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Once-for-all: Efficient Visual Face Privacy Protection via
Person-specific Veils
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ABSTRACT
As billions of face images stored on cloud platforms contain sensi-
tive information to human vision, the public confronts substantial
threats to visual face privacy. In response, the community has pro-
posed some perturbation-based schemes to mitigate visual privacy
leakage. However, these schemes need to generate a new protec-
tive perturbation for each image, failing to satisfy the real-time
requirement of cloud platforms. To address this issue, we present an
efficient visual face privacy protection scheme by utilizing person-
specific veils, which can be conveniently applied to all images of
the same user without regeneration. The protected images exhibit
significant visual differences from the originals but remain identifi-
able to face recognition models. Furthermore, the protected images
can be recovered to originals under certain circumstances. In the
process of generating the veils, we propose a feature alignment
loss to promote consistency between the recognition outputs of
protected and original images with approximate construction of
feature subspace. Meanwhile, the block variance loss is designed to
enhance the concealment of visual identity information. Extensive
experimental results demonstrate that our scheme can significantly
eliminate the visual appearance of original images and almost has
no impact on face recognition models.

CCS CONCEPTS
• Security and privacy→ Privacy protections; • Computing
methodologies→ Image representations;

KEYWORDS
Cloud platforms, Visual face privacy, Adversarial perturbation, Face
recognition, Feature subspace

1 INTRODUCTION
The emergence and development of deep neural networks (DNNs)
provide powerful tools for addressing complex computer vision
tasks, e.g., face recognition (FR) [8, 23], pose estimation [46], and
medical image analysis [13]. In the past years, DNN-based FR appli-
cations have been adopted in various domains. For example, Google
Photos and Amazon Rekognition enable users to effortlessly iden-
tify and search for specific individuals within a given collection of
photos in real-time. In the law enforcement system, FR is utilized
to assist in criminal investigations [40].
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Storage

Figure 1: A paradigm of our scheme applied in cloud-based
FR services. A data provider applies a person-specific veil
to all face images of Bob to protect them. These protected
images are identifiable to an FRmodel while being concealed
to human vision. Due to the unnecessity of crafting new
perturbations multiple times, our scheme is convenient for
a user and satisfies the real-time capability of an FR service.

Considering a holistic perspective on cost-effectiveness and im-
plementation convenience, these applications are usually offered by
third-party cloud service providers. It implies that the unprocessed
face images containing sensitive visual information, e.g., facial fea-
tures, health status, and cultural background, are directly exposed
to the naked eyes of these cloud service providers or malicious
attackers. This visual information could potentially be exploited for
false identity authentication or unlawful surveillance, which poses
a visual face privacy threat to the public [5, 39, 44]. Therefore, it
is imperative and urgent to explore effective schemes to minimize
the leakage of sensitive visual information within face images.

Proposals in some studies [3, 4, 22, 42] are made to leverage
homomorphic encryption (HE) techniques to mitigate the expo-
sure of visual content. Meanwhile, FR can be directly performed in
the encrypted domain without retraining a new model. Nonethe-
less, due to the non-linear activation function employed by the
advanced DNNs, these HE-based schemes incur significant perfor-
mance degradation, which is scarcely applicable to real-time FR
services. Furthermore, although several differential privacy-based
schemes [7, 12, 24] can achieve a satisfactory FR accuracy rate
and guarantee visual privacy, the inherent drawback of differential
privacy algorithms limits their user-friendliness and scalability.

Recently, a few researchers have shown a keen interest in uti-
lizing adversarial attacks to protect visual face privacy. Generally,
adversarial attacks refer to the employment of quasi-imperceptible
and elaborate tactics, named adversarial perturbation, to mislead
target models [36]. Different from the traditional adversarial pertur-
bations mentioned above, some works [28, 33] attempt to explore
the positive impacts of adversarial perturbations in visual face pri-
vacy protection. The AVIH [33] generates the protected image by

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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transforming the benign image to random noise while maintaining
the high similarity between the identity feature vectors of both. The
visually-protected images retain the functionality of FR and can be
recovered as the original images with a correct key. Liu et al. [28]
proposed a RIC system, which can encode plaintext images into
noise-like adversarial examples (NAEs). Such NAEs can be correctly
classified by plaintext-domain classifiers with a high accuracy rate,
and support high-fidelity recovery. However, existing perturbation-
based schemes need to separately craft a protective perturbation for
each image (image-specific) and ignore the intimate relationships
between individual images, namely the similarity in appearance and
feature vectors among these images. Consequently, they may meet
a significant expenditure of computational and storage resources,
particularly when handling extensive collections of face images,
thereby constraining the practical applicability in real-world sce-
narios.

To break the limitations mentioned above, we propose an effi-
cient visual face privacy protection scheme by using person-specific
veils. In our scheme, a user can conveniently apply the veil to all
his/her images, which removes the need to generate new pertur-
bations multiple times. These protected images eliminate visual
identity information from the naked eye of any human observer (vi-
sual anonymization) but can be directly recognized as the original
output by the existing FR model (identity preservation). Further-
more, the number of veils is solely determined by the number of
users rather than images, which means that our scheme greatly
reduces the consumption of computational resources for visual face
privacy protection. Compared with previous schemes, our scheme
takes an important step toward a practical system with real-time
requirements. There is an application scenario of our scheme in the
cloud environment in Fig. 1.

Specifically, for the generation of person-specific veils, we first
construct an identity feature subspace based on the similarity of
appearance and feature vectors among images of the same identity.
Secondly, we minimize the distance between the feature vectors
of the protected images and their corresponding feature subspace.
Meanwhile, we also minimize the Euclidean distance between the
original and protected images to increase their visual perceptual
differences. Thirdly, to further enhance the concealment of visual
identity information, we design a block variance loss to reduce the
differences between adjacent pixels in the protected images. It is
worth noting that the protected images are formed by merging
benign images with a person-specific veil at a certain proportion.
Therefore, when authorized users obtain the veil under certain cir-
cumstances, they can recover the benign images from the protected
ones.

