K∑

k=1

L(i),ζk

κconc
−

K∑
k=1

Eυ∼πk

[
L(i),υ
κconc

]∣∣∣∣∣ = O(κconc · logK). (E.22)
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Now by taking the union bound of Azuma-Hoeffding’s inequality and event E5, with probability at
least 1− 2δ,

Reg(K) ≤
n∑

i=1

K∑
k=1

Eυ∼πk

[
ηL(i),k−1(f∗, τ1:k−1)− ηL(i),k−1(f̂ (i),υ, τ1:k−1) + V

(i),υ

f̂(i),υ (ρ)− V (i),υ(ρ)
]

=

n∑
i=1

K∑
k=1

Eυ∼πk

[
ηLυ

κconc
+ V

(i),υ

f̂(i),υ (ρ)− V (i),υ(ρ)
]

≤
n∑

i=1

K∑
k=1

(
ηLζk

κconc
+ V

(i),ζk

f̂(i),ζk
(ρ)− V (i),ζk (ρ)

)
︸ ︷︷ ︸

(b)

+Õ(nκconc),

where the first inequality holds by (E.20), the equality holds under event E5, and the last inequality
holds by (E.22). Then, by Lemma E.3, under event E5, we have

(b) =
n∑

i=1

K∑
k=1

(
ηL(i),k−1(f∗, τ1:k−1)− ηL(i),k−1(f̂ (i),ζ

k

, τ1:k−1) + V
(i),υ

f̂(i),ζk
(ρ)− V (i),ζk

(ρ)
)

≤
n∑

i=1

K∑
k=1

(
−η

k−1∑
s=1

ℓ(i),s(f̂ (i),ζ
k

) + ηκconc + V
(i),υ

f̂(i),ζk
(ρ)− V (i),ζk

(ρ)

)
.

Then, by Assumption 2.5, (b) can be further upper bounded by

(b) ≤
n∑

i=1

K∑
k=1

(
−η

k−1∑
s=1

ℓ(i),s(f̂ (i),ζ
k

) + ηκconc + V
(i),υ

f̂(i),ζk
(ρ)− V (i),ζk

(ρ)

)
≤ nηKκconc +

n

η
dMADC + 6ndMADCH

= Õ(nκconc
√
K + ndMADC

√
K + ndMADCH).

The first inequality holds by Lemma E.3. The last equality holds by η = 4/
√
K. Finally, the regret

can be bounded by

Reg(K) ≤ (b) + Õ(nκconc) = Õ(nκconc
√
K + ndMADC

√
K + ndMADCH).

Thus, we complete the proof by noting that κconc = O(H)

Correlated Equilibrium Similar to model-free problems, we only need to replace the best re-
sponse with strategy modification.

Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− ηL(i),k−1(f̂ (i),υ, τ1:k−1)

]
= Eυ∼πk

[
sup
f∈F

V̂ (i),υ(f)
]

= max
ϕi

Eυ∼πk

[
sup
f∈F

V̂ (i),ϕi(υ)(f)
]
.

The last equality uses the property that πk is a CE with respect to the payoff function
supf∈F V̂

(i),υ(f). Then, since f∗ ∈ F , we can further derive

Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)− ηL(i),k−1(f̂ (i),υ, τ1:k−1)

]
≥ max

ϕi

Eυ∼πk

[
V̂ (i),ϕi(υ)(f∗)

]
= max

ϕi

Eυ∼πk

[
V

(i),ϕi(υ)
f∗ (ρ)− ηL(i),k−1(f∗, τ1:k−1)

]
. (E.23)

The second equality holds by the property of CE. Thus, we have

max
ϕi

Eυ∼πk [V
(i),ϕi(υ)
f∗ (ρ)]− Eυ∼πk [V

(i),υ

f̂(i),υ
(ρ)]

≤ ηL(i),k−1(f∗, τ1:k−1)− ηEυ∼πkL(i),k−1(f̂ (i),υ, τ1:k−1). (E.24)
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Hence, combining with (E.23) and (E.24), we can upper bound the regret of the agent i at k-th
episode as

max
ϕi

Eυ∼πk

[
V (i),ϕi(υ

(i))×υ(−i)

(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
= max

ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
= max

ϕi

Eυ∼πk

[
V

(i),ϕi(υ)

f(i),ϕi(υ)(ρ)
]
− Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
+ Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
≤ ηεconc − ηEυ∼πkL(i),k−1(f̂ (i),υ, υ, τ1:k−1) + Eυ∼πk

[
V

(i),υ

f̂(i),υ
(ρ)
]
− Eυ∼πk

[
V (i),υ(ρ)

]
.

The rest of the proof is the same as NE/CCE after (E.15).

E.3 SAMPLE COMPLEXITY RESULTS

we can utilize the standard online-to-batch techniques to transform the regret result in Theorem 3.1
into the sample complexity result.
Corollary E.4. Under the same setting as in Theorem 3.1, with probability at least 1−δ, whenK ≥
Õ
((
n2H2 + n2d2MADCΥ

2
F,δ

)
· ε−2

)
, if we output the mixture policy πout = Unif({πk}k∈[K]),

the output policy πout is a ε-{NE, CCE, CE}.

Proof. See §F.9 for the proof.

Corollary E.4 shows that MAMEX is sample-efficient for learning all three equilibria of general-sum
MGs under general function approximation.

F PROOF OF THEOREMS AND LEMMAS

F.1 PROOF OF THEOREM D.4

Proof. The proof follows Proposition 3 in Dann et al. (2021). First, we provide the following lemma
in Dann et al. (2021).
Lemma F.1. For any positive real number sequence x1, · · · , xn, we have∑n

i=1 xi√∑n
i=1 ix

2
i

≤
√
1 + log n.

Now denote Eε = dimMABE(F , ε). We fix i ∈ [n], and ignore both h and i for simplicity. Also

denote ês,kh = Eπs
[ϕt] and es,kh = ês,kh · I{ês,kh > ε}, where ϕt = (I − T (i),πk

h )fh ∈ F (i)
h . We

initializeK bucketsB0
h, · · · , B

K−1
h , and we want to add element ek,kh for k ∈ [K] into these buckets

one by one. The rule for adding elements is as follows: If ek,kh = 0, we do not add it to any buckets.
Otherwise we go through all buckets from B0

h to BK−1
h , and add ek,kh to Bi

h whenever∑
s≤t−1,s∈Bi

h

(es,kh )2 < (ek,kh )2.

