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ABSTRACT

There is a long history, as well as a recent explosion of interest, in statistical and
generative modeling approaches based on score functions — derivatives of the
log-likelihood of a distribution. In seminal works, Hyvärinen proposed vanilla
score matching as a way to learn distributions from data by computing an estimate
of the score function of the underlying ground truth, and established connections
between this method and established techniques like Contrastive Divergence and
Pseudolikelihood estimation. It is by now well-known that vanilla score matching
has significant difficulties learning multimodal distributions. Although there are
various ways to overcome this difficulty, the following question has remained
unanswered — is there a natural way to sample multimodal distributions using
just the vanilla score? Inspired by a long line of related experimental works, we
prove that the Langevin diffusion with early stopping, initialized at the empirical
distribution, and run on a score function estimated from data successfully generates
natural multimodal distributions (mixtures of log-concave distributions).

1 INTRODUCTION

Score matching is a fundamental approach to generative modeling which proceeds by attempting
to learn the gradient of the log-likelihood of the ground truth distribution from samples (“score
function”) Hyvärinen (2005). This is an elegant approach to learning energy-based models from
data, since it circumvents the need to compute the (potentially intractable) partition function which
arises in Maximum Likelihood Estimation (MLE). Besides the original version of the score matching
method (often referred to as vanilla score matching), many variants have been proposed and have
seen dramatic experimental success in generative modeling, especially in the visual domain (see e.g.
Song & Ermon (2019); Song et al. (2020b); Rombach et al. (2022)).

In this work, we revisit the vanilla score matching approach. It is known that learning a distribution
via vanilla score matching generally fails in the multimodal setting (Wenliang et al., 2019; Song &
Ermon, 2019; Koehler et al., 2022). However, there are also many positive aspects of modeling a
distribution with the vanilla score. To name a few:

1. Simplicity to fit: computing the best estimate to the vanilla score is easy in many situations.
For example, there is a simple closed form solution the class of models being fit is an
exponential family (Hyvärinen, 2007b), and this in turn lets us compute the best fit in a
kernel exponential family (see e.g. Sriperumbudur et al. (2017); Wenliang et al. (2019)).

2. Compatibility with energy-based models: for a distribution p(x) ∝ exp(E(x)), the vanilla
score function is ∇E(x) so it is straightforward to go between the energy and the score
function. This is related to the previous point (why exponential families are simple to
score match), and also why it is easy to implement the Langevin chain for sampling an
energy-based model.

3. Statistical inference: in cases where vanilla score matching does work well, it comes with
attractive statistical features like

√
n-consistency, asymptotic normality, relative efficiency
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guarantees compared to the MLE, etc. — see e.g. Barp et al. (2019); Forbes & Lauritzen
(2015); Koehler et al. (2022); Song et al. (2020a).

In addition, score matching is also closely related to other celebrated methods for fitting distributions
which have been successfully used for a long time in statistics and machine learning — pseudo-
likelihood estimation (Besag, 1975) and contrastive divergence training (Hinton, 2002). (See e.g.
Hyvärinen (2007a); Koehler et al. (2022).)

For these reasons, we would like to better understand the apparent failure of score matching in the
multimodal setting. In this work, we study score matching in the context of the most canonical family
of multimodal distributions — mixtures of log-concave distributions. (As a reminder, any distribution
can be approximated by a sufficiently large mixture, see e.g. Wasserman (2006).) While vanilla
score matching itself does not correctly estimate these distributions, we show that the trick of using
“data-based initialization” when sampling, which is well-known in the context of CD/MLE training
of energy based models (see e.g. Hinton (2012); Xie et al. (2016) and further references below),
provably corrects the bias of any model which accurately score matches the ground truth distribution.

1.1 OUR RESULTS

We now state our results in full detail. We are interested in the question of generative modeling using
the vanilla score function. Generally speaking, there is some ground truth distribution µ, which for us
we will assume is a mixture of log-concave distributions, and we are interested in outputing a good
estimate µ̂ of it. We show that this is possible provided access to:

1. A good estimate of the score function of ∇ logµ. (In many applications, this would be
learned from data using a procedure like score matching.)

2. A small number of additional samples from µ, which are used for data-based initialization.

To make the above points precise, the following is our model assumption on µ:
Assumption 1. We assume probability distribution µ is a mixture of K log-concave components:
explicitly, µ =

∑K
i=1 piµi for some weights p1, . . . , pK s.t. pi > 0 and

∑
i pi = 1. Furthermore, we

suppose the density of each component µi is α strongly-log-concave and β-smooth with β ≥ 11 i.e.
αI ⪯ −∇2 logµi(x) ⪯ βI for all x. We define the notation p∗ = mini pi and κ = β/α ≥ 1.

Remark 1. The assumption that µi is α-strongly log-concave and β-smooth is the most standard
setting where the Langevin dynamics are guaranteed to mix rapidly (see e.g. Dalalyan (2017)).

and the following captures formally what we mean by a “good estimate” of the score function:
Definition 1. For µ a probability distribution with smooth density µ(x), an ϵscore-accurate estimate
of the score in L2(µ) is a function s such that

Ex∼µ[||s(x)−∇ logµ(x)||2] ≤ ϵ2score. (1)

As discussed in the below remark, this is the standard and appropriate assumption to make when
score functions are learned from data. There are also other settings of interest where the ground truth
score function is known exactly (e.g. µ is an explicit energy-based model which we have access to,
and we want to generate more samples from it2) in which case we can simply take ϵscore = 0.
Remark 2. Assumption (1) says that on average over a fresh sample from the distribution, s(x)
is a good estimate of the true score function ∇ logµ(x). This is the right assumption when score
functions are estimated from data, because it is generally impossible to learn the score function far
from the support of the true distribution. See the previous work e.g. Chen et al. (2023); Lee et al.
(2022a;b); Block et al. (2020) where the same distinction is discussed in more detail.

Given a class of functions which contains a good model for the true score function and has a
small Rademacher complexity compared to the number of samples, the function output by vanilla
score matching will achieve small L2 error (see proof of Theorem 1 of Koehler et al. (2022)). In

1We can always re-scale the domain so that β ≥ 1.
2For example, one use case of generative modeling is when we have the ground truth and want to accelerate

an existing sampler which is expensive to run, see e.g. Albergo et al. (2021); Lawrence & Yamauchi (2021).
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particular, this can be straightforwardly applied to parametric families of distributions like mixtures
of Gaussians. We would also generally expect this assumption to be satisfied when the distribution is
successfully learned via other learning procedures, such as MLE/contrastive divergence. (See related
simulation in Appendix I.)

We show the distribution output by Langevin dynamics on an approximate score function will be close
to the ground truth provided (1) we initialize the Langevin diffusion from the empirical distribution
of samples, and (2) we perform early stopping of the diffusion, so that it does not reach its stationary
distribution. Formally, let the Langevin Monte Carlo (LMC, a.k.a. discrete-time Langevin dynamics)
chain with initial state X0, score function s, and step size h > 0 be defined by the recursion

Xh(i+1) = Xhi + h s(Xhi) +
√
2h∆hi

where each noise variable ∆hi ∼ N(0, I) is independent of the previous ones. Our main result gives
a guarantee for samplling with LMC started from a small set of samples and run for time T :
Theorem 1. Let ϵTV ∈ (0, 1/2). Suppose µ is a mixture of strongly log-concave measures as in
Assumption 1 and s is a function which estimates the score of µ within L2 error ϵscore in the sense of
Definition 1. Let

T = Θ̃

((
exp(K)dκ

p∗ϵTV

)OK(1)
)
, h = Θ̃

(
ϵ4TV

(βκ2K exp(K))4d3T

)
.

Let Usample be a set of M i.i.d. samples from µ and νsample be the uniform distribution over Usample.

Suppose that M = Ω(p−2
∗ ϵ−4

TV K
4 log(K/ϵTV ) log(K/τ)), and that

ϵscore ≤
p
1/2
∗

√
hϵ2TV

7T
= Θ̃

(
p
1/2
∗ ϵ4TV

(βκ2K exp(K))2d3/2T 3/2

)
.

Let (Xνsample

nh )n∈N be the LMC chain with score s and step size h initialized at νsample. Then with
probability at least 1−τ over the randomness of Usample, the conditional law µ̂ = L(Xνsample

T | Usample)
satisfies

dTV (µ̂, µ) ≤ ϵTV . (2)

We now make a few comments to discuss the meaning of the result. Conclusion (2) says that we have
successfully found an ϵTV -close approximation of the ground truth distribution µ. Unpacking the
definitions, it says that with high probability over the sample set: (1) picking a uniform sample from
the training set, and (2) running the Langevin chain for time T will generate an ϵTV -approximate
sample from the distribution µ. Note in particular that we can draw as many samples as we like from
the distribution without needing new training data. The fact that this is conditional on the dataset is a
key distinction: the marginal law of any element of the training set would be µ, but its conditional
law is a delta-distribution at that training sample, and the conditional law is what is relevant for
generative modeling (being able to draw new samples from the right distribution). See also Figure 1
for a simulation which helps illustrate this distinction.
Remark 3. Provided the number of components in the mixture is O(1), i.e. upper bounded by a
constant, the dependence on all other parameters is polynomial or logarithmic. It is possible to
remove the dependence on the minimum weight p∗ completely — see Corollary 2 in Appendix H.
Remark 4. It turns out Theorem 1 is a new result even in the very special case that the ground truth
is unimodal. The closest prior work is Theorem 2.1 of Lee et al. (2022a), where it was proved that the
Langevin diffusion computed using an approximate score function succeeds to approximately sample
from the correct distribution given a (polynomially-)warm start in the χ2

2-divergence. However, while
the empirical distribution of samples is a natural candidate for a warm start, in high dimensions it
will not be anywhere close to the ground truth distribution unless we have an exponentially large (in
the dimension) number of samples, due to the “curse of dimensionality”, see e.g. Wasserman (2006).

1.2 FURTHER DISCUSSION

One motivation: computing score functions at substantial noise levels can be computationally
difficult. In some cases, computing/learning the vanilla score may be a substantially easier task than
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alternatives; for example, compared to learning the score function for all noised versions of the ground
truth (as used in diffusion models like Song & Ermon (2019)). As a reminder, denoising diffusion
models are based on the observation that the score function of a noised distribution N(0, σ2I) ⋆ p
exactly corresponds to a Bayesian denoising problem: computing the posterior mean on X ∼ p given
a noisy observation Y ∼ N(x, σ2I) Vincent (2011); Block et al. (2020), via the equation

y + σ2∇ log(N(0, σ2I) ⋆ p)(y) = E[X | Y = y].

Unlike the vanilla score function this will not be closed form for most energy-based models; the
optimal denoiser might be complex when the signal is immersed in a substantive amount of noise.

For example, results in the area of computational-statistical gaps tell us that for certain values of
the noise level σ and relatively simple distributions p, approximate denoising can be average-case
computationally hard under widely-believed conjectures. For example, let p be a distribution over
matrices of the form N(rrT , ϵ2) with r a random sparse vector and ϵ > 0 small. Then the denoising
problem for this distribution will be “estimation in the sparse spiked Wigner model”. In this model,
for a certain range of noise levels σ performing optimal denoising is as hard as the (conjecturally
intractible) “Planted Clique” problem (Brennan et al., 2018); in fact, even distinguishing this model
from a pure noise model with r = 0 is computationally hard despite the fact it is statistically possible
— see the reference for details. So unless the Planted Clique conjecture is false, there is no hope
of approximately computing the score function of p ⋆ N(0, σ2) for these values of σ. On the other
hand, there is no computational obstacle to computing the score of p itself provided ϵ > 0 is small —
denoising is only tricky once the noise level becomes sufficiently large.

Related Experimental Work. As mentioned before, many experimental works have found success
generating samples, especially of images, by running the Langevin diffusion (or other Markov chain)
for a small amount of time. One aspect which varies in these works is how the diffusion is initialized.
To use the terminology of Nijkamp et al. (2020), the method we study uses an informative/data-
based initialization similar to contrastive divergence Hinton (2012); Gao et al. (2018); Xie et al.
(2016). While in CD the early stopping of the dynamics is usually motivated as a way to save
computational resources, the idea that stopping the sampler early can improve the quality of samples
is consistent with experimental findings in the literature on energy-based models. As the authors
of Nijkamp et al. (2020) say, “it is much harder to train a ConvNet potential to learn a steady-state
over realistic images. To our knowledge, long-run MCMC samples of all previous models lose the
realism of short-run samples.” One possible intuition for the benefit of early stopping, consistent
with our analysis and simulations, is that it reduces the risk of stepping into low-probability regions
where the score function may be poorly estimated. Some works have also found success using
random/uninformative initializations with appropriate tweaks (Nijkamp et al., 2019; 2020), although
they still found informative initialization to have some advantages — for example in terms of output
quality after larger numbers of MCMC steps. Finally, we recall that the success of many recent
experimental works which fit score functions with neural networks (e.g. Song & Ermon (2019); Song
et al. (2020b); Rombach et al. (2022); Ho et al. (2020)).

Related Theoretical Work. The works Block et al. (2020); Lee et al. (2022a) established results for
learning unimodal distributions (in the sense of being strongly log-concave or satisfying a log-Sobolev
inequality) via score matching, provided the score functions are estimated in an L2 sense. The work
Koehler et al. (2022) showed that the sample complexity of vanilla score matching is related to the
size of a restricted version of the log-Sobolev constant of the distribution, and in particular proved
negative results for vanilla score matching in many multimodal settings. The works Lee et al. (2022b);
Chen et al. (2023) proved that even for multimodal distributions, annealed score matching will
successfully learn the distribution provided all of the annealed score functions can be successfully
estimated in L2. In our work we only assume access to a good estimate of the vanilla score function,
but still successfully learn the ground truth distribution in a multimodal setting.

In the sampling literature, our result can be thought of establishing a type of metastability statement,
where the dynamics become trapped in local minima for moderate amounts of time — see e.g. Tzen
et al. (2018) for further background. Also in the sampling context, the works Lee et al. (2018); Ge
et al. (2018) studied a related problem, where the goal is to sample a mixture of isotropic Gaussians
given black-box access to the score function (which they do via simulated tempering). This problem
ends up to be different to the ones arising in score matching: they need exact knowledge of the true
score function (far away from the support of the distribution), but they do not have access to training
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data from the true distribution. As a consequence of the differing setup, they prove an impossibility
result (Ge et al., 2018, Theorem F.1) for a mixture of two Gaussians with covariances I and 2I (it
will not be possible to find both components), but our result proves this is not an issue in our setting.

Questions for future work. In our result, we proved the first bound for sampling with the vanilla
score, estimated from data, which succeeds in the multimodal setting, but it is an open question
if the dependence on the number of components is optimal; it seems likely that the dependence
can be improved, at least in many cases. Finally, it is interesting to ask what the largest class of
distributions our result can generalize to — with data-based initialization, multimodality itself is
no longer an obstruction to sampling with Langevin from estimated gradients, but are there other
possible obstructions?

2 TECHNICAL OVERVIEW

We first review some background and notation which is helpful for discussing the proof sketch. We
leave complete proofs of all results to the appendices.

Notation. We use standard big-Oh notation and use tildes, e.g. Õ(·), to denote inequality up to
log factors and OB(·) to denote an inequality with a constant allowed to depend on B. We let
dTV (µ, ν) = supA |µ(A)− ν(A)| be the usual total variation distance between probability measures
µ and ν defined on the same space, where the supremum ranges over measurable sets. Given a
random variable X , we write L(X) to denote its law.

Log-Sobolev inequality. We say probability distribution π satisfies a log-Sobolev inequality (LSI)
with constant CLS if for all smooth functions f , Eπ[f

2 log(f2/Eπ[f
2])] ≤ 2CLSEπ[||∇f ||2]. Due

to the Bakry-Emery criterion, if π is α-strongly log-concave then π satisfies LSI with constant
CLS = 1/α. LSI is equivalent to a statement about mixing of the Langevin dynamics — if we let πt

denote the law of the diffusion at time t then an LSI is equivalent to the inequality

DKL(πt||π) ≤ exp(−2t/CLS)DKL(π0||π)

holding for an arbitrary initial distribution π0. Here DKL(P,Q) = EP [log
dP
dQ ] is the Kullback-

Liebler divergence. See Bakry et al. (2014); Van Handel (2014) for more background.

Stochastic calculus. We will need to use stochastic calculus to compare the behavior of similar
diffusion processes — see Karatzas & Shreve (1991) for formal background. Let (Xt)t≥0 and
(Yt)t≥0 be two Ito processes defined by SDEs: dXt = s1(Xt)dt+ dBt and dYt = s2(Xt)dt+ dBt.
Let PT , QT be the laws of the paths (Xt)t∈[0,T ] and (Yt)t∈[0,T ] respectively. The following follows
by Girsanov’s theorem (see (Chen et al., 2023, Eq. (5.5) and Theorem 9))

dTV (YT , XT )
2 ≤ dTV (QT , PT )

2 ≤ 1

2
EQT

[∫ T

0

||s2(Yt)− s1(Yt)||2dt

]
In particular, this is useful to compare continuous and discrete time Langevin diffusions. If (Yt) be
the continuous Langevin diffusion with score function s, and (Xt) is a linearly interpolated version
of the discrete-time Langevin dynamics defined by dXt = s(X⌈t/h⌉h)dt+ dBt, then

dTV (YT , XT )
2 ≤ 1

2
EQT

[∫ T

0

||s(Yt)− s(Y⌈t/h⌉h)||2dt

]
(3)

2.1 PROOF SKETCH

High-level discussion. At a high level, our argument proceeds by (1) grouping the components of
the mixture into larger “well-connected” pieces, and (2) showing that the process mixes well within
each of these pieces, while preserving the correct relative weight of each piece. One of the challenges
in proving our result is that, contrary to the usual situation in the analysis of Markov chains (as in
e.g. Bakry et al. (2014); Levin & Peres (2017)), we do not want to run the Langevin diffusion until it
mixes to its stationary distributions. If we ran the process until mixing, then we would be performing
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the vanilla score matching procedure which provably fails in most multimodal settings because it
incorrectly weights the different components (Koehler et al., 2022). So what we want to do is prove
the process succeeds at some intermediate time T (See Figure 1 for a simulation illustrating this.)