Our main contributions are summarized as follows:

• We develop an efficient visual face privacy protection scheme
by utilizing person-specific veils. In our scheme, a user can
apply such a veil to all his/her images to hide visual identity,
without crafting new veils multiple times.

• We design an optimization-based method to craft person-
specific veils. Our method fosters consistency between the
recognition outputs of protected and original images by em-
ploying the feature subspace and enhances the concealment
of visual identity information with block variance loss.

• Extensive qualitative and quantitative experiments to demon-
strate the effectiveness of our scheme on visual anonymiza-
tion and identity preservation. Furthermore, we also perform
an ablation study to present the effectiveness of the block
variance loss.

2 RELATEDWORK
2.1 Adversarial Attack
Since Szegedy et al. [36] found the vulnerability of DNN to adver-
sarial attack, there has sparked an increasing interest and research
focus on this topic [1, 2]. Generally, adversarial attacks involve uti-
lizing quasi-imperceptible and elaborate tactics, known as adversar-
ial perturbation, to deceive target models. Such sort of adversarial
attack was termed adversarial attack Type II by Tang et al. [37]
and they also defined adversarial attack Type I. In brief, adversarial
attack Type I aims to seek an input image significantly different
from the benign image while ensuring that the outputs of the target
models remain the same as possible.

There is a large amount of research on adversarial attack Type II,
among which, an influential emphasis is placed on the exploration
of gradient-based methods. As a seminal work, the fast gradient
sign method (FGSM) [15] has emerged as a prominently inves-
tigated technique. FGSM utilizes the gradient information calcu-
lated by the target model’s loss function against the input image
to craft adversarial perturbation. Subsequently, there has been a
surge of follow-up works [10, 11, 26, 41]. Differing from the above-
mentioned methods that are solely applicable to a single image,
Moosavi-Dezfooli et al. [30] discovered the existence of the univer-
sal adversarial perturbation (UAP). Building on this, Gupta et al.
[17] introduced class-wise UAPs, and Zhang et al. [43] proposed
CD-UAPs, which is a variant of the former. Moreover, Zhong et al.
[45] applied class-wise UAPs to the field of face privacy protection
and developed OPOM.

Compared to adversarial attack Type II, the research on adver-
sarial attack Type I is at an initial stage [18, 34, 37]. Tang et al. [37]
introduced the basic definition of adversarial attack Type I and used
it to conduct preliminary experiments against FR and image classifi-
cation. Subsequently, Sun et al. [34] employed it against generative
models such as VAEs. He et al. [18] further utilized the distribution
mapping from the source domain to the target domain to control
the directional visual transformations of the protected images.

2.2 Visual Face Privacy Protection
Visual face privacy protection means that the protected images
are unrecognizable to human vision. Although previous methods,
e.g., blurring [14], mosaicing [6], and occlusion [29], can protect
visual face privacy to a certain extent possibly, they compromise
the identity recognition utility of the protected images. In other
words, the protected images fail to be directly employed in real-
time FR services, which limits the applicability of the schemes [32].
Therefore, we will not discuss these types of visual face privacy
protection schemes mentioned above in this subsection.

For the purpose of safeguarding visual face privacy and main-
taining the identity recognition utility of the protected images, a
feasible solution is homomorphic encryption (HE) [3, 4, 22, 42].
These HE-based schemes enable FR to be performed directly on
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Figure 2: The pipeline of our proposed method. The protected images are generated with a set of face images 𝑋𝑝 of the same
identity and a person-specific veil 𝛿 . CH(𝐹 (𝑋𝑝 ) denotes the identity feature subspace of the original images.

the encrypted images without decryption. However, when these
schemes are applied to the advanced DNNs, the performance of FR
will degrade significantly. To address this problem, some differential
privacy-based schemes were proposed [7, 12, 24]. A notable one is
DCTDP [24], which protects visual face privacy with learnable pri-
vacy budgets based on frequency domain differential privacy. More-
over, Ji et al. [24] showcased the satisfactory recognition accuracy
of the protected images against the target FR model. Unfortunately,
it is the inherent drawback of differential privacy algorithms that
limits their user-friendliness and scalability.

Recently, a few researchers have shown a keen interest in uti-
lizing adversarial attack Type I to protect visual face privacy. Su
et al. [33] introduced AVIH, which generates the protected image
by transforming the benign image to random noise while main-
taining the high similarity between the identity feature vectors of
both. The visually protected images retain the functionality of FR
and can be recovered as the original ones. In a similar vein, Liu et
al. proposed an RIC system, which can encode plaintext images
into Noise-like Adversarial Examples (NAEs). These NAEs can be
correctly classified by plaintext-domain classifiers with a satisfac-
tory success rate, and support high-fidelity recovery. Nonetheless,
existing perturbation-based schemes need to separately craft a pro-
tective perturbation for each image. Therefore, when the number of
images and users increases, exponential computation and storage
resources will be consumed, which is not user-friendly and imprac-
tical. In this paper, we expect to employ the foundational concepts
of adversarial attack Type I and class-wise UAPs to protect visual
face privacy.

3 THE PROPOSED SCHEME
3.1 Problem Formulation
Let 𝐹 (𝑥) : X→ R𝑑 denotes a FR model 𝐹 that extracts a normalized
feature vector inR𝑑 for an input image 𝑥 ∈ X, and the output of 𝐹 is

symbolized 𝐹 (𝑥). Similarly,𝐻 denotes the human vision system and
the output of 𝐻 is represented as �̂� (𝑋 ). Given a limited number 𝑛𝑝
of face images 𝑋𝑝 =

{
𝑥
𝑝

1 , 𝑥
𝑝

2 , 𝑥
𝑝

3 , ..., 𝑥
𝑝
𝑛𝑝

}
of identity 𝑝 , our scheme

aims to craft a person-specific veil 𝛿 ∈ R𝑑 , which provides an
efficient visual face privacy protection. Once generated, the veil
can be conveniently overlaid to all images in 𝑋𝑝 . The protected
images retain the functionality of FR and conceal the visual identity
information to human vision. Therefore, according to adversarial
attack Type-I and UAP mentioned above, the protected images
ought to satisfy the following two properties.