Now assume we add ek,kh into the bucket bkh. Then, for all 1 ≤ i ≤ bkh − 1, we have (ek,kh )2 ≤∑
s≤k−1,s∈Bi

h
(es,kh )2. Thus,

K∑
k=1

k∑
s=1

(es,kh )2 ≥
K∑

k=1

∑
0≤i≤bkh−1

∑
s≤t−1,s∈Bi

h

(es,kh )2 ≥
K∑

k=1

bkh(e
k,k
h )2. (F.1)

Now note that by the definition of ε-independent sequence, for the measures in Bi
h {πk1 , · · · , πkj},

πk is a ε′-independent from all predecessors πk1 , · · · , πkj−1 such that ε′ > ε. (We can choose
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ε′ = ek,kh − c for enough small c such that
√∑

s≤t−1,s∈Bi
h
(es,kh )2 ≤ ε′ and ε′ > ε by ek,kh > ε.)

Thus, from the definition of BE dimension, the size of each bucket cannot exceed Eε. Now by
Jensen’s inequality, we can get

K∑
k=1

bkh(e
k,k
h )2 =

K−1∑
i=1

i ·
∑
s∈Bi

h

(es,sh )2 ≥
K−1∑
i=1

i|Bi
h|

∑
s∈Bi

h

es,sh

|Bi
h|

2

≥
K−1∑
i=1

iEε

∑
s∈Bi

h

es,sh

Eε

2

,

(F.2)

where the last inequality uses the fact that |Bi
h| ≤ Eε. Let xi =

∑
s∈Bi

h
(es,sh ). By Lemma F.1, we

have

K−1∑
i=1

iEε

∑
s∈Bi

h

es,sh

Eε

2

=
1

Eε

K−1∑
i=1

i ·

∑
s∈Bi

h

es,sh

2

≥ 1

Eε(1 + logK)

 ∑
s∈[K]\B0

h

es,sh

2

.

(F.3)

Hence, combining (F.1), (F.2) and (F.3), we can get

∑
s∈[K]\B0

h

es,sh ≤

(
Eε(1 + logK)

K∑
k=1

bkh(e
k,k
h )2

)1/2

≤

(
Eε(1 + logK)

K∑
k=1

k∑
s=1

(es,kh )2

)1/2

.

Now by the definition es,kh = ês,kh · I{ês,kh > ε} and the fact that |B0
h| ≤ Eε, we can have

H∑
h=1

K∑
k=1

êk,kh ≤ HKε+

H∑
h=1

K∑
k=1

ek,kh

≤ HKε+min{HEε, HK}+
H∑

h=1

∑
s∈[K]\B0

h

es,sh .

Then, by (F.3), we can further bounded it by

H∑
h=1

K∑
k=1

êk,kh ≤ HKε+min{HEε, HK}+
H∑

h=1

(
Eε(1 + logK)

K∑
k=1

k−1∑
s=1

(es,kh )2

)1/2

≤ HKε+min{HEε, HK}+

(
EεH(1 + logK)

H∑
h=1

K∑
k=1

k−1∑
s=1

(es,kh )2

)1/2

. (F.4)

The last inequality uses the Jensen’s inequality Now we can use a similar technique in Xie et al.
(2021). Define (r′h)

(i)(s, a) = fkh (s, a)− Es′∼Ph(·|s,a)⟨fkh+1(s
′, ·), πk

h+1(· | s′)⟩. Then, we have

Es1∼ρ

[
fk1 (s1, π

k
1 (s1))

]
= Eπk

[
H∑

h=1

(
fkh (sh, π

k
h(sh))− fkh+1(sh+1, π

k
h+1(sh+1))

)]

= Eπk

[
H∑

h=1

(
fkh (sh, π

k
h(sh))− Es′∼Ph(·|s,a)⟨f

k
h+1(s

′, ·), πk
h+1(· | s′)⟩

)]

= Eπk

[
H∑

h=1

(r′h)
(i)(s, a)

]
.

Hence, we can rewrite the regret of the k-th episode as

Es1∼ρ

[
(fk1 (s1, π

k
1 (s1))− V (i),πk

(s1))
]
= Eπk

[
H∑

h=1

((r′h)
(i)(s, a)− r

(i)
h (s, a))

]
. (F.5)
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The last inequality uses the fact that Then, substitute into the definition of (r′h)
(i), we can get

Es1∼ρ

[
(fk1 (s1, π

k
1 (s1))− V (i),πk

(s1))
]

= Eπk

[
H∑

h=1

(fkh (s, a)− Es′∼Ph(·|s,a)⟨f
k
h+1(s

′, ·), πk
h+1(· | s′)⟩ − r

(i)
h (s, a))

]

= Eπk

[
H∑

h=1

(I − T (i),πk

h )(fkh )

]
=

H∑
h=1

êk,kh ,

where the first equality holds by the definition of Mk, the second equality holds by decomposing
the value function to the expected cumulative sum of the reward function, and the last equality is
derived by the definition of êk,kh . Now we can get

Reg(K) ≤
K∑

k=1

H∑
h=1

êk,kh

≤ HKε+min{HEε, HK}+

(
(EεH · 2 logK)

H∑
h=1

K∑
k=1

k−1∑
s=1

(es,kh )2

)1/2

. (F.6)

The last inequality holds by (F.4). Now by the definition es,kh ≤ ês,kh = Eπs [(I − T (i),πk

h )(fh)] and
the basic inequality

√
ab ≤ µa+ b/µ for µ > 0, we can derive

Reg(K)

≤ HKε+min{HEε, HK}+ µ · (EεH · 2 logK) +
1

µ

H∑
h=1

K∑
k=1

k−1∑
s=1

(
Eπs

[
(I − T (i),πk

h )(fh)
])2

≤ HKε+min{HEε, HK}+ µ · (EεH · 2 logK) +
1

µ

H∑
h=1

K∑
k=1

k−1∑
s=1

Eπs

[(
I − T (i),πk

h )(fh)
)2]

.

The last inequality holds by (E[X])2 ≤ E[X2]. Thus, by choosing ε = 1/K, we can derive

Reg(K) ≤ H +HE1/K + µ(E1/KH · 2 logK) +
1

µ

H∑
h=1

K∑
k=1

k−1∑
s=1

Eπs

[(
I − T (i),πk

h )(fh)
)2]

≤ 6dMADCH + µdMADC +
1

µ

H∑
h=1

K∑
k=1

k−1∑
s=1

Eπs

[(
I − T (i),πk

h )(fh)
)2]

,

where dMADC = max{2E1/KH logK, 1} = O(2dimMABE(F , 1/K)H logK). The last inequality
uses the fact that logK ≥ 1 and H ≥ 1.

