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Abstract

Graph neural networks (GNNs) are currently highly regarded in graph repre-1

sentation learning tasks due to their significant performance. Although various2

propagation mechanisms and graph filters were proposed, few works have investi-3

gated their rationale from the perspective of learning. In this paper, we elucidate4

the criterion for the graph filter formed by power series, and further establish a5

scalable regularized learning framework that theoretically realizes very deep GNN.6

Following the framework, we introduce Adaptive Power GNN (APGNN), a deep7

GNN that employs exponentially decaying weights to aggregate graph information8

of varying orders, thus facilitating more effective mining of deeper neighbor infor-9

mation. Moreover, the multiple P -hop message passing strategy is proposed to10

efficiently perceive the higher-order neighborhoods. Different from other GNNs,11

the proposed APGNN can be seamlessly extended to an infinite-depth network. To12

clarify the learning guarantee, we theoretically analyze the generalization of the13

proposed learning framework via uniform convergence. Experimental results show14

that APGNN obtains superior performance compared to state-of-the-art GNNs,15

highlighting the effectiveness of our framework.16

1 Introduction17

Recently, Graph Neural Networks (GNNs) have shown commendable performance on numerous graph18

representation learning tasks. In addition, GNNs have been introduced in a variety of application tasks,19

such as recommendation systems [7, 11, 37], computer vision [4, 13, 23], and traffic forecasting20

[8, 9]. The fundamental part of GNN is the design of the propagation mechanism or the graph21

filter [5, 12, 27, 32, 34]. GNNs can be categorized into two groups based on the approach of22

formulation. Spatial-based GNN formulates propagation mechanisms through the direct aggregation23

of spatial features. As one of the most simple GNNs, Graph Convolutional Network (GCN) [15]24

designs graph convolutional layer via aggregating one-hop information on the graph. Graph Attention25

Network (GAT) [30] learns node relationships using an attention mechanism, enhancing the scalability26

of the network. For extension of inductive learning, GraphSAGE [10] employs various pooling27

operations as aggregation functions. Liu et. al proposed DAGNN, which integrates information from28

multiple receptive fields for adaptive propagation [19]. Spectral-based GNN designs graph filters by29

constructing filter functions in the graph Fourier domain, which aims to find a proper transformation30

of the graph spectrum. Chebynet constructs the localized graph filter with Chebyshev polynomial [3].31

From the view of the spectrum, GCN could be seen as a Chebyshev filter with first-order truncation32

[15]. To construct deeper GNN, Personalize PageRank method is employed to design graph filter33

[16]. GNN-LF/HF [36] concludes various designs of graph filters and constructs the graph filter34

through a graph optimization framework.35

Despite their success, few studies have explored the general rule for devising GNNs from the36

perspective of learning. In this paper, we start from the graph filter formed by power series and37
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Figure 1: An illustration of the proposed APGNN that adheres to the learning principle. The model
incorporates the decay rate α to suppress the information from high-order neighbors while adaptively
learning bounded coefficients β. Furthermore, it aggregates information with P -hop to enlarge the
receptive field. This design enables the seamless extension of APGNN to an extremely deep network.

discuss what makes a legitimate graph filter for the construction of deep GNN. A learning principle38

is then proposed to summarize the rule of formulating a graph filter. Following this, we propose39

Adaptive Power Graph Neural Network (APGNN), which adaptively learns the task-specific graph40

filter for node representation learning. The main idea of APGNN is depicted in Figure 1. The41

parameterized graph filter is designed with regularization of the exponential decay rate. A multiple42

P -hop strategy is applied to enhance the capacity of perceiving the higher-order neighborhoods.43

Furthermore, the generalization bound of APGNN is presented with the setting of the continuous44

graph, which provides a learning guarantee for the proposed principle theoretically.45

We conduct evaluations on five benchmark datasets on node classification tasks. The experimental46

results suggest the superiority of the proposed method over the existing GNNs. The theoretical47

analysis is also validated via the empirical study.48

2 Preliminaries49

Notations. Suppose we have an undirected graph G = (V, E ,A) with node set V and |V| = n.50

A ∈ Rn×n denotes the adjacency matrix indicating the edges in E . Assuming that the self-loops are51

contained in the graph, i.e., aii = 1. Let X = [x1,x2, · · · ,xn]
⊤ ∈ Rn×d be the graph signals (or52

features) of the nodes. We use notation [n] ≜ {1, 2, · · · , n} for n ∈ N+. Assume that the label of xi53

is yi ∈ Y for all i = [nl], where nl ≤ n is the number of labeled samples.54

Graph Neural Networks. We introduce some essential concepts in GNNs. Let di =
∑n

j=1 Aij55

be the degree of i-th node, so the degree matrix of A can be defined as D = diag(d1, d2, · · · , dn).56

The symmetrically normalized Laplacian is L = I− Ã, where Ã ≜ D−1/2AD−1/2 is normalized57

adjacency matrix. Consider the eigen-decomposition L = UΛU⊤, where Λ = diag(λ1, · · · , λn)58

is the diagonal matrix of eigenvalues, and U = [u1, · · · ,un] represents the eigenvectors associated59

with the eigenvalues. Note that Ã shares the same eigenvectors with L.60

Spectral convolution on graphs is defined as the following transformation [15, 28]:61

g ∗X = Ug(Λ)U⊤X, (1)

where g(·) : [0, 2] 7→ R is called filter function and g(Λ) = diag(g(λ1), · · · , g(λn)). The com-62

mon approach in GNNs is to apply polynomial functions as the filters [3, 12, 15], which leads to63

