
A Limitations373

Indeterminate Probability Theory. As we summarized in Section 4.5, we do not find any ex-374

ceptions for our proposed three conditional mutual independency assumptions, see Assumption 2375

Assumption 3 and Assumption 4. And our proposed Equation (12) is derived from these assumptions,376

in our opinion, this equation can be applied to any general random experiment.377

IPNN. IPNN is one neural network framework based on indeterminate probability theory, it has378

three limitations: (1) The split shape need to be predefined, a proper sample space for an unknown379

dataset can only be found with try and error. The latent variables are continuous in CIPNN [10],380

therefore this issue does not exist in CIPNN. (2) It sometimes converges to local minimum, but we381

can avoid this problem with a proper model weights initialization, as discussed in Appendix D. (3)382

As joint sample space increases exponentially, the memory consumption and computation time also383

increase accordingly. This issue only exist during training, and can be avoided through monte carlo384

method for prediction task, as discussed in CIPNN [10], this paper will not further discuss it.385

B An Intuitive Explanation386

Since our proposed indeterminate probability theory is quite new, we will explain this idea by387

comparing it with classical probability theory, see below table:388

Table 5: An intuitive comparison between classical probability theory and our proposed theory.

Observation
(Classical) P

(
Y = yl | Aj = aj

ij

)
=

number of event (Y =yl,A
j=a

j
ij

) occurs

number of event (Aj=a
j
ij

) occurs

Inference
(Classical) X = xn+1

P

(
Aj=a

j
ij

|X=xn+1

)
=1

−−−−−−−−−−−−−−−−→
Determinate

Aj = aj
ij

P

(
Y =yl|Aj=a

j
ij

)
−−−−−−−−−−−−→

infer
Y = yl

Observation
(Ours) P

(
Y = yl | Aj = aj

ij

)
=

sum of event (Y =yl,A
j=a

j
ij

) occurs, in decimal

sum of event (Aj=a
j
ij

) occurs, in decimal

Inference
(Ours) X = xn+1



P(Aj=a
j
1|X=xn+1)∈[0,1]

−−−−−−−−−−−−−−−−−→ Aj = aj
1

P(Y =yl|Aj=a
j
1)−−−−−−−−−−−→

P(Aj=a
j
2|X=xn+1)∈[0,1]

−−−−−−−−−−−−−−−−−→ Aj = aj
2

P(Y =yl|Aj=a
j
2)−−−−−−−−−−−→

...−→ Aj = . . .
...−→

P

(
Aj=a

j
Mj

|X=xn+1

)
∈[0,1]

−−−−−−−−−−−−−−−−−−−→
Indeterminate

Aj = aj
Mj

P

(
Y =yl|Aj=a

j
Mj

)
−−−−−−−−−−−−−→

infer


Y = yl

Note: Replacing Aj with joint random variable (A1, A2, . . . , AN ) is also valid for above explanation.

In other word, for classical probability theory, perform a random experiment X = xk, the event state389

is Determinate (happened or not happened), the probability is calculated by counting the number of390

occurrences, we define this process here as observation phase. For inference, perform a new random391

experiment X = xn+1, the state of Aj = ajij is Determinate again, so condition on X = xn+1 is392

equivalent to condition on Aj = ajij , that may be the reason why condition on X = xn+1 is not393

discussed explicitly in the past.394

However, for our proposed indeterminate probability theory, perform a random experiment X = xk,395

the event state is Indeterminate (understood as partly occurs), the probability is calculated by396

summing the decimal value of occurrences in observation phase. For inference, perform a new397

random experiment X = xn+1, the state of Aj = ajij is Indeterminate again, each case contributes398

the inference of Y = yl, so the inference shall be the summation of all cases. Therefore, condition399

on X = xn+1 is now different with condition on Aj = ajij , we need to explicitly formulate it, see400

Equation (12).401
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Once again, our proposed indeterminate probability theory does not have any conflict with classical402

probability theory, the observation and inference phase of classical probability theory is one special403

case to our theory.404

C Global Minimum Analysis405

Proof of Proposition 1. Equation (10) can be rewritten as:406

PA (yl | xt) =
∑
A

(
pA ·

∏N
j=1 α

j
ij
(t)
)

(21)

Where,407

pA = P
(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
(22)

