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Abstract: In this supplementary document, we first provide additional details1

about the nuPlan dataset and evaluation schemes. Next, we provide information2

on the on our standardized benchmark for training and evaluation. Following3

this, we describe the implementation and training schedules for our baselines.4

Additionally, we provide detailed descriptions of PDM’s components. Finally, we5

describe our preliminary version of PDM-Hybrid, which won the 2023 nuPlan6

Challenge. The supplementary video compares the 3 evaluation modes in nuPlan7

and visualizes the operation of rule-based, learned and hybrid planners on different8

types of scenarios.9

1 nuPlan10

1.1 Dataset11

The nuPlan dataset compromises 1300 hours of driving data from Las Vegas, Boston, Pittsburgh, and12

Singapore. The data logs are separated into three sets for training, validation, and testing. The data13

includes human driving logs, HD map information, and auto-labelled data from an offline perception14

system. Based on the logs, short driving scenarios of 15s duration can be generated to simulate and15

measure the capabilities of various planners in open- and closed-loop. The scenarios are categorized16

into 70 types, of which 14 were used for the 2023 nuPlan challenge. The planner receives (1) a goal17

position, (2) a sequence of roadblocks to follow, and (3) observations over the past 2s. A planner is18

required to output an 8s trajectory.19

1.2 Simulation20

A planner in nuPlan can be simulated in three modes: open-loop, closed-loop non-reactive, closed-21

loop reactive.22

Open-Loop. During open-loop simulation, the ego vehicle is completely replayed from the human23

recordings. Thus, the planner’s output does not influence the vehicle’s movement.24

Closed-Loop. To simulate the planner in closed-loop, nuPlan uses a two-stage simulation pipeline.25

First, an LQR controller [1] converts the trajectory into actions. Second, the actions are applied to26

propagate a kinematic bicycle model [2, 3], approximating the vehicle’s motion in coordinate space.27

The controller and motion model parameters are fixed and cannot be tuned for the challenge. The en-28

vironment is either non-reactive (replaying the recordings) or reactive by simulating the surrounding29

vehicles with a lightweight planner.30
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2 Training & Evaluation31

In this section, we describe our training and evaluation benchmark. We will publicly release the32

configurations and settings required to reproduce our benchmark.33

Training. Our proposed training set contains a maximum of 4k samples per scenario, using all34

70 scenario types from nuPlan’s "training" database files. Overall, this dataset consists of 177,43535

training samples.36

Evaluation. We evaluate the planners with a maximum of 100 scenarios of the 14 challenge types37

from nuPlan’s validation split, resulting in 1,118 scenarios. To ensure that the scenarios do not38

overlap, we use a threshold of 15 seconds between the initial frames of subsequent scenarios. At the39

current stage, we strongly recommend evaluating planners on the validation split and preserving the40

test split’s integrity. We found our benchmark well aligned with the 2023 nuPlan leaderboard.41

Hardware. For simulation, training, and runtime analysis, we use an AMD Ryzen 9 7950X42

processor with 64GB memory and a single NVIDIA RTX 3090.43

3 Baselines44

In this section, we provide detailed information about the training and implementation of the baseline45

planners presented in our work.46

3.1 Learned Planner47

All learning-based planners are trained on our standardized training set, as described in Section 2.48

The models output an 8s trajectory at 2Hz.49

PlanCNN. The PlanCNN model is provided in the framework [4]. We use a pre-trained ResNet-5050

as CNN encoder. A single linear layer decodes the trajectory. We train PlanCNN with the Adam51

optimizer, a batch size of 64, and a learning rate of 1e−4 for 100 epochs. We divide the learning rate52

by 10 after 50 and 75 epochs. The CNN is trained with an L1-Loss.53

Urban Driver. The Urban Driver model was introduced in [5] and uses PointNet layers to54

encode the ego vehicles motion history, surrounding agents, and the map, which is represented by55

polylines. Subsequently, an attention layer aggregates the encoded features before decoding the56

output trajectory. We use the implementation provided by the nuPlan framework [4] and train the57

model with an L1-Loss using a batch size of 64 and a learning rate of 1e−4 for 60 epochs.58

GC-PGP. The GC-PGP model was introduced in [6], and extends the state-of-the-art prediction59

model, called PGP [7], for goal-directed ego-forecasting. We refer to Section 5 for a detailed de-60

scription of the model. Note that a modified variant of GC-PGP was used in our preliminary planner.61

We train the model as proposed in [6] for 70 epochs with a batch size of 32 and a learning rate of62

