Supplementary Material

The following sections will provide more details of our
method, present additional experiments, and evaluate our
method using quantitive/qualitative metrics. Section A
will delineate the technical and mathematical details of our
method, including model configurations, runtime, Score
Distillation Sampling (SDS), localized deformation, and the
modified classifier free guidance score used in our self-
blending experiments. Section B will present the exper-
iments, and Section C will provide evaluations. We also
provide a comprehensive collection of various deformation
results in Figure 24.

A. Technical Details

First, we briefly justify our choice of DeepFloyd-IF XL
model as our denoiser. For our purposes, we noticed that
IF performs significantly better than the widely used latent
Diffusion models, most likely as it operates directly in the
rgb space. In addition to the denoiser, the t5 text encoder on
which IF is trained has a much more expressive embedding
space than that of CLIP. Since we aim to employ Textual
Inversion to learn a set of images through this embedding
space, the t5 encoder comes to our great advantage. We
leave more extensive comparison across various diffusion
models to future work.

For runtime, we ran all of our results using a single A40
gpu, and ran 2400 iterations with a batch size (number of
renderings per iteration) of 16. It takes approximately 1.5
hours to optimize for a single target. The time increases by
a factor of approximately 1.5 for each target that we add for
blending. However, we have observed that the deformation
converges reasonably close to the final results after 600-800
iterations, which takes about 25-30 minutes to run for a sin-
gle target. Running the localized deformation method also
increases the run-time approximately by an factor of 1.5, not
including the optional LoRA-finetuning stage, which takes
an extra 10-15 minutes to converge. The optimization time
also depends heavily on the number of faces of the source
mesh, and we can therefore only provide a rough approxi-
mation of the run-time. Most of the meshes that we used in
this paper had 10,000-30,000 faces.

For rendering, we use nvdiffrast to rasterize the mesh
from multiple viewpoints. Since our main objective is to
optimize the geometry of the source mesh (and not its tex-
ture), we simply paint the mesh with a uniformly grey (0.5,
0.5, 0.5) texture, and rasterize it to get the renderings. We
found the grey texture works reasonably well for our pur-
pose, but we leave the investigation of more sophisticated
texturing schemes up for future work. We also rasterize the
mesh in 512x512 resolution and downsample it to 64x64 us-
ing bilinear interpolation before inputing it to the diffusion
model.

Specific Overview of SDS We will go over the SDS per-
spective of diffusion in detail, and how we apply this
perspective for our purpose of deforming the Jacobians.
We first limit our scope to 2D image-to-image generation,
where, given an input image z, the objective is to optimize
some parameter # in the 2D space. Given a text condition
t, we define the loss function to be the squared L2 norm
between the noise predicted by the denoising model ¢4 and
the sampled noise € ~ N(0,1):
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where ¢ is the randomly sampled timestep from a uni-
form distribution, ¢ ~ (0, 1), € is a random noise sam-
pled from a standard normal distribution, and z¢ is the
input image noised according to timestep ¢ using the re-
parameterization trick, zy = \/ozz + /1 — e, w(t) is
a weighting function for which we will not go into details.
In simple terms, we aim to optimize some parameters so
that the (frozen) model can precisely predict the noise sam-
pled from timestep ¢. When this loss is minimized, the pa-
rameters () are optimized to represent an object that is as
close as possible to what is predicted by the denoiser to be
of highest probablity. A deeper analysis of diffusion models
and Score Distillation Sampling can be found in [24, 45, 61]

The gradient of Lp; with respect to 8, which we denote
Vo Lpisr, can be derived by,
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It is known from [45] that instead of having to backprop-
agate through the denoiser we can approximate an effective

gradient for 6, denoted as VyLgps, simply by omitting the
Oy (2,y,t)
)

gradient with respect to the denoiser, -
t

, giving us,
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In addition to SDS, we also use classifier-free guidance
with an extremely high classifier-free guidance weight of
100 to help with our 3D objective [45].