Theoretically, for P (yl|xk) = yl(k) ∈ {0, 1} hard label case, model converges to global minimum408

when the train and test loss is zero [33], and for the ground truth yl(t) = 1, with Equation (18) we409

have:410

∑
A

(
pA ·

∏N
j=1 α

j
ij
(t)
)
= 1 (23)

Subtract the above equation from Equation (4) gives:411

∑
A

(1− pA) ·
N∏
j=1

αj
ij
(t)

 = 0 (24)

Because
∏N

j=1 α
j
ij
(t) ∈ [0, 1] and (1− pA) ∈ [0, 1], The above equation is then equivalent to:412

pA = 1, for
N∏
j=1

αj
ij
(t) > 0, ij = 1, 2, . . . ,Mj . (25)

413

D Local Minimum Analysis414

Equation (21) can be further rewritten as:415

PA (yl | xt) =

Mτ∑
iτ=1

(
ατ
iτ (t) ·

∑
Λ

(
pA ·

∏N
j=1,j ̸=τ α

j
ij
(t)
))

=
∑Mτ

iτ=1

(
ατ
iτ
(t) · piτ

)
(26)

Where Λ = (A1, . . . , Aj , . . . , AN ) ⊂ A, j ̸= τ and,416

piτ =
∑
Λ

(
pA ·

∏N
j=1,j ̸=τ α

j
ij
(t)
)

(27)

Substitute Equation (26) into Equation (18), and for the ground truth yl(t) = 1 the loss function can417

be written as:418

L = − log(
∑Mτ

iτ=1

(
ατ
iτ
(t) · piτ

)
) (28)

14



Let the model output before softmax function be zij , we have:419

ατ
iτ (t) =

eziτ∑Mj

ij=1 e
zij

(29)

In order to simplify the calculation, we assume pA defined in Equation (22) is constant during420

back-propagation. so the gradient is:421

∂L
∂ziτ

= −
ατ
iτ
(t) ·

∑Mj

ij=1,ij ̸=iτ

(
ezij · (piτ − pij )

)∑Mj

ij=1

(
ezij · pij

) (30)

Therefore, we have two kind of situations that the algorithm will go to local minimum:422

∂L
∂ziτ

=


→ 0, if

∣∣ziτ − zij
∣∣→ ∞

0, if piτ = pij
Nonezero, o.w.

(31)

Where iτ = 1, 2, . . . ,Mτ .423

The first local minimum usually happens when Corollary 1 is not satisfied, that is, the number of joint424

sample points is smaller than the classification classes, the results are shown in Figure 4a.425

If the model weights are initialized to a very small value, the second local minimum may happen426

at the beginning of training. In such case, all the model output values are also small which will427

result in αj
1(t) ≈ αj

2(t) ≈ · · · ≈ αj
Mj

(t), and it will further lead to all the piτ be similar among each428

other. Therefore, if the model loss reduces slowly at the beginning of training, the model weights is429

suggested to be initialized to an relative high value. But the model weights shall not be set to too430

high values, otherwise it will lead to first local minimum.431

As shown in Figure 5, if model weights are initialized to uniform distribution of
[
−10−6, 10−6

]
, its432

convergence speed is slower than the model weights initialized to uniform distribution of [−0.3, 0.3].433

Besides, model weights initialized to uniform distribution of [−3, 3] get almost stuck at local minimum434

and cannot go to global minimum. This result is consistent with our analysis.435
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Figure 5: Model weights initialization impact analysis on MNIST. Split shape is {2, 10}, batch size
is 64, forget number T = 5, ϵ = 10−6.

D.1 Avoiding Local Minimum with Multi-degree Classification436

Another experiment is designed by us to check the performance of multi-degree classification (see437

Section 5.2): classification of binary vector into decimal value. The binary vector is the model inputs438
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from ‘000000000000’ to ‘111111111111’, which are labeled from 0 to 4095. The split shape is set439

to {M1 = 2,M2 = 2, . . . ,M12 = 2}, which is exactly able of making a full classification. Besides,440

model weights are initialized as uniform distribution of [−0.3, 0.3], as discussed in Appendix D.441

The result is shown in Figure 6, IPNN without multi degree classification goes to local minimum442

with only 69.5% train accuracy. We have only additionally labeled for 12 sub-joint spaces, and IPNN443

goes to global minimum with 100% train accuracy.444
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Figure 6: Loss of multi-degree classification of ‘binary to decimal’ on train dataset. Input samples are
additionally labeled with Y i ∈ {0, 1} for ith bit is 0 or 1, respectively. Y i corresponds to sub-joint
sample space Λi with split shape {Mi = 2}, i = 1, 2, . . . 12. Batch size is 4096, forget number
T = 5, ϵ = 10−6.