F.2 PROOF OF THEOREM D.5

Proof. For any policy π and i ∈ [n], assume δz1 , · · · , δzm is an ε-independent sequence with
respect to

⋃
π∈Πpur F (i),π

h =
⋃

π∈Πpur(I − T (i),π)F , where δz1 , δz2 , · · · , δzm ∈ D∆, i.e. δzi
is a Dirichlet probability measure over S × A that δzi = δ(s,a)(·). Then, for each j ∈ [m],
there exist function f j ∈ F (i) and policy πj ∈ Π such that |(I − T (i),πj

)fj(zj)| > ε and√∑j−1
p=1 |(f

p
h − T (i),πpfph+1)(zp)|2 ≤ ε. Define gjh = T (i),πj

f jh+1, by Assumption 2.3, we have

gjh ∈ F (i)
h ⊆ Fh. Thus, |(f jh − gjh)(zj)| > ε and

√∑j
p=1 |(f

p
h − gph)(zp)|2 < ε. Thus, by the

definition of eluder dimension, we have m ≤ dimE(Fh, ε). Hence, for all i and policy π,

dimE(Fh, ε) ≥ m ≥ max
h∈[H]

max
i∈[n]

dimDE

( ⋃
π∈Πpur

F (i),π
h ,Dh,∆, ε

)
,

which concludes the proof.
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F.3 PROOF OF THEOREM D.8

Proof. First, by the elliptical potential lemma introduced in Lemma G.3, if we define Λk,h = εI +∑k−1
s=1 xk,hx

T
k,h, for any {xk,h}Kk=1 ∈ Xh we have

K∑
k=1

H∑
h=1

min
{
1, ∥xk,h∥2Λ−1

k,h

}
≤

H∑
h=1

2 log det

(
I +

1

ε

K∑
k=1

xk,hx
T
k,h

)
= 2γK(ε,X ). (F.7)

Now denote Σk,h = εI +
∑k−1

s=1 Xh(π
s)Xh(π

s)T . Similar to Section F.1, define (r′h)
(i)(s, a) =

fkh (s, a)− Es′∼Ph(·|s,a)⟨fkh+1(s
′, ·), πk

h+1(· | s′)⟩ ∈ [−1, 1], then we can have

Es1∼ρ

[
fk1 (s1, π

k
1 (s1))− V (i),πk

(s1)
]
= Eπk

[
H∑

h=1

((r′h)
(i)(s, a)− r

(i)
h (s, a))

]
.

Then, we can substitute the definition of (r′h)
(i) and derive

Es1∼ρ

[
fk1 (s1, π

k
1 (s1))− V (i),πk

(s1)
]

= Eπk

[
H∑

h=1

(fkh (s, a)− Es′∼Ph(·|s,a)⟨f
k
h+1(s

′, ·), πk
h+1(· | s′)⟩ − r

(i)
h (s, a))

]

=

H∑
h=1

min

{∣∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ

(i),πk

, µ(i),πk

), Xh(π
k)⟩V

∣∣∣∣ , 2R} .
Then, by min{x, 2R} ≤ 2Rmin{x, 1}, we have

Reg(K) =

K∑
k=1

Es1∼ρ

[
(fk

1 (s1, π
k
1 (s1))− V (i),πk

(s1))
]

≤ 2R

K∑
k=1

H∑
h=1

min

{∣∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
k)⟩V

∣∣∣∣ , 1}

= 2R

K∑
k=1

H∑
h=1

min

{∣∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
k)⟩V

∣∣∣∣ , 1}

·

(
I

{∥∥∥Xh(π
k)
∥∥∥
Σ−1

k,h

≤ 1

}
+ I

{∥∥∥Xh(π
k)
∥∥∥
Σ−1

k,h

> 1

})
. (F.8)

The last inequality is because 1 = I{E}+ I{¬E} for any event. Now we decompose the (F.8) into
two terms A+B, where

A = 2R

K∑
k=1

H∑
h=1

min

{∣∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
k)⟩V

∣∣∣∣ , 1} · I
{∥∥∥Xh(π

k)
∥∥∥
Σ−1

k,h

≤ 1

}
,

(F.9)

B = 2R
K∑

k=1

H∑
h=1

min

{∣∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
k)⟩V

∣∣∣∣ , 1} · I
{∥∥∥Xh(π

k)
∥∥∥
Σ−1

k,h

> 1

}
.

(F.10)

Now we bound A and B respectively. For A, we can use Cauchy’s inequality and get

A ≤ 2R

K∑
k=1

H∑
h=1

∥∥∥∥W (i)
h (fk, πk)−W

(i)
h (fµ

(i),πk

, µ(i),πk

)

∥∥∥∥
Σk,h

·
∥∥Xh(π

k)
∥∥
Σ−1

k,h

· I
{∥∥Xh(π

k)
∥∥
Σ−1

k,h

≤ 1
}

≤ 2R

K∑
k=1

H∑
h=1

∥∥∥∥W (i)
h (fk, πk)−W

(i)
h (fµ

(i),πk

, µ(i),πk

)

∥∥∥∥
Σk,h

·min
{∥∥Xh(π

k)
∥∥
Σ−1

k,h

, 1
}
.

(F.11)

The first inequality holds by Cauchy’s inequality that |⟨X,Y ⟩| ≤ ∥X∥Σ∥Y ∥Σ−1 .
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Now by the definition Σk,h = εI +
∑k−1

s=1 Xh(π
s)Xh(π

s)T , we expand the term ∥W (i)
h (fk, πk)−

W
(i)
h (fµ

(i),πk

, µ(i),πk

)∥Σk,h
as∥∥∥∥W (i)

h (fk, πk)−W
(i)
h (fµ(i),πk

, µ(i),πk

)

∥∥∥∥
Σk,h

=

[
ε ·
∥∥∥W (i)

h (fk, πk)−W
(i)
h (fµ(i),πk

, µ(i),πk

)
∥∥∥2
2
+

k−1∑
s=1

∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
s)⟩
∣∣∣2]1/2

≤ 2
√
εBW +

[
k−1∑
s=1

∣∣∣⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
s)⟩
∣∣∣2]1/2 .

