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A Limitations

Indeterminate Probability Theory. As we summarized in Section £.5] we do not find any ex-
ceptions for our proposed three conditional mutual independency assumptions, see Assumption 2]
Assumption [3]and Assumption[d] And our proposed Equation (I2) is derived from these assumptions,
in our opinion, this equation can be applied to any general random experiment.

IPNN. IPNN is one neural network framework based on indeterminate probability theory, it has
three limitations: (1) The split shape need to be predefined, a proper sample space for an unknown
dataset can only be found with try and error. The latent variables are continuous in CIPNN [10],
therefore this issue does not exist in CIPNN. (2) It sometimes converges to local minimum, but we
can avoid this problem with a proper model weights initialization, as discussed in Appendix [D} (3)
As joint sample space increases exponentially, the memory consumption and computation time also
increase accordingly. This issue only exist during training, and can be avoided through monte carlo
method for prediction task, as discussed in CIPNN [10], this paper will not further discuss it.

B An Intuitive Explanation

Since our proposed indeterminate probability theory is quite new, we will explain this idea by
comparing it with classical probability theory, see below table:

Table 5: An intuitive comparison between classical probability theory and our proposed theory.

1 . . number of event (Y = ,Aj =a’ ) oceurs
Observgtlon P(y=y|d=a)= ( vAT: i)
(Classwal) Y3 number of event (AJ :ag ) occurs
J
P(Aj:ai_ |X:zn+1):1 P(Y:ylmﬂ':a-?_)
Inferepce X = 2nis 2 AT — gl 9y = "
(Classmal) Determinate Kl infer
1 . . sum of event (Y = ,Aj: J occurs, in decimal
Observation p (Y g | A= a'7,) _ ( yl‘ . ai,)
(Ours) B sum of event (AJ :af ) occurs, in decimal
J
P(AV=a]|X=x,11)€[0,1] ; ; P(y=y;|Ai=a])
Al =ay _
P(AV=a)|X=x,11)€[0,1] p ; P(Y=y;|AT=a})
Inference Al = ay v —
(Ours) = Inl = Al =, = =
P (A9 =a,, 1 X=e11 ) €0, o p(venlai=d, )
J AT — g J
= aypy,
Indeterminate J infer
Note: Replacing A7 with joint random variable (A', A%, ..., A™) is also valid for above explanation.

In other word, for classical probability theory, perform a random experiment X = xy, the event state
is Determinate (happened or not happened), the probability is calculated by counting the number of
occurrences, we define this process here as observation phase. For inference, perform a new random

experiment X = x,,, 1, the state of A7 = afj is Determinate again, so condition on X = x,,41 is

equivalent to condition on A7 = a{j , that may be the reason why condition on X = x,,41 is not
discussed explicitly in the past.

However, for our proposed indeterminate probability theory, perform a random experiment X = x,
the event state is Indeterminate (understood as partly occurs), the probability is calculated by
summing the decimal value of occurrences in observation phase. For inference, perform a new

random experiment X = x,, 1, the state of A7 = agj is Indeterminate again, each case contributes
the inference of Y = y;, so the inference shall be the summation of all cases. Therefore, condition
on X = x,4; is now different with condition on Al = ! , we need to explicitly formulate it, see

Equation (T2). ’

13



402
403
404

405

406

407

409
410

411

412

413

414

415

416

417
418

Once again, our proposed indeterminate probability theory does not have any conflict with classical
probability theory, the observation and inference phase of classical probability theory is one special
case to our theory.