Property 1 (Identity Preservation). The protected images can
be directly recognized as the original identity by the existing FR model
without retraining:

𝐹 (𝑥𝑝
𝑖
) = 𝐹 (𝑥𝑝

𝑖
+ 𝛿), 𝑓 𝑜𝑟 𝑚𝑜𝑠𝑡 𝑥

𝑝

𝑖
∈ 𝑋𝑝 . (1)

The probability of equality between 𝐹 (𝑥𝑝
𝑖
) and 𝐹 (𝑥𝑝

𝑖
+ 𝛿) reflects

the extent to which the functionality of FR is preserved.
Property 2 (Visual Anonymization). The visual identity infor-

mation in the protected images is invisible to the naked eye of any
human observer:

�̂� (𝑥𝑝
𝑖
) ≠ �̂� (𝑥𝑝

𝑖
+ 𝛿), 𝑓 𝑜𝑟 𝑚𝑜𝑠𝑡 𝑥

𝑝

𝑖
∈ 𝑋𝑝 . (2)

The distance between �̂� (𝑥𝑝
𝑖
) and �̂� (𝑥𝑝

𝑖
+𝛿) reflects the effectiveness

of visual identity concealment. In this paper, we aim for both aspects
to achieve satisfactory performance.

3.2 The Pipeline of Our Method
The pipeline of our method is illustrated in Fig. 2. To generate the
protected images, a user can craft a person-specific veil 𝛿 and ap-
ply it to all images in 𝑋𝑝 . Such a veil is crafted by achieving two
parallel objectives: identity preservation and visual anonymization.
Regarding identity preservation, we attempt to minimize the dis-
tance between the features of the protected images and the original
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identity feature subspace CH(𝐹 (𝑋𝑝 ).As for visual anonymization,
it is expected to increase the visual perceptual differences between
the original and protected images. In addition, to enhance the con-
cealment of visual identity information further, the block variance
of the protected images should be reduced. The following will elab-
orate on the details of our method.

3.3 Identity Preservation
3.3.1 The Construction of Identity Feature Subspace. Due to a large
set of images 𝑋𝑝 being often inaccessible in real scenarios, it is
practical to craft the person-specific veils with a limited number of
face images. Nonetheless, the quantity of provided images exerts a
notable influence on the performance of the two aspects mentioned
above.

To deal with this problem, we endeavor to analyze the close
connections in all images belonging to the same identity. From
the perspective of human vision, the images in 𝑋𝑝 exhibit similar
visual profiles. From the standpoint of machine vision, these images
yield the same recognition output. These two intuitive observations
capture our interest, which prompts us to construct an approximate
identity feature subspace for generating the person-specific veil.
By minimizing the distance between the visually protected images
𝑥
𝑝

𝑖
+ 𝛿 and the corresponding identity feature subspace, we can

reformulate Equation (1) as

argmin
𝛿

(𝐷 (𝐹 (𝑋𝑝 ), 𝐹 (𝑥𝑝
𝑖
+ 𝛿)), 𝑓 𝑜𝑟 𝑚𝑜𝑠𝑡 𝑥

𝑝

𝑖
∈ 𝑋𝑝 , (3)

where 𝐹 (𝑋𝑝 ) represents the feature subspace of identity 𝑝 , and
𝐷 (·) computes the distance between a feature representation and
a feature subspace. The solution to this distance can be regarded
as a best approximation problem. Recall that given a matrix𝑊 ∈
R𝑚×𝑛 and a vector ®𝑦 ∈ R𝑚 , the minimum distance of them can be
described as

min
𝑥∗

∥𝑊 ®𝑥 − ®𝑦∥2 , (4)

and the solution is

®𝑥∗ = (𝑊𝑇𝑊 )−1𝑊𝑇 ®𝑦, 𝑠 .𝑡 . 𝑟𝑎𝑛𝑘 (𝑊 ) = 𝑛, (5)

where 𝑟𝑎𝑛𝑘 (·) represents the rank of the provided matrix and the
matrix𝑊 is invertible if and only if 𝑟𝑎𝑛𝑘 (𝑊 ) = 𝑛.

3.3.2 Feature Vector Approximation. Note that the identity feature
subspace is high-dimensional and irregular, we cannot describe it
clearly and completely with mathematical formulas. Hence, we en-
deavor to seek an approach to approximately modeling this feature
subspace with a subset of face images. Specifically, we define the
approximation of the feature subspace of 𝑝 as

CH(𝐹 (𝑋𝑝 )) =


∑︁

𝑥
𝑝

𝑖
∈𝑋𝑝

𝑤
𝑝

𝑖
𝐹 (𝑥𝑝

𝑖
)


𝑠 .𝑡 . 𝑤

𝑝

𝑖
≥ 0,

∑︁
𝑥
𝑝

𝑖
∈𝑋𝑝

𝑤
𝑝

𝑖
= 1,

(6)

where𝑤𝑝

𝑖
(𝑖 = 1, 2, 3, ..., 𝑛𝑝 ) are the weight coefficients correspond-

ing to features representations and show the contribution of each
of those in the process of constructing CH(𝐹 (𝑋𝑝 ). It is reasonable
for 𝑤𝑝

𝑖
≥ 0 since the contribution of each feature representation

should not be less than zero. With Equation (10), we can define the
feature alignment loss 𝐿𝑓 𝑒𝑎 as