Ug(Λ)U⊤ = g(L). Therefore, spectral convolution is usually written as g ∗X = g(L)X. The graph64

representation paradigm in GNN is generally expressed as follows:65

Z = g(L)f(X), g(L) =

K∑
k=0

θkÃ
k, (2)

where Z ∈ Rn×c denotes the node representation, and f(·) represents a feature extractor such as66

multi-layer perceptions (MLPs).67
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3 Learning Principle for GNNs68

3.1 The principle of devising graph filters69

Current studies suggest a significant relationship between the performance of GNN and its graph filter70

[16, 19]. Predominantly, the general graph filters are characterized by polynomials associated with71

the adjacency matrix Ã (or Laplacian matrix L), i.e., g(L) =
∑K

k=0 θkÃ
k. However, the existing72

methods still meet the issue that the depth of GNN is limited. The reason for this phenomenon73

is that these GNNs are inconsistent with their "infinite-depth" version. That is, the corresponding74

models lose some essential properties as the depth K → ∞. Consequently, the depth of the models75

is restricted. To address this issue, it is necessary to study the properties of GNNs with infinite depth.76

Therefore, we explore the graph filter reformulated as power series:77

g(Ã) =

∞∑
k=0

θkÃ
k =

∞∑
k=0

θk(I− L)k. (3)

First of all, a well-defined graph filter represented as equation 3 must be convergent. Consequently, it78

becomes essential to investigate the properties that the coefficients θk should exhibit. The following79

lemma provides appropriate constraints for the coefficients of the graph filter.80

Lemma 1. Let {ak} and {γk} be the real number sequences, where γ ∈ (−1, 1] and k ∈ N. Then81 ∑∞
k akγ

k converges uniformly and absolutely if and only if the series
∑∞

k ak converges absolutely.82

As a direct corollary, the weights of the graph filter (i.e., θk) should satisfy the following theorem.83

Theorem 1. Let Ã = D−1/2AD−1/2 be the normalized adjacency matrix of a graph G with spectral84

radius ρ(Ã) ≤ 1. The matrix series
∑∞

k=0 θkÃ
k converges uniformly and absolutely if and only if85

the series
∑∞

k=0 θk converges absolutely.86

The proofs are shown in Appendix. Theorem 1 offers a sufficient and necessary condition for the87

convergence of graph filters formed by power series. Specifically, the condition requires the existence88

of a finite real number M ≥ 0,89

∥θ∥1 ≜
∞∑
k=0

|θk| ≤ M. (4)

Therefore, an arbitrary graph filter formed by power series should satisfy the above convergence90

condition, which gives the first requirement while designing GNN. Apart from convergence, we91

expect the graph filter to possess good analytic properties such as smoothness. To this end, Lipschitz92

continuity should be considered the second requirement of the graph filter. Let g(·) be an L-Lipschtiz93

continuous function, meaning that94

|g(λ)− g(λ′)| ≤ L|λ− λ′|, ∀λ, λ′ ∈ [0, 2). (5)

This property indicates the stability or robustness of the model [6, 24]. If the graph is contaminated95

and its eigenvalues are perturbed by at most ϵ, Lipschitz continuity ensures the perturbation of the96

graph-filtered result is at most Lϵ. For instance, considering g(λ) =
∑∞

k=0(1 − λ)k/k2, which is97

convergent, yet the Lipschitz condition does not satisfy for λ closed to zero. Therefore, this graph98

filter might be sensitive to the input graph. Subsequently, we conclude the following criterion.99

Z = gθ(L)f(X), with ∥θ∥1 ≤ M, gθ(·) is a Lipschitz function. (6)

To enhance the scalability of the model, we define θ as a learnable parameter (though its dimension100

is infinite). In this way, (6) gives a regularized learning framework for GNN. Therefore, for a101

K-order polynomial graph filter gKθ (λ) =
∑K

k=0 θk(1 − λ)k, which is what we can implement in102

practice, the condition (6) should be satisfied to keep the consistency with its infinitely deep version103

g∞θ (λ) =
∑∞

k=0 θk(1 − λ)k. We will present the applications of this criterion in this section, and104

further analyze the learning guarantee with generalization in section 4.105

3.2 Related works106

In this subsection, we investigate the relationship between our learning framework and several well-107

known Graph Neural Networks (GNNs), focusing on the design of graph filters. Our findings indicate108

that these GNNs are all special cases of our learning framework, which are summarized in Table 1.109
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GCN/SGC [15, 33]. Graph convolutional network (GCN) aims to learn a node representation by110

stacking multiple graph convolutional layers. In each layer, GCN applies first-order Chebyshev111

approximation as the graph filter followed by a fully connected layer. For simplicity, we analyze112

one-layer GCN, which is formulated as Z = σ(ÃXW), where W is a learnable weight matrix for113

linear transformation. Therefore, the graph filter of one-layer GCN is gGCN(L) = I− L = Ã, or a114

trivial matrix power series:115

gGCN(L) =

∞∑
k=0

θkÃ
k, where θk =

{
1, if k = 1,

0, otherwise.
(7)

It should be noted that this equation satisfies the condition described in (6).116

SGC is a simplified version of GCN that eliminates the activation function and applies a single linear117

projection to extract features. This simplification reduces the multiple-layer GCN into a more concise118

model as Z = ÃKXW. Similarly, the graph filter of SGC can be represented as:119

gSGC(L) = ÃK =

∞∑
k=0

θkÃ
k, where θk =

{
1, if k = K,

0, otherwise.
(8)

