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A PROOF

Here, we provide a proof that U remains constant. In our definition,
the CH(F(XP)) is spanned by a set of orthonormal basis vectors
that can be calculated by F(X‘f))(l =1,2,3,..,np). Let us denote it as
(B1, P2, s fmsm < np). Therefore, each F(xf’) can be represented
as

FGP) =k} i+ K2 o+ oo+ K" B, (1)

where kl.l, kiz, kl.m is the coefficient of corresponding linear repre-
sentation. Then, the definition of CH(F(X?)) can be transformed
as

np Mp
_ Prip.
CH(F(X?)) = Z Z wlk! Bj,
) i=1 j=1 (2)
s.tow; >0, Z wf=1.
xPexr
Since wf is a constant, we can extract them from the equation.

Thus, we can substitute WP = (wf , w‘; s wﬁp)T into the equation
and obtain

np Mp
CH(F(XP)) = )" > kI pjw?,
i1 =1 ®3)
st WP >01TwP =1.

Therefore, by using SVD to CH(F(X?)), we can get the U that
is composed of the orthogonal basis vectors. Once get the F (xf ),
orthogonal basis vectors remain constant and thus U also remains
constant. Eventually, the generation of person-specific veils can be
regarded as a problem in solving W?.

B MORE ROBUSTNESS ANALYSIS

Apart from Gaussian noise, we also assess the impact of salt-and-
pepper noise and median filtering on the visual privacy protection
performance of our scheme. The experimental results are presented
in Fig. 1 and Fig. 2. It can be found that when the Salt_rate sur-
passes 0.04, the MSR of the protected images starts to decrease. In
addition, despite the small kernel_size of median filtering, the MSR
diminishes sharply. Compared to the addition of noise, the removal
of noise has a more pronounced impact on identity preservation.
We infer that the filtering process alters the values of neighboring
pixels, which has a greater impact on the identity feature vectors.

C MORE PERFORMANCE ON VISUAL FACE
PRIVACY PROTECTION

Firstly, we additionally present some protected images on the Privacy-
Celebrities dataset when the testing images are different from the
training images, which is shown in Fig. 3. Secondly, we also evalu-
ate the performance of our scheme on Privacy-Commons datasets.

S-ResNet(*) L-ResNet(*) A-ResNet(*)
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MSR

40

20

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Salt_rate

Figure 1: Robustness testing of protected images against salt
and pepper noise. ’Salt_rate’ means the proportion of white
pixels added to the image and *’ implies that the testing
model is identical to the surrogate model.

S-ResNet(*)

L-ResNet(*) A-ResNet(*)

100

80

60

MSR

40

20

Kernel_size

Figure 2: Robustness testing of protected images against me-
dian filtering. ’Kernel_size’ denotes the kernel size of the
window size for computing the median value.

Meanwhile, the qualitative results are illustrated in Fig. 4, and the
quantitative results are shown in Fig. 5. Thirdly, we assess the
performance of our scheme in supporting recoverability on the
Privacy-Commons dataset in Table 1.

Table 1: The SSIM values and LPIPS values of recovered im-
ages on the Privacy-Commons dataset.

Method Source Model SSIM(T) LPIPS ()
S-ResNet 0.868 0.046
ours L-ResNet 0.869 0.047
A-ResNet 0.869 0.046
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Figure 3: Some protected images on the Privacy-Celebrities dataset. Note that the testing images are distinct from the training

images.

Original

S-ResNet

L-ResNet

A-ResNet

Figure 4: Some protected images on the Privacy-Commons dataset. Each image within every subplot shares the same identity.

D MORE DISCUSSION

Application Scenarios. Visual privacy protection is becoming in-
creasingly essential in software applications and is being promoted
by various sectors and institutions. These entities are encouraging
service providers to proactively offer protective functionalities to
users. It ensures that the process of privacy interaction is regu-
lated and protected by the law, which allows a broader range of
service recipients to benefit from it. Considering the limited com-
putational resources available to ordinary users, it is preferable

for service providers to perform the entire training process of veil
generation and provide corresponding service interfaces. It enables
the users to receive the necessary assistance without the burden of
resource-intensive tasks. By adopting our scheme, which effectively
addresses the need for assistance in visual privacy protection, ser-
vice providers can empower users with efficient means of protecting
their visual privacy in real-time scenarios.
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Figure 5: The MSR of the protected images tested across different models on the Privacy-Commons dataset.
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