𝐿𝑓 𝑒𝑎 (𝑋𝑝 ) = 𝐷 (CH(𝐹 (𝑋𝑝 )), 𝐹 (𝑥𝑝
𝑖
+ 𝛿), 𝑓 𝑜𝑟 𝑚𝑜𝑠𝑡 𝑥

𝑝

𝑖
∈ 𝑋𝑝 . (7)

With Singular Value Decomposition, CH(𝐹 (𝑋𝑝 )) can be factorized
into a unitary matrix𝑈 , a diagonal matrix Σ, and another unitary
matrix𝑊 . Furthermore, 𝑈 is the orthogonal basis of CH(𝐹 (𝑋𝑝 ))
and remains constant, which is spanned by 𝐹 (𝑥𝑝

𝑖
). Therefore, the

solution of the optimization problem in Equation (3) can be con-
verted into finding appropriate weight coefficients. That is, in this
way, we can employ Equation (5) to obtain the best approximation
solution in𝑊 for Equation (7).

3.4 Visual Anonymization
3.4.1 Visual Perceptual Similarity. As all we know, the human
vision system is recognized to be highly complex and elusive. In
this paper, consistent with most adversarial perturbation schemes,
we conventionally employ the 𝑙2 distance to simulate human visual
perception. Therefore, we can define the visual perceptual loss 𝐿𝑣𝑖𝑠
as

𝐿𝑣𝑖𝑠 ((𝑥𝑝𝑖 , 𝑥
𝑝

𝑖
+ 𝛿) =




𝑥𝑝𝑖 − (𝑥𝑝
𝑖
+ 𝛿)




 , 𝑓 𝑜𝑟 𝑚𝑜𝑠𝑡 𝑥
𝑝

𝑖
∈ 𝑋𝑝 . (8)

Since the visual identity information within the original images
needs to be concealed, the 𝐿𝑣𝑖𝑠 should be minimized. However,
The simulation effectiveness of the 𝑙2 distance has certain limita-
tions, which will significantly impact the performance of visual
anonymization.

3.4.2 Block Variance Reduction. As mentioned above, although the
protected images obtained by Equation (8) exhibit significant visual
perceptual differences from the originals, there still exist a few
remnants of the face profile, which undermines the effectiveness
of visual face privacy protection. To deal with this problem, we
aim to minimize the differences in adjacent pixel values within
the protected images. Specifically, for each JPEG image 𝑥 , we first
divide it in each channel (R, G, B) into b blocks with each block size
being ℎ ×𝑤 , i.e., {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑏 }𝑐 , where 𝑐 ∈ {𝑅,𝐺, 𝐵}. Then, we
utilize a convolution kernel of the size of ℎ ×𝑤 (3 × 3), with each
element being 1, to perform sliding-channel convolution and obtain
the sum of each block in each channel, i.e., 𝑆𝑐 = {𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑏 }𝑐 .
Next, we can calculate the block inner-variance Var𝑖𝑛𝑛𝑒𝑟 (𝑥) as

Var𝑖𝑛𝑛𝑒𝑟 (𝑥) =
∑︁

𝑐∈{𝑅,𝐺,𝐵}
var(𝑆𝑐 ), (9)

where var calculates the variance value of a given block and the
block intra-variance Var𝑖𝑛𝑡𝑟𝑎 (𝑥)

Var𝑖𝑛𝑡𝑟𝑎 (𝑥) =
∑︁

𝑐∈{𝑅,𝐺,𝐵}

1
𝑏

𝑏∑︁
𝑖=1

(
𝜇𝑖 −

1
𝑏

𝑏∑︁
𝑖=1

𝑆𝑖𝑐

)2
, (10)

where 𝜇𝑖 = 𝑆𝑖𝑐
ℎ×𝑤 . Finally, the total block variance loss 𝐿𝑣𝑎𝑟 in the

protected images can be computed by

𝐿𝑣𝑎𝑟 (𝑥𝑝𝑖 + 𝛿) = Var𝑖𝑛𝑛𝑒𝑟 (𝑥𝑝𝑖 + 𝛿) + Var𝑖𝑛𝑡𝑟𝑎 (𝑥𝑝𝑖 + 𝛿). (11)

Reviewing our goal, we expect to increase the difference between
protected images and the originals. Therefore, the 𝐿𝑣𝑎𝑟 (𝑥𝑝𝑖 + 𝛿)
should be minimized.
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Algorithm 1: The Generation of Person-specific Veils

Input: A FR model 𝐹 , face images 𝑋𝑝 = {𝑥𝑝1 , 𝑥
𝑝

2 , 𝑥
𝑝

3 , ..., 𝑥
𝑝
𝑛𝑝 }

of identity 𝑝 , maximum number of iterations 𝑡max,
decay factor 𝜇.

Output: Person-specific veil 𝛿𝑡max for identity 𝑝
1 Initialization 𝛿0 = 𝑥

𝑝

1 , 𝑡 = 0, 𝜇 = 1, 𝑔0 = 0;
2 for 𝑡 = 0 to 𝑡max − 1 do
3 Obtain 𝐿𝑡𝑜𝑡𝑎𝑙 via Equation (13);
4 Calculate the gradient ∇𝐿𝑡𝑜𝑡𝑎𝑙 ;
5 𝑔𝑡+1 = 𝜇 · 𝑔𝑡 + ∇𝐿𝑡𝑜𝑡𝑎𝑙

∥∇𝐿𝑡𝑜𝑡𝑎𝑙 ∥1
;

6 𝑥
𝑝

𝑖

′
= 𝐶𝑙𝑖𝑝 (𝑥𝑝

𝑖

′
, 0, 255);

7 𝛿𝑖 =
1

(1−𝛼 ) · (𝑥
𝑝

𝑖

′ − 𝛼 · 𝑥𝑝
𝑖
);