The last inequality holds by
√
a+ b ≤

√
a+

√
b. Then, we can get

K∑
k=1

H∑
h=1

∥W (i)
h (fk, πk)−W

(i)
h (fµ

(i),πk

, µ(i),πk

)∥Σk,h
min

{
∥Xh(π

k)∥Σ−1
k,h
, 1
}

≤
K∑

k=1

H∑
h=1

2
√
εBW +

[
k−1∑
s=1

|⟨W (i)
h (fk, πk)−W

(i)
h (fµ

(i),πk

, µ(i),πk

), Xh(π
s)⟩|2

]1/2
·min

{
∥Xh(π

k)∥Σ−1
k,h
, 1
}
≤ A1 +A2. (F.12)

where A1 and A2 are defined as follows:

A1 =

(
K∑

k=1

H∑
h=1

4εB2
W

)1/2

·

(
K∑

k=1

H∑
h=1

min
{
∥Xh(π

k)∥2
Σ−1

k,h
, 1
})1/2

A2 =

(
K∑

k=1

H∑
h=1

k−1∑
s=1

|⟨W (i)
h (fk, πk)−W

(i)
h (fµ(i),πk

, µ(i),πk

), Xh(π
s)⟩|2

)1/2

·

(
K∑

k=1

H∑
h=1

min{∥Xh(π
k)∥2

Σ−1
k,h

, 1}

)1/2

,

Now we bound A1 and A2 respectively. First, for A1, using (F.7), we have

A1 ≤
√
4εKHB2

W · 2γK(ε,X ).

Then, for A2, we have

A2 =

(
K∑

k=1

H∑
h=1

k−1∑
s=1

|⟨W (i)
h (fk, πk)−W

(i)
h (fµ

(i),πk

, µ(i),πk

), Xh(π
s)⟩|2

)1/2√
2γK(ε,X )

=

(
K∑

k=1

k−1∑
s=1

ℓ(i),s(fk, πk)

)1/2√
2γK(ε,X ).

The equality holds by the definition of ℓ(i),s and the definition of multi-agent bilinear class (D.3).

Then, since
√
ab ≤ aµ+ b/µ for any µ > 0, we can further derive

A2 ≤ 2Rµ · 2γK(ε,X ) +
1

2Rµ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk).

Now by adding A1 and A2 and combining with (F.11) and (F.12), we can finally get

A ≤ 2R(A1 +A2) ≤
√
4εKHB2

W · 8RγK(ε,X ) + µ · 8R2γK(ε,X ) +
1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk)

≤ 32RB2
W εHK + γK(ε,X ) + µ · 8R2γK(ε,X ) +

1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk).
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Now we have complete the bound of A. For B, by (F.7), since I{x > 1} ≤ min{1, x2}, we know
that

K∑
k=1

H∑
h=1

I
{
∥Xh(π

k)∥Σ−1
k,h

> 1
}
≤

K∑
k=1

H∑
h=1

min
{
1, ∥xk,h∥2Σ−1

k,h

}
≤ 2γK(ε,X ). (F.13)

Thus, by the definition of B in (F.10), we can derive

B ≤ 2

K∑
k=1

H∑
h=1

I
{
∥Xh(π

k)∥Σ−1
k,h

> 1
}
≤ 2γK(ε,X ).

Now note that Reg(K) ≤ A + B, then by choosing ε = 1/32RKB2
W and dMADC =

max{1, 8R2γK(ε,X )} we can derive

Reg(K) ≤ A+B

≤ 32RB2
W εHK + 3γK(ε,X ) + µ · 8R2γK(ε,X ) +

1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk)

= H + 3γK(ε,X ) + µ · 8R2γK(ε,X ) +
1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk)

≤ 6dMADCH + µdMADC +
1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk).

The last inequality uses the fact that dMADC ≥ 1, H ≥ 1. Hence, we complete the proof.

F.4 PROOF OF THEOREM D.12

Proof. In this subsection, we give a detailed proof of Theorem D.12. First, similar to the perfor-
mance difference lemma in Jiang et al. (2017), we have

Es1∼ρ

[
V

(i),πk

1,f (s1)− V
(i),πk

1 (s1)
]

= Eπk

[
Q

(i),πk

1,f (s1, a1)
]
− Eπk

[
H∑

h=1

r
(i)
h (sh, ah)

]

= Eπk

[
H∑

h=1

(
Q

(i),πk

h,f (sh, ah)− r
(i)
h (sh, ah)−Q

(i),πk

h+1,f (sh+1, ah+1)
)]

. (F.14)

The last equality holds by splitting the term. Now, since

Eπk

[
Q

(i),πk

h+1,f (sh+1, ah+1)
]
= Eπk

[
V

(i),πk

h+1,f (sh+1)
]
= Eπk

[
Esh+1∼Ph,f∗ (·|sh,ah)

[
V

(i),πk

h+1,f (sh+1)
]]
,

(F.15)

we can rewrite (F.14) as

Es1∼ρ

[
V

(i),πk

1,f (s1)− V
(i),πk

1 (s1)
]

= Eπk

[
H∑

h=1

(
Q

(i),πk

h,f (sh, ah)− r
(i)
h (sh, ah)− Esh+1∼Ph,f∗ (·|sh,ah)V

(i),πk

h+1,f (sh+1)
)]

=

K∑
k=1

Eπk

[
H∑

h=1

(Esh+1∼P
h,fk (·|sh,ah) − Esh+1∼Ph,f∗ (·|sh,ah))

[
V

(i),πk

h+1,fk(sh+1)
]]
. (F.16)
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Then, combining (F.16) and the definition of multi-agent witness rank (D.7), we can derive
K∑

k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]

≤
K∑

k=1

H∑
h=1

min

{
R,

1

κwit
|⟨Wh(f

k), Xh(π
k)⟩|
}

≤
K∑

k=1

H∑
h=1

min

{
R,

1

κwit
|⟨Wh(f

k), Xh(π
k)⟩|
}(

I
{
∥Xh(π

k)∥
Σ−1

k,h
≤ 1
}
+ I
{
∥Xh(π

k)∥
Σ−1

k,h
≥ 1
})

.

