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Abstract

This paper introduces a general model called CIPNN
– Continuous Indeterminate Probability Neural Network,
and this model is based on IPNN, which is used for dis-
crete latent random variables. Currently, posterior of con-
tinuous latent variables is regarded as intractable, with the
new theory proposed by IPNN this problem can be solved.
Our contributions are Four-fold. First, we derive the an-
alytical solution of the posterior calculation of continuous
latent random variables and propose a general classifica-
tion model (CIPNN). Second, we propose a general auto-
encoder called CIPAE – Continuous Indeterminate Proba-
bility Auto-Encoder, the decoder part is not a neural net-
work and uses a fully probabilistic inference model for the
first time. Third, we propose a new method to visualize the
latent random variables, we use one of N dimensional la-
tent variables as a decoder to reconstruct the input image,
which can work even for classification tasks, in this way,
we can see what each latent variable has learned. Fourth,
IPNN has shown great classification capability, CIPNN has
pushed this classification capability to infinity. Theoretical
advantages are reflected in experimental results.

Although recent breakthroughs demonstrate that neural
networks are remarkably adept at natural language pro-
cessing [29, 12, 22], image processing [15], neural net-
works are still black-box for human [7], cognitive scien-
tists and neuroscientist have argued that neural networks
are limited in their ability to represent variables and data
structures [13, 5]. Probabilistic models are mathemati-
cal descriptions of various natural and artificial phenomena
learned from data, they are useful for understanding such
phenomena, for prediction of unknowns in the future, and
for various forms of assisted or automated decision mak-
ing [21].

Deep Latent Variable Models (DLVMs) is a probabilistic
model and can refer to the use of neural networks to per-
form latent variable inference [19]. Currently, the posterior
calculation is regarded as intractable [20, 21], and the vari-
ational inference method is used for efficient approximate

posterior inference [20, 28, 24].
IPNN – Indeterminate Probability Neural Network [1]

proposed a new theory, which is used to derive the analyti-
cal solution of the posterior calculation of discrete random
variables. However, IPNN need predefine the sample space
of each discrete random variable (called ‘split shape’ in
IPNN), it is sometimes hard to define a proper sample space
for an unknown dataset. For CIPNN, the sample space of
each continuous random variable is infinite, this issue will
not exit in CIPNN.

The rest of this paper is organized as follows: In Sec. 1,
related work of VAE and IPNN is introduced. In Sec. 2,
the analytical solution of CIPNN is derived and the regu-
larization method is discussed. In Sec. 3, CIPAE is derived
and we propose a new method to visualize each latent vari-
able. In Sec. 4, we discuss the training strategy, and two
common training setups are discussed: CIPNN and CIPAE
are combined together for better evaluation of classification
and auto-encoder tasks. In Sec. 5, CIPNN and CIPAE are
evaluated and the latent variables are visualized with our
new proposed method. Finally, we put forward some future
research ideas and conclude the paper in Sec. 6. 1

1. Related Work
1.1. VAE

Modern machine learning and statistical applications re-
quire large scale inference in complex models, the inference
model are regarded as intractable and either Markov Chain
Monte Carlo (MCMC) [25] or variational Bayesian infer-
ence [18] are used as approximate solutions [28]. VAE [20]
proposes an estimator of the variational lower bound for ef-
ficient approximate inference with continuous latent vari-
ables. DARN method is generative auto-encoder capa-
ble of learning hierarchies of distributed representations
from data, and their method applies to binary latent vari-
ables [14]. In concurrent work of VAE, two later indepen-
dent papers proposed equivalent algorithms [28, 24], which
provides an additional perspective on VAE and the latter
work applies also the same reparameterization method. Two

1Source code: see supplementary materials.
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methods proposed by VAE are also used to realize our ana-
lytical solution: the reparameterization trick for making the
model differentiable and the KL divergence term for regu-
larization.

VAEs have been used for many tasks such as image
generation [23], anomaly detection [31] and de-noising
tasks [17] [6]. The drawback of auto-encoder is its strong
tendency to over-fit [27], as it is solely trained to encode
and decode with as little loss as possible regardless of how
the latent space is organized [32], VAE has been developed
as an effective solutions [27, 3], e.g. VAEs has been used in
EEG classification tasks to learn robust features [33, 2, 3, 4].

The framework of our CIPAE is almost the same as that
of VAE, the only difference is that VAE uses neural network
as the approximate solution of decoder, while CIPAE uses
probabilistic model as the analytical solution of decoder.