8 end

3.5 The Generation of Person-specific Veils
In addition, we expect to enable our scheme support for recoverabil-
ity, which offers flexibility in managing privacy settings. Therefore,
we modify the generation of the protected images as

𝑥
𝑝

𝑖

′
= 𝛼 · 𝑥𝑝

𝑖
+ (1 − 𝛼) · 𝛿, 𝑠 .𝑡 . 𝑥𝑝

𝑖
∈ 𝑋𝑝 , (12)

where 𝛼 controls the proportion of the original image in the pro-
tected image. When 𝛼 is small, the impact of the veil predominates,
resulting in a larger visual perceptual difference between the pro-
tected image and the original image. Now, we can craft the veil 𝛿
by
𝛿 = argmin

𝛿

𝐿𝑡𝑜𝑡𝑎𝑙

= argmin
𝛿

∑︁
𝑥
𝑝

𝑖
∈𝑋𝑝

(𝐿𝑓 𝑒𝑎 (𝑋𝑝 ) − 𝜆 · 𝐿𝑣𝑖𝑠 (𝑥𝑝𝑖 , 𝑥
𝑝

𝑖

′) + 𝜇 · 𝐿𝑣𝑎𝑟 (𝑥𝑝𝑖
′)),

(13)

where 𝜆 and 𝜇 are hyperparameters to balance the performance of
visual transformation and identity preservation.

Recoverability. In practice, each user can employ a unique
initial value assigned by us or a trustworthy third-party institution
to craft their own veil and can recover the original image by

𝑥
𝑝

𝑖

′′
=

1
1 − 𝛼

· (𝑥𝑝
𝑖

′ − (1 − 𝛼) · 𝛿), (14)

where 𝑥𝑝
𝑖

′′ is the recovered image. Furthermore, we employ Gauss-
ian filtering to the recovered images to improve the visual quality.
Finally, we incorporate MI-FGSM [10] into our method to improve
the performance of visual face privacy protection. Our algorithm
for generating person-specific veils is presented in Algorithm 1.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. The Ms-Celeb-1M [16], Labeled Face in the Wild (LFW)
[21], and MegaFace challenge2 (MF2) [31] datasets are commonly
used to assess the performance of FR models. We randomly select
400 individuals from the one-million celebrity list to form a Privacy-
Celebrities dataset, where the identities are completely distinct
from the ones in the Ms-Celeb-1M and LFW datasets. Each individ-
ual holds at least 20 face images. Among them, 10 images are for

training and others are for black-box testing. Additionally, the LFW
dataset is utilized as our gallery set, which includes a total of 13,233
face images. Similarly, we randomly select 500 people from the MF2
dataset to build a Privacy-Commons dataset as the probe set, with a
minimum of 10 images per identity. Another 10000 images selected
from the MF2 dataset are combined into a corresponding gallery
set. It should be noted that all input images are resized to 112× 112.

Target models. In this paper, we employ the softmax loss, large
margin cosine loss (LMCL) [38], and additive angular margin loss
(ArcFace) [9] to fine-tune the pre-trained model (ResNet-50). The
obtained three models are used to evaluate the performance of our
scheme in the white-box settings and we denote them as S-ResNet,
L-ResNet, and A-ResNet, respectively. Regarding the black-box
setting, we choose another five models with diverse backbones and
training losses, i.e., Inception-ResNet [35], MobileNet [19], CosFace
[38], SENet [20], and ArcFace [9]. These models are trained on
the CAISA-WebFace dataset, which further simulates real-world
scenarios.

Compared Method. To the best of our knowledge, there is no
existingmethod to protect visual face privacy with a person-specific
veil. Therefore, to demonstrate the superiority of our method, we
additionally explore a feasible method for generating class-wise
UAP, which is based on the combination concept of standard UAP
and adversarial attack Type I. Specifically, we revise Eq. (1) and Eq
(2) as

argmax
𝛿

∑︁
𝑥
𝑝

𝑖
∈𝑋𝑝

𝑑 (𝑥𝑝
𝑖
, 𝑥

𝑝

𝑖

′),

𝑠 .𝑡 . ∀𝑥𝑝
𝑖
∈ 𝑋𝑝 , 𝐹 (𝑥𝑝

𝑖
) = 𝐹 (𝑥𝑝

𝑖

′) .
(15)

Equation (15) can be understood as aggregating vector-to-vector
differences to craft the perturbations and we denote this method
as V-UAP. Note that the process of generating the V-UAP excludes
the use of block variance loss.

Evaluation Metrics. To assess the effectiveness of our scheme
in concealing visual identity information, we utilize structural sim-
ilarity index measure (SSIM) and learned perceptual image patch
similarity (LPIPS) to measure the difference between the original
images and the protected images. Both metrics aim to quantify how
similar two images are perceived by human observers. A lower
SSIM value indicates greater visual variations between two images,
while a higher LPIPS value signifies a bigger visual perceptual dif-
ference. It is worth noting that the values of LPIPS are obtained by
AlexNet [25].

Meanwhile, to evaluate the effectiveness of our scheme in retain-
ing the functionality of FR, we perform the 1:N face identification
experiments. In detail, we compare the outputs of the FR model on
the original images and protected images and calculate the ratio
that is referred to as the matching success rate (MSR) based on the
matching outputs. The higher MSR indicates that our scheme has a
slighter influence on the model’s recognition accuracy.

4.2 Effectiveness of Visual Privacy Protection
4.2.1 Effectiveness of Visual Anonymization. In our scheme, each
user can apply a person-specific veil to all his/her face images.
Some protected images of different identities derived from Privacy-
Celebrities are shown in Fig. 3. Obviously, the protected images
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Figure 3: Some protected images in the Privacy-Celebrities generated by S-ResNet, L-ResNet, and A-ResNet, respectively (under
𝛼 = 0.2). Each image within every subplot shares the same identity.