Both GCN and SGC use a monomial to construct the graph filter. Therefore, in the viewpoint of120

spectral-GNN, their graph filters are too simple to capture the spectral characteristic. Besides, the121

small eigenvalue vanishes when K becomes very large, leaving only the largest eigenvalue, which122

leads to the well-known over-smoothing problem [17].123

PPNP [16]. PPNP uses Personalized PageRank as the graph filter, which balances local information124

preservation and the utilization of high-order neighbor information. The model of PPNP is Z =125

α(I− (1− α)Ã)−1H = (I+ βL)−1H, where H = f(X) is a two-layer MLPs and β = 1/α− 1.126

Hence, the graph filter of PPNP is gPPNP(L) = (I+ βL)−1. Considering its Taylor series, we have127

gPPNP(L) = (I+ βL)−1 =
1

1 + β

∞∑
k=0

(
β

1 + β

)k

Ãk =

∞∑
k=0

θkÃ, (9)

where θk = βk/(1 + β)k+1. It is straightforward to validate that
∑∞

k=0 θk = 1, and thus the128

convergence requirement (4) holds. Moreover, the Lipschitz condition is easily verified. Thus129

PPNP satisfies the criterion of (6). However, the performance of PPNP is heavily dependent on the130

hyperparameter β, which must be carefully tuned to achieve optimal performance.131

DAGNN [19]. DAGNN adaptively adjusts the weight of information aggregation from different132

neighbors to solve the over-smoothing problem. It designs a parameterized graph filter formulated as133

a K-order polynomial:134

gDAGNN(L) =

K∑
k=0

θkÃ
k, s.t. 0 ≤ θk ≤ 1, (10)

where θk is the learnable parameter with bounded constraint. Due to this adaptive learning strategy,135

DAGGN is able to learn a graph filter more suitable for node classification. The empirical studies136

suggest DAGNN works well with a proper K. However, as K → ∞, the constraint 0 ≤ θk ≤ 1137

cannot guarantee the convergence of the graph filter. It indicates that DAGNN is “inconsistent” with138

its infinitely deep version. Therefore, it can not be naturally extended to significantly deep GNN.139

3.3 Instantiation: Adaptive Power Graph Neural Network140

We now introduce a novel GNN following the framework in section 3.1, called Adaptive Power GNN141

(APGNN). We first consider the following graph filter parameterized by β with the form:142

g∞β (λ) =

∞∑
k=0

βkα
k(1− λ)k, where |βk| ≤ 1, 0 < α < 1, (11)

where the coefficient of the power series θk = βkα
k, with hyper-parameter α ∈ (0, 1) ensuring the143

convergence. Immediately, we check the condition of Lemma 1.144

∥θ∥1 =

∞∑
k=0

∣∣βkα
k
∣∣ ≤ ∞∑

k=0

αk ≤ 1

1− α
. (12)
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Table 1: Graph filter for various GNNs

Model Filter function Setting of θ Learnable g(·)

1-layer GCN g(L) =

∞∑
k=0

θkÃ
k θk =

{
1, if k = 1

0, otherwise
No

SGC g(L) =

∞∑
k=0

θkÃ
k θk =

{
1, if k = K

0, otherwise
No

PPNP g(L) =

∞∑
k=0

θkÃ
k θk =

βk

(1 + β)k+1
, β > 0 No

DAGNN g(L) =

K∑
k=0

θkÃ
k 0 ≤ θk ≤ 1 Yes

Hence, the power series converges on [0, 2] absolutely and uniformly. Similarly, the associated matrix145

series g∞β (L) =
∑∞

k=0 βkα
kÃk also converges uniformly and absolutely by Theorem 1. Moreover,146

g∞β (·) is α(1− α)−2-Lipschitz. To see this, for any |βk| ≤ 1 and 1− λ ∈ (−1, 1], we have147

|∇g∞β (λ)| =

∣∣∣∣∣
∞∑
k=1

(−1)kkβkα
k(1− λ)k−1

∣∣∣∣∣ ≤
∞∑
k=1

kαk =
α

(1− α)2
, (13)

which implies the Lipschitz continuous property. Thus, this graph filter fits the requirement of the148

proposed criterion. However, the model with this graph filter is unavailable in practice as the number149

of parameters to be learned is infinite. The K-order truncated polynomial is utilized for substitution,150

i.e., gKβ (L) =
∑K

k=0 βkα
kÃk. We evaluate the approximation via the upper bound of K-order151

truncation error:152

|g∞β (λ)− gKβ (λ)| ≤
∞∑

k=K+1

∣∣βkα
k(1− λ)k

∣∣ ≤ ∞∑
k=K+1

αk =
αK+1

1− α
, (14)

which uniformly holds for ∀λ ∈ [0, 2]. Likewise, the approximation error of matrix series is given by153 ∥∥g∞β (L)− gKβ (L)
∥∥
2
=
∥∥U (g∞β (Λ)− gKβ (Λ)

)
U⊤∥∥

2
= sup

i∈[n]

|g∞β (λi)−gKβ (λi)| ≤
αK+1

1− α
, (15)

where λi denotes the i-th eigenvalue of L. This upper bound is independent of the given graph, which154

can be controlled via tuning α and K. The higher K and smaller α yield a better approximation to155

the exact graph filter g∞β (·). Nevertheless, the small α tends to limit the capability of the graph filter.156