(F.17)
Now note that

K∑
k=1

min
{
1, ∥Xh(π

k)∥2
Σ−1

k,h

}
≤ 2d log

(
ε+K

ε

)
≜ D(ε).

and I{x > 1} ≤ min{1, x2}, we can derive
K∑

k=1

H∑
h=1

I{∥Xh(π
k)∥Σ−1

k,h
> 1} ≤ D(ε)H. (F.18)

Then, combining (F.17) and (F.18), we can get
K∑

k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]

≤ R

K∑
k=1

H∑
h=1

min

{
1,

1

κwit
|⟨Wh(f

k), Xh(π
k)⟩|
}
·
(
I{∥Xh(π

k)∥
Σ−1

k,h
≤ 1}+ I{∥Xh(π

k)∥
Σ−1

k,h
> 1}

)
≤ R

K∑
k=1

H∑
h=1

min

{
1,

1

κwit
|⟨Wh(f

k), Xh(π
k)⟩|
}
·
(
I{∥Xh(π

k)∥
Σ−1

k,h
≤ 1}

)
+D(ε)HR

≤ R

K∑
k=1

H∑
h=1

1

κwit
∥Wh(f

k)∥Σk,h min

{
1, ∥Xh(π

k)∥2
Σ−1

k,h

}
︸ ︷︷ ︸

(A)

+D(ε)HR. (F.19)

The last inequality uses the Cauchy’s inequality ⟨X,Y ⟩ ≤ ∥X∥A∥Y ∥A−1 and the fact that x ·I{x ≤
1} ≤ min{1, x2}. Further, by the definition of Σk,h, we decompose the first term as

(A) ≤ 1

κwit

K∑
k=1

H∑
h=1

[
ε · ∥Wh(f

k)∥22 +
k∑

s=1

|⟨Wh(f
k), Xh(π

s)⟩|2
]1/2

min
{
1, ∥Xh(π

k)∥Σ−1
k,h

}

≤ 1

κwit

K∑
k=1

H∑
h=1

√
εBW +

[
k∑

s=1

|⟨Wh(f
k), Xh(π

s)⟩|2
]1/2min

{
1, ∥Xh(π

k)∥Σ−1
k,h

}
.

The second inequality is derived by the inequality ∥Wh(f
k)∥ ≤ BW and

√
a+ b ≤

√
a+

√
b. Now

sum over k ∈ [K] and h ∈ [H], we can get

(A) ≤
K∑

k=1

H∑
h=1

1

κwit

√
εBW +

[
k∑

s=1

|⟨Wh(f
k), Xh(π

s)⟩|2
]1/2min

{
1, ∥Xh(π

k)∥Σ−1
k,h

}

≤ 1

κwit

K∑
k=1

H∑
h=1

√
εBW min

{
1, ∥Xh(π

k)∥Σ−1
k,h

}
︸ ︷︷ ︸

(X)

+
1

κwit

K∑
k=1

H∑
h=1

[
k∑

s=1

|⟨Wh(f
k), Xh(π

s)⟩|2
]1/2

min
{
1, ∥Xh(π

k)∥Σ−1
k,h

}
︸ ︷︷ ︸

(Y )

. (F.20)
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First, we try to give an upper bound for (X). By Cauchy’s inequality and (F.18), we can derive

(X) ≤ 1

κwit

(
K∑

k=1

H∑
h=1

εB2
W

)1/2( K∑
k=1

H∑
h=1

min
{
1, ∥Xh(π

k)∥2
Σ−1

k,h

})1/2

≤ 1

κwit

√
HKεB2

W · D(ε)H ≤ HKεB2
W

κ2wit

+D(ε)H. (F.21)

On the other hand, for (Y), we can bound it using Cauchy’s inequality that
∑

a,b

√
ab ≤√

(
∑

a a) · (
∑

b b),

(Y ) ≤ 1

κwit

((
K∑

k=1

H∑
h=1

k∑
s=1

|⟨Wh(f
k), Xh(π

s)⟩|2
)(

K∑
k=1

H∑
h=1

min
{
1, ∥Xh(π

k)∥2
Σ−1

k,h

}))1/2

≤ 1

κwit

√√√√D(ε)H

(
K∑

k=1

H∑
h=1

k∑
s=1

|⟨Wh(fk), Xh(πs)⟩|2
)
.

The last inequality holds by the definition of D(ε) in F.18. Now by the definition of multi-agent
witness rank D.6, we note that

|⟨Wh(f
k), Xh(π

s)⟩|2

≤
(
max
v∈Vh

E(sh,ah)∼π[(Esh+1∼P
h,fk (·|sh,ah) − Esh+1∼Ph,f∗ (·|sh,ah))v(sh, ah, sh+1)]

)2

≤ max
v∈Vh

E(sh,ah)∼πs

[(
(Esh+1∼P

h,fk (·|sh,ah) − Esh+1∼Ph,f∗ (·|sh,ah))v(sh, ah, sh+1)
)2]

≤ E(sh,ah)∼πs

[
max
v∈Vh

(
(Esh+1∼P

h,fk (·|sh,ah) − Esh+1∼Ph,f∗ (·|sh,ah))v(sh, ah, sh+1)
)2]

The last two inequalities use Jensen’s inequality. Hence, by the definition of total variation distance,
we can get

|⟨Wh(f
k), Xh(π

s)⟩|2 ≤ TV
(
Ph,fk(· | sh, ah),Ph,f∗(· | sh, ah)

)2
(F.22)

≤ 2D2
H

(
Ph,fk(· | sh, ah),Ph,f∗(· | sh, ah)

)
, (F.23)

where the TV(·, ·) denotes the total variation distance and DH denotes the Hellinger divergence.
The inequality (F.22) holds by the fact that v(sh, ah, sh+1) ∈ [0, 1], and the (F.23) holds by the
relationship between TV distance and Hellinger distance. Then, we can substitute the inequality
(F.23) and get

(Y ) ≤ 1

κwit

√√√√D(ε)H

(
K∑

k=1

H∑
h=1

k∑
s=1

E(sh,ah)∼πs2D2
H

(
Ph,fk(· | sh, ah),Ph,f∗(· | sh, ah)

))

≤ µR · 2D(ε)H

κ2wit

+
1

µR

(
K∑

k=1

H∑
h=1

k∑
s=1

E(sh,ah)∼πsD2
H

(
Ph,fk(· | sh, ah),Ph,f∗(· | sh, ah)

))
(F.24)

Hence, combining (F.19), (F.20), (F.21) and (F.24), we can get

Reg(K) =

K∑
k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]

≤ R ·A+D(ε)HR

≤ R(X + Y ) +D(ε)HR

≤ HKRεB2
W /κ2wit +D(ε)HR

+ µR2 · 2D(ε)H

κ2wit

+
1

µ

(
K∑

k=1

H∑
h=1

k∑
s=1

E(sh,ah)∼πsD2
H

(
Ph,fk(· | sh, ah),Ph,f∗(· | sh, ah)

))
.

(F.25)
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Now by the definition of ℓ(i),s of the model-based problem in (2.5), choosing ε = κ2wit/HKB
2
W

and dMADC = 2R2D(ε)H
κ2
wit

, we can get

Reg(K) ≤ 6dMADCH + µ · dMADC +
1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk)

complete the proof by D(κ2wit/HKB
2
W ) = Õ(d).