C Global Minimum Analysis

Proof of Proposition[l] Equation (I0) can be rewritten as:

N
Ph ([ w) =Y (pa- T 0l () @D
A
Where,
pAZP(yl|a%1,a?2,...,af\fv) (22)

Theoretically, for P(y;|xx) = yi(k) € {0, 1} hard label case, model converges to global minimum
when the train and test loss is zero [33]], and for the ground truth y;(¢) = 1, with Equation we
have:

> (pa- L 0l (1) =1 23)

A

Subtract the above equation from Equation (4) gives:

N
Sl =pa)- el )] =0 (24)
A j=1
Because Hj\;l agj (t) € 10,1] and (1 — pa) € [0, 1], The above equation is then equivalent to:

N
pa =1, for [Jed (t)>0,i; =1,2,..., M. (25)

Jj=1

D Local Minimum Analysis

Equation (ZT)) can be further rewritten as:

M,
PA (g | ) = Z (0‘; (t)- Z (pA : H;’V:Lj;é'r Oé{7 (ﬂ)) = Z¥;1 (O‘iT, (t) 'pif) (26)

A

ir=1

Where A = (A',... A,...,AN) C A,j # 7 and,
N j
P = (pa - TS e o, () @7
A

Substitute Equation into Equation , and for the ground truth y;(¢) = 1 the loss function can
be written as:

£=—log(M, (ol (t)-pi)) (28)
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Let the model output before softmax function be Zi;» WE have:

T esir
af (t) = 21\4]762 (29)
ij=1¢"

In order to simplify the calculation, we assume p, defined in Equation (22) is constant during
back-propagation. so the gradient is:

oL aj (t)- Zfil,iﬁéi, (€7 - (pi, —pi,))

=— (30)
. M;  ( z;.
9z, ZijJ:1 (6 J 'Pij)
Therefore, we have two kind of situations that the algorithm will go to local minimum:
-0 if|z' —za’—>oo
8£ ) T i
— =<0, it pi, = pi; (€29
321-7

Nonezero, o.w.

Where v, = 1,2,..., M.

The first local minimum usually happens when Corollary[Tis not satisfied, that is, the number of joint
sample points is smaller than the classification classes, the results are shown in Figure [da]

If the model weights are initialized to a very small value, the second local minimum may happen
at the beginning of training. In such case, all the model output values are also small which will
result in o) () ~ o (t) = - ~ O‘?wj (t), and it will further lead to all the p;_ be similar among each
other. Therefore, if the model loss reduces slowly at the beginning of training, the model weights is
suggested to be initialized to an relative high value. But the model weights shall not be set to too
high values, otherwise it will lead to first local minimum.

As shown in Figure if model weights are initialized to uniform distribution of [~1075,107°], its
convergence speed is slower than the model weights initialized to uniform distribution of [—0.3, 0.3].
Besides, model weights initialized to uniform distribution of [—3, 3] get almost stuck at local minimum
and cannot go to global minimum. This result is consistent with our analysis.

1.0+ s . —— default weights init of torch
L weights init as uniform distribution of [-107%, 107°]
2.0 —— weights init as uniform distribution of [-0.3,0.3]
) —— weights init as uniform distribution of [-3,3]
© 0.8 2
3 ke
=
© =4 4
g £
= e
T 0.6 =
= E]
2 ® 1.0
® 3
B 0.4 g
g g
9 . . ©0.51
2 —— default weights init of torch
weights init as uniform distribution of [-107°, 10-¢]
0.2 —— weights init as uniform distribution of [-0.3,0.3]
—— weights init as uniform distribution of [-3,3] 0.0
0 2000 4000 6000 8000 0 2000 4000 6000 8000
training steps training steps

Figure 5: Model weights initialization impact analysis on MNIST. Split shape is {2, 10}, batch size
is 64, forget number T' =5, ¢ = 1076,

D.1 Avoiding Local Minimum with Multi-degree Classification

Another experiment is designed by us to check the performance of multi-degree classification (see
Section[5.2)): classification of binary vector into decimal value. The binary vector is the model inputs
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from ‘000000000000’ to “111111111111°, which are labeled from O to 4095. The split shape is set
to {M; =2, My =2,..., M5 = 2}, which is exactly able of making a full classification. Besides,
model weights are initialized as uniform distribution of [—0.3,0.3], as discussed in Appendix@

The result is shown in Figure[6] IPNN without multi degree classification goes to local minimum
with only 69.5% train accuracy. We have only additionally labeled for 12 sub-joint spaces, and IPNN
goes to global minimum with 100% train accuracy.