Extremely, α → 0 gives a trivial function gKβ (λ) = β0. This suggests that α should be elaborately157

tuned to improve the performance.158

Though the aforementioned graph filter is primarily motivated via spectral analysis, we can still159

present the spatial perspective explanation for its design. Existing GNNs aggregate the neighbor160

information of different hops with certain weights, which could be either manually assigned or learned161

adaptively. Typically, methods like GPR-GNN [2] and DAGNN [19] that learn the aggregation weight,162

tend to treat the neighbor’s information of different hops equally. That is, the k-hop’s weight are163

assigned with θk = O(1) for each k ∈ [K]. However, it is shown in the previous research that the164

propagation with the very high-order neighbor potentially leads to the over-smoothing issue [25, 33].165

The current methods magnify this flaw of the high-order graph since they cannot distinguish the166

significance of the information of different hops. This motivates the design of the decay rate in167

APGNN, i.e., we employ weights with exponential decaying rate by assigning θk = O(αk) for some168

0 < α < 1. This approach emphasizes the contribution of lower-order neighbors and restricts the169

over-weighting of the information from high-order neighbors due to θk → 0 with k → ∞. Therefore,170

it provides more effective aggregation and thus enhances the model’s scalability.171

To take a further step in the construction of a deep GNN, we introduce a multiple P -hop strategy for172

the graph filter of (11), which effectively extends the utmost neighborhood range that the graph filter173

can perceive by P times. Consider a different perspective regarding the construction of a filter with174
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the utmost order T = KP . The previous methods can be viewed as a one-hop graph filter by setting175

P = 1. For P > 1, the graph filter is able to aggregate information from a larger neighborhood in176

the same order. In addition, we will illustrate the advantages of this strategy from the perspective of177

generalization in the following section.178

Summarizing the above analysis, we present the following comprehensive architecture of APGNN:179

Z = gβ(L)f(X), f(X) = MLP(X), gβ(L) =

K∑
k=0

βkα
kÃkP . (16)

180

In short, APGNN incorporates the benefits from the decay rate α that exponentially suppresses the181

information of extremely high-order neighbors and the multiple P -hop strategy to enlarge receptive182

fields. These approaches make it possible to realize a sufficiently deep GNN.183

4 Generalization analysis184

The theoretical analysis of GNN’s generalization is widely studied. [31] provides the generalization185

result of the algorithmic stability of GCN in the discrete graph setting. In contrast, [14] shows the186

convergence and stability guarantee over the random and continuous graph. In this section, we187

will present the uniform generalization bound of the proposed GNN learning framework under the188

continuous setup.189

We first introduce some notations for later discussion. Denote x ∈ X as any samples from the190

input space X (we generally set X as a subset of Rd). Let ρ(·) be a probability measure defined191

over X . Assume xj is the j-th coordinate of x ∈ X and E[x2
j ] ≤ c2X for any j ∈ [d]. To describe192

the graph relation between each pair (x,x′) over X × X , we define a continuous graph function193

A(·, ·) : X × X 7→ R+, and its corresponding degree function is194

d(x′) =

∫
X
A(x,x′)dρ(x′). (17)

Different from the setting of [18, 26], we assume 0 ≤ A(x,x′) ≤ cU , and 0 < cL ≤ d(x) for any195

x,x′ ∈ X . Therefore, we can define the symmetric normalized graph:196

Ã(x,x′) =
A(x,x′)√
d(x)d(x′)

. (18)

Then the corresponding normalized Laplacian is L = I − Ã, where I indicates the identity operator197

over X . For a graph filter function gθ(λ) =
∑K

k=0 θk(1− λ)k, graph convolution of the continuous198

graph is defined as the following integral operator:199

gθLf =

K∑
k=0

θkÃ
kf, Ãf =

∫
X
Ã(·,x)f(x)dρ(x), (19)

where Ãk = Ãk−1 ◦ Ã denotes k-order composition of integral operator with Ã0 = I . Note we have200 ∑K
k=0 θk∥Ã∥ ≤ ∥θ∥1 ≤ M for any K ∈ N, indicating

∑∞
k=0 θkÃ is absolutely summable. This201

guarantees the existence of graph filter on the continuous graph when K → ∞. For convenience in202

understanding, we provide the analysis on a simplified GNN, where we consider a semi-supervised203

learning task with two classes, i.e., yi ∈ Y ≜ {−1, 1}, and utilize linear feature extractor f(X) =204

w⊤X. Note that we can still extend our result for f(X) = MLP(X) and multi-class cases using the205

techniques proposed in [1]. With the above setting, the hypothesis set over is described as206

HX = {h : h(x) = gθLf(x), f(x) = ⟨w,x⟩, ∥w∥2 ≤ B, ∥θ∥1 ≤ M}. (20)
However, the integral in each hypothesis h ∈ HX is intractable since the underlying graph function207

and the data distribution are unknown. Therefore, we should use the “empirical version” of the208

hypothesis to estimate h ∈ HX . For this reason, we introduce the hypothesis set defined over the209

observed samples S and graph G:210

HS =

h : h(xi) =

n∑
j=1

gθ(L)ijx
⊤
j w, ∥w∥2 ≤ B, ∥θ∥1 ≤ M

 . (21)

6



Define the generalization error and the empirical error [21] as follows211

R(h) = E(x,y)[1yh(x)≤0], R̂(h) =
1

nl

nl∑
i=1

min(1,max(0, 1− yih(xi))). (22)

We have the following theorem on the generalization of the proposed learning paradigm.212

Theorem 2. Suppose gθ(·) is LM -Lipschitz. Let hw,θ ∈ HX and hw,θ ∈ HS share the same213

parameter (w,θ). Then there exists a constant C > 0 related to the graph function, with the214

probability at least 1− δ, the following inequality holds.215

R(hw,θ) ≲ R̂(ĥw,θ) + 2BMcX

√
2d log(2K + 2)

nl
+BCLMdcX

√
log(2/δ)

n
. (23)