F.5 PROOF OF THEOREM D.14

Proof. First, we fix an index i ∈ [n]. Similar to Section F.4, we can get
K∑

k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]

=

K∑
k=1

Eπk

[
H∑

h=1

(Q
(i),πk

h,fk (sh, ah)− r
(i)
h (sh, ah)− Esh+1∼Ph,f∗ (·|sh,ah)V

(i),πk

h+1,fk(sh+1, ah+1))

]

=

K∑
k=1

Eπk

[
H∑

h=1

(Esh+1∼P
h,fk (·|sh,ah) − Esh+1∼Ph,f∗ (·|sh,ah))[V

(i),πk

h+1,fk(sh+1)]

]

=

K∑
k=1

H∑
h=1

(θh,fk − θ∗h)
TEπk

[∫
S
ϕh(s

′ | s, a)V (i),πk

h+1,fk(s
′)ds

]
,

where the last equality is because of the property of the linear mixture MG.

Now we denote

Wh(f) = R(θh,f − θ∗h) (F.26)

Xh(f, π) = Eπ

[∫
S ϕh(s

′ | s, a)V (i),π
h+1,f (s

′)ds

R

]
. (F.27)

Then, we have ∥Wh(f)∥ ≤ 2
√
d, ∥Xh(f, π)∥ ≤ 1 and

K∑
k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]
≤

K∑
k=1

H∑
h=1

min{⟨Wh(f
k), Xh(f

k, πk)⟩, R}.

Now similar to Section F.4, if we replaceXh(π
k) toXh(f

k, πk), from (F.21) and (F.24) withBW =

2
√
dR we can get

K∑
k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]

≤ HKRε4dR2 +D(ε)HR+ µR4 · 2D(ε)H +
1

µR2

(
K∑

k=1

H∑
h=1

k∑
s=1

⟨Wh(f
k), Xh(f

s, πs)⟩2
)
,

(F.28)

where D(ε) = 2d log
(
ε+K
ε

)
. Moreover, by (F.26) and (F.27), note that

⟨Wh(f
k), Xh(f

s, πs)⟩ = (θh,fk − θ∗h)
TEπs

[∫
S
ϕh(s

′ | s, a)V (i),πs

h+1,fs(s
′)ds

]
= Eπs

[
(Esh+1∼P

h,fk (·|sh,ah) − Esh+1∼Ph,f∗ (·|sh,ah
)[V

(i),πs

h+1,fs(sh+1)]
]

≤ Eπs

[
2∥V (i),πs

h+1,fs(·)∥∞ · dTV(Ph,fk(· | sh, ah)∥Ph,f∗(· | sh, ah))
]

≤ Eπs

[
2
√
2RDH(Ph,fk(· | sh, ah)∥Ph,f∗(· | sh, ah))

]
.

38



Published as a conference paper at ICLR 2024

Hence, from (F.28) and Jensen’s inequality that (E[X])2 ≤ E[X2], we can have

Reg(K) ≤
K∑

k=1

Es1∼ρ

[
V

(i),πk

1,fk (s1)− V
(i),πk

1 (s1)
]

≤ HKRε4dR2 +D(ε)HR+ µR4 · 2D(ε)H

+
1

µR2

(
K∑

k=1

H∑
h=1

k∑
s=1

E(sh,ah)∼πs

[
8R2D2

H

(
Ph,fk(· | sh, ah),Ph,f∗(· | sh, ah)

)])
.

By the definition of discrepancy function ℓ(i),s in (2.5), and choosing ε = 1/HKd, dMADC =

HR4D(1/HKd) = Õ(HdR4), we can derive

Reg(K) ≤ 4R3 +D(1/HKd)HR+ µdMADC +
1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk)

≤ 6dMADCH + µdMADC +
1

µ

K∑
k=1

k−1∑
s=1

ℓ(i),s(fk, πk).

Hence, we complete the proof.

F.6 PROOF OF LEMMA E.1

Proof. The proof is modified from Zhong et al. (2022). Define Wj,h be the filtration induced by
{sk1 , ak1 , r

(i),k
1 , · · · , skH , akH , r

(i),k
H }j−1

k=1. First, for h ∈ [H], i ∈ [n], f ∈ F (i) and π ∈ Π, we define
the random variable

Y
(i)
j (h, f, ζk) =

(
fh(s

j
h, a

j
h)− r

(i)
h (sjh, a

j
h)− ⟨fh+1(s

j
h+1·), ζ

k
h+1(· | s

j
h+1)⟩

)2
−
(
T (i),ζk

h (f)(sjh, a
j
h)− r

(i)
h (sjh, a

j
h)− ⟨fh+1(s

j
h+1·), ζ

k
h+1(· | s

j
h+1)⟩

)2
.

By taking conditional expectation of Yj with respect to ajh, s
j
h, we can get

E[Y (i)
j (h, f, ζk) | Wj,h] = Esh,ah∼ζj [(fh − T (i),ζk

h (f))(sh, ah)]
2

and

E[(Y (i)
j (h, f, ζk))2 | Wj,h] ≤ 2R2E[Y (i)

j (h, f, ζk) | Wj,h],

where 3R ≥ |fh(sjh, a
j
h) − r

(i)
h (sjh, a

j
h) − ⟨fh+1(s

j
h+1·), ζkh+1(· | s

j
h+1)⟩)| is the constant upper

bound. Denote Zj = Y
(i)
j (h, f, ζk) − Esh+1

[Y
(i)
j (h, f, ζk) | Wj,h] with |Zj | ≤ 4R2. By the

Freedman inequality, for any 0 < η < 1
4R , with probability at least 1− δ,

k∑
j=1

Zj = O

η k∑
j=1

Var[Y (i)
j (h, f, ζk) | Wj,h] +

log(1/δ)

η


≤ O

η k∑
j=1

E[(Y (i)
j (h, f, ζk))2 | Wj,h] +

log(1/δ)

η


≤ O

η k∑
j=1

2R2E[Y (i)
j (h, f, ζk) | Wj,h] +

log(1/δ)

η

 .

By choosing η = min

{
1
4R ,

√
log(1/δ)

√
2R

√∑k
j=1 E[Y (i)

j (h,f,ζk)|Wj,h]

}
, we will have

k∑
j=1

Zj = O

R
√√√√ k∑

j=1

E[Y (i)
j (h, f, ζk) | Wj,h] log(1/δ) +R2 log(1/δ)

 .
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Similarly, if we apply the Freedman’s inequality with −
∑k

j=1 Zj , with probability at least 1− 2δ,∣∣∣∣∣
k∑

j=1

Zj

∣∣∣∣∣ = O

R
√√√√ k∑

j=1

E[Y (i)
j (h, f, ζk) | Wj,h] log(1/δ) +R2 log(1/δ)

 .