To build intuition, consider the special case where all of the components in the mixture distributions
are very far from each other. In this case, one might guess that taking T to be the maximum of the
mixing times of each of the individual components will work. Provided there are enough samples in
the dataset, the initialization distribution will accurately model the relative weights of the different
clusters in the data, and running the process up to time T will approximately sample from the cluster
that the initialization is drawn from. We could hope to prove the result by arguing that the dynamics
on the mixture is close to the dynamics on one of the mixture components.

Some challenges to overcome in the analysis. This is the right intuition, but for the general case
the behavior of the dynamics is more complicated. When components are close, the score function of
the mixture distribution may not be close to the score function of either component in the region of
overlap; relatedly, particles may cross over between components. Also, the following remark shows
that natural variants of our main theorem are actually false.
Remark 5. We might think that initializing from the center of each mixture component would work
just as well as initializing from samples. This is fine if the clusters are all very far from each other,
but wrong in general. If the underlying mixture distribution is 1

2N(0, Id) +
1
2N(0, 2Id) and the

dimension d is large, then the first component will have almost all of its mass within distance O(1) of
a sphere of radius

√
d and the second component will similarly concentrate about a sphere of radius√

2d. (See Theorem 3.1.1 of Vershynin (2018).) As a consequence, the dynamics initialized at the
origin will mix within the shell of radius

√
d but take exp(Ω(d)) time to cross to the larger

√
2d shell.

(This can be proved by observing that the gap between the two spheres forms a “bottleneck” for the
dynamics, see Levin & Peres (2017).) In contrast, if we initialize from samples then approximately
half of them will lie on the outer shell and, as we prove, the dynamics mix correctly.

We now proceed to explain in more detail how we prove our result. We start with the analysis of an
idealized diffusion process, and then through several comparison arguments establish the result for
the real LMC algorithm.

Analysis of idealized diffusion. To start out, we analyze an idealized process in which:

1. The score function ∇ logµ is known exactly. (Our result is still new in this case.)
2. The dynamics is the continous-time Langevin diffusion given by the Ito process

dX̄t = ∇ logµ(X̄t) dt+
√
2 dBt.

This is the scaling limit of the discrete-time LMC chain as we take the step size h → 0,
where dBt is the differential of a Brownian motion Bt.

3. For purposes of exposition, we make the fictitious assumption that the ground truth distribu-
tion µ is supported in a ball of radius R. This will not be literally true, but for sufficiently
large R µ will be almost entirely contained within a radius R ball. (In the supplement, we
handle this rigorously using concentration, see e.g. proof of Lemma 11 of Appendix F).

Additionally, for the purpose of illustration, in this proof sketch we assume the target distance in TV
is 0.01 and consider the case where there are two α-strongly log concave and β-smooth components
µ1 and µ2, and µ = 1

2µ1 +
1
2µ2. After we complete the proof sketch for this setting, we will go

back and explain how to generalize the analysis to arbitrary mixtures, handle the error induced by
discretization, and finally make the analysis work with an L2 estimate of the true score function.

Overlap parameter. We define

δ12 := 1− dTV (µ1, µ2) =

∫
min{µ1(x), µ2(x)}dx

as a quantitative measure of how much components 1 and 2 overlap; for example, δ12 = 1 iff µ1 and
µ2 are identical. The analysis splits into cases depending on whether δ12 is large; we let δ > 0 be a
parameter which determines this split and which will be optimized at the end.
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High overlap case (Appendix C). If µ1 and µ2 has high overlap, in the sense that δ12 ≥ δ, then we
show that µ satisfies a log Sobolev inequality with constant at most O(1/(αδ)), by applying our
Theorem 2, an important technical ingredient which is discussed in more detail below. Thus for a
typical sample x from µ, the continuous Langevin diffusion (Xδx

t )t≥0 with score function ∇ logµ

initialized at x converges to µ i.e. dTV (L(X̄δx
t ), µ) ≤ ϵ for T ≥ Ω( 1

αδ log(dϵ
−1)).3

Low overlap case (Appendix F, Lemma 11). When µ1 and µ2 have small overlap i.e. δ12 ≤ δ, we
will show that for x ∼ µ, with high probability, the gradient of the log-likelihood of the mixture
distribution µ at x is close to that of one of the components µ1, µ2 (Appendix F.1). This is because,
supposing that ||x|| ≤ R, for i ∈ {1, 2} we can upper bound

||∇ logµ(x)−∇ logµi(x)|| ≤ 2βR

(
1− µi(x)

µ1(x) + µ2(x)

)
,

and low overlap implies that mini

(
1− µi(x)

µ1(x)+µ2(x)

)
is small for typical x ∼ µ.

Consider the continuous Langevin diffusion (X̄δx
t ) initialized at δx i.e. X̄0 = x. Observe that the

marginal law of X̄δx
t where x ∼ µ is exactly µ, since µ is the stationary distribution of the Langevin

diffusion. Let H > 0 be a parameter to be tuned later. The above discussion and Markov’s inequality
allows us to argue that for a typical sample x, the gradient of the log-likelihood of µ at X̄δx

nH is close
to that of either components µ1, µ2 with high probability.

Next, we perform a union bound over n ∈ {0, · · · , N − 1} and bound the drift ||∇ logµ(x) −
∇ logµi(x)|| in each small time interval [nH, (n+1)H]. By doing so, we can argue that for a typical
sample x ∼ µ, with probability at least 1−ϵ−1βRNδ12 over the randomness of the Brownian motion
driving the Langevin diffusion, the gradient of the log-likelihood at X̄δx

t for t ∈ [0, NH] is close to
that of the component distribution µi closest to the initial point x (see Proposition 26 of Appendix F).

In other words, assuming that the initial point x satisfies µ1(x) ≥ µ2(x) and letting T = NH , we
can show that with high probability,

sup
t∈[0,T ]

||∇ logµ(X̄δx
t )−∇ logµ1(X̄

δx
t )|| ≤ 1.1ϵ.

This allows us, using (3), to compare our Langevin diffusion with the one with score function ∇ logµ1

and show the output at time T is approximately a sample from µ1.

In a typical set Usample of i.i.d. samples from µ, roughly 50% of the samples x ∈ Usample satisfy
µ1(x) ≥ µ2(x) and the other 50% samples satisfy µ2(x) ≥ µ1(x), thus the Langevin dynamics
(X̄

νsample
t )t≥0 initialized at the uniform distribution νsample over Usample will be close to µ1+µ2

2 = µ
after time T provided we set H,T, ϵ, δ appropriately.

Concluding the idealized analysis. Either δ12 ≥ δ in which case the high-overlap analysis above
based on the log-Sobolev constant succeeds, or δ12 < δ in which case the low-overlap analysis
succeeds. Optimizing over δ, we find that in either case, with high probability over the set Usample of

samples from µ, for t ≥ Ω̃( (βR)3

α5/2 ) we have

dTV (L(X̄
νsample
t | Usample), µ) ≤ 0.01

as desired.

Generalizing idealized analysis to arbitrary mixtures. (Appendix F, Theorem 5) When there are
more than two components, we can generalize this analysis — the key technical difficulty, alluded to
earlier, is analyzing the overlap between different mixture components. We do this by defining, for
each δ > 0, a graph Gδ where there is an edge between i, j ∈ [K] when δij := 1−dTV (µi, µj) ≤ δ.
As long as the minimum of the weights p∗ := mini pi is not too small, each connected component C
of Gδ is associated with a probability distribution µC =

∑
i∈C piµi∑
i∈C pi

that has log Sobolev constant on
the order of OK,p−1

∗
(1/αδ).

3This follows as LSI yields exponential convergence in KL-divergence. While the KL-divergence of the
initialization δx with respect to µ is unbounded, we can bound the KL-divergence of X̄δx

h for some small h.
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Suppose for a moment that the connected components are well separated compared to the magnitude
of δ. More precisely, suppose that for i, j in different connected components and some δ > 0 we have

δij ≤ f(δ) := Θ

(
(αδ)3/2

(βR)3

)
. (4)

Then, a direct generalization of the argument for two components shows that for a typical set Usample

of i.i.d. samples from µ, the continuous Langevin diffusion (X̄
νsample
t )t≥0 initialized at the uniform

distribution over Usample converges to µ after time Tδ = (αδ)−1.

It remains to discuss how we select δ so that (4) is satisfied. We consider a decreasing sequence
1 = δ0 > δ1 > · · · > δK−1 where δr+1 = f(δr) as in Eq. (4). Let Gr := Gδr . If any two vertices
from different connected components of Gr have overlap at most δr+1, then the above argument
applies. Otherwise, Gr+1 must have one less connected component than Gr, and since G0 has at
most K connected components, GK−1 must have 1 connected component and the above argument
applies to it. Thus, in all cases, the distribution of X̄νsample

TδK−1
is close to µ in total variation distance.

Discretization analysis. (Appendix G, Lemma 14) We now move from a continuous-time to
discrete-time process. Let (Xnh)n∈N and (X̄t)t≥0 be respectively the LMC with step size h and the
continuous Langevin diffusion. Both are with score function ∇ logµ and have the same initialization.
By an explicit calculation, we can bound ||∇2 logµ(x)||OP along the trajectory of the continuous
process. This combined with the consequence of Girsanov’s theorem (3) allows us to bound the total
variation distance between the continuous (X̄t) and discretized (Xnh) processes. For appropriate
choices of step size h and time T = Nh, using triangle inequality and the bound dTV (X̄T , µ), we
conclude that the discretized process XNh is close to µ.

Sampling with an L2-approximate score function. (Appendix G) In many cases, score functions
are learned from data, so we only have access to an L2-estimate s of the score such that Eµ[||s(x)−
∇ logµ(x)||2] ≤ ϵ2score. We now describe how to make the analysis work in this setting. Using
Girsanov’s theorem, we can bound the total variation distance between the LMC (Xs,µ

nh )n∈N initialized
at µ with score estimate s and the continuous Langevin diffusion (Z̄µ

nh)n∈N with true score function
∇ logµ, thus we can bound the probability that the LMC (Xs,µ

nh )n={0,··· ,N−1} hits the bad set

Bscore := {x : ||s(x)− logµ(x)|| ≥ ϵscore,1}.

(The idea of defining a “bad set” is inspired by the analysis of Lee et al. (2022a).) Similar to the
argument for the continuous process, let Xs,νsample

nh denote the LMC with score function s and step size
h initialized at the empirical distribution νsample. Since we know that Xs,µ

nh avoids the bad set and that
L(Xs,µ

nh ) = EUsample∼µ⊗M [L(Xs,νsample

nh ))], we have by Markov’s inequality that for a typical Usample,

with high probability over the randomness of the Brownian motion, Xs,νsample

nh also avoids the bad set
Bscore for all 0 ≤ n < N. Thus, we can compare X

s,νsample

nh with the LMC with true score function
∇ logµ, and conclude that L(Xs,νsample

Nh ) is close to µ in total variation distance.

2.2 TECHNICAL INGREDIENT: LOG-SOBOLEV CONSTANT OF WELL-CONNECTED MIXTURES

The following theorem, which we prove in the appendix, is used in the above argument to bound the
log-Sobolev constant of mixture distributions where the components have significant overlap.
Theorem 2. Let I be a set, and consider probability measures {µi}i∈I , nonnegative weights (pi)i∈I

summing to one, and mixture distribution µ =
∑

i piµi. Let G be the graph on vertex set I where
there is an edge between i, j if µi, µj have high overlap i.e.

δij :=

∫
min{µi(x), µj(x)}dx ≥ δ.

Suppose G is connected and let p∗ = min pi. The mixture distribution µ =
∑

i∈I piµi has log-
Sobolev constant

CLS(µ) ≤
C|I|,p∗

δ
max

i
CLS(µi)

where C|I|,p∗ = 4|I|(1 + log(p−1
∗ ))p−1

∗ only depends on |I| and p∗.
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(a) T = 0 (b) T = 200 (c) T = ∞ & truth (orange)

Figure 1: Visualization of the distribution of the Langevin dynamics after T iterations when initialized
at the empirical distribution and run with an approximate score function estimated from data. Orange
density (rightmost figure) is the ground truth mixture of two Gaussians; the empirical distribution
(leftmost figure, T = 0) consists of 40 iid samples from the ground truth. Langevin dynamics with
step size 0.01 is run with an estimated score function, which was fit using vanilla score matching
with a one hidden-layer neural network trained on fresh samples; densities (blue) are visualized using
a Gaussian Kernel Density Estimate (KDE). Matching our theory, we see that the ground truth is
accurately estimated at time T = 200 even though it is not at T = 0 or ∞.

A version of Theorem which bounds the (weaker) Poincaré constant instead appeared before as
Theorem 1.2 of Madras & Randall (2002), but the result for the log-Sobolev constant is new to
the best of our knowledge. Compared to Chen et al. (2021), our assumption is milder than their
assumption that the chi-square divergence between any two components is bounded. (For example,
two non-isotropic Gaussians might have infinite chi-square divergence (see e.g. (Schlichting, 2019,
Section 4.3)), so in that case their result doesn’t imply a finite bound on the LSI of their mixture.)
Schlichting (2019) bounds LSI of µ = pµ1 + (1− p)µ2 when either χ2(µ1||µ2) or χ2(µ2||µ1) are
bounded; our bound applies to mixtures of more than two components.

3 SIMULATIONS

In Figure 1, we simulated the behavior of the Langevin dynamics with step size 0.01 and an estimated
score function initialized at the ground truth distribution on a simple 1-dimensional example, a
mixture of two Gaussians. If the Langevin dynamics are run until mixing, this corresponds to exactly
performing the standard vanilla score matching procedure and this will fail to estimate the ground
truth distribution well, which we see in the rightmost subfigure. The empirical distribution (time zero
for the dynamics) is also not a good fit to the ground truth, but as our theory predicts the early-stopped
Langevin diffusion (subfigure (b)) is indeed a good estimate for the ground truth.

In Figure 2 we simulated the trajectories of Langevin dynamics with step size 0.001, again with
initialization from samples and a learned score function, in a 32-dimensional mixture of Gaussians.
Similar to the one-dimensional example, we can see that at moderate times the trajectories have mixed
well within their component, and at large times the trajectories sometimes pass through the region in
between the components where the true density is very small. Additional simulations (including an
experiment with Contrastive Divergence training) and information is in Appendix I.
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A ORGANIZATION OF APPENDIX

In Appendix B, we review some basic mathematical preliminaries and notation, such as the definition
of log-Sobolev and Poincaré inequalities. In Appendix C we prove Theorem 4 (Theorem 2 of the
main text), which shows that when clusters have significant overlap that the Langevin dynamics for
the mixture distribution will successfully mix. Appendix D and Appendix E contain intermediate
results which are used in the following sections: Appendix D shows how to analyze the Langevin
diffusion starting from a point, and Appendix E shows how to bound the drift of the continuous
Langevin diffusion over a short period of time. In Appendix F we prove Theorem 5, which shows that
the continuous Langevin diffusion with score function ∇V converges to µ after a suitable time T. In
Appendix G, we prove our main results Theorem 6 and Corollary 1, which show that the discrete
LMC with score function s with appropriately chosen step size is close to µ in total variation distance
at a suitable time. Corollary 1 corresponds to Theorem 1 of the main text. In Appendix H, we remove
the dependency of the runtime and number of samples on the minimum weight of the components
i.e. p∗ = mini∈I pi (see Theorem 8 and Corollary 2 for the analogy of Theorem 6 and Corollary 1
respectively that has no dependency on p∗). Appendix I contains some additional simulations.

B PRELIMINARIES

In the preliminaries, we review in more detail the needed background on divergences between
probability measures, functional inequalities, log-concave distributions, etc. in order to prove our
main results.

Notation. We use standard big-Oh notation and use tildes, e.g. Õ(·), to denote inequality up to
log factors. We similarly use the notation ≲ to denote inequality up to a universal constant. We let
dTV (µ, ν) = supA |µ(A)− ν(A)| be the usual total variation distance between probability measures
µ and ν defined on the same space, where the supremum ranges over measurable sets. Given a
random variable X , we write L(X) to denote its law. In general, we use the same notation for a
measure and its probability density function as long as there is no ambiguity. For random variables
X,Z, we will write dTV (X,Z) to denote the total variation distance between their laws L(X) and
L(Z).

B.1 RENYI DIVERGENCE

The Renyi divergence, which generalizes the more well-known KL divergence, is a useful technical
tool in the analysis of the Langevin diffusion — see e.g. Vempala & Wibisono (2019). The Renyi
divergence of order q ∈ (1,∞) of µ from π is defined to be

Rq(µ||π) =
1

q − 1
lnEπ

[(
dµ(x)

dπ(x)

)q]
=

1

q − 1
ln

∫ (
dµ(x)

dπ(x)

)q

dπ(x)

=
1

q − 1
ln

∫ (
dµ(x)

dπ(x)

)q−1

dµ(x) =
1

q − 1
lnEµ

[(
dµ(x)

dπ(x)

)q−1
]

The limit Rq as q → 1 is the Kullback-Leibler divergence DKL(µ||π) =
∫
µ(x) log µ(x)

π(x)dx, thus we
write R1(·) = DKL(·). Renyi divergence increases as q increases i.e. Rq ≤ Rq′ for 1 ≤ q ≤ q′.

Lemma 1 (Weak triangle inequality, (Vempala & Wibisono, 2019, Lemma 7), Mironov (2017)). For
q > 1 and any measure ν absolutely continuous with respect to measure µ,

Rq(ν||µ) ≤
q − 1/2

q − 1
R2q(ν||ν′) +R2q−1(ν

′||µ)

Lemma 2 (Weak convexity of Renyi entropy). For q > 1, if µ is a convex combination of µi i.e.
µ(x) =

∑
piµi(x) then

Eν

[(
dν(x)

dµ(x)

)q−1
]
≤
∑
i

piEν

[(
dν(x)

dµi(x)

)q−1
]
.