The proof is given by excess risk decomposition, shown in Appendix. The notation "≲" denotes216

"less than or approximately equal to the right-hand side" and guarantees an approximation error of217

at most O(
√

log(1/τ)
nl

) with a probability of at least 1 − O(τ). We remind readers the important218

difference between R(hw,θ) and R̂(ĥw,θ). The former term measures the population error over the219

whole input space with the continuous graph filter gθL. In contrast, R̂(ĥw,θ) is the empirical risk220

(i.e., training risk) on the sample set S with the discrete graph filter gθ(L). hw,θ shares the same221

learning parameter with ĥw,θ . Therefore, the minimization of the right-hand-side of (23) w.r.t (w,θ)222

reduces the upper bound of the population error.223

We observe the first term of generalization bound is of order O((dn−1
l logK)1/2), which outlines the224

model’s complexity. Although it becomes infinity when K → ∞, the growth of this term is extremely225

slow as K increases. In practice, we generally set K < n since the neighbor information beyond226

n-hops is redundant, restricting the complexity away from infinity. Therefore, the generalization of227

the model is rigorously guaranteed for sufficiently large K, which allows us to construct significantly228

deep GNN in the proposed framework. We can obtain a more precise estimation for a certain model.229

In the following proposition, we unveil the generalization of APGNN as a direct application of230

Theorem 2.231

Proposition 1. Let β ∈ RK and gKβ (λ) =
∑K

k=0 βkα
k(1− λ)k where 0 < α < 1 and ∥β∥∞ ≤ 1.232

with the probability at least 1− δ, the following inequality holds.233

R(hw,β) ≲ R̂(ĥw,β) +
2BcX (1− αK)

1− α

√
2d log(2K + 2)

nl
+

BCdcXα

(1− α)2

√
log(2/δ)

n
. (24)

Proof. This is a direct result with M = (1−αK)/(1−α) and LM = α/(1−α)2 in Theorem 2.234

In (24), the complexity term becomes O(
√
logK(1− αK)) with K = ⌊T/P ⌋, which is relatively235

tighter than O(
√
logK). For this term, we promote further discussion with P -hop. Since it takes236

⌊T/P ⌋ steps to reach the T -order graph, the term becomes O(
√
log ⌊T/P ⌋(1 − α⌊T/P⌋)). It is237

observed that the term decreases as P increases. Therefore, the appropriate P reduces the bound,238

explaining the mechanism of the P -hop method. On the other hand, larger α leads to a higher bound.239

From the point of spatial view, the information from high-order neighbors is underused, which limits240

the range of the graph filter. Thus α should be moderate to leverage the generalization and the241

capability of the model.242

5 Experiment243

In this section, we conduct node classification experiments on various benchmark datasets to evaluate244

the performance of APGNN. Specifically, we compare our method with state-of-the-art methods245

and display the corresponding learned graph filter on different data sets. Moreover, to validate the246

theoretical analysis, the influence of parameters K, α, and P is also investigated in experiments.247
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Table 2: The average accuracy (%) and standard deviation (%) on five benchmark datasets. The
highest accuracy in each column is shown in bold, while the second-best result is underlined.

DatasetModel Cora Citeseer Pubmed Wiki-CS MS-Academic
MLP 57.79±0.11 61.20±0.08 73.23±0.05 65.66±0.20 87.79±0.42

ChebNet 79.92±0.18 70.90±0.37 76.98±0.16 63.24±1.43 90.76±0.73

GCN 82.03±0.27 71.05±0.33 79.26±0.18 72.05±0.45 92.07±0.13

SGC 81.89±0.26 72.18±0.24 78.58±0.15 72.76±0.35 89.01±0.40

GAT 82.82±0.36 71.96±0.39 79.15±0.34 74.36±0.58 91.86±0.27

GraphSage 82.14±0.25 71.80±0.36 79.20±0.27 73.17±0.41 91.53±0.15

PPNP 83.73±0.31 71.74±0.44 80.28±0.22 74.69±0.53 92.58±0.06

APPNP 83.73±0.21 71.70±0.21 80.07±0.21 74.91±0.61 92.81±0.12

GNN-LF(iter) 83.83±0.36 71.44±0.42 80.31±0.16 75.19±0.49 92.78±0.22

GNN-HF(iter) 83.68±0.31 71.58±0.36 79.99±0.22 74.71±0.55 92.72±0.31

DAGNN 82.70±0.17 71.90±0.06 80.06±0.30 75.63±0.48 93.24±0.21

Ours 84.15±0.23 72.44±0.56 80.74±0.24 76.03±0.51 93.69±0.20

5.1 Experiment Setup248

Datasets. We perform experiments on five benchmark datasets commonly used in node classification249

tasks. 1). Cora, Citeseer, Pubmed[29, 35]: These are three standard citation networks where250

each node is a paper and each edge is a citation link. 2).Wiki-CS[20]: This dataset defines the251

computer science articles as nodes, while the hyperlinks are edges. 3). MS Acadamic[16]: The252

nodes represent the author and the edges represent the co-authorships. A co-authorship Microsoft253

Academic Graph, where the nodes are the bag-of-words representation of the papers’ abstract and254

edges are co-authorship. The data statistics and their partitions are presented in Appendix.255
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g(
)
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Pubmed
Wiki
MS

(b)

Figure 2: The graph filters learned on different data sets, with the parameter P being odd in subfigure
(a) and even in subfigure (b).