Table 1: The quantitative assessment of image visual quality
using SSIM and LPIPS on the Privacy-Celebrities dataset.

Method Source Model SSIM(↓) LPIPS (↑)

V-UAP
S-ResNet 0.040 0.723
L-ResNet 0.043 0.710
A-ResNet 0.034 0.785

Ours
S-ResNet 0.011 1.250
L-ResNet 0.012 1.287
A-ResNet 0.011 1.247

generated by different models exhibit noticeable visual distinctions
from the benign images and are confusing to human observers.
Thus, it is challenging for human observers to extract meaningful
visual identity information about the original images from the
protected ones.

Moreover, for a better quantitative evaluation of the concealment
of visual identity information, we calculate the SSIM and LPIPS
values between the original and protected images. As shown in
Table 1, the SSIM values between the protected and the original face
images are comparatively low, whereas the LPIPS values are high.
These quantitative results also indicate significant visual differences
between the original and protected images.

Compared with V-UAP. In Table 1, it can be found that the
SSIM values between the original images and the protected images
generated with V-UAP are higher than ours (w/o) whereas the LPIPS
values are lower. We infer that the identity feature subspace assigns
weight coefficients to identity feature vectors and thus the crafted
veils can more effectively alter the structure of the original images.

In summary, it can be concluded that the person-specific veils
produced by our scheme are effective in visual anonymization.

4.2.2 Effectiveness of Identity Preservation. We conduct 1:N face
identification experiments to assess the degree to which protected
images retain the functionality of FR. Specifically, we craft the
protected images on the probe set (e.g., Privacy-Celebrities) and then
incorporate these images into the gallery set (LFW). Ultimately, we
test the MSR of the protected images on several models. As shown
in Fig. 4, when the testing model aligns with the surrogate model,
the MSR reaches nearly 100%. It suggests that our scheme has a
negligible impact on the training model’s recognition accuracy.

In addition, we also consider a real-world situation where an
attacker expects to identify the obtained protected images with a
trained model. However, from the illustration of Fig. 4, the MSR
decreases significantly even if the two models share the same back-
bone, especially when the surrogate models are S-ResNet and A-
ResNet. It implies that even if attackers are perplexed by the pro-
tected images, they are tough to use their own trained model to
obtain the true identity of the protected images. Likewise, we gen-
erate protected images using 10 images different from the training
images and test their MSR across various models. Similar results
are presented in the Appendix. In a nutshell, these quantitative
results demonstrate the effectiveness of our scheme in preserving
the functionality of FR.

Table 2: The SSIM values and LPIPS values of recovered im-
ages on the Privacy-Celebrities dataset.

Method Source Model SSIM(↑) LPIPS (↓)

ours
S-ResNet 0.868 0.046
L-ResNet 0.869 0.047
A-ResNet 0.869 0.046
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Figure 4: The MSR of the protected images tested across different models on the Privacy-Celebrities dataset. ‘w’ and ‘w/o’ denote
that the protected face images are generated with and without block variance loss, respectively.

0.886/0.087

0.908/0.050

0.898/0.076

0.956/0.037

Figure 5: Display of some original images (𝑥𝑝
𝑖
), protected

images (𝑥𝑝
𝑖

′), and recovered images (𝑥𝑝
𝑖

′′). These protected
images are generated by A-ResNet. The brown and blue num-
bers below (𝑥𝑝

𝑖

′′) are the SSIM and LPIPS values between (𝑥𝑝
𝑖
)

and (𝑥𝑝
𝑖

′′), respectively.

4.2.3 Evaluation of Supporting Recoverability. In certain scenar-
ios, authorized users anticipate obtaining the original images for
various purposes. However, despite our scheme being theoretically
fully reversible, practical usage constraints such as alpha values
may hamper the original and recovered images from being exactly
identical. Therefore, we endeavor to evaluate the performance of
our scheme in supporting recoverability. As illustrated in Fig. 5, the
recovered images closely resemble the originals visually. Further-
more, we calculate the SSIM and LPIPS values between them and
the values are below the images. It can be observed that the SSIM
values between 𝑥

𝑝

𝑖
and 𝑥

𝑝

𝑖

′′ are relatively high, while the LPIPS
values are close to 0. Moreover, Table 2 provides comprehensive re-
sults of the recoverability performance. These experimental results
indicate that our scheme is well-supportive of recoverability.

4.2.4 Analysis of Efficient Protection. In our experiment, generat-
ing a veil takes nearly 3 minutes on a GTX 3090 GPU with 24GB

RAM. Compared with [28, 33], our scheme crafts a person-specific
veil with a limited number of face images. Once generated, such a
veil can be conveniently overlaid on all images of the same user. It
means that the generation time of veils is solely determined by the
number of users but unaffected by the number of images. which is
highly scalable and efficient. Especially, when dealing with a large
set of face images, the superiority of our scheme in satisfying the
requirements of real-time services will be presented. That is, our
scheme takes an important step toward practical application in
real-world scenarios.

4.3 Impact of the Parameter Tuning
Here, we mainly focus on assessing the impact of the parameter
𝛼 on visual face privacy protection. We evaluate the performance
across four different values of 𝛼 . As depicted in Fig. 6, the curves
under these four parameter settings remain relatively stable, indi-
cating that The variation of the alpha value within a certain range
has a negligible impact on the MSR. However, it is noticeable from
Fig. 8 that higher values of 𝛼 result in more pronounced visual
contours in the protected images. Based on our analysis, protected
images generated with higher values are not suitable for visual
face privacy protection. Taking into account both the visual ef-
fects of protected images and MSR, we selected 𝛼 = 0.2 to obtain
satisfactory performance.