Denote the ρ-covering set of F (i) as CF(i)(ρ), then for any f ∈ F (i), ζ ∈ Πpur
i , there exists a pair

f̃ ∈ CF(i)(ρ) such that∣∣∣(fh(sh, ah)−r(i)h (sh, ah)− ⟨fh+1(sh+1, ·), ζh+1(· | sh+1)⟩
)

−
(
f̃h(sh, ah)− r

(i)
h (sh, ah)− ⟨f̃h+1(sh+1, ·), ζh+1(· | sh+1)⟩

)∣∣∣ ≤ 3ρ

for all (sh, ah, sh+1) ∈ S ×A× S. Now by taking a union bound over CF(i)(ρ), we have that with
probability at least 1− δ, for all f̃ ∈ CF(i)(ρ),∣∣∣∣∣

k∑
j=1

Ỹ
(i)
j (h, f̃ , ζ)−

k∑
j=1

E[Ỹ (i)
j (h, f̃ , ζ) | Wj,h]

∣∣∣∣∣
= O

R
√√√√ k∑

j=1

E[Ỹ (i)
j (h, f̃ , ζ) | Wj,h]ι+R2ι

 , (F.29)

where ι = 2 log(HK|CF(i)(ρ)|/δ) ≤ 2 log(HKNF(i)(ρ)).

Now note that for all f ∈ F (i), ζ ∈ Πpur
i , we have

H∑
h=1

k−1∑
j=0

Y
(i)
j (h, f, ζ)

=

H∑
h=1

k−1∑
j=0

(fh(s
j
h, a

j
h)− r

(i)
h (sjh, a

j
h)− ⟨fh+1(s

j
h+1, ·), ζh+1(· | sjh+1)⟩)

2

− (T (i),ζ
h (f)(sjh, a

j
h)− r

(i)
h (sjh, a

j
h)− ⟨fh+1(s

j
h+1, ·), ζh+1(· | sjh+1)⟩)

2

≤
H∑

h=1

k−1∑
j=0

(fh(s
j
h, a

j
h)− r

(i)
h (sjh, a

j
h)− ⟨fh+1(s

j
h+1, ·), ζh+1(· | sjh+1)⟩)

2

− inf
f ′
h∈F(i)

h

(T (i),ζk

h (f ′)(sjh, a
j
h)− r

(i)
h (sjh, a

j
h)− ⟨fh+1(s

j
h+1, ·), ζh+1(· | sjh+1)⟩)

2

= L(i),k−1(f, ζ, τ1:k−1).

Then, by (F.29) we can get
H∑

h=1

k−1∑
j=0

E[Ỹ (i)
j (h, f̃ , ζ) | Wj,h] ≤ 4L(i),k−1(f̃ , ζ, τ1:k−1) +O(HR2ι).

Now similar to (Jin et al., 2021a), by the definition of ρ-covering number, for any k ∈ [K], f ∈ F (i)

and ζ ∈ Πpur
i ,
H∑

h=1

k−1∑
j=0

E[Y (i)
j (h, f, ζ) | Wj,h] ≤ 4L(i),k−1(f, ζ, τ1:k−1) +O(HR2ι+HRkρ).

Now since sjh, a
j
h ∼ ζj , we can have
k−1∑
j=0

ℓj,(i)(f, ζk) =

k−1∑
j=0

E[Y (i)
j (h, f, ζk) | Wj,h]

≤ 4L(i),k−1(f, ζk, τ1:k−1) +O(HR2ι+HRkρ).

We complete the proof by choosing ρ = 1/K and choose εconc = O(HR2ι+HRkρ) = O(HR2ι).
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F.7 PROOF OF LEMMA E.2

Proof. First, for any f ∈ F (i) and π ∈ Πpur we define the random variable

Q
(i)
j (h, f, π) = (fh(s

j
h, a

j
h)− r

(i)
h (sjh, a

j
h)− ⟨f∗h+1(s

j
h+1, ·), πh+1(· | sjh+1)⟩)

2

− (f∗h(s
j
h, a

j
h)− r

(i)
h (sjh, a

j
h)− ⟨f∗h+1(s

j
h+1, ·), πh+1(· | sjh+1)⟩)

2.

Then, by similar derivations in Lemma E.1, we can get

E[Q(i)
j (h, f, π) | Wj,h] = Esh,ah∼ζj [(fh − T (i),π(f∗))(sh, ah)]

2 ≥ 0,

E[(Q(i)
j (h, f, π))2 | Wj,h] ≤ 2R2E[Q(i)

j (h, f, π) | Wj,h].

Then, by Freedman’s inequality, with probability at least 1− δ, for all elements in f̃ ∈ CF(i)(ρ), we
have ∣∣∣∣∣

k−1∑
j=0

Q̃
(i)
j (h, f̃ , π)−

k−1∑
j=0

E[Q̃(i)
j (h, f̃ , π) | Wj,h]

∣∣∣∣∣
= O

R
√√√√k−1∑

j=0

Esh+1
[Q̃

(i)
j (h, f̃ , π) | Wj,h]ι+R2ι

 ,

then we can have
k−1∑
j=0

Q̃
(i)
j (h, f̃ , π) ≥ −O(R2ι).

Thus, by the definition of CF(i)(ρ), for all f ∈ F (i) and π ∈ Πpur
i , we have

−
k−1∑
j=0

Q
(i)
j (h, f, π) ≤ O(R2ι+Rkρ).

Thus,

L(i),k(f, π) =

H∑
h=1

− inf
f∈F(i)

k−1∑
j=0

Q
(i)
j (h, f, π)

 ≤ O(HR2ι+HRkρ) = O(HR2ι).

Thus, we complete the proof.

F.8 PROOF OF LEMMA E.3

Proof. For simplicity, we first assume F is a finite class. Given a model f ∈ F and h ∈ [H], we

define Xj
h,f = log

Ph,f∗ (sjh+1|s
j
h,a

j
h)

Ph,f (s
j
h+1|s

j
h,a

j
h)

. Thus,

L(i),k(f∗, τ1:k)− L(i),k(f, τ1:k) = −
H∑

h=1

k∑
j=1

Xj
h,f . (F.30)

Now we define the filtration Gj as

Gj = σ({s1h, a1h, · · · , s
j
h, a

j
h}).