Consequently, Rq(ν||µ) ≤ maxi Rq(ν||µi) and Rq(µ||ν) ≤ maxi Rq(µi||ν)
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Proof. By Holder’s inequality

(
∑
i

piµi(x))
q−1

(
d∑

i=1

pi
µi(x)q−1

)
≥ (
∑
i

pi)
q = 1

thus (
ν(x)

µ(x)

)q−1

≤
∑
i

pi

(
ν(x)

µi(x)

)q−1

Taking expectation in ν gives the first statement. Similarly, since q > 1 > 0,

Eν

[(
ν(x)

µ(x)

)q]
≤
∑
i

piEν

[(
ν(x)

µi(x)

)q]
For the second statement

Rq(ν||µ) =
lnEν [(

dν(x)
dµ(x) )

q−1]

q − 1
≤

ln(maxi Eν [(
dν(x)
dµi(x)

)q−1])

q − 1
= max

i
Rq(ν||µi)

and

Rq(µ||ν) =
lnEν [(

dν(x)
dµ(x) )

q]

q − 1
≤

ln(maxi Eν [(
dν(x)
dµi(x)

)q])

q − 1
= max

i
Rq(µi||ν).

B.2 LOG-CONCAVE DISTRIBUTIONS

Consider a density function π : Rd → R≥0 where π(x) = exp(−V (x)). Throughout the paper,
we will assume V is a twice continuously differentiable function. We say π is β-smooth if V has
bounded Hessian for all x ∈ Rd:

−βI ⪯ ∇2V (x) ⪯ βI.

We say π is α-strongly log-concave if

0 ≺ αI ⪯ ∇2V (x)

for all x ∈ Rd.

B.3 FUNCTIONAL INEQUALITIES

For nonnegative smooth f : Rd → R≥0, let the entropy of f with respect to probability distribution
π be

Entπ[f ] = Eπ[f ln(f/Eπ[f ])].

We say π satisfies a log-Sobolev inequality (LSI) with constant CLS if for all smooth functions f ,

Entπ[f
2] ≤ 2CLSEπ[||∇f ||2]

and π satisfies a Poincare inequality (PI) with constant CPI if Varπ[f ] ≤ 2CPIEπ[||∇f ||2]. The
log-Sobolev inequality implies Poincare inequality: CPI ≤ CLS . Due to the Bakry-Emery criterion,
if π is α-strongly log-concave then π satisfies LSI with constant CLS = 1/α.

LSI and PI are equivalent to statements about exponential ergodicity of the continuous-time Langevin
diffusion, which is defined by the Stochastic Differential Equation

dX̄π
t = ∇ log π(X̄µ

t ) dt+
√
2 dBt.

Specifically, let πt denote the law of the diffusion at time t initialized from π0 then a LSI is equivalent
to the inequality

DKL(πt||π) ≤ exp(−2t/CLS)DKL(π0||π)
holding for an arbitrary initial distribution π0. Similarly, a PI is equivalent to χ2(πt||π) ≤
exp(−2t/CPI)χ

2(π0||π). Here DKL(P,Q) = EP [log
dP
dQ ] is the Kullback-Liebler divergence

and χ2(P,Q) = EQ[(dP/dQ − 1)2] is the χ2-divergence. See Bakry et al. (2014); Van Handel
(2014) for more background.
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B.4 CONCENTRATION

Proposition 1 (Concentration of Brownian motion, (Chewi et al., 2021, Lemma 32)). Let (Bt)t≥0

be a standard Brownian motion in Rd. Then, if λ ≥ 0 and h ≤ 1/(4λ),

E

[
exp

(
λ sup

t∈[0,h]

||Bt||2
)]

≤ exp(6dhλ)

In particular, for all η ≥ 0

P

[
sup

t∈[0,h]

||Bt||2 ≥ η

]
≤ exp

(
− η2

6dh

)
Proposition 2. Suppose a random non-negative real variable Z satisfies

∀t : P[Z ≥ D + t] ≤ 2 exp(−γt2)

for some D ≥ 0, γ > 0. Then there exists numerical constant C s.t.

E[Zp] ≤ Cpp/2(D + γ−1/2)p

Proof. For some R ≥ D to be chosen later

E[Zp] =

∫ ∞

0

P[Zp ≥ x]dx

=

∫ Rp

0

P[Zp ≥ x]dx+

∫ ∞

Rp

P[Zp ≥ x]dx

≤
∫ Rp

0

1dx+

∫ ∞

R

P[Z ≥ y]d(yp)

≤ Rp + 2p

∫ ∞

R

yp−1 exp(−γ(y −D)2)dy

≤ Rp + p2p(

∫ ∞

R

zp−1 exp(−γz2)dz +Dp−1

∫ ∞

R

exp(−γz2)dz)

≤ Rp + 2p−1(γ−p/2(p/2)p/2 + pDp−1γ−1/2
√
π)

where in the last inequality, we make a change of variable u = γz2 and note
that 2p

∫
zp−1 exp(−γz2)dz = γ−pp

∫
up/2−1 exp(−u)du = Γ(p/2) ≤ (p/2)p/2 and∫∞

0
exp(−γz2)dz = (2γ)−1/2

√
2π/2. Take R = D gives the desired result.

Proposition 3 ((Bakry et al., 2014, 5.4.2), restated in (Lee et al., 2022a, Lemma E.2) ). Suppose
π : Rd → R≥0 satisfies LSI with constant 1/α. Let f : Rd → R be a L-Lipschitz function then

Px∼π[|f(x)− Eπ[f(x)]| ≥ t] ≤ exp

(
− αt2

2L2

)
Proposition 4 (Sub-Gaussian concentration of norm for strongly log concave measures). Let V :
Rd → R be a α-strongly convex and β-smooth function. Let κ = β/α. Let π be the probability

measure with π(x) ∝ exp(−V (x)). Let x∗ = argminx V (x) then for D = 5
√

d
α ln(10κ) we have

Px∼π[||x− x∗|| ≥ D + t] ≤ exp(−αt2/4)

thus by Proposition 2, for p ≥ 1.

Eπ[||x− x∗||p]1/p ≤ O(1)
√
p

√
d

α
ln(10κ)p

Proof. By (Lee et al., 2022a, Lemma E.3), let x̄ = Eπ[x] then ||x̄ − x∗|| ≤ 1
2

√
d
α ln(10κ). By

Proposition 3, for any unit vector v ∈ Rd, the function ⟨v, x − x̄⟩ is 1-Lipschitz, since |⟨v, x⟩ −
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⟨v, y⟩| ≤
√
||v||2||x − y||2 = ||x − y||2. Thus, by Proposition 3, ⟨v, x − x̄⟩ has mean 0 and sub-

Gaussian concentration for all unit vector v, thus x − x̄⟩ is a sub-Gaussian random vector. From
sub-Gaussianity, a standard argument (see e.g. Theorem 1.19 of Rigollet & Hütter (2017)) shows that

Pπ

[
||x− x̄|| ≥ 4

√
d

α
+ t

]
≤ exp(−αt2/4)

thus by triangle inequality, using that ||x̄− x∗|| ≤
√

d
α

1
2 ln(10κ), we have

Pπ

[
||x− x∗|| ≥ (4 + 1/2 ln(10κ))

√
d

α
+ t

]
≤ Pπ

[
||x− x̄|| ≥ 4

√
d

α
+ t

]
≤ exp(−αt2/4)

Proposition 5 (Normalization factor bound). Let V : Rd → R be a α-strongly convex and β-smooth
function. Let π be the probability measure defined by π(x) ∝ exp(−V (x)) and Z := Zπ =∫
exp(−V (x))dx be its normalization factor. For any y ∈ Rd

exp

(
−V (y) +

||∇V (y)||2

2β

)
(2πβ−1)d/2 ≤ Z ≤ exp

(
−V (y) +

||∇V (y)||2

2α

)
(2πα−1)d/2

Let y = x∗ = argminV (x) and assume w.l.o.g. V (y) = 0 gives

d

2
ln

1

β
≤ lnZπ − d

2
ln(2π) ≤ d

2
ln

1

α

Proof. Since αI ⪯ ∇2V (x) ⪯ βI,

⟨∇V (y), x− y⟩+ α||x− y||2/2 ≤ V (x)− V (y) ≤ ⟨∇V (y), x− y⟩+ β||x− y||2/2

Z ≤
∫

exp(−V (y)− ⟨∇V (y), x− y⟩ − α||x− y||2/2)dx

= exp

(
−V (y) +

||∇V (y)||2

2α

)∫
exp

(
−α||(x− y) + α−1∇V (y)||2

2

)
dx

= exp

(
−V (y) +

||∇V (y)||2

2α

)
(2πα−1)d/2

The lower bound follows similarly. The second statement follows from the first since ∇V (x∗) = 0.

B.5 GIRSANOV’S THEOREM

Theorem 3 (Girsanov’s Theorem (Karatzas & Shreve, 1991, Chapter 3.5)). Let (Xt)t≥0 be stochastic
processes adapted to the same filtration. Let PT and QT be probability measure on the path space
C([0, T ];Rd) s.t. Xt evolved according to

dXt = bPt dt+
√
2dBP

t under PT

dXt = bQt dt+
√
2dBQ

t under QT

Assume that Novikov’s condition

EQT

[
exp

(
1

4

∫ T

0

||bPt − bQt ||2dt

)]
< ∞ (5)

holds. Then

dPT

dQT
= exp

(∫ T

0

1√
2
⟨bPt − bQt , dB

Q
t ⟩ − 1

4

∫ T

0

||bPt − bQt ||2dt

)
(6)
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Lemma 3 (Application of Girsanov with approximation argument (Chen et al., 2023, Equation 5.5,
Proof of Theorem 9)). Let (Xt)t≥0 be stochastic processes adapted to the same filtration. Let PT

and QT be probability measure on the path space C([0, T ];Rd) s.t. Xt evolved according to

dXt = bPt dt+
√
2dBP

t under PT

dXt = bQt dt+
√
2dBQ

t under QT

Suppose EQT
[
∫ T

0
||bPt − bQt ||2dt] < ∞ then

2dTV (QT ||PT )
2 ≤ DKL(QT ||PT ) ≤ EQT

[∫ T

0

||bPt − bQt ||2dt

]
Lemma 4 (Corollary of Theorem 3, (Chewi et al., 2021, Corollary 20)). With the setup and precondi-
tions in Theorem 3, For any event E ,

EQT

[(
dPT

dQT

)q

1E
]
≤

√√√√EQT

[
exp

(
q2
∫ T

0

||bPt − bQt ||2dt

)
1E

]

B.6 MIXTURE POTENTIAL

Notation for indexing components. Let I = [K] be the set of indices i for the components µi of
the mixture distribution µ. We will need to work with subsets S of I and the mixture distribution
forms by components µi for i ∈ S.

Definition 2. For S ⊆ I, let pS =
∑

i∈S pi, and µS = p−1
S

∑
i∈S piµi. Let VS = − logµS .

If S = I we omit the subscript S.

Derivative computations. For future use, we compute the derivatives of V.
Proposition 6 (Gradient of V ).

∇V (x) =

∑
piµi(x)∇Vi(x)

µ(x)
(7)

Consequently, ||∇V (x)|| ≤ max ||∇Vi(x)||.

Proof. The statement follows from

∇V (x) = ∇ logµ(x) =
∇µ(x)

µ(x)

and

∇µ(x) = ∇(
∑

piZ
−1
i exp(−Vi(x)) = −

∑
piµi(x)∇Vi(x).

Proposition 7 (Hessian of V ).

∇2V (x) =

∑
i piµi(x)∇2Vi(x)

µ(x)
−
∑
i,j

pipjµi(x)µj(x)(∇Vi(x)−∇Vj(x))(∇Vi(x)−∇Vj(x))
⊤

4µ2(x)

(8)
hence if ∇2Vi ⪯ βI for all i ∈ I then ∇2V (x) ⪯ βI.

Proof. Let Zi =
∫
exp(−Vi(x))dx be the normalization factor of µi. Note that

∇(µi(x)∇Vi(x))

= ∇(Z−1
i exp(−Vi(X))∇Vi(x)) = Z−1

i exp(−Vi(x))(−∇Vi(x)∇Vi(x)
⊤ +∇2Vi(x))

= µi(x)(∇2Vi(x)−∇Vi(x)∇Vi(x)
⊤)
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and ∇µ(x) = −
∑

piµi(x)∇Vi(x), thus

∇2V (x)

=
∇(
∑

i piµi(x)∇Vi(x))

µ(x)
− (
∑

piµi(x)∇Vi(x))∇µ(x)

µ2(x)

=

∑
piµi(x)(∇2Vi(x)−∇Vi(x)∇Vi(x)

⊤)

µ(x)
+

(
∑

piµi(x)∇Vi(x))(
∑

piµi(x)∇Vi(x))
⊤

µ2(x)

Next,

(
∑

piµi(x)∇Vi(x))(
∑

piµi(x)∇Vi(x))
⊤ − (

∑
piµi∇Vi(x)∇Vi(x)

⊤)(
∑

piµi)

=
∑
i,j

pipjµi(x)µj(x)∇Vi(x)∇V ⊤
j −

∑
i,j

pipjµi(x)µj(x)∇Vi(x)∇Vi(x)
⊤

=
1

2

∑
i ̸=j

pipjµi(x)µj(x)(∇Vi(x)∇V ⊤
j +∇Vj(x)∇V ⊤

i −∇Vi(x)∇V ⊤
i −∇Vj(x)∇V ⊤

j )

= −1

2

∑
i̸=j

pipjµi(x)µj(x)(∇Vi(x)−∇Vj(x))(∇Vi(X)−∇Vj(x))
⊤

thus the first statement follows. The second statement follows from noticing that (∇Vi(x) −
∇Vj(x))(∇Vi(X)−∇Vj(x))

⊤ ⪰ 0.

B.7 PROPERTIES OF SMOOTH AND STRONGLY LOG-CONCAVE DISTRIBUTION

We record the consequences of α-strongly log-concave and β-smooth that we will use.
Lemma 5. Suppose µi is α-strongly log-concave and β-smooth then for κ = β/α, ui =

argminVi(x), D = 5
√

d
α ln(10κ), and cz = d

2 lnκ, we have

1. For all x : ||∇2Vi(x)||OP ≤ β and ||∇Vi(x)|| ≤ β||x− ui||

2. α||x− ui||2 ≤ Vi(x) ≤ β||x− ui||2.
Consequently, for Zi =

∫
µi(x)dx, there exists z+ ≤ z− with z+ = z− − cz s.t.

exp(−β||x− ui||2 − z−) ≤ µi(x) = Z−1
i exp(−Vi(x)) ≤ exp(−α||x− ui||2 − z+)

3. Sub-gaussian concentration:

P[||x− ui|| ≥ D + t] ≤ exp(−αt2/4)

By Proposition 2, this implies that for all p

Eµi [||x− ui||p] ≲p Dp.

4. µi satisfies a LSI with constant CLS = 1
α .

Proof. This is due to Proposition 5 and Proposition 2, and the fact that ∇Vi(ui) = 0 for ui =
argminVi(x).

B.8 BASIC MATHEMATICAL FACTS

Proposition 8. For any constant a > 0, b, p ∈ N≥0 f(x) = exp(−ax − b)xp is decreasing on
[p/a,+∞)

Proof. Let g(x) = log f(x) = −ax− b+ p log x and observe that

g′(x) = −a+ p/x ≤ 0

when x ≥ p/a, so the claim follows by integrating.
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Proposition 9. Let P1, . . . , Pk, Q1, . . . , Qk be distributions s.t. dTV (Pi, Qi) ≤ ϵi. Let
α1, · · · , αk, β1, · · · , βk be s.t. αi, βi ≥ 0∀i and

∑
i αi =

∑
i βi = 1. Then

dTV (
∑
i

αiPi,
∑
i

αiQi) ≤
∑
i

αiϵi

and
dTV (

∑
i

αiQi,
∑
i

βiQi) ≤
1

2

∑
i

|αi − βi|

Proof. By triangle inequality

2dTV (
∑
i

αiPi,
∑
i

αiQi) =

∫
x∈Ω

|
∑
i

αiPi(x)−
∑
i

αiQi(x)|dx

≤
∫
x∈Ω

∑
i

αi|Pi(x)−Qi(x)|dx = 2
∑
i

αidTV (Pi, Qi)

Similarly,

2dTV (
∑
i

αiQi,
∑
i

βiQi) =

∫
x∈Ω

|
∑
i

αiQi(x)−
∑
i

βiQi(x)|dx

≤
∫
x∈Ω

∑
i

|αi − βi|Qi(x)dx =
∑
i

|αi − βi|

C LOG-SOBOLEV INEQUALITY FOR WELL-CONNECTED MIXTURES

In this section, we show that the mixture
∑

piµi has a good log-Sobolev constant if its component
distributions µi have high overlap. The below Theorem 4 corresponds to Theorem 2 of the main text.
Definition 3. For distributions ν, π, let δ(ν, π) =

∫
min{ν(x), π(x)}dx be the overlap of ν and π.

Let δij denote δ(µi, µj). Note that

1− δ(ν, π) =

∫
(ν(x)−min{ν(x), π(x)})dx =

∫
x:ν(x)≥π(x)

(ν(x)− π(x))dx = dTV (ν, π).

Theorem 4. Let G be the graph on I where {i, j} ∈ E(G) iff µi, µj have high overlap i.e.

δij :=

∫
min{µi(x), µj(x)}dx ≥ δ.

Suppose G is connected. Let M ≤ |I| be the diameter of G. The mixture distribution µ =
∑

i∈I piµi

has

1. Poincare constant (Madras & Randall, 2002, Theorem 1.2)

CPI(µ) ≤
4M

δ
max
i∈I

CPI(µi)

pi

2. Log Sobolev constant

CLS(µ) ≤
4MCLS(p)

δ
max

i

CLS(µi)

pi

where for p∗ = mini pi, CLS(p) = 1 + log(p−1
∗ ) is the log Sobolev constant of the instant

mixing chain for p. Hence

CLS(µ) ≤ C|I|,p∗δ
−1 max

i
CLS(µi)

where C|I|,p∗ = 4|I|2(1 + log(p−1
∗ ))p−1

∗ only depends on |I| and p∗
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Below we fix a test function f s.t. Eµ[f
2] ≤ ∞. Let

Ci,j =

∫ ∫
(f(x)− f(y))2µi(x)µj(x)dxdy. (9)

Lemma 6 (Triangle inequality).