Therefore, with only
∑12

1 2 = 24 output nodes, IPNN can classify 4096 categories. Theoretically,445

if model with 100 output nodes are split into 10 equal parts, it can classify 10 billion categories.446

Hence, compared with the classification model with only one ‘softmax’ function, IPNN has no447

computationally expensive problems (see Section 1).448

E Mutual Independency449

If we want the random variables A1, A2, . . . , AN partly or fully mutually independent, we can use450

their mutual information as loss function:451

L∗ = KL

P (A1, A2, . . . , AN ),

N∏
j=1

P (Aj)

 =
∑
A

(
P
(
a1i1 , . . . , a

N
iN

)
· log

P
(
a1i1 , . . . , a

N
iN

)∏N
j=1 P (ajij )

)
(32)

=
∑
A


∑n

k=1

(∏N
j=1α

j
ij
(k)
)

n
· log


∑n

k=1

(∏N
j=1α

j
ij
(k)

)
n∏N

j=1

∑n
k=1 α

j
ij
(k)

n




F Properties of Indeterminate Probability Theory452

The indeterminate probability theory (see Equation (12)) may have the following properties, some453

have not been proved mathematically due to our limited knowledge.454

Proposition 2. IF given A, B and Y is independent, we have P (Y | A,B) = P (Y | A), THEN:455

P (A,B) (Y | X = xn+1) = PA (Y | X = xn+1) (33)

This property is understood as: Suppose given A, B and Y is independent, so B does not contribute456

for the inference.457
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Proof.
P (A,B) (Y | X = xn+1)

=
∑
A,B

(P (Y | A,B) · P (A,B | X = xn+1))

=
∑
A,B

(P (Y | A) · P (A | X = xn+1) · P (B | X = xn+1))

=
∑
A

(P (Y | A) · P (A | X = xn+1)) ·
∑
B

P (B | X = xn+1)

=
∑
A

(P (Y | A) · P (A | X = xn+1))

= PA (Y | X = xn+1)

(34)

458

Hypothesis 1. Let Y, V be any two different random variables, Similarly, according to Assumption 2,459

we have P (Y, V | X = xn+1) = P (Y | X = xn+1) · P (V | X = xn+1). Our hypothesis is:460

PA (Y, V | X = xn+1) = PA (Y | X = xn+1) · PA (V | X = xn+1) (35)

This property is understood as: Given X , Y and V is independent, so the inference outcome is also461

independent.462

Hypothesis 2. Let P (A | X = xn+1) ∈ [0, 1) and463

P
(
Y 0 = yl | X = xn+1

)
= PA (Y = yl | X = xn+1)

P
(
Y 1 = yl | X = xn+1

)
= PY 0

(Y = yl | X = xn+1)

P
(
Y 2 = yl | X = xn+1

)
= PY 1

(Y = yl | X = xn+1)

. . .

(36)

Our hypothesis is:464

PY ∞
(Y = yl | X = xn+1) =

1

m
, l = 1, 2, . . . ,m. (37)

This property is understood as: The inference accuracy will become poor as the information is465

transmitted one after another (from Y i−1 to Y i).466

Hypothesis 3. Let P (Y = yl | X = xn+1) ∈ {0, 1} and P (A | X = xn+1) ∈ [0, 1). Our hypothe-467

sis is:468

max
l=1,2,...,m

P (A,A) (Y = yl | X = xn+1) > max
l=1,2,...,m

P (A) (Y = yl | X = xn+1) (38)

This property is understood as: The inference tendency will get more stronger with more same469

information (A,A).470

G Symbols471

Table 6: Reading Symbols

Symbol Meaning

xk input sample, k = 1, 2, . . . , n
yl output label, l = 1, 2, . . . ,m
Aj random variable, j = 1, 2, . . . , N
aj
ij

event of Aj , ij = 1, 2, . . . ,Mj

A joint sample space
Λ sub-joint sample space
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