1e−4 that is decayed after 40, 50, and 55 epochs by a factor of 0.5.63

3.2 IDM64

The IDM planner utilizes the centerline of lanes as lateral path, and applies the policy from [8] for65

longitudinal control.66

Lateral:. The planner retrieves a sequence of lanes, by applying a Breadth-First-Search (BFS) from67

the current lane to any lane at the end of the route. If no route is found, the longest lane sequence is68

returned.69

Longitudinal. IDM iteratively applies a policy to calculate the longitudinal velocity ẋα and accel-70

eration v̇α for the ego vehicle α. By integrating the velocities over time, the planner retrieves the71

longitudinal ego position xα, which is interpolated along the centerline to calculate the trajectory72

samples. Since IDM is a parameterized car-following model, each unrolling step requires to extract73
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Parameter Value Description

v0 vlane
Desired velocity. Either the current speed-limit,
or vlane = 10 m/s if speed-limit not available.

s0 1.0 m Desired net distance to the leading agent α− 1.
T 1.5 s Desired time headway to leading agent α− 1.
a 1.0 m/s2 Maximum acceleration of ego vehicle α
b 3.0 m/s2 Maximum deceleration (positive) of ego vehicle α
δ 4.0 Acceleration exponent.

Table 1: IDM Parameters.

the states of the leading agent α− 1, resulting in the net distance sα and approaching rate ∆vα:74

sα := xα−1 − xα − lα−1, (1)
∆vα := vα − vα−1, (2)

where lα−1 is the length of the leading vehicle. Finally, the IDM output can be expressed by the75

following equations:76

ẋα =
dxα

dt
= vα (3)

v̇α =
dvα
dt

= a

(
1−

(
vα
v0

)δ

−
(
s∗(vα,∆vα)

sα

)2
)

(4)

with s∗(vα,∆vα) = s0 + vαT +
vα∆vα

2
√
ab

(5)

where parameters in red are manually selected and summarized in Table 1. Intersections on the route77

with red traffic lights are considered to be stationary obstacles, to obey traffic rules.78

4 PDM79

4.1 PDM-Closed80

Path-Planning. Instead of BFS, PDM-Closed utilizes Dijkstra, with the lane length as edge-81

weights, to search a sequence of lanes for centerline extraction. We found Dijkstra slightly more82

suitable due to the avoidance of detours while having no substantial effect on run-time.83

Observation & Forecasting. PDM-Closed generates a forecast of dynamic agents for the planning84

horizon of 8s with a temporal resolution of 2Hz, and stores the bounding boxes together with static85

obstacles in occupancy maps. We only consider the nearest 50 vehicles, 10 pedestrians, 10 bicycles,86

and 50 static objects to the ego agent. Thereby, the planner avoids exploding computation costs87

when being nearby a large number of entities (e.g. a crowd of pedestrians). Like IDM, we add88

intersections on the route with a red traffic light as stationary objects.89

Proposals. We generate proposals by pairing 3 centerline offsets, and 5 IDM policies at varying90

target speeds, resulting in 15 proposals. The parameters are summarized in Table 2. Note that we91

use higher acceleration parameters to favor progress. We iteratively unroll the proposals for 4s at92

10Hz, where we update the leading agent states at 5Hz. The shorter proposal horizon and lower93

frequency of updating the leading agent help in reducing computation cost.94

Simulation. We simulate all trajectory proposals for 4s at 10Hz using a faster re-implementation95

of nuPlan’s LQR controller and kinematic bicycle model. Thereby, the proposals are converted into96

the actual expected trajectory in closed-loop.97

Scoring. Our scoring function closely resembles the nuPlan closed-loop metrics [9]. However, we98

leverage a computationally efficient re-implentation of the metrics to meet the strict runtime require-99

ments of the competition. The scoring considers at-fault collisions, drivable area infractions, and100
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Parameter Value Description

o {−1, 0, 1} m Centerline offsets

v0 { i
5vlane}i=1,...,5

Desired velocity. Either the current speed-limit,
or vlane = 15 m/s if speed-limit not available.

s0 1.0 m Desired net distance to the leading agent α− 1.
T 1.5 s Desired time headway to leading agent α− 1.
a 1.5 ms−2 Maximum acceleration of ego vehicle α
b 3.0 ms−2 Maximum deceleration (positive) of ego vehicle α
δ 10.0 Acceleration exponent.