1.2. IPNN

Let X ∈ {x1, x2, . . . , xn} be training samples (xk is
understood as ID of random experiment – select one train
sample) and Y ∈ {y1, y2, . . . , ym} consists of m discrete
labels (or classes), P (yl|xk) = yl(k) describes the label of
sample xk. For prediction, the posterior of the label for a
given new input sample xt is formulated as PZ (yl | xt),
superscript Z stands for the medium – model outputted N-
dimensional random variables Z =

(
z1, z2, . . . , zN

)
, via

which we can infer label yl, l = 1, 2, . . . ,m.
The analytical solution of the posterior is as bellow [1]:

PZ (yl | xt) =

∫
Z

(
P (yl | Z) ·

N∏
i=1

P
(
zi | xt

))
(1)

Where,

P (yl | Z) =

∑n
k=1

(
P (yl | xk) ·

∏N
i=1P

(
zi | xk

))
∑n

k=1

∏N
i=1P (zi | xk)

(2)

2. CIPNN
2.1. Continuous Indeterminate Probability

Figure 1 shows CIPNN model architecture, the neural
network is used to output the parameter θ of some prior dis-
tribution of continuous random variable zi, i = 1, 2, . . . , N .
All the random variables together form the N-dimensional
joint sample space, marked as Z =

(
z1, z2, . . . , zN

)
, and

the whole joint sample space are fully connected with all
labels Y ∈ {y1, y2, . . . , ym} via conditional probability
P
(
yl | z1, z2, . . . , zN

)
.

For each continuous random variable zi, the indetermi-
nate probability is formulated as:

𝑝(𝑧; 𝜃𝑘
1) 𝑝(𝑧; 𝜃𝑘

2) 𝑝(𝑧; 𝜃𝑘
𝑁)…

N-dimensional 

Joint Sample Space

𝑦1 … …

𝑃(𝑦𝑙|𝑧
1, 𝑧2, … , 𝑧𝑁)

Joint Sample Point 

(𝑧1, 𝑧2, … , 𝑧𝑁)

𝑧1

𝑧2

𝑧𝑁

…

Neural 

Network

…

𝑥1 𝑥𝑛𝑥𝑘… …

Random Variable 

Sample Space

𝑦2 𝑦𝑙 𝑦𝑚

𝜃𝑘
1 𝜃𝑘

2 𝜃𝑘
𝑁

𝑧1 𝑧2 𝑧𝑁

Figure 1: CIPNN – model architecture. Where
P
(
yl | z1, z2, . . . , zN

)
is statistically calculated, not model

weights.

P
(
zi | xk

)
= p

(
z; θik

)
, i = 1, 2, . . . , N. (3)

Where z is generated from some prior distribution with
parameter θik, and p

(
z; θik

)
is also the density function of

P
(
zi | xk

)
.

Substitute P (yl|xk) = yl(k) and Eq. (3) into Eq. (1):

PZ (yl | xt)

=

∫
Z

∑n
k=1

(
yl(k)

∏N
i p

(
z; θik

))
∑n

k=1

(∏N
i p

(
z; θik

)) N∏
i

p
(
z; θit

)
= Ez∼p(z;θi

t)

∑n
k=1

(
yl(k) ·

∏N
i p

(
z; θik

))
∑n

k=1

(∏N
i p

(
z; θik

))


(4)

As the integration over Z is complicated, PZ (yl | xt)
is rewritten as expectation, we can then use Monte Carlo
method [25] to make an approximate estimation. How-
ever, a directly sampling z from distribution p

(
z; θit

)
will

make the exception not differentiable. Hence, we use the
reparameterization trick [20]: let ε ∼ p (ε) be some ran-
dom noise, and define a mapping function z = g(ε, θ), so
p
(
z; θik

)
can be rewritten as p

(
g(ε, θ); θik

)
.

Therefore, together with Monte Carlo method, the above
function can be further formulated as:

2
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PZ (yl | xt)

= Eε∼p(ε)

∑n
k=1

(
yl(k)

∏N
i p

(
g(ε, θit); θ

i
k

))
∑n

k=1

(∏N
i p

(
g(ε, θit); θ

i
k

))


≈ 1

C

C∑
c=1

∑n
k=1

(
yl(k) ·

∏N
i p

(
g(εc, θ

i
t); θ

i
k

))
∑n

k=1

(∏N
i p

(
g(εc, θit); θ

i
k

))


(5)

Where εc ∼ p (ε).
Take, for example, the univariate Gaussian case: let

P
(
zi | xk

)
= N

(
z;µi

k, σ
i
k

)
, and εc ∼ N (0, 1), the repa-

rameterization mapping function is z = µ + σε, the above
function can be rewritten as:

PZ (yl | xt)