71 —-- main loss w/o. multi-degree classification
main loss w/. multi-degree classification
61 additional multi-degree losses
5 4
wn
84
©
23f |
© \
2 \
\X
1 \‘\.‘
O 4
0 100 200 300 400 500 600

training steps

Figure 6: Loss of multi-degree classification of ‘binary to decimal’ on train dataset. Input samples are
additionally labeled with Y* € {0, 1} for it bit is 0 or 1, respectively. Y corresponds to sub-joint
sample space A with split shape {M; = 2},¢ = 1,2,...12. Batch size is 4096, forget number
T=5 e=10"°.

Therefore, with only 2122 = 24 output nodes, IPNN can classify 4096 categories. Theoretically,
if model with 100 output nodes are split into 10 equal parts, it can classify 10 billion categories.
Hence, compared with the classification model with only one ‘softmax’ function, IPNN has no
computationally expensive problems (see Section [I)).

E Mutual Independency

If we want the random variables A', A2, ..., AN partly or fully mutually independent, we can use
their mutual information as loss function:

N

. 1 42 N j B 1 Ny P(a}l,...,aﬁ])
L =KL | PAL A AN J[PA) | =) (P(al,....al)) log — 2
A Hj:lp(aj)

Jj=1 i

(32)

n N
Sior (I, () o (T, )
= d -1 n_

2 n % [ Sk oL,
J=1 n

F Properties of Indeterminate Probability Theory

The indeterminate probability theory (see Equation (I2))) may have the following properties, some
have not been proved mathematically due to our limited knowledge.

Proposition 2. IF given A, B andY is independent, we have P (Y | A,B) = P (Y | A), THEN:
PAB (V| X =2p1) =PA(Y | X = 2p41) (33)

This property is understood as: Suppose given A, B and 'Y is independent, so B does not contribute
for the inference.
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Proof.
P Y [ X =zny1)

=> (P(Y|AB) - P(AB|X =1,.1))

A,B
=) (PY|A) PA|X=2411) P(B|X=2n41))
A,B (34)
=Z( (Y\A)-P(A|X=xn+1))-ZP(B|X=xn+1)
A B
:Z( Y [A) PA[X =2p41))
A
=PAY | X =2n41)
O

Hypothesis 1. Let Y,V be any two different random variables, Similarly, according to Assumption|2]
wehave P(Y,V | X = xp11) = P(Y | X =2p41) - P(V | X = 2y11). Our hypothesis is:

PAY, V| X =2,41) =P | X =2p41) - PA(V | X = 2,41) (35)

This property is understood as: Given X, Y and Vis independent, so the inference outcome is also
independent.

Hypothesis 2. Let P(A| X = xp41) €[0,1) and
PY =y |X=0n41)=P* Y =y | X = 2n41)
PY'=y | X =app) =P (Y =y | X = 2ps1) 6
PY? =y | X =app) =P (Y =y | X =2,41)
Our hypothesis is:
PYOO(YZyl|X=xn+1)=%,l:1,27...,m. (37)

This property is understood as: The inference accuracy will become poor as the information is
transmitted one after another (from Y =1 to Y?).

Hypothesis 3. Let P(Y =y, | X = xp41) € {0,1} and P (A | X = xp41) € [0, 1). Our hypothe-

Sis is:

,_Inax pAA) Y=y |X=x,41)> ,_Inax pA) Y=y |X=2x,41) (38)

This property is understood as: The inference tendency will get more stronger with more same
information (A, A).

G Symbols

Table 6: Reading Symbols

Symbol Meaning
Tk input sample, k = 1,2,...,n
Yyl output label, I = 1,2,...,m
Al random variable, j = 1,2,..., N
azj eventof A7 i; =1,2,..., M,
A joint sample space
A sub-joint sample space
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