Ci0,iℓ ≤ ℓ

ℓ−1∑
j=0

Cij ,ij+1

Proof. Without loss of generality, assume ij = j for all j. Then

Ci0,iℓ =

∫ ∫
(f(x0)− f(xℓ))

2µ0(x0)µℓ(xℓ)dx0dxℓ

=

∫
x0

· · ·
∫
xℓ

(f(x0)− f(x1) + · · ·+ f(xℓ−1)− f(xℓ))
2

ℓ∏
j=0

µj(xj)dx0dx1 . . . dxℓ

≤
∫
x0

· · ·
∫
xℓ

ℓ

ℓ−1∑
j=0

(f(xj)− f(xj+1))
2

 ℓ∏
j=0

µj(xj)dx0dx1
. . . dxℓ

= ℓ

ℓ−1∑
j=0

∫
xj

∫
xj+1

(f(xj)− f(xj+1))
2µj(xj)µj+1xj+1dxj

dxj+1
= ℓ

ℓ−1∑
j=0

Cj,j+1

where the inequality is Holder’s inequality.

The following comes from (Madras & Randall, 2002, Proof of Theorem 1.2)

Lemma 7. If
∫
min{µi(x), µj(x)}dx ≥ δ then

Ci,j ≤
2(2− δ)

δ
(Varµi

(f) + Varµj
(f)).

Proposition 10 (Variance decomposition).

2Varµ(f) =

∫
x

∫
y

(f(x)− f(y))2µ(x)µ(y)dxdy

=
∑
i,j

pipjCij

= 2
∑
i

p2i Varµi(f) + 2
∑
i<j

pipjCij

Proof.

Varµ(f) =

∫
x

µ(x)f2(x)dx−
(∫

x

µ(x)f(x)dx

)2

=

∫
x

∫
y

f2(x)µ(x)µ(y)dxdy −
∫
x

∫
y

µ(x)f(x)µ(y)f(y)dxdy

=
1

2

∫
x

∫
y

µ(x)µ(y)(f2(x) + f2(y)− 2f(x)f(y))dxdy

=
1

2

∫
x

∫
y

µ(x)µ(y)(f(x)− f(y))2dxdy
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Since µ(x) =
∑

i piµi(x), we can further rewrite

2Varµ(f) =

∫
x

∫
y

(f(x)− f(y))2

(∑
i

piµi(x)

)(∑
i

piµi(y)

)
dxdy

=

∫
x

∫
y

(f(x)− f(y))2

∑
i,j

pipjµi(x)µj(y)

 dxdy

=
∑
i,j

pipj

∫
x

∫
y

(f(x)− f(y))2µi(x)µj(y)dxdy

=
∑
i,j

pipjCij

=
∑
i

p2iCii +
∑
i<j

(Cij + Cji)

= 2
∑
i

p2i Varµi
[f ] + 2

∑
i<j

pipjCij

where the last equality is because Cij = Cji.

Lemma 8. For i, j let γij be the shortest path in G from i to j and let |γij | be its length i.e. the
number of edges in that path. For u, v, let uv denote the edge {u, v} of G if it is in E(G). Let
M = maxij |γij | be the diameter of G. Then

∑
i<j

pipjCij ≤
∑

uv∈E(G)

Cuv

∑
i<j:uv∈γij

pipj |γij |


≤ M(2− δ)

δ

∑
u

Varµu(f)

≤ M(2− δ)

δ

∑
u

CPI(µu)Eµu [||∇f ||2]

Proof. ∑
i<j

pipjCij ≤
∑

uv∈E(G)

(Cuv

∑
i<j:uv∈γij

pipj |γij |) ≤ M
∑

uv∈E(G)

(Cuv

∑
i<j:uv∈γij

pipj)

By Lemma 7 and the definition of G, Cuv ≤ 2(2−δ)
δ (Varµu

(f) + Varµv
(f)), thus

∑
i<j

pipjCij ≤
2M(2− δ)

δ

∑
uv∈E(G)

(Varµu
(f) + Varµv

(f))
∑

i<j:uv∈γij

pipj


≤ 2M(2− δ)

δ

∑
u

Varµu(f)
∑

v,uv∈E(G),i<j:uv∈γij

pipj


=

2M(2− δ)

δ

∑
u

Varµu(f)
∑

i<j:u∈γij

pipj


≤ M(2− δ)

δ

∑
u

Varµu(f)

≤ M(2− δ)

δ

∑
u

CPI(µu)Eµu
[||∇f ||2]
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Proposition 11. For Ci,j be as in Eq. (9)

Ci,j =
1

2
(Varµi(f) + Varµj (f) + (Eµi [f ]− Eµj [f ])

2)

Proof. Let ν = 1
2µi +

1
2µj . We write Var(ν) in two ways. First, Eν [f ] =

1
2 (Eµi [f ] + Eµj [f ]) thus

V arν(f) = Eν [f
2]− (Eν [f ])

2 =
1

2
(Eµi [f

2] + Eµj [f
2])− 1

4
(Eµi [f ] + Eµj [f ])

2

=
1

2

∑
k∈{i,j}

(Eµk[f
2]− (Eµk

[f ])2) +
1

4
(E2

µi
[f ] + E2

µj
µj [f ]− 2Eµi [f ]Eµj [f ])

=
1

2
(Varµi

[f ] + Varµj
[f ]) +

1

4
(Eµi

[f ]− Eµj
[f ])2

On the other hand, by Proposition 10,

Varν(f) =
1

4
(Varµi

(f) + Varµj
(f)) +

1

2
Cij

Rearranging terms gives the desired equation.

Proposition 12. Let g ≡ f2. Let the projection of g on I be defined by ḡ(i) = Eµi
[g]. Then

Ent[f2] =
∑
i∈I

pi Entµi
[f2] + Entp[ḡ]

Proof.

Ent[f2] =

∫
µ(x)g(x) log g(x)dx− Eµ[g(X)] log(Eµ[g(x)])

=

∫ (∑
i

piµi(x))g(x) log g(x)dx− Eµ[g(x)] log(Eµ[g(x)]

)

=
∑
i

pi

(∫
µi(x)g(x) log g(x)dx− Eµi

[g(x)] log(Eµi
[g(x)])

)
+
∑
i

piḡ(i) log ḡ(i)− Eµ[g(x)] log(Eµ[g(x)])

where in the last equality, we use the definition of ḡ(i). Note that

Ei∼p[ḡ(i)] =
∑
i

piḡ(i) =
∑
i

(
pi

∫
µi(x)g(x)dx

)
=

∫ (∑
i

piµi

)
g(x) = Eµ[g(x)]

thus
Ent[f2] =

∑
i

pi Entµi [f
2] + Enti∼p[ḡ(i)]

Proposition 13. Let ḡ be defined as in Proposition 12, then

(
√
ḡ(i)−

√
ḡ(j))2 ≤ Varµi

[f2] + Varµj
[f2] + (Eµi

[f ]− Eµj
[f ])2 = 2Cij

Proof. The first inequality comes from (Schlichting, 2019, Proof of Lemma 3) and the second part
from Proposition 11.

Proposition 14 (Log Sobolev inequality for the instant mixing chain, (Diaconis & Saloff-Coste, 1996,
Theorem A.1)). Let p be the distribution over I where the probability of sampling i ∈ I is pi. For a
function h : I → R≥0

Entp[h] ≤ Cp Varp[
√
h]

with Cp = ln(4p−1
∗ ) with p∗ = mini pi.

22



Published as a conference paper at ICLR 2024

Lemma 9. With ḡ defined as in Proposition 12,

Varp[
√
ḡ] =

∑
i<j

pipj(
√
ḡ(i)−

√
ḡ(j))2 ≤ 2

∑
i<j

pipjCij

Proof of Theorem 4 part 2. We can rewrite

Entµ[f
2] =

∑
i∈I

pi Entµi
[f2] + Entp[ḡ]

≤(1)

∑
i

piCLS(µi)Eµi [||∇f ||2] + CLS(p)Varp(
√
ḡ)

≤(2)

∑
i

piCLS(µi)Eµi
[||∇f ||2] + 2CLS(p)

∑
i<j

pipjCij

≤(3)

∑
i

piCLS(µi)Eµi
[||∇f ||2] + 2M(2− δ)CLS(p)

δ

∑
u

CPI(µu)Eµu
[||∇f ||2]

≤(4)
4MCLS(p)

δ
max

i
{CLS(µi)

pi
}
∑
i

piEµi [||∇f ||2]

=
4MCLS(p)

δ
max

i
{CLS(µi)

pi
}Eµ[||∇f ||2]

where (1) is due to definition of CLS(µi) and Proposition 14, (2) is due to Lemma 9, (3) is due to
Lemma 8, and (4) is due to CPI(µi) ≤ CLS(µi) and CLS(p),M ≥ 1.

D INITIALIZATION ANALYSIS

For the continuous Langevin diffusion (X̄t)t≥0 initialized at a bounded support distribution ν0,
we bound Rq(L(X̄h)||µ) for some small h. Consequently, for µ being the stationary distribu-
tion of the Langevin diffusion and satisfying a LSI with constant CLS , we can use the fact that
DKL(L(X̄t)||µ) ≤ exp(− t−h

CLS
)DKL(L(X̄h)||µ) to show that X̄t converges to µ.

Lemma 10 (Initialization bound). Let µ =
∑

i∈I piµi be a mixture of distributions µi ∝
exp(−Vi(x)) which are α-strongly log concave and β-smooth. Let V (x) = − lnµ(x). Let
(ν̄t)t∈[0,h], (νt)t∈[0,h] be respectively the distribution of the continuous Langevin diffusion and the
LMC with step size h and score function ∇V initialized at δx. Let G(x) := maxi ||∇Vi(x)||. Suppose
h ≤ 1/(30β) then for q ∈ (2, 1

10βh ),

Rq(ν̄h||νh) ≤ O(q2h(G2(x) + β2dh)),

Rq−1(νh||µ) ≤
d

2
ln((2αh)−1) + α−1G(x)

and
Rq/2(ν̄h||µ) ≤ O(q2h(G2(x) + β2dh)) +

d

2
ln((2αh)−1) + α−1G2(x)

If we replace δx with any ν0 then by weak convexity of Renyi divergence (Lemma 2), the claim holds
when we replace G(x) with Gν = supx∈supp(ν0) G(x).

Proposition 15. Let ν = N (y, σ2I). If π(x) ∝ exp(−W (x)) is α-strongly log concave and β-
Lipschitz and σ2β ≤ 1/2 then

R∞(ν||π) ≤ −d

2
ln(ασ2) + ||∇W (y)||2/α

Proof. Since αI ⪯ ∇2W (x) ⪯ βI,

⟨∇W (y), x− y⟩+ α||x− y||2/2 ≤ W (x)−W (y) ≤ ⟨∇W (y), x− y⟩+ β||x− y||2/2
By Proposition 5, we can upper bound the normalization factor Z =

∫
exp(−W (x))dx by

exp
(
−W (y) + ||∇W (y)||2

2α

)
(2πα−1)d/2.
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For x ∈ Rd, using the upper bound on Z

ν(x)/π(x) = (2πσ2)−d/2Z exp

(
−||x− y||2

2σ2
+W (x)

)
≤ (ασ2)−d/2 exp

(
W (x)−W (y) +

||∇W (y)||2

2α
− ||x− y||2

2σ2

)
= (ασ2)−d/2 exp

||∇W (y)||2( 1
2α+ σ2

2(1−βσ2)
)
exp

−(
√

(1−βσ2)||x−y||2
2σ2 −

√
σ2||∇W (y)||2

2(1−βσ2)
)2)

≤ (ασ2)−d/2 exp

(
||∇W (y)||2 1− (β − α)σ2

2α(1− βσ2)

)
≤ (ασ2)−d/2 exp(||∇W (y)||2/α)

where the last inequality follows from 1/2 ≤ 1− βσ2 ≤ 1− (β − α)σ2 ≤ 1.

Proof of Lemma 10. We apply Theorem 3 with T = h, PT = (ν̄t)t∈[0,h] and QT = (νt)t∈[0,h]. Note
that, bPt = −∇V (Xt) and bQt = −∇V (x). We first check that Novikov’s condition Eq. (5) holds.

EQT

[
exp

(
1

4

∫ T

0

||bPt − bQt ||2dt

)]
= E

[
exp

(
1

4

∫ h

0

||∇V (Xt)−∇V (x)||2dt

)]
with (Xt)t∈[0,h] be the solution of the interpolated Langevin process i.e.

Xt − x = −t∇V (x) +
√
2Bt

By β-Lipschitzness of ∇Vj

||∇Vj(Xt)|| − ||∇Vj(x)|| ≤ βj ||Xt − x|| ≤ βt||∇V (x)||+ β
√
2||Bt||

thus

||∇V (Xt)|| ≤ G(Xt) = max
j∈I

||∇Vj(Xt)|| ≤ G(x) + βtG(x) + β
√
2 sup
t∈[0,h]

||Bt||

≤ 1.1G(x) + β
√
2 sup
t∈[0,h]

||Bt||

and ∫ h

0

||∇V (Xt)−∇V (x)||2dt ≤ 2

∫ h

0

(||∇V (Xt)||2 + ||∇V (x)||2)dt

≤ h[2(1.1G(x))2 + 4β2 sup
t∈[0,h]

||Bt||+G(x)2]

≤ 4hG2(x) + 4β2h sup
t∈[0,h]

||Bt||2

(10)

We first prove the following.

Proposition 16. For any λ < 1
8β2h2 ,

EQT

[
exp

(
λ

∫ T

0

||bPt − bQt ||2dt

)]
≤ exp(4λhG2(x))

(
1 + 8λβ2h2

1− 8λβ2h2

)d

.

Proof. By Proposition 1, for λ ≤ 1
16β2h2

E

[
exp

(
λ

∫ h

0

||∇V (Xt)−∇V (x)||2dt

)]
≤ E

[
exp

(
4hλG2(x) + 4λβ2h sup

t∈[0,h]

||Bt||2
)]

≤ exp(4λhG2(x)) exp(6β2h2dλ)
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Apply Proposition 16 with λ = 1/4 gives

EQT

[
exp

(
1

4

∫ T

0

||bPt − bQt ||2dt

)]
= E

[
exp

(
1

4

∫ h

0

||∇V (Xt)−∇V (x)||2dt

)]
≤ exp

(
hG2(x)) exp(1.5β2h2dλ

)
< ∞

Next, let

Ht =

∫ t

0

1√
2
⟨bPs − bQs , dB

Q
s ⟩ − 1

4

∫ t

0

||bPs − bQs ||2ds

then dPt

dQt
= exp(Ht) and

dHt = −1

4
||∇V (Xt)−∇V (x)||2dt+ 1√

2
⟨−∇V (Xt) +∇V (x), dBQ

t ⟩

By Ito’s formula,

d exp(qHt)

=
q2 − q

4
exp(qHt)||∇V (Xt)−∇V (x)||2 + q exp(qHt)

1√
2
⟨∇V (x)−∇V (Xt), dB

Q
t ⟩

Thus

EQT
[exp(qHT )]− 1 =

q2 − q

4
E

[∫ h

0

exp(qHt)||∇V (Xt)−∇V (x)||2dt

]

≤ q2

4

∫ h

0

√
E[exp(2qHt)] ·

√
E[||∇V (Xt)−∇V (x)||4]dt

We bound each term under the square root.

E[||∇V (Xt)−∇V (x)||4] ≤ E[(1.1G(x) + β
√
2 sup
t∈[0,h]

||Bt||+G(x))4]

≤ 40G4(x) + 32β4E[ sup
t∈[0,h]

||Bt||4]

≤ 40G4(x) +O(β4d2h2)

By Lemma 4 and Proposition 16, if q2 < 1
100β2h2 then

(E[exp(2qHt)])
2 ≤ E

[
exp

(
4q2

∫ h

0

||∇V (Xt)−∇V (x)||2dt

)]
≤ exp(16q2hG2(x)) exp(24q2β2h2)

≤ exp(16q2hG2(x) + 72q2β2h2d)

Substitute back in gives

EQT
[exp(qHT )]− 1 ≤ q2h

4
(7G2(x) +O(β2dh)) exp(4q2hG2(x) + 18q2β2h2d)

By the data processing inequality

Rq(ν̄h||νh) ≤ Rq(PT ||QT ) =
lnEQT

[exp(qHT )]

q − 1

≤ ln

(
1 +

q2h

4
(7G2(x) + 6Cβ2dh) exp(4q2hG2(x) + 18q2β2h2d)

)
≤ ln

[(
1 +

q2h

4
(7G2(x) + 6Cβ2dh

)
exp(4q2hG2(x) + 18q2β2h2d)

]
≤ ln

(
1 +

q2h

4
(7G2(x) + 6Cβ2dh)) + (4q2hG2(x) + 18q2β2h2d

)
≤ 6q2h(G2(x) + (3 + C/2)β2dh)
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Now, note that νh = N (y, σ2I) with y = x − h∇V (x) and σ2 = 2h. Note that ||∇Vi(y)|| ≤
||∇Vi(x)||+ β||y − x|| ≤ ||∇Vi(x)||+ βh||∇V (x)|| ≤ 1.1G(x). By Lemma 2 and Proposition 15

R2q−1(νh||µ) ≤ max
i

R2q−1(νh||µi) ≤
d

2
ln((2αh)−1) + α−1 max

i
||∇Vi(y)||2

≤ d

2
ln((2αh)−1) + 2α−1G2(x)

The final statement follows from the weak triangle inequality (Lemma 1).

E PERTURBATION ANALYSIS

In this section, we bound the drift ||X̄t − X̄kh|| for t ∈ [kh, (k + 1)h] of the continuous Langevin
diffusion X̄t. These bounds will be used to bound the mixing time of the continuous Langevin
diffusion and to compare the discrete LMC with the continuous process via Girsanov’s theorem.

We will consider subset S of I such that the components µi for i ∈ S have modes that are close
together. We record the properties of the mixture distribution µS (see Definition 2 for definition)
and and its log density function VS = − logµS in Assumption 2. To be clear, we are defining this
assumption as it is shared between multiple lemmas (and will be satisfied when we apply the lemmas),
it is not a new assumption for the final result.
Assumption 2 (Cluster assumption). We say a subset S of I satisfies the cluster assumption if there
exists uS ∈ Rd, AHess,1, AHess,0, Agrad,1, Agrad,0 s.t.