Then, by Lemma G.1 for all f ∈ F , with probability at least 1− δ, we have

−
k∑

j=1

Xj

h,f̄
≤

k∑
j=1

logE

[
exp

{
−1

2
Xj

h,f̄

} ∣∣∣∣∣ Gj−1

]
+ log(H|F|/δ).
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Now we decompose the first term at the right side as

E

[
exp

{
−1

2
Xj

h,f̄

} ∣∣∣∣∣ Gj−1

]

= E


√√√√ logPh,f (s

j
h+1 | sjh, a

j
h)

Ph,f∗(sjh+1 | sjh, a
j
h)

∣∣∣∣∣ Gj−1


= E(sjh,a

j
h)∼πjEsh+1∼Ph,f∗ (·|sjh,a

j
h)


√√√√ Ph,f (s

j
h+1 | sjh, a

j
h)

Ph,f∗(sjh+1 | sjh, a
j
h)

∣∣∣∣∣ Gj−1


= E(sjh,a

j
h)∼πj

[∫ √
Ph,f (s

j
h+1 | sjh, a

j
h)Ph,f∗(sjh+1 | sjh, a

j
h)dsjh+1

]
= 1− 1

2
E(sjh,a

j
h)∼πj [D

2
H(Ph,f (s

j
h+1 | sjh, a

j
h)∥Ph,f∗(sjh+1 | sjh, a

j
h))].

Now by the inequality log x ≤ x− 1, we have

−
k∑

j=1

Xj
h,f ≤

k∑
j=1

(
1− 1

2
E(sjh,a

j
h)∼πj [D

2
H(Ph,f (s

j
h+1 | sjh, a

j
h)∥Ph,f∗(sjh+1 | sjh, a

j
h))]

)
− 1 + log(H|F|/δ)

≤ −
k∑

j=1

1

2
E(sjh,a

j
h)∼πj

[
D2

H(Ph,f (s
j
h+1 | sjh, a

j
h)∥Ph,f∗(sjh+1 | sjh, a

j
h))
]

+ log(H|F|/δ).

Sum over h ∈ [H] with (F.30), we can complete the proof by

−
H∑

h=1

k∑
j=1

Xj
h,f ≤ −

k∑
j=1

ℓ(i),j(f) + κconc,

where κconc = H log(H|F|/δ). For infinite model classes F , we can use 1/K-bracketing number
BF (1/K) to replace the cardinality |F| (Liu et al., 2022a; Zhong et al., 2022; Zhan et al., 2022b).

F.9 PROOF OF COROLLARY E.4

Proof. We provide the proof for NE. The proof for CCE/CE are the same by replacing the NE-
regret to the CCE/CE-regret. By taking the minimum of the index of agents rather than adding them
together, we can modify the proof of Theorem 3.1 and derive, with probability at least 1− δ,

1

K

(
K∑

k=1

max
i∈[n]

(
V (i),µ(i),πk

(ρ)− V (i),πk

(ρ)
))

≤ Õ
(
HΥF,δ√

K
+
dMADC√

K
+
dMADCH

K

)
.

Hence, by choosing K = Õ
(
(H2Υ2

F,δ + d2MADC) · ε−2 + dMADCH · ε−1
)

with ε < 1, we have

max
i∈[n]

(
V (i),µ(i),πout

(ρ)− V (i),πout(ρ)
)

=
1

K

(
K∑

k=1

max
i∈[n]

(
V (i),µ(i),πk

(ρ)− V (i),πk

(ρ)
))

≤ ε,

where the second inequality holds from πout = Unif({πk}k∈[K]). Hence, πout is a ε-NE.
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G TECHNICAL TOOLS

We provide the following lemma to complete the proof of model-based RL problems. The detailed
proof can be found in (Foster et al., 2021).
Lemma G.1. For any real-valued random variable sequence {Xk}k∈[K] adapted to a filtration
{Gk}k∈[K], with probability at least 1− δ, for any k ∈ [K], we can have

−
k∑

s=1

Xk ≤
k∑

s=1

logE[exp(−Xs) | Fs−1] + log(1/δ).

In the next lemma, we introduce the Freedman’s inequality, which has been commonly used in
previous RL algorithms. (Jin et al., 2021b; Chen et al., 2022c; Zhong et al., 2022)
Lemma G.2 (Freedman’s Inequality (Agarwal et al., 2014)). Let {Zk}k∈[K] be a martingale differ-
ence sequence that adapted to filtration {Fk}k∈[K]. If |Zk| ≤ R for all k ∈ [K], then for η ∈ (0, 1

R ),
with probability at least 1− δ, we can have

K∑
k=1

Xk = O

(
η

K∑
k=1

E[X2
k | Fk−1] +

log(1/δ)

η

)
.

The next elliptical potential lemma is first introduced in the linear bandit literature (Dani et al., 2008;
Abbasi-Yadkori et al., 2011) and then applied to the RL problems with Bilinear Classes (Du et al.,
2021) and the general function approximation (Chen et al., 2022a; Zhong et al., 2022).
Lemma G.3 (Elliptical Potential Lemma). Let {xk}Kk=1 be a sequence of real-valued vector, i.e.
xk ∈ Rd for any k ∈ [K]. Then, if we define Λi = εI +

∑K
k=1 xkx

T
k , we can get that

K∑
k=1

min
{
1, ∥xi∥2Λ−1

i

}
≤ 2 log

(
det(ΛK+1)

det(Λ1)

)
≤ 2 log det

(
I +

1

ε

K∑
k=1

xkx
T
k

)
.

Proof. The proof is provided in Lemma 11 of (Abbasi-Yadkori et al., 2011).

H COMPUTATIONAL EFFICIENCY

Since the normal-form game is defined over the pure policy space, the size of this game can be
exponentially large, which makes the algorithm not computationally efficient. Actually, the compu-
tational complexity of this oracle depends on the type of equilibrium.

For CCE, the oracle can be approximately implemented by mirror descent (Wang et al., 2023),
where the time of calculating V (π) depends on the number of iterations. Hence, the computa-
tional complexity of this oracle depends only on the number of iterations rather than the pure policy
space |Π|pur. To be more specific, by replacing the optimistic value function V

(t),π

i in Algorithm
4 (DOPMD) of [1] by the regularized payoff function in 3.1, one can get an approximated CCE
by mirror descent using FTRL analysis. The sampling procedure in Line 3 of DOPMD can be im-
plemented by Langevin dynamics (Karagulyan, 2021) as long as we can obtain the gradient of the
regularized payoff function.

However, for Nash Equilibrium, calculating the equilibrium is PPAD-complete. So MAMEX is
computationally inefficient for learning NE.
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