≈ 1

C

C∑
c=1

∑n
k=1

(
yl(k) ·

∏N
i N

(
g
(
εc, θ

i
t

)
; θik
))

∑n
k=1

(∏N
i N

(
g
(
εc, θit

)
; θik
))


(6)

Where θik := (µi
k, σ

i
k), g

(
εc, θ

i
t

)
= µi

t + σi
t · εc and

εc ∼ N (0, 1).
We use cross entropy as main loss function:

L1 = −
∑m

l=1

(
yl(t) · logPZ (yl | xt)

)
(7)

2.2. Regularization

The sufficient and necessary condition of achieving
global minimum is already proved in IPNN [1], which is
also valid for continuous latent variables:

Proposition 1 For P (yl|xk) = yl(k) ∈ {0, 1} hard la-
bel case, CIPNN converges to global minimum only when
P
(
yl|z1, z2, . . . , zN

)
→ 1, for

∏N
i p

(
z; θik

)
> 0.

In other word, each N-dimensional joint sample area
(collection of adjacent joint sample points) corresponds to
an unique category. However, a category can correspond to
one or more joint sample areas.

According to above proposition, the reduction of train-
ing loss will minimize the overlap between conditional joint
distribution

∏N
i p

(
z; θik

)
of each category. For Gaussian

distribution, the variance will be close to zero, and the
conditional joint distribution of each category will be far
away from each other. This will cause over-fitting prob-
lem [32, 27], we have follow up assumption to avoid over-
fitting problem:

Assumption 1 For Gaussian distribution, if the distance
between the centers of any two adjacent categories’ con-
ditional joint distribution

∏N
i N

(
z;µi

k, σ
i
k

)
is equal to e.g.

6σ, then the over-fitting problem can be avoided.
In this way, the 6σ distance will lead to a very small over-

lap between each category, but the conditional joint distri-
bution of each category will be closely connected with each
other. Although the N-dimensional joint sample space is in-
finite, the effective conditional joint distributions are in a
very small space.

VAE uses an additional regularization loss to avoid the
over-fitting problem [20, 21], and there are follow up works
which has proposed to strengthen this regularization term,
such as β-VAE [16, 8], β-TCVAE [9], etc. In order to re-
alize the above assumption, we have a modification of VAE
regularization loss:

L2 =

N∑
i=1

(
DKL

(
N
(
z;µi

k, σ
i
k

)
|| N

(
z; γ · µi

k, 1
)))

=
1

2

N∑
i=1

(
((1− γ) · µi

k)
2 + (σi

k)
2 − log((σi

k)
2)− 1

)
(8)

Where N is the dimensionality of Z, regularization fac-
tor γ ∈ [0, 1] is a hyperparameter and is used to con-
strain the conditional joint distribution of each category to
be closely connected with each other, impact analysis of
regularization factor γ see Figure 8.

The overall loss is:

L = L1 + L2 (9)

3. CIPAE
For image auto-encoder task, we firstly transform the

pixel value to [0, 1] (Bernoulli distribution), and let Y j ∈
{yj1, y

j
2}Jj=1, where J is the number of all pixels of one im-

age. P (yj1|xk) = pj1(k) ∈ [0, 1], which describes the pixel
value of image xk at jth position, and P (yj2|xk) = pj2(k) =

1− pj1(k).
Substitute P (yjl |xk) into Eq. (6), we will get

PZ
(
yjl | xt

)
, l = 1, 2. In this way, the reconstructed im-

age is formulated as:

reconstructed image :=
{
PZ

(
yj1 | xt

)}J

j=1
(10)

In addition, with one (or part) of N dimensional latent
variables we can also reconstruct the input image, the re-
constructed image is:2

2The details of applying the superscript zi are discussed in IPNN [1].
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reconstructed feature :=
{
P zi

(
yj1 | xt

)}J

j=1
(11)

Where i = 1, 2, . . . , N . In this way, we can see what
each latent variable has learned.

Substitute Eq. (10) into Eq. (7), we can get a binary cross
entropy loss:

L1 = − 1

J

J∑
j=1

2∑
l=1

(
pjl (t) · logP

Z
(
yjl | xt

))
(12)

And substitute the above loss into Eq. (9), we get the
overall loss for auto-encoder training.

4. Training

In this section, we will focus on the training strategy of
gaussian distribution.