1. ||∇2VS(x)||OP ≤ mini∈S AHess,1||x− ui||2 +AHess,0

2. ||∇VS(x)|| ≤ Agrad,1||x− uS ||+Agrad,0.

Proposition 17. Suppose for all i ∈ S, µi satisfies item 1 of Lemma 5. Let ui and D be as in
Lemma 5 and suppose ||ui − uj || ≤ L for i, j ∈ S with L ≥ 10D. Then µS satisfies Assumption 2
with uS = p−1

S

∑
i∈S piui, Agrad,1 = β, Agrad,0 = βL, AHess,1 = 2β2, AHess,0 = 2β2L2.

In addition, if µi satisfies item 3 of Lemma 5 then
PµS

[||x− uS || ≥ 1.1L+ t] ≤ exp(−αt2/4).

Proof. First, ∀i ∈ S : ||ui − uS || = p−1
S

∑
j∈S pj ||ui − uj || ≤ L. By Proposition 6

pS∇VS(x) =
∑
i∈S

pi∇Vi(x) ≤
∑
i∈S

piβ||x− ui||

≤
∑
i∈S

piβ(||x− uS ||+ ||ui − uS ||) ≤ pS(β||x− uS ||+ L)

We replace I with S and use the formula from Proposition 7. By Holder’s inequality
||∇Vi(x)−∇Vj(x)||2 ≤ 4max

k∈S
||∇Vk(x)||2 ≤ 4β2 max

k∈S
||x− uk||2 ≤ 8β2 min

k∈S
(||x− uk||2 + L2)

Next, for p̃i = pi/pS , we have∑
i,j∈S

p̃ip̃jµi(x)µj(x) =

(∑
i∈S

p̃iµi(x)

)2

= µ2
C(x)

thus
βI ⪰ ∇2VC(x) ⪰ 0− I max

i,j∈S
||∇Vi(x)−∇Vj(x)||2/4 ⪰ −2Iβ2 min

k∈S
(||x− uk||2 + L2).

For D̃ = D + L ≤ 1.1L and γ = 2
α .

PµS
[||Z̄ − uS || ≥ D̃ +

√
γ ln(1/η)) = p−1

S

∑
i∈S

piµi(Z̄ : ||Z̄ − uS || ≥ D̃ +
√
γ ln(1/η))

≤ p−1
S

∑
i∈S

piµi(Z̄ : ||Z̄ − ui|| ≥ D +
√
γ ln(1/η))

≤ p−1
S

∑
i∈S

piη = η
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where first inequality is due to ||ui − uS || ≤ L for all i ∈ S.

Proposition 18. Suppose S ⊆ I satisfies item 1 and item 2 of Assumption 2. Let (Z̄t)t≥0 be the
continuous Langevin diffusion with score ∇VS initialized at Z̄0 ∼ ν0 then for t ∈ [kh, (k + 1)h)

E[||∇V (Z̄kh)−∇V (Z̄t)||2]

≲
√

E[A4
Hess,1(||Z̄kh − uS ||8 + ||Z̄t − uS ||8) +A4

Hess,0]

×

√
(t− kh)3

∫ t

kh

(A4
grad,1E[||Z̄s − uS ||4] +A4

grad,0)ds+ d2(t− kh)2

Proof. By the mean value inequality

||∇VS(Z̄kh)−∇VS(Z̄t)||2 ≤ ||Z̄kh − Z̄t|| max
y=ηZ̄kh+(1−η)Z̄t,η∈[0,1]

||∇2VS(y)||

By item 1 of Assumption 2, the fact that y = ηZ̄kh + (1− η)Z̄t and Holder’s inequality

||∇2VS(y)||OP ≤ AHess,1||y − uS ||2 +AHess,0 ≤ AHess,1(||Z̄kh − uS ||2 + ||Z̄t − uS ||2) +AHess,0

and so

E[||∇VS(Z̄kh)−∇VS(Z̄t)||2]

≤E
[(
AHess,1(||Z̄kh − uS ||2 + ||Z̄t − uS ||2) +AHess,0

)2 · || − ∫ t

kh

∇VS(Z̄s)ds+
√
2Bt−kh||2

]
≤
√
E
(
AHess,1(||X̄kh − uS ||2 + ||X̄t − uS ||2) +AHess,0

)4
·

√
E|| −

∫ t

kh

∇VS(Z̄s)ds+
√
2Bt−kh||4.

By item 2 of Assumption 2 and Holder’s inequality, for p = O(1)

E[|| −
∫ t

kh

∇VS(Z̄s)ds+
√
2Bt−kh||2p]

≲ E[(t− kh)2p−1

∫ t

kh

||∇VS(Z̄s)||2pds] + E[||Bt−kh||2p]

≲ (t− kh)2p−1

∫ t

kh

(A2p
grad,1||Z̄s − uS ||2p +A2p

grad,0)ds+ (d(t− kh))p

The desired result follows from p = 4.

Proposition 19. Suppose S ⊆ I satisfies item 2 of Assumption 2. Let (Z̄t)t≥0 be the continuous
Langevin diffusion wrt µS initialized at ν0. Suppose h ≤ 1

2Agrad,1
and supk∈[0,N−1]∩N ||Z̄kh−uS || ≤

D then

sup
k∈[0,N−1]∩N,t∈[0,h]

||Z̄kh+t − Z̄kh|| ≤ 2h(Agrad,0 +Agrad,1||Z̄kh − uS ||) +

√
48dh ln

6N

η

thus with probability ≥ 1− η

sup
k∈[0,N−1]∩N,t∈[0,h]

||Z̄kh+t − uS || ≤ 2hAgrad,0 + 2D +

√
48dh ln

6N

η
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Proof. The proof is identical to (Chewi et al., 2021, Lemma 24). By triangle inequality,
||Z̄kh+t − Z̄kh||

≤
∫ t

0

||∇VS(Z̄kh+r)||dr +
√
2||Bkh+t −Bkh||

≤ hAgrad,0 +Agrad,1

∫ t

0

||Z̄kh+r − uS ||dr +
√
2||Bkh+t −Bkh||

≤ hAgrad,0 +Agrad,1

(
h||Z̄kh − uS ||+

∫ t

0

||Z̄kh+r − Z̄kh||dr
)
+
√
2||Bkh+t −Bkh||

where we use item 2 of Assumption 2 in the second inequality. Gronwall’s inequality then implies
||Z̄kh+t − Z̄kh||

≤

(
h(Agrad,0 +Agrad,1||Z̄kh − uS ||) +

√
2 sup
t∈[0,h]

||Bkh+t −Bkh||

)
exp(hAgrad,1)

≤ 2h(Agrad,0 +Agrad,1||Z̄kh − uS ||) +
√
8 sup
t∈[0,h]

||Bkh+t −Bkh||

as long as h ≤ 1
2Agrad,1

.

Thus by triangle inequality,
||Z̄kh+t − uS || ≤ ||Z̄kh − uS ||+ ||Z̄kh+t − Z̄kh||

≤ 2hAgrad,0 + ||Z̄kh − uS ||(2hAgrad,1 + 1) +
√
8 sup
t∈[0,h]

||Bkh+t −Bkh||

By union bounds and concentration for Brownian motion (see (Chewi et al., 2021, Lemma 32)), with
probability 1− η,

sup
k∈[0,N−1]∩N,t∈[0,h]

||Bkh+t −Bkh|| ≤

√
6dh ln

6N

η

thus

sup
k∈[0,N−1]∩N,t∈[0,h]

||Z̄kh+t − uS || ≤ 2hAgrad,0 + 2D +

√
48dh ln

6N

η

F ANALYSIS OF CONTINUOUS-TIME DIFFUSION

In this section, we analyze an idealized version of the final LMC chain: we assume knowledge of the
exact score function and run the continuous time Langevin diffusion. First in Lemma 11 below, we
prove that when the diffusion is initialized from a point, it converges in a certain amount of time to
a sample from a mixture distribution corresponding to the clusters near the initialization. Then in
Theorem 5 we deduce the analogue of our main result for the idealized process: the diffusion started
from samples converges to the true distribution.
Definition 4. For S ⊆ I and x ∈ Rd, let imax,S(x) = argmaxi∈S µi(x). We break ties in
lexicographic order of i i.e. we let imax,S(x) be the maximum index among all indices i s.t.
µi(x) = maxj∈S µj(x).

Lemma 11. Fix ϵTV , τ ∈ (0, 1/2), δ ∈ (0, 1]. Fix S ⊆ I. Let p̄i = pip
−1
S and recall that µS =∑

i∈S p̄iµi. Let p∗ = mini∈S p̄i. Note that p∗ ≥ mini∈I pi. Recall that |I| = K.

Suppose for i ∈ S, µi are α-strongly log-concave and β-smooth with β ≥ 1. Let ui = argminx Vi(x)

and D ≥ 5
√

d
α be as defined in Lemma 5. Suppose there exists L ≥ 10D such that for any i, j ∈ S,

||ui − uj || ≤ L.

Let Gδ := Gδ(S,E) be the graph on S with an edge between i, j iff δij ≤ δ. Let

T =
2Cp∗,K

δα

(
ln

(
β2L

α

)
+ ln ln τ−1 + 2 ln ϵ̃−1

TV

)
.
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Suppose for all i, j ∈ S which are not in the same connected component of Gδ , δij ≤ δ′ with

δ′ =
δ3/2α3/2p

5/2
∗ ϵ2TV τ

105K5d(βL)3 ln3/2(p−1
∗ ) ln3/2

β2Lϵ−1
TV ln τ−1

α ln2.51 16d(βL)2

ϵTV τδα

For x ∈ Rd, let (X̄δx
t )t≥0 denote the continuous Langevin diffusion with score ∇VS initial-

ized at δx, and let Cmax(x) be the unique connected component of Gδ containing imax,S(x) =
argmaxi∈S µi(x) as defined in Definition 4. Then

Px∼µS
[dTV (L(X̄δx

T |x), µCmax(x)) ≤ ϵTV ] ≥ 1− τ

From the above lemma, we can deduce the following theorem. (The proof of the lemma is deferred
until after the proof of the theorem.) In this result, the reader can consider simply the case S = I; the
flexibility to pick a subset of indices is allowed for convenience later.
Theorem 5. Fix ϵTV , τ ∈ (0, 1/2). Fix S ⊆ I. Let p̄i = pip

−1
S and recall that µS =

∑
i∈S p̄iµi.

Let p∗ = mini∈S p̄i. Note that p∗ ≥ mini∈I pi. Recall that |I| = K.

Suppose for i ∈ S, µi are α-strongly log-concave and β-smooth with β ≥ 1. Let ui = argminx Vi(x)

and D ≥ 5
√

d
α be as defined in Lemma 5. Suppose there exists L ≥ 10D such that for any i, j ∈ S,

||ui−uj || ≤ L. Let Usample be a set of M i.i.d. samples from µS and νsample be the uniform distribution
over Usample. Let (X̄νsample

t )t≥0 be the continuous Langevin diffusion with score ∇VS initialized at
νsample. Let

Γ̃ =
p
7/2
∗ ϵ3TV α

3/2

108d(βL)3exp(K) ln3/2(p−1
∗ ) ln5 16d(βL)2

ϵTV τα

,

If M ≥ 600(ϵ2TV p∗)
−1K2 log(Kτ−1) and

T ≥ Θ
(
α−1K2p−1

∗ ln(10p−1
∗ )Γ̃−2((3/2)K−1−1)

)
then

PUsample [dTV (L(X̄
νsample
T |Usample), µS) ≤ ϵTV ] ≥ 1− τ

Remark 6. Note that after fixing Usample, µ̂
Usample
S := L(X̄νsample

T |Usample) is a function of Usample and
Brownian motions (Bt)t∈[0,T ]. Each run of the Langevin diffusion produces a sample from µ̂

Usample
S

by choosing/sampling a value for the Brownian motions, thus we can produce as many samples as
desired from µ̂

Usample
S , while Theorem 5 guarantees that µ̂Usample

S is approximately close to µS in total
variation distance for a typical set of samples Usample.

Proof of Theorem 5. Let p̄i = pip
−1
S then µS =

∑
i∈S p̄iµi. For C ⊆ S, let p̄C =

∑
i∈C p̄i.

Let ϵ̃TV = ϵTV

9K and τ̃ = p∗ϵTV

9K ≤ min{ ϵTV

9K2 , p∗/3}. Define the sequence 1 = δ0 > δ1 > · · · > δK
inductively as follow:

δs+1 =
δ
3/2
s α3/2p

5/2
∗ ϵ̃2TV τ̃

105K5d(βL)3 ln3/2(p−1
∗ ) ln3/2

β2Lϵ̃−1
TV ln τ̃−1

α ln2.51 16d(βL)2

ϵ̃TV τ̃δsα

≥ δ
3/2
s α3/2p

7/2
∗ ϵ3TV

108K8d(βL)3 ln3/2(p−1
∗ ) ln3/2

β2Lϵ−1
TV K

α ln2.51 16d(βL)2K
ϵTV δsα

Let Gs := Gδ(S,E) be the graph on S with an edge between i, j iff δij ≥ δs. Fix one such s s.t. s ≤
K − 2. Suppose δij ≤ δs+1 for all i, j not in the same connected component of Gs, y then Lemma 11
applies. Let the connected components of Gs be Cs

1 , . . . , C
s
m. For x ∈ Rd, let Cs

max(x) be the unique
connected component of Gs containing imax,S(x) and let (X̄δx

t )t≥0 denote the continuous Langevin
diffusion with score ∇V initialized at δx, then for Ts =

2Cp∗,K

δsα
(ln β2L

α + ln ln τ̃−1 + 2 ln ϵ̃−1
TV ),

Px∼µS
[dTV (X̄

δx
Ts
, µCs

max(x)
) ≤ ϵ̃TV ] ≥ 1− τ̃
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and by Proposition 21,
Px∼µS

[imax,S(x) ∈ Cs
r ] ≥ (1− δs+1)p̄Cs

r
.

It is easy to see that δs+1 ≤ ϵ̃TV /3. By Proposition 23, as long as M ≥ 600(ϵ2TV p∗)
−1K2(logK +

log τ−1)
PUsample [dTV (L(X̄

νsample
Ts

|Usample), µS) ≤ ϵTV ] ≥ 1− τ

Since µS is the stationary distribution of the continuous Langevin with score function ∇VS , for any
T ≥ TK−1 ≥ Ts, dTV (L(X̄

νsample
T |Usample), µS) ≤ dTV (L(X̄

νsample
Ts

|Usample), µS) thus

PUsample [dTV (L(X̄
νsample
Ts

|Usample), µS) ≤ ϵTV ] ≥ 1− τ.

On the other hand, suppose for all s ∈ [0,K − 2] ∩ N, there exists i, j not in the same connected
component of Gs s.t. δij > δs+1, then Gs+1 has one fewer connected components than Gs. Thus
GK−1 is connected then µ has LSI constant ∝ δ−1

K−1, thus Lemma 11 apply with δ = δK−1 and
Proposition 21 apply with δ′ = 0. For T ≥ TK−1,

PUsample [dTV (L(X̄
νsample
T |Usample), µS) ≤ ϵTV ] ≥ 1− τ.

Let Γ =
p7/2
∗ ϵ3TV α3/2

108K8d(βL)3 . If we ignore log terms, then δs+1 = δ
3/2
s Γ thus δs ≈ Γ1+3/2+···+(3/2)s−1

=

Γ2((3/2)s−1).To get the correct bound for δs and Ts, we can let

Γ1 =
p
7/2
∗ ϵ3TV α

3/2

8000d(βL)3exp(K) ln3/2(p−1
∗ ) ln4.5 16d(βL)2

ϵTV τα

≤ Γ

then we can inductively prove δs ≥ Γ
2((3/2)s−1)
1 and thus get the bound on Ts i.e.

Ts ≤ Θ(α−1K2p−1
∗ ln(10p−1

∗ ) ln(
β2LϵTV

αp∗K
)Γ

−2((3/2)s−1)
1 )

= Θ(α−1K2p−1
∗ ln(10p−1

∗ )Γ̃−2((3/2)s−1))

with Γ̃ =
p7/2
∗ ϵ3TV α3/2

108d(βL)3exp(K) ln3/2(p−1
∗ ) ln5 16d(βL)2

ϵTV τα

.

Proof of Lemma 11. Let (X̄t) denote the continuous Langevin with score ∇VS initialized at µS .
Since µS is the stationary distribution of continuous the Langevin with score ∇VS , the law L(X̄t)
of X̄t is µS at all time t. Let η = τϵTV /2 and N = T/h. Let h > 0, γ ∈ (0, 1) to be chosen
later. Let C be the partition of S consisting of connected components of the graph Gδ, and BS,C,γ
be defined as in Definition 5. Suppose δ′, γ satisfies K2γ−1δ′ × T/h ≤ η/2, then by Lemma 12,
µS(BS,C,γ)N ≤ K2γ−1δ′ × T/h ≤ η/2

Since the law of X̄kh is µS , we can bound ||X̄kh − uS || using sub-Gaussian concentration of µS

(due to Proposition 17). By the union bound, with probability 1− η, the event Ediscrete happens where
Ediscrete is defined by: ∀k ∈ [0, N − 1] ∩ N : ||X̄kh − uS || ≤ 2L+

√
64
α ln 16N

η and X̄kh ̸∈ BS,C,γ .