Baselines. To evaluate the effectiveness of APGNN, we compare it with the following baseline256

models: 1) MLP [22], a traditional method that does not use graphs, 2) GAT [30] and GraphSAGE257

[10], spatial methods that aggregate neighborhoods’ information, and 3) ChebNet [3], GCN [15],258

SGC [33], PPNP, APPNP[16], GNN-LF (iteration form), GNN-HF (iteration form) [36], and DAGNN259

[19], spectral methods analyzing GNNs with graph Fourier transform.260

Settings. We conducted 10 runs for each method on each dataset, with a hidden dimension of 64. For261

all compared methods, their parameter settings follow the previous practices [19, 36]: the dropout262

rate is 0.5 except for Cora, which had a rate of 0.8. Furthermore, the learning rate is 0.01 for Cora,263

Citeseer, and Pubmed, but 0.03 for Wiki-CS and 0.02 for MS-Academic, while the weight decay is264

0.005 for Cora and Pubmed, 0.02 for Citeseer, 0.0005 for Wiki-CS, and 0.00525 for MS-Academic.265

We fix the polynomial order K to 10 in ChebNet, APPNP, GNN-LF, GNN-HF, DAGNN, and APPNP.266

The best hyperparameters we choose for APGNN are presented in Appendix. To ensure a fair267
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comparison with the compared methods, we also applied our optimal hyperparameters to them,268

selecting the maximum value to display.269
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Figure 3: Accuracy with different (a) K. (b) α. (c) P (for fixing T ).

5.2 Analysis270

Node Classification. As the metric for evaluation, the mean accuracy of 10 runs is used. We compare271

the performance of APGNN with other methods on five benchmark datasets. Experiment results272

are reported in Table 2. We can observe that APGNN achieves the highest accuracy across all five273

datasets, demonstrating its superior performance.274

Learnable Graph Filters. Figure 2 shows the graph filters learned on various datasets via APGNN.275

When the parity of P varies, the graph filter has a distinctive shape. However, their shapes exhibit276

minimal impact on their accuracy regardless of the parity of P according to the experiment results.277

Moreover, the graph filters of each dataset are plotted in Appendix, more details are included in278

Appendix. Our results show that the graph filters learned from different datasets vary in detail,279

even when their parameters have similar parity, demonstrating the efficacy of APGNN in learning280

task-specific graph filters.281

Polynomial Order K. To gain insight into the role of polynomial order K, we conduct the experiment282

tuning K in {1, 2, ..., 20} on Cora, Citeseer, and Pubmed dataset. Our theoretical analysis supports283

the observation that a small K can result in a large truncation error, leading to a low accuracy rate. It284

can be observed that the accuracy rate has little promotion when K is larger than 10, although at the285

cost of high computational resources.286

Decay Rate α. Figure 3 (b) depicts the accuracy curve corresponding to various α values ranging287

from 0.1 to 0.9 and 0.99 on Cora, Citeseer and Pubmed datasets. As α decreases, the classification288

accuracy initially increases and then declines sharply. This phenomenon verifies the theory that the289

truncation error decreases as α decreases, but it leads to a trivial function when α is extremely small.290

P -hop strategy. We investigate the accuracy associated with varying parameters P taken from291

the set {1, 2, 3, 4, 5, 6} when fixing T = KP = 60. As we can see in Figure 3 (c), the accuracy292

increase when P > 1. This phenomenon can be attributed to the fact that the generalization bounding293

decreases when P increases, which suggests that the P -hop strategy can effectively explore deeper294

information with the same computational complexity.295

6 Conclusion296

This paper proposes a universal learning principle for a valid construction of GNN. An instantiation297

named APGNN is proposed to verify the effectiveness of our framework. APGNN employs a decay298

rate and a multiple P -hop strategy to learn the coefficients adaptively, which can efficiently aggregate299

the information from high-order neighbors. We present a theoretical analysis of the generalization300

capabilities of both our framework and APGNN, which provides a learning guarantee. Comprehensive301

experiments show the superior performance of APGNN. In the future, it is worth exploring diverse302

graph filters based on the proposed principle. As shown in the generalization analysis, the upper303

bound of the model complexity relies on O(
√
logK). How to devise the GNN with complexity free304

of the hyperparameter K is also a meaningful research direction.305
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A Appendix414

A.1 Data statistics415

Table 3: Data statistics for the node classification task.

Dataset Nodes Edges Features Class Train Val Test
cora 2708 5429 1433 7 140 500 1000

citeseer 3327 4732 3703 6 120 500 1000
pubmed 19717 44338 500 3 60 500 1000
wiki-cs 11701 216123 300 10 200 500 1000

ms academic 18333 81894 6805 15 300 500 1000

A.2 The detail of learned graph filters416
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Figure 4: The graph filters learned using different data sets, with parameter P being odd.

0.0 0.5 1.0 1.5 2.0
0.9

1.0

1.1

1.2

g(
)

Cora's Filter

0.0 0.5 1.0 1.5 2.0
1.0

1.0

1.1

1.1

g(
)

Citeseer's Filter

0.0 0.5 1.0 1.5 2.0
1.0

1.3

1.6

2.0

g(
)

Pubmed's Filter

0.0 0.5 1.0 1.5 2.0
1.0

1.9

2.8

3.8

g(
)

Wiki's Filter

0.0 0.5 1.0 1.5 2.0
1.0

2.2

3.4

4.6

g(
)

MS's Filter

Figure 5: The graph filters learned using different data sets, with parameter P being even.

A.3 The hyperparameters settings417

Table 4: The hyperparameters of APGNN on various datasets when parameter P is odd.