Table 2: PDM-Closed Parameters.

driving direction compliance as multiplicative metrics. Furthermore, the scoring evaluates progress,101

time-to-collision, and comfortability as weighted metrics. We normalize the progress metric with102

the highest progress of a proposal which is free of multiplicative infractions. We use the same103

weights as nuPlan, but ignore speed-limit compliance and the binary no-progress metric, since the104

IDM proposals are naturally bound to comply with the current speed limit and the no-progress metric105

cannot be evaluated without privileged knowledge of the human expert’s behavior.106

Trajectory Selection. Finally, PDM-Closed outputs the highest-scoring proposal, which is ex-107

tended to the entire planning horizon of 8s with the corresponding IDM policy. If the best trajectory108

is expected to collide within 2s, the output is overwritten with an emergency brake maneuver.109

4.2 Architectures & Training110

We propose two MLP models to investigiate open-loop scoring: ϕOpen and ϕOffset. Both models111

share architectural attributes and the same training schedule.112

Architecture. The ϕOpen receives a 120m centerline with 1m resolution (c), and the ego history113

states (h) consisting of past waypoints and longitudinal, lateral, and angular velocity and accelera-114

tion, for the past 2s at 5Hz. Additionally, ϕOffset receives the trajectory (wClosed) of PDM-Closed as115

input, with an 8s duration downsampled to 5Hz. The input features (c, h, and optionally wClosed) are116

first projected to a 512-dimensional vector with linear layers and then concatenated and forwarded117

into the MLP. Hereinafter, we apply the same architecture proposed in [10], consisting of two 512-118

dimensional linear layers and dropout. We use a ReLU activation function for all linear layers. The119

ϕOpen model outputs waypoints wOpen relative to the ego position, whereas ϕOffset predicts offsets120

to wClosed.121

Training. We train ϕOpen and ϕOffset on our standardized training split, as described in Section 2.122

The models with the Adam optimizer, a batch size of 64, and a learning rate of 1e−4 for 100 epochs.123

We divide the learning rate by 10 after 50 and 75 epochs. We use an L1-Loss function for both124

models. Note that we add wClosed to the output of ϕOffset during training.125

5 2023 nuPlan Challenge126

Our preliminary version, which won the 2023 nuPlan competition, was composed of PDM-Closed127

and used a modified version of GC-PGP for long-term trajectory correction. The code for our pre-128

liminary version and for GC-PGP will be publicly released.129

Goal-conditioned Ego-Forecasting via Graph-based Policy. GC-PGP extends the state-of-the-art130

prediction model, called PGP [7], for goal-directed ego-forecasting.131

The model receives an ego-centered lane-graph representation, together with observed states of sur-132

rounding agents and the ego vehicle. The nodes in the lane-graph compromise polylines of similar133

length, with directed edges for lanes in proximity or the direction of traffic flow. The lane-nodes and134

dynamics of the surrounding agents and the ego vehicle are encoded with separate Gated Recurrent135
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Figure 1: PDM-Hybrid (Graph). GC-PGP++ encodes the input lane-graph, and generates trajectory
proposals based on lane-traversals. The long-term trajectory of PDM-Closed is corrected by the
expectation of GC-PGP++.

Method OLS ↑ CLS-R ↑ CLS-NR ↑ Runtime (ms) ↓
GC-PGP [6] 82 54 57 100
GC-PGP++ 84 49 50 84
PDM-Hybrid (Graph) 84 92 93 172
PDM-Hybrid (Centerline) 84 92 93 96

Table 3: Val14 Benchmark. The preliminary PDM-Hybrid (Graph) planner integrates the improved
GC-PGP++ for long-term correction, leading to the same performance as PDM-Hybrid.

Units (GRUs). The model aggregates the information by applying Agent-to-Node Attention and136

Graph Neural Network (GNN) layers, yielding a per-node feature representation.137

The node-feature are used to estimate transition probabilities for outgoing edges. Subsequently,138

traversals across the lane-graph are sampled. During inference, GC-PGP masks out off-route edges139

to ensure goal-compliant traversals. Then, a latent-variable model decodes trajectories based on140

the traversals and the ego-motion encoding. The output trajectories are obtained after a k-means141

clustering. The original version of GC-PGP selects the cluster centers with the highest rank as output142

trajectory.143

Modifications. We observe that the goal-conditioned trajectories do not describe disjoint behaviors.144

Hence we omit the k-means clustering and instead calculate the expectation of all decoded trajec-145

tories by averaging, as shown in Fig. 1. Our modification paired with the hard route constraints of146

GC-PGP lead to a small OLS performance increase while being computationally more efficient. We147

refer to our modified version as GC-PGP++.148
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