Since µS = Ex∼µS
[δx] and µS and δx are the initial distribution of X̄t and X̄δx

t respectively, so
L(X̄kh) = Ex∼µS

[L(X̄δx
kh|x)] where L(X) denote the law of the random variable X. Thus, let

L̃ := 2L+
√

64
α ln 16N

η and Gx is the event

PFt
[∀k ∈ [0, N − 1] ∩ N : ||X̄δx

kh − uS || ≤ L̃ ∧ X̄δx
kh ̸∈ BS,C,γ ] ≥ 1− ϵTV/10

where the probability is taken over the randomness of the Brownian motions, then Px∼µ[Gx] ≥ 1−τ/2

Fix x, let C = Cmax(x) and suppose Gx holds. Suppose h satisfies the precondition of Proposition 26,
then with probability ≥ 1− ϵTV/5,

sup
t∈[0,T ]

||∇VS(X̄
δx
t )−∇VCmax(x)(X̄

δx
t )|| ≤ ϵscore,1 := 36p−1

∗ γβL̃

thus X̄δx
t ̸∈ B for all t ∈ [0, T ], where B is the "bad" set defined by B = {z ∈ Rd : ||∇VS(z) −

∇VC(z)|| > ϵscore,1}. Let ν0 be the distribution of X̄δx
h′ for some h′ ≤ 1/(2β). Let Ginit,x be the event
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that ||x − uS || ≤ L1 := 2L + log(10/τ) then Px∼µ[Ginit,x] ≥ 1 − τ/10. Suppose Ginit,x happens.
Then GS(x) = maxi∈S ||∇Vi(x)|| ≲ βL1. Set h′ = min{ 1

βL̃
, 1
βd} then by Lemma 10,

DKL(ν0||µC) ≲ d lnL1 + α−1β2L2
1

Pick T =
2Cp∗,K

δα (ln β2L
α + ln ln τ−1) then T − h′ ≥ Tprocess :=

Cp∗,K

δα (lnDKL(ν0||µS) + 2 ln ϵ−1
TV )

Let (Z̄ν0
t )t≥0 be the continuous Langevin initialized at ν0 with score s∞ defined by

s∞(z) =

{
∇VS(z) if x ̸∈ B

∇VC(z) if x ∈ B

then supz∈Rd ||s∞(z)−∇VC(z)||2 ≤ ϵ2score,1. Note that if Gx holds then X̄δx
t+h′ ̸∈ B∀t ∈ [0, T −h′]

and Z̄ν0
t = X̄δx

t+h′∀t ∈ [0, T − h′] thus

dTV (X̄
δx
t , Z̄ν0

T−h′) ≤ ϵTV /5

Proposition 20 gives

dTV (L(Z̄ν0

T−h′ |x), µC) ≤ ϵscore,1
√

T/2 + ϵTV /5

Set γ = p∗ϵTV

18βL̃
√
T

then ϵscore,1 = 18p−1
∗ γβL̃ ≤ ϵTV√

T
then by triangle inequality

dTV (L(X̄δx
t |x), µC) ≤ ϵTV .

This holds conditioned on Gx and Ginit,x both happen, thus by union bound

Px∼µ[dTV (L(X̄δx
t |x), µCmax(x)) ≤ ϵTV ] ≥ 1− τ

Plug in T, γ and set

h =
1

2000d(βL)2 ln2 16d(βL)2T
ϵTV τ

then h ln(1/h) ≤ 1
2000d(βL)2 and h ln2(1/h) = 1

1000(β2/α) and h ≤ 1
100(β2/α) ln2(16T/η)

. Hence h

satisfies the precondition of Proposition 26.

Finally, since L̃ ≤ L
√
ln 16T

hη ≤ 2L
√

ln(βLϵ−1
TV τ

−1T ), thus with

δ′ ≤
δ3/2α3/2p

5/2
∗ ϵ2TV τ ln

3/2 β2Lϵ−1
TV ln τ−1

α

105K5d(βL)3 ln(p−1
∗ ) ln2.51 16d(βL)2

ϵTV τδα

≤ p∗ϵ
2
TV τ

105K2T 3/2d(βL)3 ln2.51 16d(βL)2T
ϵTV τ

the precondition

K2δ′γ−1 × T/h = K2δ′ × 18βL̃
√
T

p∗ϵTV
× T/h

≤ δ′ ×
36K2βLT 3/2

√
ln(βLϵ−1

TV τ
−1T )

p∗ϵTV h

≤ η/2

= ϵTV τ/4

holds, so we are done.

Proposition 20 (Continuous chain with score estimation with L∞ error bound). Fix C ⊆ I. Let
(Z̄t)t≥0 and X̄t be the continuous Langevin diffusion with score functions ∇VC and s respectively
and both (Z̄t) and (X̄t) are initialized at ν0. Suppose supx∈Rd ||s(x)−∇VC(x)||2 ≤ ϵ2score,1 then

2dTV (X̄T , Z̄T )
2 ≤ DKL(X̄T ||Z̄T ) ≤ E

[∫ T

0

||s(Z̄t)−∇VC(Z̄t)||2dt

]
≤ ϵ2score,1T

Suppose µS has log Sobolev constant CLS and T ≥ CLS(log(2DKL(ν0||µS)) + 2 log ϵ−1
TV )

dTV (L(X̄T ), µC) ≤ dTV (X̄T , Z̄T ) + dTV (L(Z̄T ), µC) ≤ ϵscore,1

√
T/2 + ϵTV /2
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Proof. Clearly, by the assumption on s, E[
∫ T

0
||s(Z̄t)−∇VC(Z̄t)||2dt] ≤

∫ T

0
ϵ2score,1dt = ϵ2score,1T.

The first statement thus follows from Girsanov and the approximation argument in (Chen et al., 2023,
Lemma 9) and Pinsker’s inequality. Next, since µC has LSI constant CLS , with this choice of T,

DKL(L(Z̄T )||µC) ≤ DKL(ν0||µS) exp(−
T

CLS
) ≤ ϵ2TV /2

and the second statement follows from Pinsker’s inequality and triangle inequality for TV distance.

We need these propositions to go from Lemma 11 to Theorem 5
Proposition 21. Suppose µ =

∑
i∈I piµi. Fix a set C ⊆ I. If the overlap between µi, µj for i ∈ C

and j ̸∈ C is ≤ δ′ for all such i, j then

µ({x : imax(x) ∈ C}) ≥ pC(1− δ′|I|)

To remove dependency on p∗, we will use the following modified version of Proposition 21
Proposition 22. Fix C,C∗ ⊆ I s.t. C ∩ C∗ = ∅. Let I ′ = I \ C∗. If for i ∈ C, j ∈ I ′ \ C, the
overlap between µi and µj is ≤ δ′ then for imax,I′(x) = argmaxi∈I′ µi(x)

µI({x : imax,I′(x) ∈ C}) ≥ pC(1− δ′|I|)

Proof of Propositions 21 and 22. We first prove Proposition 21. For i ∈ C, j ̸∈ C

µi({x : µi(x) ≤ µj(x)}) =
∫
x:µi(x)≤µj(x)

µi(x)dx

=

∫
x:µi(x)≤µj(x)

min{µi(x), µj(x)}dx

≤
∫

min{µi(x), µj(x)}dx ≤ δ′

By union bound, for i ∈ C

µi({x | ∃j ̸∈ C : µi(x) ≤ µj(x)}) ≤ δ′|I|
Let Λ = {x : imax(x) ∈ C}. If ∀j ̸∈ C : µi(x) > µj(x) then imax(x) ∈ C. Thus Λi := {x :
µi(x) > µj(x)∀j ̸∈ C} ⊆ Λ and µi(Λi) = 1− µi({x|∃j ̸∈ C : µi(x) ≤ µj(x)} ≥ 1− δ′|I|. Since
µ(x) ≥

∑
i∈C piµi(x)

µ({x : imax(x) ∈ C}) =
∫
x∈Λ

µ(x)dx ≥
∫
x∈Λ

∑
i∈C

piµi(x)dx =
∑
i∈C

piµi(Λ)

≥
∑
i∈C

piµi(Λi) ≥
∑
i∈C

pi(1− δ′|I|) = pC(1− δ′|I|)

The proof of Proposition 22 is identical, except we will consider i ∈ C, j ∈ I ′ \ C and argue
that µi(x : µi(x) ≤ µj(x)) ≤ δ′. Then µi(x|∃j ∈ I ′ \ C : µi(x) ≤ µj(x)) ≤ δ′|I|. For i ∈ C,
Λi = {x|µi(x) > µj(x)∀j ∈ I ′ \ C} then µi(Λi) ≥ 1 − δ′|I| and Λi ⊆ {x : imax,I′(x) ∈ C}.
Finally,

µ({x : imax,I′(x) ∈ C}) ≥
∑
i∈C

piµi(Λi) ≥ pC(1− δ′|I|).

Proposition 23. Consider distributions µi for i ∈ I. Suppose µ =
∑

i∈I piµi for pi > 0 and∑
i∈I pi = 1. Suppose we have a partition C of I into C1, . . . , Cm. For x ∈ Rd, let C = Cmax(x) be

the unique part of the partition C containing imax(x) = argmaxi∈I µi(x). Let p∗ = mini∈I pi. For
x ∈ Rd, let (Xδx

t )t be a process initialized at δx. Suppose for any ϵ̃TV ∈ (0, 1/10), τ̃ ∈ (0, p∗/3),
there exists Tϵ̃TV ,τ̃ such that the following holds:

Px∼µ[dTV (L(Xx
Tϵ̃TV ,τ̃

|x), µCmax(x)) ≤ ϵ̃TV ] ≥ 1− τ̃ .
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In addition, there exists δ′ ∈ (0, ϵ̃TV ) s.t. for C ∈ {C1, . . . , Cm}
Px∼µ[Cmax(x) = C] ≥ pC(1− δ′).

Let Usample be a set of M i.i.d. samples from µ and νsample be the uniform distribution over
Usample. Let (X

νsample
t )t≥0 be the process with score estimate s initialized at νsample. If M ≥

6×102|I|2ϵ−2
TV p

−1
∗ log(Kτ−1), with probability ≥ 1− τ over Usample, let T = T ϵTV

9|I| ,min{ ϵTV
9|I|2

,p∗/3}

and µ̂ = L(Xνsample
T |Usample), then

PUsample [dTV (L(X
νsample
T |Usample), µ) ≤ ϵTV ] ≥ 1− τ

To remove the dependency on p∗ = mini∈I pi, we will use this modified version of Proposition 23.
Proposition 24. Consider distributions µi for i ∈ I. Suppose µ =

∑
i∈I piµi for pi > 0 and∑

i∈I pi = 1. For x ∈ Rd, let (Xδx
t )t be a process initialized at δx. Let I ′ = {i ∈ I : pi ≥ ϵ̃TV

|I| }
and C∗ = C \ I ′. Suppose we have a partition C of I ′ into C1, · · · , Cr. For x ∈ Rd, let Cmax(x) be
the unique part of the partition C containing imax,I′(x) = argmaxi∈I′ µi(x).

Suppose for any ϵ̃TV ∈ (0, 1/10), τ̃ ∈ (0, 1), there exists Tϵ̃TV ,τ̃ such that the following holds:

Px∼µ[dTV (L(Xδx
Tϵ̃TV ,τ̃

|x), µCmax(x)) ≤ ϵ̃TV ] ≥ 1− τ̃ .

In addition, there exists δ′ ∈ (0, ϵ̃TV ) s.t. for C ∈ {C1, . . . , Cm}
Px∼µ[Cmax,I′(x) = C] ≥ pC(1− δ′).

Let Usample be a set of M i.i.d. samples from µ and νsample be the uniform distribution over
Usample. Let (X

νsample
t )t≥0 be the process with score estimate s initialized at νsample. If M ≥

2× 104|I|3ϵ−3
TV log(|I|τ−1), then for ϵ̃TV = ϵTV

9|I| , τ̃ = ϵ̃TV

9|I| and T = Tϵ̃TV ,τ̃

PUsample [dTV (L(X
νsample
T |Usample), µ) ≤ ϵTV ] ≥ 1− τ

Proof of Proposition 23 and Proposition 24. We will prove Proposition 24. The proof of Proposi-
tion 23 is similar.

For r ∈ I ′, let Ωr = {x : Cmax(x) = Cr ∧ dTV (X
δx
T , µCmax(x)) ≤ ϵTV }. Clearly, Ωr are disjoint,

and by union bound µ(Ωr) ≥ p̃Cr := (1− δ′)pCr − τ̃ ≥ ϵ̃TV

10|I| .

Let Ur = Ωr ∩ Usample then Chernoff bound gives

P[|Ur| ≥ Mp̃Cr (1− ϵ̃TV )] ≥ 1− exp(−ϵ̃2TV p̃CrM/2) ≥ 1− exp(− ϵ̃3TV M

20|I|
)

Let E be the event ∀r : |Ur| ≥ Mp̃Cr
(1− ϵ̃TV ). By union bound, P[E ] ≥ 1− |I| exp(− ϵ̃3TV M

20|I| ).

Suppose E happens. Let U∅ = Usample \
⋃

r∈I′ Ur then

|U∅| ≤ M −M(1− ϵ̃TV )
∑
r∈I′

(pCr (1− δ′)− ϵ̃TV

|I|
)

≤ M [1− (1− ϵ̃TV )((1− δ′)(1− ϵ̃TV )− ϵ̃TV )]

≤ M(3ϵ̃TV + δ′) ≤ 4Mϵ̃TV

where the second inequality is due to
∑

r∈I′ pCr
≥ 1−

∑
r ̸∈J pCr

≥ 1− |I| × ϵ̃TV /|I|.

Note that L(Xνsample
T |Usample) = 1

M

∑
x∈Usample

L(Xδx
t |x). Thus, let µ̂ =

∑
r∈I′

|Ur|
|Usample\U∅|

µCr
and

µ̃ :=
∑

r∈I′
|Ur|
M µCr +

|U∅|
M µ̂, we can apply part 1 of Proposition 9

dTV (L(X
νsample
T |Usample), µ̃)

≤ M−1

∑
r∈I′

∑
x∈Ur

dTV (L(Xδx
T |x), µCr

) +
∑
x∈U∅

dTV (L(Xδx
T |x), µ̂)


≤ M−1(ϵ̃TV (M − |U∅|) + |U∅|)
≤ ϵ̃TV + 4ϵ̃TV ≤ 5ϵ̃TV
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Next, note that µ =
∑

r∈I′ pCr
µCr

+ pC∗µC∗ and µ̃ =
∑

r∈I′ p̄Cr
µCr

with p̄Cr
:= |Ur|

M (1 +
|U∅|

|Usample\U∅|
) = |Ur|

M−|U∅|
. We bound |p̄Cr

− pCr
|.

|Ur|
M − |U∅|

≥ |Ur|
M

≥
M(1− ϵ̃TV )((1− δ′)pCr

− ϵ̃TV

|I| )

M

≥ pCr (1− ϵ̃TV − δ′)− ϵ̃TV

|I|
≥ pCr − ϵ̃TV (2 +

1

|I|
)

We upper bound |Ur|. Since Ur’s are disjoint,

|Ur| ≤ M −
∑

s∈I′,s̸=r

|Us| ≤ M −M
∑

s∈I′,s̸=r

[
pCs

(1− ϵ̃TV − δ′)− ϵ̃TV

|I|

]
≤ M(pCr

+ 3ϵ̃TV + δ′) ≤ M(pCr
+ 4ϵ̃TV )

where the first inequality is due to the lower bound of |Us| above and the second inequality is due to
1−

∑
s∈I′:s̸=r pCs ≤ pCr + ϵ̃TV and

∑
s:s̸=r pCs(ϵ̃TV + δ′) ≤ (ϵ̃TV + δ′). Thus

|Ur|
M − |U∅|

− pCr
≤ M(pCr

+ 4ϵ̃TV )

M(1− 4ϵ̃TV )
− pCr

≤ 4ϵ̃TV (pCr
+ 1)

1− 4ϵ̃TV
≤ 16ϵ̃TV

where in the last inequality, we use the bounds ϵ̃TV ≤ 1/10 and pCr ≤ 1. thus

|p̄Cr − pCr | ≤ max{16ϵ̃TV , ϵ̃TV (2 +
1

|I|
)}

Part 2 of Proposition 9 gives

2dTV (µ, µ̃) ≤
∑
r

|p̄Cr − pCr |+ pC∗ ≤ |I|max{16ϵ̃TV , ϵ̃TV (2 +
1

|I|
)}+ |I| × ϵ̃TV /|I|

≤ (16|I|+ 1)ϵ̃TV

Thus by triangle inequality,

dTV (L(X
νsample
T |Usample), µ) ≤ dTV (L(X

νsample
T |Usample), µ̃) + dTV (µ, µ̃) ≤ 9|I|ϵ̃TV

Let M ≥ 2× 104|I|3ϵ−3
TV log(|I|τ−1) ≥ 20|I|ϵ̃−3

TV log(|I|τ−1) gives the desired result.

In the proof of Proposition 23, I ′ = I, and we will set τ̃ = min{ ϵ̃TV

|I| , p∗/3} which implies

µ(Ωr) ≥ p∗/3 and the event E happens with probability 1 − |I| exp(−p∗ ϵ̃
2
TV M
6 ). The rest of the

argument follows through, and we need to set M = 6 × 102p−1
∗ |I|2ϵ−2

TV log(|I|τ−1) to ensure E
happens with probability ≥ 1− τ.

F.1 GRADIENT ERROR BOUND FOR CONTINUOUS PROCESS

Definition 5 (Bad set for partition). Let C = {C1, . . . , Cm} be a partition of S i.e.
⋃
Cr =

S and Cr ∩ Cr′ = ∅ if r ̸= r′. For x ∈ Rd, let µmax,S(x) = maxi∈S µi(x), imax,S(x) =
argmaxi∈S µi(x)

4 and Cmax(x) is the unique part of the partition containing imax,S(x). For γ ∈
(0, 1) let

BS,C,γ = {x | ∃j ∈ S \ Cmax : µmax,S(x) ≤ γ−1µj(x)}

If these are clear from context, we omit S, C in the subscript.

Lemma 12. Fix S ⊆ I, C is a partition of S, and define Bγ = BS,C,γ as in Definition 5. If δij ≤ δ
for i, j not being in the same part of the partition then µ(Bγ) ≤ γ−1δ|I|2/2.

4If there are ties, we break ties according to the lexicographic order of I.
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Proposition 25 (Absolute gradient difference bound). Fix S ⊆ I. For i ∈ S, let p̄i = pip
−1
S and

recall that µS(x) =
∑

i∈S p̄iµi(S). Let i := imax,S(x) = argmaxi′∈S′ µi′(x). Suppose i ∈ C ⊆ S

and for all j ∈ S \ C, µi(x) ≥ γ−1µj(x).