4.4 Robustness Analysis
Here, we employ Gaussian noise, salt and pepper noise as well as
median filtering to the protected images to evaluate their robustness.
The results tested across three models are presented in Fig. 7. It
can be observed that when 𝜎 exceeds 120, there is a noticeable
decrease in the MSR of the protected images. It indicates that our
scheme is robust to a certain level of noise. Additional details on the
robustness analysis of our approach can be found in the appendix.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 6: The impact of 𝛼 on MSR of the protected images as-
sessed on three surrogate models. ‘*’ implies that the testing
model is identical to the surrogate model.

Table 3: The quantitative results of the ablation study. ‘w’
and ‘w/o’ denote that the protected face images are generated
with and without block variance loss, respectively.

Method Source Model SSIM(↓) LPIPS (↑)

Ours (w)
S-ResNet 0.011 1.250
L-ResNet 0.012 1.287
A-ResNet 0.011 1.247

Ours (w/o)
S-ResNet 0.032(+0.021) 0.776(-0.474)
L-ResNet 0.037(+0.025) 0.734(-0.553)
A-ResNet 0.030(+0.019) 0.852(-0.395)

4.5 Ablation Study
We craft two categories of veils: one with block variance loss and
the other without, to generate corresponding protected images,
respectively. From the illustration in Fig. 8, it is evident that the
protected images generated without block variance loss retain more
visual contour information compared to those that do. According
to the visual bias in the human visual perception system, observers
tend to focus more on the shape or size dimensions of an object
rather than other perceptual dimensions [27]. It suggests that the
above contour information can also be linked to identity, which
may still lead to visual privacy leakage. Meanwhile, as shown in
Fig. 4, these protected images have higher MSR on other models,
which implies that there is an increased likelihood for attackers
to obtain real visual identities. Furthermore, Table 3 displays that
the protected images generated without block variance loss have
higher SSIM and lower LPIPS values. These results quantitatively
demonstrate that the protected images generated without block
variance loss are visually closer to the original images. Therefore,
it can be concluded that the utilization of block variance loss is
crucial during the generation of person-specific veils.

4.6 Discussion
Person-specific vs Universal. Compared to person-specific veils,
generating UAPs will be more efficient. However, since each user
possesses unique visual and identifiable information, the UAP-based

Figure 7: Robustness testing of protected images against
Gaussian noise. 𝜎 denotes the standard deviation of the added
noise.

Figure 8: The influence of different 𝛼 on the visual presen-
tation of the protected images. ‘w’ and ‘w/o’ denote that the
protected face images are generated with and without block
variance loss, respectively.

methods fail to provide effective visual face privacy protection in
the conflict between universality and uniqueness. In other words,
person-specific veils provide a better trade-off between them to the
users. Furthermore, a person-specific veil is only applicable to an
identity while a UAP is applicable to all. Accordingly, when being
attacked, the UAP can be removed from all the protected images
of different identities whereas the adversary can only remove the
veil from the protected images of a single identity. It means that
the person-specific veil offers better security compared with UAPs.

5 CONCLUSION
In this paper, we develop an efficient visual face privacy protection
scheme by utilizing person-specific veils. A user can conveniently
apply his/her veil to all images of him/her to generate the protected
images without crafting new perturbations for each one. These
protected images are significantly different from the originals in
visual but can retain the functionality of FR. Moreover, Our method
promotes the alignment between the recognition outputs of pro-
tected and original images by constructing the feature subspace
and enhances the concealment of visual identity information with
block variance loss. Extensive experiments demonstrate that our
scheme achieves satisfactory performance on visual anonymization
and identity preservation.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Once-for-all: Efficient Visual Face Privacy Protection via Person-specific Veils ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep

learning in computer vision: A survey. Ieee Access 6 (2018), 14410–14430.
[2] Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. 2021. Advances

in adversarial attacks and defenses in computer vision: A survey. IEEE Access 9
(2021), 155161–155196.

[3] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE transac-
tions on information forensics and security 13, 5 (2017), 1333–1345.

[4] Song Bian, Tianchen Wang, Masayuki Hiromoto, Yiyu Shi, and Takashi Sato.
2020. ENSEI: Efficient secure inference via frequency-domain homomorphic con-
volution for privacy-preserving visual recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 9403–9412.

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[6] Michael Boyle, Christopher Edwards, and Saul Greenberg. 2000. The effects of
filtered video on awareness and privacy. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work. 1–10.

[7] Mahawaga Arachchige Pathum Chamikara, Peter Bertok, Ibrahim Khalil, Dongxi
Liu, and Seyit Camtepe. 2020. Privacy preserving face recognition utilizing
differential privacy. Computers & Security 97 (2020), 101951.

[8] Jiankang Deng, Jia Guo, Tongliang Liu, Mingming Gong, and Stefanos Zafeiriou.
2020. Sub-center arcface: Boosting face recognition by large-scale noisy web
faces. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XI 16. Springer, 741–757.

[9] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface:
Additive angular margin loss for deep face recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 4690–4699.

[10] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting adversarial attacks with momentum. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 9185–9193.

[11] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Evading defenses to
transferable adversarial examples by translation-invariant attacks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4312–
4321.

[12] Liyue Fan. 2019. Practical image obfuscation with provable privacy. In 2019 IEEE
international conference on multimedia and expo (ICME). IEEE, 784–789.

[13] Francisco Erivaldo Fernandes and Gary G Yen. 2020. Automatic searching and
pruning of deep neural networks for medical imaging diagnostic. IEEE Transac-
tions on Neural Networks and Learning Systems 32, 12 (2020), 5664–5674.

[14] Andrea Frome, German Cheung, Ahmad Abdulkader, Marco Zennaro, Bo Wu,
Alessandro Bissacco, Hartwig Adam, Hartmut Neven, and Luc Vincent. 2009.
Large-scale privacy protection in google street view. In 2009 IEEE 12th interna-
tional conference on computer vision. IEEE, 2373–2380.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[16] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. 2016.
Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In Com-
puter Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part III 14. Springer, 87–102.