Dataset K P α Weight decay Learning rate Dropout rate
Cora 10 3 0.7 0.005 0.01 0.8

Citeseer 10 5 0.7 0.00625 0.01 0.5
Pubmed 10 5 0.9 0.005 0.01 0.5
Wiki-CS 10 1 0.9 0.000525 0.03 0.4

MS-Academic 10 3 0.9 0.00525 0.02 0.4

A.4 Proof for Lemma 1418

(⇒). We show the result by contradiction. If
∑∞

k |ak| is not convergent, then at γ = 1, we have419 ∑∞
k |akγk| is not convergent, which occurs a contradiction. Therefore, series

∑∞
k |ak| converges.420

(⇐). It is obvious that for ∀γ ∈ (−1, 1],
∑∞

k |akλk| ≤
∑∞

k |ak|. Therefore,
∑∞

k |akλk| uniformly421

converges in λ ∈ (−1, 1].422
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Table 5: The hyperparameters of APGNN on various datasets when parameter P is even.

Dataset K P α Weight decay Learning rate Dropout rate
Cora 10 4 0.7 0.005 0.01 0.8

Citeseer 10 6 0.7 0.00625 0.01 0.5
Pubmed 10 6 0.9 0.005 0.01 0.5
Wiki-CS 10 2 0.9 0.000525 0.03 0.4

MS-Academic 10 2 0.9 0.00525 0.02 0.4

A.5 Proof for Theorem 1423

Ã is an adjacency matrix of a graph, which is a real symmetric matrix. Since we can decompose Ã424

as Ã = UΓU⊤, where U is a matrix composed of the eigenvectors of Ã and Γ = diag(γ1, · · · , γn)425

is the diagonal matrix of the corresponding eigenvalues. Therefore, we have426

g(L) =

∞∑
k=1

θkÃ
k = Udiag

( ∞∑
k=1

θkγ
k
1 , · · · ,

∞∑
k=1

θkγ
k
n

)
U⊤ (25)

Therefore, the g(L) converges absolutely and uniformly if and only if
∑∞

k=1 θkγ
k
i converges abso-427

lutely and uniformly for all i ∈ [n]. Then apply Lemma 1 and we can obtain the result.428

A.6 Proof of Theorem 2429

We first introduce some definitions and Lemma for assisting with the proof.430

Definition 1. Consider the sample set S = {x1, · · · ,xn} and function set F , where f(x) is bounded431

for any f ∈ F . Then the empirical Rademacher complexity is defined as:432

RS(F) =
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi)

]
, (26)

where σi is i.i.d. Rademacher random variable defined by Pr(σi = −1) = Pr(σi = 1) = 0.5.433

Lemma 2. Consider the hypothesis set434

HX = {h : h(x) = gθLf(x), f(x) = ⟨w,x⟩, ∥w∥2 ≤ B, ∥θ∥1 ≤ M}, (27)

where θ = [θ0, θ1, · · · , θK ]. Let xj denote the j-th element of x ∈ X , and E[x2
j ] ≤ cX for any435

j ∈ [d]. Then for any sample set S = {x1, · · · ,xnl
} ⊂ X we have436

RS(FX ) ≲ 2BMcX

√
2 log(2K + 2)

nl
. (28)

Proof. Based on the definition, we can write437

RS(HX ) =
1

nl
Eσ

[
sup

hw,θ∈HX

nl∑
i=1

σihw,θ(xi)

]

=
1

nl
Eσ

[
sup

∥w∥2≤B, ∥θ∥1≤M

nl∑
i=1

σigθLf(xi)

]

=
1

nl
Eσ

[
sup

∥w∥2≤B, ∥θ∥1≤M

nl∑
i=1

σi

∫
X

K∑
k=0

θkÃ
k(xi,x)x

⊤wdρ(x)

]

≤ B

nl
Eσ

[
sup

∥θ∥1≤M

∥∥∥∥∥
nl∑
i=1

σi

∫
X

K∑
k=0

θkÃ
k(xi,x)xdρ(x)

∥∥∥∥∥
2

]

=
B

nl
Eσ

[
sup

{vi}n
i=1∈V

∥∥∥∥∥
nl∑
i=1

σivi

∥∥∥∥∥
2

]
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where the inequality follows from the Cauchy-Schwarz inequality, and the set V is defined as438

V ≜

{
{vi}ni=1 : vi =

∫
X

K∑
k=0

θkÃ
k(xi,x)xdρ(x), ∥θ∥1 ≤ M

}
. (29)

Define qj(x) = xj returning the j-th coordinate of the input. Hence, the j-th coordinate of vi can be439

rewritten as440

vij =

∫
X

K∑
k=0

θkÃ
k(xi,x)xjdρ(x) =

∫
X

K∑
k=0

θkÃ
k(xi,x)qj(x)dρ(x) =

K∑
k=0

θkÃ
kqj(xi). (30)

Since ∥u∥2 ≤
√
d∥u∥∞ for any u ∈ Rd, we have441

RS(HX ) ≤ B
√
d

nl
Eσ

[
sup

{vi}n
i=1∈V

∥∥∥∥∥
nl∑
i=1

σivi

∥∥∥∥∥
∞

]

≤ B
√
d

nl
Eσ

[
sup

{vi}n
i=1∈V

max
j∈[d]

∣∣∣∣∣
nl∑
i=1

σivij

∣∣∣∣∣
]

≤ 2B
√
d

nl
Eσ

[
sup

{vi}n
i=1∈V

max
j∈[d]

nl∑
i=1

σivij

]