Using SDS to guide Mesh Deformation In order to op-
timize for the Jacobians J; of mesh faces instead of some
arbitrary parameter 6, we can simply replace 6 in (13) with
Ji
8zt (J i)

0J;
We denote z. to be dependent on 6 since we denote it

to encompass the span of the entire computational pipeline,
from the optimized 3x3 Jacobians to the renderings of the

Vi1, Lsps = (€4 (2, y,t) —€)



deformed mesh (this includes the operations of projecting
the 3x3 Jacobians to the 3x2 space, running the poison solve
to calculate the deformation map ¢, deforming the mesh,
rendering this deformed mesh onto the image space). In
practice, we use Pytorch’s autograd library to automatically
handle the differentiation of z(J;).
Localized Deformation We will now detail the implemen-
tation of our localized deformation experiment. This expla-
nation is specific to the DeepFloyd IF model that we use
First, we note that the UNet denoiser consists of multiple
attention layers, and each of these layer takes as input the
text encoding and the hidden states, output by the previous
layer. We then project the hidden states each as Key, Query,
and Value matrices using learned mlp layers. These matri-
ces are then concatenated with matrices similarly projected
from the text enbeddings, giving us the matrices, @, K, V.
[7, 60] Specifically, the attention map is defined as

M = Softmax (Q\[}i;)

While the activation is
¢=MV.

The attention matrix M consists of both the self- and
cross-attention map. The cross-attention map encapsulates
the correlation between the text embeddings and the various
“patches” of the image, while the self-attention map finds
the correlation across these patches. Using this observation,
we first utilize the self-attention maps to identify the regions
on the image that have high correspondence with the control
vertices, and convert this map into a 2D Region of Interest
(ROI) mask, R,,. We then extract the 3D-consistent ROI
mask R/ using our rasterization function, project it back
onto 2D, and use it to mask out the cross-attention map of
each target. Effectively, we are distilling the regions within
the image where target concepts should be expressed.

We will now delineate some of the implementation de-
tails of the localized deformation method. First, as briefly
mentioned in the method section, we aim to replicate the
effect of inverting the renderings by finetune the denois-
ing UNet of our DeepFloyd IF model by the objective pro-
posed in [48]. While dreambooth finetunes the denoiser so
that it can reproduce the input image, we do so for multi-
viewpoint mesh renderings, encouraging the model to be
capable of reconstructing the mesh renderings given a pre-
defined token. Moreover, since fine-tuning the entire UNet
as implemented in the original Dreambooth paper is pro-
hibitively expensive, we instead finetune the LoRA weights
[26] with the same training objective as described above.
We run 150 fine-tuning iterations on a batch of 16 im-
ages, and the entire operation takes approximately 15 mins.
While this finetuning process betters the quality of the lo-
calization map, we also observe that the map is reasonable

enough even without finetuning. Users who desire faster
generation time over better localization could skip this pro-
cess with minimal compromise in quality.

Additionally, we use the finetuned weights to stabilize
the localized deformation method. Notably, when a particu-
lar weight w; is extremely low (over 0.2) for a certain target,
the blended activation ¢*'*"? = w; ¢’ +w;¢’ (where i and j
each represent different target concepts) might become ex-
tremely unstable as the localized region corresponding to
the i'" concept could only receive minimal activation sig-
nals. In order to compensate for this instability, whenever
the (1 — maz(wj, w;)) < 0.2 (when one target has ex-
tremely small weight), we create an inverse boolean mask,
~ R} and apply this mask to the cross attention map of the
finetuned UNet. We then weight this masked cross atten-
tion by wiorq = 0.8, and simply add it to the cross-attention
mask of the i*h target. This operation ensures that all the
regions of the mesh receive at least a minimal amount of at-
tention required to keep the activation ¢/ stable throughout
the deformation process.

With the localization process, the entire deformation pro-
cess takes about 2 hours to complete (for a 2-way blending
of concepts).

Modified Classifier Free Guidance for Self-Blending In
this section, we will discuss how we modified the Classi-
fier Free Guidance (CFG) for our self-blending experiments
(Figure 11). In the self-blending experiment, we utilize
our blending pipeline to control the expression of a single
concept. We thus reduce the branches to two (one target
branch and one blending branch), and extract the activation
as ¢Plend = wo + (1 — w)e™, where ¢™! is the activa-
tion from the blending branch (activation from the null text
promt, ).

One caveat to this method, however, is that gb"“” could
introduce undesired bias for V.14 Lspgs, especially when
its corresponding weight, 1 — w, is high.