Let GS(x) = maxi∈S ||∇Vi(x)|| then

||∇VS(x)−∇VC(x)|| ≤
4γ

p̄i
GS(x)

In Appendix H, we will state generalized versions of Definition 5, Lemma 12, and Proposition 25. For
proofs of Lemma 12 and Proposition 25, refers to proof of Lemma 16 and Proposition 32 respectively.

The following proposition shows that if the continuous Langevin process (Z̄δx
t ) initialized at x doesn’t

hit the bad set BS,C,γ , then the gradient ∇VS(Z̄t) will be close to the gradient ∇VC(Z̄t) where C is
the unique part of the partition C containing imax,S(x).

Proposition 26. Fix a set S. Suppose we have a partition C of S as in Definition 5. Suppose for
i ∈ S, µi satisfies item 1 of Lemma 5 with β ≥ 1 and ||ui − uj || ≤ L∀i, j ∈ S. Let p̄i = p−1

S pi, and
recall that µS =

∑
i∈S p̄iµi. Let (Z̄δx

t )t≥0 be the continuous Langevin diffusion with score function
∇VS initialized at δx. Fix γ ∈ (0, 1/2). Suppose for any η ∈ (0, 1), with probability 1 − η/2, the
event Ediscrete,η happens where Ediscrete,η is defined by: for all k ∈ [0, N − 1] ∩ N,

||Z̄δx
kh − uS || ≤ L̃ := L+

√
64

α
ln

16N

η

and

Z̄δx
kh ̸∈ BS,C,γ .

Let T = Nh and C = Cmax(x) ∈ C be the unique part of the partition C containing imax,S(x).

Fix η ∈ (0, 1). Suppose T ≥ 1,

h ≤ min{ 1

(β2/α) ln2(16T/η)
,

1

40(βL)2
,

1

2000d(βL)2 ln(16T/η)
},

h ln(1/h) ≤ 1
2000d(βL)2 and h ln2(1/h) ≤ 1

1000(β2/α) .

Then with probability 1− η,

∀t ∈ [0, T ] : ||∇VS(Z̄
δx
t )−∇VC(Z̄

δx
t )|| ≤ 18γβL̃

mini∈C p̄i
.

Proof. By Proposition 17, S satisfies item 2 of Assumption 2 with Agrad,0 = βL and Agrad,1 = β.

From Proposition 19, with probability ≥ 1− η/2, the following event Edrift,η/2 happens

sup
k∈[0,N−1]∩N,t∈[0,h]

||Z̄δx
kh+t − Z̄δx

kh|| ≤ 4βhL+ 2

√(
64(βh)2

α
+ 48dh

)
ln

16N

η
≤ 1/(20βL̃)

Here we use the fact that ln(16N/η) = ln(16T/(ηh) = ln(16T/η) + ln(1/h) thus

h(βL)(βL̃) ≤ h(βL)2 + 2h(βL)β

√
64

α
ln

16T

η
+ 2h(βL)β

√
64

α
ln(1/h)

≤ h(βL)2 + 16

√
h
β2

α
·

√
h(βL)2 ln

16T

η
+ 16

√
h
β2

α
·
√

h(βL)2 ln(1/h) ≤ 1

160
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and√(
64(βh)2

α
+ 48dh

)
ln

16N

η
× (βL̃)

≤ 10
√
dh(

√
ln

16T

η
+
√
ln(1/h))

(
βL+ 2β

√
64

α
ln

16T

η
+ 2β

√
64

α
ln(1/h)

)

≤ 10

(√
hd(βL)2 ln

16T

η
+
√
hd(βL)2 ln(1/h) + 48

√
hβ2

α
(ln2

16T

η
+ ln2(1/h))

)
≤ 1

80

Suppose both events Edrift,η/2 and Edrift,η/2 happen. By union bound, this occurs with probability
≥ 1− η. We have, by triangle inequality

sup
k∈[0,N−1]∩N,t∈[0,h]

||Z̄δx
kh+t − uS || ≤ L̃+ 1/(10βL̃) ≤ 1.1L̃

and for i ∈ S, by item 1 of Lemma 5 and ||ui − uS || ≤ L

||∇Vi(Z̄
δx
kh+t)|| ≤ β(||Z̄δx

kh+t − uS ||+ L) ≤ 2.2βL̃. (11)

For any i, j ∈ S and t ∈ [0, h]

log
µj(Z̄

δx
kh+t)

µi(Z̄
δx
kh+t)

− log
µj(Z̄

δx
kh)

µi(Z̄
δx
kh)

= Vj(Z̄
δx
kh)− Vj(Z̄

δx
kh+t)− (Vi(Z̄

δx
kh)− Vi(Z̄

δx
kh+t))

≤ (||∇Vi(Z̄
δx
kh)||+ ||∇Vj(Z̄

δx
kh)||)||Z̄

δx
kh+t − Z̄δx

kh||+ β||Z̄δx
kh+t − Z̄δx

kh||
2

≤ 5βL̃(20βL̃)−1 + β(20βL̃)−2 ≤ 1/2

(12)

where we use the assumption β ≥ 1.

Below we write imax instead of imax,S since S is clear from context. We first argue by induction on k

that imax(Z̄
δx
kh) ∈ C. The base case k = 0 holds trivially. Let y be a realization of Z̄δx

kh. Condition on
Z̄δx
kh = y, we argue that imax(Z̄

δx
(k+1)h) ∈ Cmax(y). Since Cmax(y) = C by the inductive hypothesis

for k, the inductive hypothesis for k + 1 follows. Apply Eq. (12) for t = h, i := imax(y) and
j ̸∈ Cmax(y) gives

log
µj(Z̄

δx
(k+1)h)

µi(Z̄
δx
(k+1)h)

≤ log
µj(Z̄

δx
kh)

µi(Z̄
δx
kh)

+ 1/2 = log
µj(y)

µmax(y)
+ 1/2 ≤ log γ + 1/2 < 0

where the penultimate inequality follows from Z̄kh ̸∈ Bγ and j ̸∈ Cmax(y), and the final inequality
from γ < 1/2. Thus, for all j ̸∈ Cmax(y), µi(Z̄

δx
(k+1)h) > µj(Z̄

δx
(k+1)h) thus imax(Z̄

δx
(k+1)h) ∈

Cmax(y). Finally, we argue for k ∈ [0, N − 1] ∩ N and t ∈ (0, h), imax(Z̄
δx
kh+t) ∈ C and Z̄δx

kh+t ̸∈
B2γ . Condition on Z̄δx

kh = y, apply Eq. (12) for t = h, i := imax(y) and j ̸∈ Cmax(y) = C gives

log
µj(Z̄

δx
kh+t)

µi(Z̄x
kh+t)

≤ log
µj(Z̄

δx
kh)

µi(Z̄
δx
kh)

+ 1/2 = log
µj(y)

µmax(y)
+ 1/2 ≤ log γ + 1/2 < log(2γ)

thus ∀j ̸∈ C : µmax(Z̄
δx
kh+t) ≥ µi(Z̄

δx
kh+t) ≥ (2γ)−1µj(Z̄

δx
kh+t). Combine this with the bound on

∇Vi(Z̄
δx
kh+t) in Eq. (11) and using Proposition 25 gives the desired result. Indeed,

||∇VS(Z̄
δx
t )−∇VC(Z̄

δx
t )|| ≤ 4× (2γ)GS(Z̄

δx
t )

p̄i
≤ 18βL̃

p̄i
.
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G ANALYSIS OF LMC WITH APPROXIMATE SCORE

In this section, we prove the main result (Corollary 1).
Definition 6. Let HL be the graph where there is an edge between i, j iff ||ui − uj || ≤ L.

Proposition 27. Suppose C is a connected component of HL then for any i, j ∈ C, ||ui−uj || ≤ KL.

Proof. For any i, j ∈ C, there exists a path i := p0, p1, · · · , pm := j s.t. ||ups − ups+1 || ≤ L. The
statement then follows from triangle inequality.

G.1 EXPECTED SCORE ERROR BOUND

Lemma 13. Suppose µi satisfies the conditions stated in Lemma 5. Let ui be as defined in Lemma 5.
Fix S,R ⊆ I, S∩R = ∅. Let p− = maxj∈R pj . Suppose for j ∈ I \ (S∪R), ||ui−uj || ≥ L∀i ∈ S,

with L ≥ 30max{
√

d
α , κ

√
d} ln(10κ). If score estimate s satisfies Eµ[||s(x)−∇V (x)||2] ≤ ϵ2score

then

EµS
[||∇V (x)−∇VS(x)||2] ≤ 3p−1

S (ϵ2score + 8β2K exp(− L2

80κ
) + 10K2p−β

2L2)

Proof. Since ∇VS(x) = p−1
S

∑
i∈S ∇Vi(x), we can write

||∇V (x)−∇VS(x)|| = (µ(x)pSµS(x))
−1

∑
i∈S,j ̸∈S

pipjµi(x)µj(x)||∇Vi(x)−∇Vj(x)||

≤
∑

i∈S,j ̸∈S:||ui−uj ||<L

pipjµi(x)µj(x)||∇Vi(x)−∇Vj(x)||
µ(x)pSµS(x)

+
∑

i∈S,j ̸∈S:||ui−uj ||≥L

pipjµi(x)µj(x)||∇Vi(x)−∇Vj(x)||
µ(x)pSµS(x)

If ||ui −uj || ≤ L then ||∇Vi(x)−∇Vj(x)|| ≤ β(||x−ui||+ ||x−uj ||) ≤ β(2||x−uj ||+L) thus
the first term can be bounded by

(pSµS(x))
−1

∑
i∈S

∑
j ̸∈S:||ui−uj ||≤L

pipjµiµj(x)

µ(x)
β(2||x− uj ||+ L)


≤ β

∑
j ̸∈S:pj≤p−

pjµj(x)(2||x− uj ||+ L)

µ(x)

where in the last inequality we use the fact that if ||ui − uj || ≤ L for some i ∈ S then j ∈ R and
pj ≤ p−. Hence, by Holder’s inequality

EµS
[||∇V (x)−∇VS(x)||2] ≤ 3(EµS

[||s(x)−∇V (x)||2] +A1 +A2) (13)

with A2 = EµS
[(
∑

i∈S,j∈T2

pipjµi(x)µj(x)
pSµS(x)µ(x) )2] and

A1 = EµS

β2

 ∑
j ̸∈S:pj≤p−

pjµj(x)(2||x− uj ||+ L)

µ(x)

2


≤ 5β2K
∑

j ̸∈S:pj≤p−

∫
µS(x)

(
pjµj(x)

µ(x)

)2

(||x− uj ||2 + L2)dx

≤ 5β2Kp−1
S

∑
j ̸∈S:pj≤p−

pj

∫
µj(x)(||x− uj ||2 + L)dx

≤ 10β2K2p−1
S p−L

2
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Now we bound the term A2. Let T2 = {j : j ̸∈ S, pj ≥ p−}.

EµS


 ∑

i∈S,j∈T2

pipjµi(x)µj(x)

pSµS(x)µ(x)

2


≤ EµS


(∑

i∈S,j∈T2
pipjµi(x)µj(x)||∇Vi(x)−∇Vj(x)||2

)(∑
i∈S,j∈T2

pipjµi(x)µj(x)
)

(pSµS(x)µ(x))2


= p−1

S

∫ ∑
i∈S,j∈T2

pipjµi(x)µj(x)||∇Vi(x)−∇Vj(x)||2

µ(x)
dx

= p−1
S

∑
i∈S,j∈T2

piEµi

[
pjµj(x)

µ(x)
||∇Vi(x)−∇Vj(x)||2

]

≤ 8p−1
S Kβ2 exp(− L2

40κ
)

where in the last inequality we use Proposition 29. Plug these inequalities back into Eq. (13), and use
Proposition 28 gives the desired results.

Proposition 28. Suppose s satisfies Definition 1 then

EµS
[||s(x)−∇V (x)||2] ≤ p−1

S ϵ2score

Proof.

pSEµS
[||s(x)−∇V (x)||2] = pS

∫
µS(x)||s(x)−∇V (x)||2dx

≤
∫

(pSµS(x) + pScµSc(x))||s(x)−∇V (x)||2dx

= Eµ[||s(x)−∇V (x)||2] ≤ ϵ2score

Proposition 29 (Pairwise gradient difference for large ||ui − uj ||). Suppose µi, µj satisfies items 2

and 3 in Lemma 5. Let ui, uj be as defined in Lemma 5 and r := ||ui − uj ||. If αr2/2+cz
17/16α+β ≥ 4D2

then

Ex∼µi

[
pjµj(x)

µ(x)
||∇Vi(x)−∇Vj(x)||2

]
≤ 8β2p−1

i r2 exp

(
− αr2 + cz
17α+ 16β

)
Consequently, suppose µi, µj are α-strongly log concave and β-smooth with β ≥ 1 and κ = β/α,

and ||ui − uj || ≥ L with L ≥ 30max{
√

d
α , κ

√
d} ln(10κ)

piEx∼µi

[
pjµj(x)

µ(x)
||∇Vi(x)−∇Vj(x)||2

]
≤ 8β2 exp

(
− L2

80κ

)
Proof. By Lemma 5, item 2

µi(x)

µj(x)
≥ exp

(
−β||x− ui||2 − z− + α||x− uj ||2 + z+

)
≥ exp

(α
2
||ui − uj ||2 − (α+ β)||x− ui||2 + cz

)
where the second inequality follows from ||ui − uj ||2/2 ≤ (||x − ui|| + ||x − uj ||)2/2 ≤ ||x −
ui||2 + ||x− uj ||2 thus

pjµj(x)

µ(x)
≤ pjµj(x)

pjµj(x) + piµi(x)
=

1

1 + piµi(x)
pjµj(x)

≤ H(||x− ui||2)
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where
H(y) =

1

1 + pi exp(
α
2 ||ui − uj ||2 − (α+ β)y + cz)

.

Let A := Ex∼µi [H(||x− ui||2)] and B := Ex∼µi [||x− ui||2H(||x− ui||2)]. Using the fact that

||∇Vi(x)−∇Vj(x)||2 ≤ β2(||x− ui||+ ||x− uj ||)2 ≤ 2β2(4||x− ui||2 + ||ui − uj ||2),
we can bound

Ex∼µi

[
pjµj(x)

µ(x)
||∇Vi(x)−∇Vj(x)||2

]
≤ 2β2(r2A+ 4B)

First we bound A. We have

Eµi
[H(||x− ui||2)] =

∫
||x−ui||≥R

H(||x− ui||2)µi(x)dx+

∫
||x−ui||<R

H(||x− ui||2)µi(x)dx

≤ Px∼µi
[||x− ui|| ≥ R] +H(R2)

≤ exp(−α(R−D)2/4) + p−1
i exp(−α

2
r2 + (α+ β)R2 − cz)

where the second inequality follows from H being an increasing function bounded above by 1, and
the third inequality follows from H(y) ≤ p−1

i exp(−αr2 + (α + β)y − cz). Set R2 = αr2/2+cz
α+β+α/16

then R ≥ 2D thus exp(−α(R −D)2/4) ≤ exp(−αR2/16) = exp(−αr2/2 + (α + β)R2 − cz).

Hence, the rhs is bounded by 2p−1
i exp(−αr2/2+cz

17α+16β ).

Now we bound B. By Holder’s inequality
Eµi

[||x− ui||2H(||x− ui||2)]

≤
√

Eµi
[||x− ui||4] ·

√
Eµi

[H2(||x− ui||2)]

≤ D2
√

Px∼µi [||x− ui|| ≥ R̃] +H2(R̃2)

≤ D2
√

exp(−α(R̃−D)2/4) + p−2
i exp(−2αr2 + 2(α+ β)R̃2 − 2cz)

where we use the sub-Gaussian moment assumption to bound Eµi
[||x − ui||4] and the same argu-

ment as in the bound for A to bound Eµi
[H2(||x− ui||2)], noting that H2(·) is also an increasing

function bounded above by 1. Set R̃2 = αr2/2+cz
α+β+α/32 then R̃ ≥ 2D thus exp(−α(R̃ − D)2/4) ≤

exp(−αR̃2/16) = exp(−2(αr2 + (α+ β)R̃2 − cz)). Hence,

B ≤ 2D2p−1
i exp(−R̃2/32) = 2D2p−1

i exp

(
−αr2/2 + cz
33α+ 32β

)
For the second statement, plug in D = 5

√
d
α ln(10κ) and cz = −d

2 ln(κ), and use the fact that
β ≥ 1, we have

αr2/2 + cz
17α+ 16β

≥ 0.45αr2

33β
≥ 80× βd

α
ln2(10κ) = 4D2

Thus by Proposition 8 and the fact that L2 ≥ 2κ, r2 exp(−αr2/2+cz
17α+16β ) ≤ r2 exp(− r2

80κ ) ≤
L2 exp(− L2

80κ )

Theorem 6. Suppose each µi is α strongly-log-concave and β-smooth for all i ∈ I with β ≥ 1.
Recall that |I| = K. Let ui = argminVi(x), p∗ = mini∈I pi, κ = β/α. Set

L0 = Θ
(
κ2K

√
d(ln(10κ) + exp(K) ln(dp−1

∗ ϵ−1
TV ))

)
= Θ̃(κ2K exp(K)

√
d).