[17] Tejus Gupta, Abhishek Sinha, Nupur Kumari, Mayank Singh, and Balaji Kr-
ishnamurthy. 2019. A method for computing class-wise universal adversarial
perturbations. arXiv preprint arXiv:1912.00466 (2019).

[18] Shenghong He, Ruxin Wang, Tongliang Liu, Chao Yi, Xin Jin, Renyang Liu, and
Wei Zhou. 2022. Type-I generative adversarial attack. IEEE Transactions on
Dependable and Secure Computing (2022).

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[20] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[21] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. 2008. La-
beled faces in the wild: A database forstudying face recognition in unconstrained
environments. InWorkshop on faces in’Real-Life’Images: detection, alignment, and
recognition.

[22] Hai Huang and Luyao Wang. 2023. Efficient Privacy-Preserving Face Identifica-
tion Protocol. IEEE Transactions on Services Computing (2023).

[23] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li,
Jilin Li, and Feiyue Huang. 2020. Curricularface: adaptive curriculum learning loss
for deep face recognition. In proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 5901–5910.

[24] Jiazhen Ji, Huan Wang, Yuge Huang, Jiaxiang Wu, Xingkun Xu, Shouhong Ding,
ShengChuan Zhang, Liujuan Cao, and Rongrong Ji. 2022. Privacy-preserving face

recognition with learnable privacy budgets in frequency domain. In European
Conference on Computer Vision. Springer, 475–491.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[26] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2016. ADVERSARIAL
EXAMPLES IN THE PHYSICAL WORLD. arXiv preprint arXiv:1607.02533 (2016).

[27] Barbara Landau, Linda B Smith, and Susan S Jones. 1988. The importance of
shape in early lexical learning. Cognitive development 3, 3 (1988), 299–321.

[28] Jun Liu, Jiantao Zhou, Jinyu Tian, and Weiwei Sun. 2023. Recoverable Privacy-
Preserving Image Classification through Noise-like Adversarial Examples. arXiv
preprint arXiv:2310.12707 (2023).

[29] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Ali Jalali, Ahmed
Taha Taha Elthakeb, Dean Tullsen, and Hadi Esmaeilzadeh. 2021. Not all features
are equal: Discovering essential features for preserving prediction privacy. In
Proceedings of the Web Conference 2021. 669–680.

[30] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1765–1773.

[31] Aaron Nech and Ira Kemelmacher-Shlizerman. 2017. Level playing field for
million scale face recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 7044–7053.

[32] Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and Bernt Schiele. 2016. Faceless
person recognition: Privacy implications in social media. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part III 14. Springer, 19–35.

[33] Zhigang Su, Dawei Zhou, Nannan Wang, Decheng Liu, Zhen Wang, and Xinbo
Gao. 2023. Hiding visual information via obfuscating adversarial perturbations.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4356–
4366.

[34] Chengjin Sun, Sizhe Chen, Jia Cai, and Xiaolin Huang. 2020. Type I attack for
generative models. In 2020 IEEE international conference on image processing
(ICIP). IEEE, 593–597.

[35] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. 2017.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.

[36] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[37] Sanli Tang, Xiaolin Huang, Mingjian Chen, Chengjin Sun, and Jie Yang. 2019. Ad-
versarial attack type I: Cheat classifiers by significant changes. IEEE transactions
on pattern analysis and machine intelligence 43, 3 (2019), 1100–1109.

[38] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. 2018. Cosface: Large margin cosine loss for deep face
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 5265–5274.

[39] Tao Wang, Yushu Zhang, Zixuan Yang, Hua Zhang, and Zhongyun Hua. 2023.
Seeing is not believing: An identity hider for human vision privacy protection.
arXiv preprint arXiv:2307.00481 (2023).

[40] Khin Nandar Win, Kenli Li, Jianguo Chen, Philippe Fournier Viger, and Keqin
Li. 2020. Fingerprint classification and identification algorithms for criminal
investigation: A survey. Future Generation Computer Systems 110 (2020), 758–771.

[41] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
and Alan L Yuille. 2019. Improving transferability of adversarial examples with
input diversity. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2730–2739.

[42] Ryo Yonetani, Vishnu Naresh Boddeti, Kris M Kitani, and Yoichi Sato. 2017.
Privacy-preserving visual learning using doubly permuted homomorphic en-
cryption. In Proceedings of the IEEE international conference on computer vision.
2040–2050.

[43] Chaoning Zhang, Philipp Benz, Tooba Imtiaz, and In-So Kweon. 2020. Cd-uap:
Class discriminative universal adversarial perturbation. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 34. 6754–6761.

[44] Jiaming Zhang, Jitao Sang, Xian Zhao, Xiaowen Huang, Yanfeng Sun, and Yongli
Hu. 2020. Adversarial privacy-preserving filter. In Proceedings of the 28th ACM
International Conference on Multimedia. 1423–1431.

[45] Yaoyao Zhong and Weihong Deng. 2022. Opom: Customized invisible cloak
towards face privacy protection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 3 (2022), 3590–3603.

[46] Bingbing Zhuang and Manmohan Chandraker. 2021. Fusing the old with the new:
Learning relative camera pose with geometry-guided uncertainty. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 32–42.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Adversarial Attack
	2.2 Visual Face Privacy Protection

	3 The Proposed Scheme
	3.1 Problem Formulation
	3.2 The Pipeline of Our Method
	3.3 Identity Preservation
	3.4 Visual Anonymization
	3.5 The Generation of Person-specific Veils

	4 Experiments
	4.1 Experimental Settings
	4.2 Effectiveness of Visual Privacy Protection
	4.3 Impact of the Parameter Tuning
	4.4 Robustness Analysis
	4.5 Ablation Study
	4.6 Discussion

	5 Conclusion
	References