To tackle this problem, we slightly modify our equation
for CFG The original CFG, a method introduced by [23], is
formulated as follows:

6¢(Zt7 Y, t) = étewt + a(étewt - 6Anull)7

where €;.,+ and €,,,; are the predicted noise conditioned on
the target text prompt and null text prompt, respectively. «
is the Guidance Scale, a parameter that controls the strength
of CFG. We modify our equation into

6¢(Zt7 Y, t) =€+ a(éﬁewt - énull)a

where we simply replace €;.,; with ¢, the sampled noise.
Such modification allows our model to achieve a more
stable, unbiased control of the deformation strength, as op-
posed to the original CFG, as shown in Figure 17. Intu-
itively, we want the result to identity (no deformation) when
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Figure 15. Keyframe interpolation. We create a continuous combinatorial space of blends by running our method for a discrete number of
keyframes and interpolating their vertices to obtain the intermediate shapes in between (the ones without text below). Our correspondence-
preserving deformation enables a smooth transition between the keyframes.
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Figure 16. 3D ROI map Ablation. We show an ablation of the 3D ROI map V for our localized deformation method. (fop row) shows
the results of using just the 2D ROI maps, R, extracted from the self-attention maps of each viewpoint, as masks for the cross-attention
map. (bottom row) uses R,,,, the 3D-consistent masks extracted from the 3D ROI map Vx.
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Figure 17. Modifying the classifier-free guidance ablation. We show an ablation for the modified classifier-free guidance version of our
method for single-target self-blending deformation. Results are shown for various blending scales, ranging from 0% to 100%. The top row
is the regular classifier-free guidance and the bottom one is with our modified version. The regular classifier-free guidance creates artifacts
and does not reflect well the mixing percentage. In contrast, our self-blending scheme yields a smooth transition from the source shape to
the target deformation objective.

the weight is set to 0, which is precisely what the modi- strength is 0, where our equation gives,
fied equation achieves. As follows, the modified CFG en-

sures that the gradient Vg Lpir = 0 when the deformation €06,y 1) = € + (Ereat — Enutl)

€+ a(énull - énull)
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Figure 18. Comparison to naive interpolation. We compare our
two-way blending results (bottom) with a naive interpolation of
vertices coordinates (fop). The control weights w are 1.0, 0.7, 0.5,
0.3, 0.1 for each column.

and consequently,
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Injecting attention to this modified CFG score ensures a
more stablized control of the deformation strength by get-
ting rid of the bias introduced by €,,,;;. The modified CFG
score thereby provides guidance that aligns more closely
with the intuition of interpolating between the “identity
deformation” and “deformation conditioned on the target
prompt.”

We additionally note we can replace €;.,; with ¢, with
minimal compromise in quality because we use a signifi-
cantly high guidance scale « of 100, following the findings
of [45]. Such a high guidance scale makes €., relatively
insignificant compared to the Classifier Free Guidance term,
ensuring minimal change in quality.

B. Additional Experiments

Continuous Concept Space. Here, we explore a scenario
when our users might want to explore a continuous space of
generated concepts. While we could run our pipeline mul-
tiple times with different relative weights between targets,
this could easily become prohibitively expensive if users
want a smooth continuity (e.g., generating morphing anima-
tions). To address this challenge, we observe that our mesh-
based representation provides a dense correspondence map
between the source and the deformed shapes. Thus, the user
could generate a few sample key frame shapes using our
method and smoothly interpolated between them. We show
this experiment in Figure 15

3D ROI Ablation. We show an ablation of the 3D ROI
map V5 for our localized deformation method in Figure 16.
Due to the viewpoint consistency of our 3D ROI map, our
method can generate smooth, meaningful mixing results

that respect the specified local regions for each target. In
contrast, the results we get without using the 3D ROI map
(by directly using the 2D ROI map extracted from self-
attention maps), where we observe sharp artifacts as well
as significant loss of details for the specified targets.

Modified Classifier Free Guidance Ablation. In Fig-
ure 17, we show an ablation of our modified Classifier Free
Guidance for self-blending experiments. We notice that the
effect of this modification is particularly crucial on smaller
weights (typically from 0% to 15% of target weight) since
for the self-blending application, a low target weight im-
plies more bias from the null text prompt. Notice that the
results conditioned on smaller weights without our modi-
fied classifier free guidance are severely irregular and bi-
ased, while using the modified classifier free guidance stabi-
lizes this bias, regulating the deformation in a much stable,
smooth manner.