4.1. Training Strategy

Given an input sample xt from a mini batch, with a minor
modification of Eq. (6):

PZ (yl | xt) ≈
1

C

C∑
c=1

(
max(H(εc), ϵ)

max(G(εc), ϵ)

)
(13)

Where stable number ϵ on the denominator is to avoid
dividing zero, ϵ on the numerator is to have an initial value
of 1. Besides,

H(εc) =

t1∑
k=t0

(
yl(k)

N∏
i

N
(
µi
t + σi

t · εc;µi
k, σ

i
k

))
(14)

G(εc) =

t1∑
k=t0

(
N∏
i

N
(
µi
t + σi

t · εc;µi
k, σ

i
k

))
(15)

Where t0 = max(0, t1 − T ), t1 is the number of input
samples, εc ∼ N (0, 1). Hyperparameter T is for forget-
ting use, i.e., PZ (yl | xt) are calculated from the recent T
samples. The detailed algorithm implementation is shown
in Algorithm (1).

4.2. Training Setups

By comparing CIPNN and CIPAE, we can see that they
can share the same neural network for a training task. As
shown in Figure 2, the latent variables of a classification
task can be visualized with CIPAE, and we can also use
CIPNN to evaluate the performance of an auto-encoder task.

Algorithm 1 CIPNN or CIPAE training
Input: A sample xt from mini-batch
Parameter: Latent variables dimension N , forget number
T , Monte Carlo number C, regularization factor γ, stable
number ϵ, learning rate η.
Output: PZ (yl | xt)

1: Declare Θ as a recorder.
2: for k = 1, 2, . . . Until Convergence do
3: Use Θ to record: yl, µi

k, σ
i
k, i = 1, 2, . . . , N .

4: if len(Θ) > T then
5: Forget: Reserve recent T elements from Θ
6: end if
7: Compute posterior with Eq. (13): PZ (yl | xt)
8: Compute loss with Eq. (9): L(W )
9: Update model parameter: W = W − η∇L(W )

10: end for
11: return model and the posterior

CIPNN

CIPAE

𝑍

𝑃𝑍(𝑦1
𝑗
|𝑥𝑡)

𝑗=1

𝐽

𝑥𝑡

𝑃𝑍(𝑦𝑙|𝑥𝑡)

Training

Feature 
Visualization

(a) Classification tasks

CIPAE

CIPNN

𝑍

𝑃𝑍(𝑦1
𝑗
|𝑥𝑡)

𝑗=1

𝐽
𝑥𝑡

𝑃𝑍(𝑦𝑙|𝑥𝑡)

Training

Generative
Evaluation

(b) Auto-encoder tasks

Figure 2: Training setups for classification and auto-
encoder tasks. (a) CIPNN is used to do supervised classifi-
cation tasks and CIPAE is used to reconstruct the input im-
age to see what each latent variable has learned. (b) CIPAE
is used to do auto-encoder task and CIPNN is used to eval-
uate its performance.

5. Experiments and Results
To evaluate the effectiveness of the proposed approach,

we conducted experiments on MNIST [11], Fashion-
MNIST [30] and Dogs-vs.-Cats-Redux [10] datasets.

Besides, VAE validated that Monte Carlo number C can
be set to 1 as long as the batch size is high enough (e.g.
100) [20], we will set batch size to 64, Monte Carlo number
C = 2 and forget number T = 3000 for all the experiments
in this paper.

5.1. Results of Classification Tasks

In this section, we use train setup in Figure 2a to perform
different classification tasks in order to reconstruct the latent
variable to see what they have learned.

The results from the work [1] show that IPNN prefers
to put number 1,4,7,9 into one cluster and the rest into an-
other cluster. We also get a similar interesting results in

4
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CIPNN, as shown in Figure 3, with stable number ϵ = 1, the
reconstructed image with 1-D latent space shows a strong
tendency to sort the categories into a certain order and the
number 1,4,7,9 stays together in the latent space. Similar
results are also found with 2-D latent space, see Figure 5.
Unfortunately, we currently do not know how to evaluate
this sort tendency numerically.

-20.0 -10.0 0.0 10.0 20.0
z1

1
2
3
4
5
6
7
8
9

10

tra
in

 ro
un

d

Figure 3: Reconstructed image with 1-D latent space for
classification of MNIST: test accuracy is 93.3± 0.5%, γ =
0.95, ϵ = 1. The training is repeated for 10 rounds with
different random seeds.

With the visualization method proposed in Eq. (11), we
can see what each latent variable has learned in the 10-D
latent space. As shown in Figure 4, each latent variable
focuses on mainly one or two different categories.

-6.0 -3.0 0.0 3.0 6.0
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nt
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Figure 4: Classification results of 10-D latent space: test ac-
curacy is 97.1%, γ = 0.8, ϵ ≈ 0. Images are reconstructed
with one latent variable zi, i = 1, 2, . . . , 10, see Eq. (11).