≤ 2B
√
d

nl
Eσ

[
sup

∥θ∥1≤M

nl∑
i=1

σi

K∑
k=0

θkÃ
kqj(xi)

]

=
2B

√
d

nl
Eσ

[
sup

∥θ∥1≤M

K∑
k=0

θk

nl∑
i=1

σiÃ
kqj(xi)

]

=
2BM

√
d

nl
Eσ

[
sup
θ∈Θ

K∑
k=0

θk

nl∑
i=1

σiÃ
kqj(xi)

]
= 2BM

√
dRS(H′),

where Θ =
⋃K

k=0{−ek, ek} and ek denote k-th vector with k-th entry as one and others are zero.442

The set H′ = {h(x) =
∑K

k=0 θkA
kqj(x) : θ ∈ Θ} is a finite set with |H′| = 2(K + 1). We bound443

RS(H′) with Massart’s Lemma:444

Lemma 3 (Massart’s Lemma [21]). Let X ⊂ Rn be a finite set and supx∈X ∥x∥2 ≤ r
√
n, then the445

following inequality holds:446

Eσ

[
1

n
⟨σ,x⟩

]
≤ r

√
2 log |X |

n
, (31)

where σ = [σ1, · · · , σn] denote the vector of Rademacher random variables.447

Since H′ is a finite set and for any h ∈ H′,448

1

nl

nl∑
i=1

h(xi)
2 =

1

nl

nl∑
i=1

sup
k∈[n]

[
Ãkqj(xi)

]2
≈
∫
X

sup
k∈[n]

[
Ãkqj(x)

]2
dρ(x) ≤ ∥qj∥2 ≤ c2X .

where we use ∥Ãkqj∥ ≤ ∥Ãk∥∥qj∥ and ∥Ãk∥ ≤ 1 for any k ∈ [n], and449

∥qj∥2 =

∫
X
qj(x)

2dρ(x) =

∫
X
x2
jdρ(x) = E[x2

j ] ≤ c2X . (32)

Therefore we finally obtain450

RS(FX ) ≲ 2BMcX

√
2d log(2K + 2)

nl
(33)

15



As a remark, we can present a more precise bound through McDiarmid’s inequality. consider the451

convergence452

1

nl

nl∑
i=1

sup
k∈[n]

[
Ãkqj(xi)

]2
→
∫
X

sup
k∈[n]

[
Ãkqj(x)

]2
dρ(x). (34)

With the probability of at least 1− δ,453

1

nl

nl∑
i=1

sup
k∈[n]

[
Ãkqj(xi)

]2
≤
∫
X

sup
k∈[n]

[
Ãkqj(x)

]2
dρ(x)−O

√ log 1/δ

nl

 . (35)

The details are omitted since it is not the major part of the analysis.454

Proof. We first write the excess risk decomposition:455

R(hw,θ)− R̂(ĥw,θ) = R(hw,θ)− R̂(hw,θ)︸ ︷︷ ︸
A part

+ R̂(hw,θ)− R̂(ĥw,θ)︸ ︷︷ ︸
B part

(36)

For the A part, we first apply Theorem 5.8 in [21]. With probability at least 1− δ,456

R(hw,θ)− R̂(hw,θ) ≤ RS(HX ) + 3

√
log(2/δ)

2nl
. (37)

Since the last term is of order O(
√
log(1/δ)n−1

l ), which is significantly smaller than RS(HX ), we457

rewrite the above inequality as458

R(hw,θ) ≲ R̂(hw,θ) + 2BMcX

√
2d log(2K + 2)

nl
, (38)

where we replace the Rademacher complexity with its upper bound by Lemma 2.459

For the B part, we first define the empirical operator over S = {x1, · · · ,xn},460

Lnf =
1

n

n∑
i=1

A(xi, ·)√
dn(xi)dn(·)

f(xi), dn =
1

n

n∑
i=1

A(xi, ·) (39)

and gθLn =
∑K

k=0 θkL
k
n. Then we have461

R̂(hw,θ)− R̂(ĥw,θ) ≤
∣∣∣R̂(hw,θ)− R̂(ĥw,θ)

∣∣∣
≤ 1

nl

∣∣∣∣∣
nl∑
i=1

hw,θ(xi)− ĥw,θ(xi)

∣∣∣∣∣
=

1

nl

∣∣∣∣∣
nl∑
i=1

gθLf(xi)− gθLnf(xi)

∣∣∣∣∣
≤ 1

nl

[
nl∑
i=1

(gθLf(xi)− gθLnf(xi))
2

]1/2
≈ ∥gθLf − gθLnf∥
≤ ∥gθL− gθLn∥∥f∥.

where the second inequality follows from the Lipschitz property. With Cauchy-Schwarz inequality,462

∥f∥2 =

∫
X
⟨w,x⟩dρ(x) ≤ B · Ex[∥x∥2] ≤ BdcX . (40)

According to Theorem 15 of [26], there exists a proper constant C > 0 related to A(·, ·), such that463

∥L− Ln∥ ≤ ∥L− Ln∥HS ≤ C

√
log(2/δ)

n
. (41)
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with probability at least 1− δ. Since the polynomial gθ is LM -Lipschitz, we have464

∥gθL− gθLn∥ ≤ LMC

√
log(2/δ)

n
(42)

Combining the above results, one can conclude that for any (hw,θ, ĥw,θ) ∈ HX ×HS ,465

R(hw,θ) ≲ R̂(ĥw,θ) + 2BMcX

√
2d log(2K + 2)

nl
+BCLMdcX

√
log(2/δ)

n
. (43)

with probability at least 1− δ.466
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