C. Comparisons

Since our method is the first to address the concept mixing
in mesh deformation, we create simple baselines using ex-
isting methods and compare our results to what these base-
lines can achieve in both qualitative and quantitative met-
rics.

Shape Interpolation Baseline. We consider a simple inter-
polation baseline, where we generate deformations of two
distinct targets using our single target SDS baseline, and
directly interpolate the vertex positions between the two
meshes. We then compare this naive vertex-wise interpo-
lation baseline to results generated from our BSD method
in Figure 18 We notice that the shape interpolation baseline
does not enable new features to emerge for the interpolated
shapes, while our method clearly prioritizes the emergence
of notable features of each target (notice how the legs of the
Kangaroo emerge first while the face of the Dachshund is
clearly prioritized, respective of the weights given to each
target).

Perceptual User Study. We present two perceptual user
studies to evaluate the overall quality of our results. First,
we asked 21 users to compare 5 single-target deformation
results by TextDeformer and our method and choose the one
that better depicts the input text targets, “bear,” “bulldog,”
“dachshund,” “kangaroo,” and “frog” (see Table 1). We ob-
serve that the users clearly prefer the quality of our method
over TextDeformer.

We also asked the same users to evaluate the accuracy
of the various BSD weights applied to the blending of two
targets, “Siberian Cat” and “Hippo,” by guessing the cor-
rect weights from which the 4 different results were cre-
ated. Specifically, they were asked to choose from the mix-
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Figure 19. Comparison of our method and TextDeformer. MeshUp archives higher detail deformation results with less artifacts.

Target TextDeformer MeshUp (ours)
Bear 0.048 0.952
Frog 0.095 0.905
Bulldog 0.0 1.0
Dachshund 0.0 1.0
Kangaroo 0.0 1.0

Table 1. Perceptual user study for quality comparison. We
asked 21 users to compare the quality of our method and TextDe-
former. The preference rate for each method is the portion of users
who chose the result from one method over the other. The users
have a strong preference for our method over the compared one.

ing weight pairs (0.2, 0.8), (0.4, 0.6), (0.6, 0,4), and (0.8,
0.2). Table 2 summarizes the results

We highlight the significant accuracy of the users’
guesses, suggesting that the BSD weights control the con-
cept blending in an intuitively plausible manner. The set of
renderings that we use for both evaluations can be found in

Targets: User’s Selection
Siberian Cat % / Hippo % Accuracy
Siberian Cat 80% / Hippo 20% 85.7%
Siberian Cat 60% / Hippo 40% 66.7 %
Siberian Cat 40% / Hippo 60% 85.7%
Siberian Cat 20% / Hippo 80% 90.5%

Table 2. Perceptual user study for the blending weight of our
BSD. We asked 21 users to guess the weights applied to each BSD
deformation. The percentages for each section denote the number
of users who guessed the weights correctly. In the majority of the
blending settings, the users selected the right mixing percentages.
This finding suggests that the blending weights properly reflected
the level of influence of each target objecting on the resulting de-
formed shape.

Figure 19.

Quantitative Comparison We use the same dataset to
quantitatively compare our method to TextDeformer using



CLIP R-Precision 1

Method CLIP B/14@336px CLIP B/16 CLIP B/32
TextDeformer 0.7 0.8 0.8
Ours 0.8 0.8 0.9
Table 3. Quantitative evaluation. We compare MeshUp to

TextDeformer [18] and report CLIP R-Precision [46] scores.
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Figure 20. User response for 80% Siberian cat and 20% Hippo
result.
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Figure 21. User response for 20% Siberian cat and 80% Hippo
result.
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Figure 22. User response for 60% Siberian cat and 40% Hippo
result.

CLIP R-Precision Scores. We use a source dog mesh and
warp it to the following 10 different prompts: “bear”, “bull-
dog”, “dachshund”, “desertfox”, “frog”, “hippo”, “kanga-
roo”, “pig”, “puma”, “siberian cat.” We evaluate our re-
sult using CLIP R-Precision score and show results in Table
3. Our method outperforms TextDeformer on most metrics,
despite the metric being inherently favorable to TextDe-
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Figure 23. User response for 40% Siberian cat and 60% Hippo
result.

former, since its optimization is directly supervised by CLIP
score.
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Figure 24. Gallery. We present a diverse set of 2-way MeshUp deformation results.