As shown in Figure 5(a,d,g), with a proper regularization
factor γ, the test dataset is mapped to a relative small la-
tent space, and the over-fitting problem is avoided. Besides,
in Figure 5(b,e,h) each joint sample area correspond to one
unique category, this is consistent with our Proposition 1.
In Figure 5(c,f,i), the reconstructed image follows the con-
ditional joint distribution P

(
yl | z1, z2

)
, l = 0, 2, . . . , 9.

5.2. Results of Auto-Encoder Tasks

In this section, we will make a comparison with our
CIPAE and VAE [20] model using train setup in Figure 2b,
for VAE model, we replace CIPAE part with VAE, in order

to be able evaluate it with CIPNN model. Besides, the regu-
larization loss of VAE is switched to our proposed loss, see
Eq. (8). As shown in Figure 6, the results of auto-encoder
tasks between CIPAE and VAE are similar, this result fur-
ther verifies that CIPAE is the analytical solution.

6. Conclusion

General neural networks, such as FCN, Resnet [15],
Transformer [29], can be understood as a complex mapping
function f : X → Y [26], but they are black-box for hu-
man [7]. Our proposed model can be understood as two
part: f : X → Z and P (Y | Z) : Z → Y , the first part is
still black box for us, but the latter part is not unknown any-
more. Such kind of framework may have two advantages:
the first part can be used to detect the attributes of datasets
and summarize the common part of different categories, as
shown in Figure 3; the latter part is a probabilistic model,
which may be used to build a large Bayesian network for
complex reasoning tasks.

Besides, our proposed framework is quite flexible, e.g.
from X to Z, we can use multiple neural networks with
different structures to extract specific attributes as differ-
ent random variables zi, and these random variables will
be combined in the statistical phase.

Although our proposed model is derived from indeter-
minate probability theory, we can see Determinate from the
expectation form in Eq. (4). Finally, we’d like to finish our
paper with one sentence: The world is determined with all
Indeterminate.

A. Visualization

Figure 7 shows classification results of 20-D latent space
on Dogs-vs.-Cats-Redux dataset, we can see that each latent
variable focuses on both two different categories.

Impact analysis of regularization factor γ is discussed
in Figure 8.
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Figure 5: Classification Results of 2-D latent space on MNIST, Fashion-MNIST and Dogs-vs.-Cats-Redux: test accuracy is
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[5] Léon Bottou. From machine learning to machine reasoning.

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#4297

ICCV
#4297

ICCV 2023 Submission #4297. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

20 10 0 10 20
z1

20

15

10

5

0

5

10

15

20

z2

0

1

2 3

4

5

6 7

8

9

(a) CIPAE model

20 10 0 10 20
z1

20

15

10

5

0

5

10

15

20

z2

0

1

2

3 45

6

7

89

(b) VAE model

Figure 6: Auto-encoder results of 2-D latent space eval-
uated with CIPNN model on MNIST: test accuracy is
70.1% for CIPAE and 67.4% for VAE, γ = 0.98, ϵ ≈
0. Conditional probability distribution of each category
P
(
yl | z1, z2

)
, l = 0, 2, . . . , 9. Colors represent probabil-

ity value: from 1-dark to 0-light;
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Figure 7: Classification results of 20-D latent space
on Dogs-vs.-Cats-Redux: test accuracy is 95.2%, γ =
0.999, ϵ ≈ 0. Images are reconstructed with one latent vari-
able zi, i = 1, 2, . . . , 20, see Eq. (11).
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Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam
Cain, Helen King, Christopher Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis. Hybrid comput-
ing using a neural network with dynamic external memory.
Nature, 538:471–476, 2016. 1

[14] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blun-
dell, and Daan Wierstra. Deep autoregressive networks.
ArXiv, abs/1310.8499, 2013. 1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1, 5

[16] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-VAE: Learning basic visual con-
cepts with a constrained variational framework. In Interna-
tional Conference on Learning Representations, 2017. 3

[17] Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, and
Yoshua Bengio. Denoising criterion for variational auto-
encoding framework. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17, page
2059–2065. AAAI Press, 2017. 2

[18] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola,
and Lawrence K. Saul. An introduction to variational meth-
ods for graphical models. Mach. Learn., 37(2):183–233, nov
1999. 1

[19] Yoon Kim, Sam Wiseman, and Alexander M. Rush. A tuto-
rial on deep latent variable models of natural language, 2018.
1

[20] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114, 2014. 1, 2, 3, 4, 5

[21] Diederik P. Kingma and Max Welling. 2019. 1, 3
[22] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-

roll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan
Lowe. Training language models to follow instructions with
human feedback, 2022. 1
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