Let S be a connected component of HL, where there is an edge between i, j if ||ui − uj || ≤ L :=
L0/(κK). Let Usample be a set of M i.i.d. samples from µS and νsample be the uniform distribution
over Usample. Let (Xνsample

nh )n∈N be the LMC with score s and step size h initialized at νsample. Set

T = Θ

α−1K2p−1
∗ ln(10p−1

∗ )

108d(βL0)
3exp(K) ln3/2(p−1

∗ ) ln5 16d(βL0)
2

ϵTV τα

p
7/2
∗ ϵ3TV α

3/2

2((3/2)K−1−1)

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Let the step size h = Θ
(

ϵ4TV

(βL0)4dT

)
= Θ̃

(
ϵ4TV

(βκ2K exp(K))4d3T

)
. Suppose s satisfies Definition 1 with

ϵscore

≤p
1/2
∗ ϵ2TV

√
h

7T

=Θ(
p
1/2
∗ ϵ4TV

(βL0)2T 3/2
)

=Θ̃

(
p
1/2
∗ ϵ4TV

(βκ2K exp(K))2d3/2T 3/2

)

=Θ

 p2∗ϵ
4
TV α

3/2

K3 ln3/2(10p−1
∗ )(βL0)2

(
p
7/2
∗ ϵ3TV α

3/2

108d(βL0)3exp(K) ln3/2(p−1
∗ ) ln5 16d(βL0)2

ϵTV τα

)3((3/2)K−1−1)


Suppose the number of samples M satisfies M ≥ 4000p−1
∗ ϵ−4

TV K
2 log(Kϵ−1

TV ) log(τ
−1), then

PUsample [dTV (L(X
νsample
T | Usample), µS) ≤ ϵTV ] ≥ 1− τ

Corollary 1. Suppose µi is α strongly-log-concave and β-smooth for all i with β ≥ 1. Let
p∗ = mini∈I pi. Suppose s satisfies Definition 1. Let Usample be a set of M i.i.d. samples
from µ and νsample be the uniform distribution over Usample. With T, h, ϵ2score as in Theorem 6 and
M ≥ 20000p−2

∗ ϵ−4
TV K

2 log(Kϵ−1
TV ) log(Kτ−1). Let (Xνsample

nh )n∈N be the LMC with score s and step
size h initialized at νsample, then

PUsample [dTV (L(X
νsample
T | Usample), µ) ≤ ϵTV ] ≥ 1− τ

Proof. This is a consequence of Theorem 6 and Proposition 31. Here we apply Proposition 31 with

M0 = 4000p−1
∗ ϵ−4

TV K
2 log(Kϵ−1

TV ) log(τ
−1).

Proof of Theorem 6. Let ui = argminx Vi(x) then ∇Vi(ui) = 0. W.l.o.g. we can assume Vi(ui) =

0. By Proposition 27, ||ui − uj || ≤ L̂ := KL = L0/κ for i, j ∈ S. By Proposition 17, with
uS = p−1

S

∑
i∈S piui, S satisfies Assumption 2 with Agrad,1 = β, Agrad,0 = βL̂, AHess,1 = 2β2 and

AHess,0 = 2β2L̂2.

We first show the statement for M = M0 := 600p−1
∗ ϵ−2

TV K
2(log(Kτ−1)), where we set τ = ϵTV ,

then use Proposition 30 to obtain the result for M ≥ 4000p−1
∗ ϵ−4

TV K
4 log(Kϵ−1

TV )) log(τ
−1) ≥

6M0ϵ
−2
TV log(ϵ−1

sample ).

From this point onward set τ = ϵTV and M = M0 as defined above. Let (XµS

nh )n∈N be the LMC
with score estimate s and step size h initialized at µS and (X̄µS

t )t≥0 be the continuous Langevin
diffusion with score ∇VS initialized at µS . Let QT and Q̄T denote the distribution of the paths
(XµS

nh )n∈[0,T/h]∩N and (X̄µS

t )t∈[0,T ]. Note that L ≥ 50κ
√
d ln(10κ) ≥ 10D, so Lemma 15 gives

2dTV (QT , Q̄T )
2 ≤ 2h2Tβ6L̂6 + 2hTdβ4L̂4 + Tϵ2score,0

with ϵ2score,0 := 3p−1
S (ϵ2score+8β2K exp(− L2

80κ )). Let ϵ2score,1 =
ϵ2TV

8T and B = {z : ||s(z)−VS(z)|| >

ϵscore,1} then by Markov’s inequality µ(B) ≤ ϵ2score,0

ϵ2score,1
=

8ϵ2score,0T

ϵ2TV
.

Let η = ϵTV τ. Suppose Tϵ2score,0 ≤ η2/100 and h ≤ (100)−1 min{ η

(βL̂)3
√
T
, η2

(βL̂)4dT
} then

dTV (QT , Q̄T ) ≤ η/4, thus

P[∃n ∈ [0, N − 1] ∩ N : XµS

nh ∈ B] ≤ P[∃n ∈ [0, N − 1] ∩ N : X̄µS

nh ∈ B] + dTV (QT , Q̄T )

≤ A1 :=
T

h
×

8Tϵ2score,0

ϵ2TV

+ ϵTV τ/4
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Since EUsample [νsample] = µS , L(XµS

nh ) = EUsample [L(X
νsample

nh |Usample)] and

EUsample [PFn
[∃n ∈ [0, N − 1] ∩ N : X

νsample

nh ∈ B]] = P[∃n ∈ [0, N − 1] ∩ N : XµS

nh ∈ B] ≤ A1

By Markov’s inequality, let E0 be the event PFn [∃n ∈ [0, N − 1] ∩ N : X
νsample

nh ∈ B] ≤ 2A1/τ then

PUsample [E0 occurs] ≥ 1− τ/2

Suppose E0 occurs. Let ν := νsample. Let (Zνsample

nh )n∈N be the LMC initialized at ν with score estimate
s∞ defined by

s∞(z) =

{
s(z) if z ̸∈ B

∇VS(z) if x ∈ B

then supz∈Rd ||s∞(z)−∇VS(z)||2 ≤ ϵ2score,1.

Note that if Xnh ̸∈ B∀n ∈ [0, N − 1] ∩ N then Z
νsample

nh = X
νsample

nh ∀n ∈ [0, N ] ∩ N thus conditioned
on E0 occurs, dTV (Z

νsample

Nh , X
νsample

Nh ) ≤ 2A1/τ. Let (Z̄νsample
t )t be the continuous Langevin with score

∇VS initialized at ν. We want to bound dTV (Z
νsample

Nh , Z̄
νsample
T ). By sub-Gaussian concentration of

µi and union bound over M samples, we have with probability ≥ 1− τ/3, the following event E1
happens:

sup
x∼ν

max
i∈S

||x− ui|| ≤ L̃ := 2L̂+

√
4

α
ln(

8M

τ
) ≤ 3L̂

since for β ≥ 1,
√

4
α3 ln(

8M
τ ) ≤ 3κ3/2

√
ln(ϵ−1

TV ) ≤ L̂.

Let E2 be the event
dTV (L(Z̄

νsample
T |Usample), µS) ≤ ϵTV /4

By Lemma 11, if M ≥ 605(p∗ϵ
2
TV )

−1K2 log(Kτ−1) then PU sample [E2] ≥ 1− τ/6.

Suppose E0, E1, E2 all hold; by union bound, this happens with probability ≥ 1− τ. By Lemma 14,
for

L0 = L̂+ κL̃+

√
d

α
ln((2αh)−1) +

√
(16/α+ 200dh) ln(

8T

h
)

we have

dTV (Z
νsample

Nh , Z̄
νsample
T )2 ≲ h2Tβ6L6

0 + hTdβ4L4
0 + ϵ2score,1T/2 ≤ ϵ2TV /64

if 100h ≤ ϵ2TV

(βL0)4dT
≤ ϵTV

(βL0)3
√
T
.

By triangle inequality

dTV (L(X
νsample

nh |Usample), µS)

≤ dTV (X
νsample

nh , Z
νsample

Nh ) + dTV (Z
νsample

Nh , Z̄
νsample
T ) + dTV (L(Z̄

νsample
T |Usample), µS)

≤
16T 2ϵ2score,0

hϵ2TV τ
+ ϵTV /2 + ϵTV /8 + ϵTV /4 ≤ ϵTV

if
16T 2ϵ2score,0

hϵ2TV τ
≤ ϵTV /8.

Our choice of parameters satisfies all the conditions mentioned above. Since h ≤ 1/(100βd), β ≥ 1

and L̂ ≥
√

d
α ln(10κ) ≥

√
d
α ln(α−1). we can bound L0 by

L0 ≤ 2L̂κ+

√
d

α
ln((2αh)−1) +

√
17

α
ln(

8T

h
)

≤ 3L̂κ+

√
17

α
ln(8T ) + 2 ln(1/h)

√
d+ 1

α

= 3L̂κ+ exp(K)
√
κd ln(p−1

∗ dϵ−1
TV L0κK)
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where we use the bound on T and h to bound ln(T ) and ln(1/h).

Set L = 50κ
√
d ln(10κ) +

√
κd exp(K) ln(dκp−1

∗ ϵ−1
TV ). Since 3κL̂ ≤ L0 ≤ 5κL̂,

L0 = Θ(κ2
√
d(ln(10κ) + exp(K) ln(dp−1

∗ ϵ−1
TV ))).

We need to check that h ≲ ϵ4TV

(βL0)4dT
but this is true due to the choice of h. Next, we need to check

16T 2ϵ2score,0

hϵ2TV τ
≤ ϵTV /8 and T 1/2ϵscore,0 ≤ η/10 = ϵ2TV /10. We note that the former implies the latter,

and the latter is true since

ϵscore ≤
p
1/2
S ϵ2TV

√
h

7T
and

p
−1/2
S β

√
K exp(− L2

160κ
)T ≤

√
hϵ2TV /20,

which in turn is implied by

L/
√
κ ≥ exp(K) ln(dκp−1

∗ ϵ−1
TV ) ≥ 5 ln(Th−1βKp−1

∗ ϵ−1
TV )

which is true for our choice of L, h and T.

Lemma 14. Fix S ⊆ I. For ui and D as defined in Lemma 5, suppose ||ui − uj || ≤ L∀i, j ∈ S

with L ≥ 10D. Let ν0 be a distribution s.t. supx∼ν0
maxi∈S ||x − ui|| ≤ L̃. Let (Z̄ν0

t )t≥0 the
continuous Langevin with score ∇VS initialized at ν0. Let (Zν0

nh)n∈N be the LMC with step size
h and score s∞ s.t. supx∈Rd ||s(x) − ∇VS(x)|| ≤ ϵ2score,1. Suppose h ≤ 1/(30β) then for D̃ :=

6L+O

(
κL̃+

√
d
α ln((2αh)−1)

)
+
√

( 16α + 200dh) ln(8N), we have

dTV (Z
ν0

T , Z̄ν0

T )2 ≤ h2Tβ6D̃6 + hTdβ4D̃4 + ϵ2score,1T/2

Proof. To simplify notations, we omit the superscript ν0 and write Znh and Z̄t in the proof instead
of Zν0

nh and Z̄ν0
t . Let ν̄h be the distribution of Z̄h. First, we bound R2(ν̄h||µS). By Lemma 10,

R2(ν̄h||µS) ≤ O(α−1(βL̃)2 + d ln((2αh)−1)

By Proposition 17, let uS = p−1
S

∑
i∈S piui then µS satisfies Assumption 2 so

PµS
[||x− uS || ≥ 1.1L+ t] ≤ exp(−αt2/4).

Let N = T/h. By the change of measure argument in (Chewi et al., 2021, Lemma 24), with
probability ≥ 1− η/2

max
k∈[1,N−1]∩N

||Z̄kh − uS || ≤ 1.1L+

√
2

α
R2(ν̄h||µS) +

√
4

α
ln

8N

η

≤ 1.1L+ κL̃+
√
α−1d ln((2αh)−1) +

√
4

α
ln

8N

η
.

By Proposition 19, this implies that with probability ≥ 1− η, for γ = 16
α + 200dh

sup
t∈[0,T ]

||Z̄t − uS || ≤ D̃ +
√
γ ln(1/η)

with D̃ := 6L+O(κL̃+
√
α−1d ln((2αh)−1)) +

√
γ ln(8N). By Proposition 2, this implies, for

p = O(1)

E[||Z̄t − uS ||p] ≲ (D̃ +
√
γ)p ≲ D̃p

where we use the fact that
√
γ ≤

√
d+16
α ≤ D̃/50.
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By Proposition 18, for t ∈ [kh, (k + 1)h],

E[||∇V (Z̄kh)−∇V (Z̄t)||2]

≲
√

E[A4
Hess,1(||Z̄kh − uS ||8 + ||Z̄t − uS ||8) +A4

Hess,0]

×

√
(t− kh)3

∫ t

kh

(A4
grad,1E[||Z̄s − uS ||4] +A4

grad,0)ds+ d2(t− kh)2

≲ (A2
Hess,1D̃

4 +A2
Hess,0)(h

2(A2
grad,1D̃

2 +A2
grad,0) + dh)

≲ β4(D̃4 + L4)(h2β2(D̃2 + L2) + dh)

≲ β4D̃4(h2β2D̃2 + dh)

where in the second inequality, we use the moment bounds for ||Z̄s − uS ||, in the third inequality,
we use Proposition 17 to substitute in the parameters AHess,1, AHess,0, Agrad,1, Agrad,0, and in the final
bound, we use D̃ ≥ 6L. Then by Girsanov’s theorem (see Lemma 3)

2dTV (Z
ν0

T , Z̄ν0

T )2

≤ E[
∫ T

0

||s(Z̄⌊t/h⌋h)−∇V (Z̄t)||2dt]

≲ ϵ2score,1T + E[
∫ T

0

||∇V (Z̄⌊t/h⌋h)−∇V (Z̄t)||2dt]

≲ ϵ2score,1T + h2Tβ6D̃6 + hTdβ4D̃4.

Lemma 15. Suppose the score estimate s satisfies Definition 1. Let ui and D be defined as in
Lemma 5. Let S be a connected component of HL with L ≥ 10D. Let (XµS

nh )n∈N be the LMC with
score estimate s and step size h initialized at µS and (X̄µS

t )t≥0 be the continuous Langevin diffusion
with score ∇VS initialized at µS . Let T = Nh, QT and Q̄T denote the distribution of the paths of
(XµS

nh )n∈[0,T/h]∩N and (X̄µS

t )t∈[0,T ]. Then for L̂ = LK,

2dTV (Q̄T , QT )
2 ≤ E

[∫ T

0

||s(X̄µS

⌊t/h⌋h)−∇VS(X̄
µS

t )||2dt

]
≲ 2h2Tβ6L̂6 + 2hTdβ4L̂4 + Tϵ2score,0

with ϵ2score,0 := 3p−1
S (ϵ2score + β2L28K3 exp(− L2

40κ )).

Proof. By Proposition 27, ||ui − uj || ≤ L̂ for i, j ∈ S and ||ui − uj || > L for i ∈ S, j ̸∈ S. Note
that since µS is the stationary distribution of the continuous Langevin diffusion with score ∇VS , the
law of X̄µS

t is µS at all time t. Thus, for t ∈ [kh, (k + 1)h]

E[||s(X̄µS

kh )−∇VS(X̄
µS

t )||2]
≤ 2(E[||s(X̄µS

kh )−∇VS(X̄
µS

kh )||
2] + E[||∇VS(X̄

µS

kh )−∇VS(X̄
µS

t )||2]
≤ 2(ϵ2score,0 + β4L̂4(h2β2L̂2 + dh))

(14)

where in the second inequality, we use Lemma 13 with R = ∅ to bound the first term and Proposi-
tion 19 and Proposition 2 to bound the second term. The argument is similar to the one in the proof
of Lemma 14. Let uS = p−1

S

∑
i∈S piui then ||ui − uS || ≤ L∀i ∈ S. For D̃ = D + L̂ ≤ 1.1L̂ and

γ = 4
α , since the law of X̄µS

t is µS , by Proposition 17

P[||X̄µS

t − uS || ≥ D̃ +
√
γ ln(1/η)] ≤ η
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thus by Proposition 2 and D̃ ≥
√
100/α, for p = O(1), E[||X̄µS

t −uS ||p] ≲ D̃p. By Proposition 19,

E[||∇VS(X̄
µS

kh )−∇VS(X̄
µS

t )||2] ≤ β4(D̃4 + L̂4)(h2β2(D̃2 + L̂2) + dh)

≲ β4L̂4(h2β2L̂2 + dh)

The statement follows from integrating Eq. (14) from 0 to T and Girsanov’s theorem (see Lemma 3).

This proposition is used in Theorem 6 to go from a set of samples of fixed size M0 to a set of samples
with size M that can be arbitrarily large.

Proposition 30. Fix distributions µsample, µ. For a set Usample ⊆ Rd, let (Xνsample
t )t be a process

initialized at νsample, the uniform distribution over Usample. Suppose there exists T > 0, ϵTV ∈ (0, 1)
s.t. with probability ≥ 1− ϵTV /10 over the choice of Usample consisting of M0 i.i.d. samples from
µsample, dTV (L(X

νsample
T |Usample), µ) ≤ ϵTV /10. Then, for M ≥ 6ϵ−2

TV M0 log(τ
−1), with probability

≥ 1− τ over the choice of Usample consisting of M i.i.d. samples from µsample,

dTV (L(X
νsample
T |Usample), µ) ≤ ϵTV /2.

Proof. Let Usample be a set of M i.i.d. samples x(1), · · · , x(M) from µsample. For r ∈
{1, · · · , ⌊M/M0⌋} Let Ur = {x(i) : (r − 1)M0 + 1 ≤ rM0} and U∅ = Usample \

⋃
r Ur. Let

νr be the uniform distribution over Ur and ν∅ be the uniform distribution over U∅. For m = ⌊M/M0⌋

ν =
M0

M

∑
r

νr +
M −M0m

M
ν∅

Let Ω be the set of U ∈ (Rd)M0 s.t. dTV (X
ν
T , µ) ≤ ϵTV /2 with ν being the uniform distribution

over U.

Similar to the proof of Proposition 23, if we choose M/M0 ≥ 6ϵ−2
TV log(τ−1), then with probability

≥ 1− τ, |{r : Ur ∈ Ω}| ≥ m(1− ϵTV /5). By Proposition 9,

dTV (L(X
νsample
T |Usample), µ) ≤

∑
r:Ur∈Ω

M0

M
dTV (L(Xνr

T ), µ) +
M −M0m(1− ϵTV /5)

M

≤ ϵTV /10 + ϵ2TV /6 + ϵTV /5 ≤ ϵTV /2

where in the penultimate inequality, we use the definition of Ω, M0m ≤ M and M −m0M ≤ M0 ≤
ϵ2TV M/6.

The following proposition combined with Theorem 6 implies Corollary 1.

Proposition 31. For a set Usample ⊆ Rd, let (Xνsample
t )t be a process initialized at the uniform

distribution over Usample. Consider distributions µC for C ∈ C. Let µ =
∑

pCµC with pC > 0
and

∑
pC = 1. Let p∗ = min pC . Suppose there exists T > 0, ϵTV ∈ (0, 1) s.t. with prob-

ability ≥ 1 − τ
10|C| over the choice of UC,sample consisting of M ≥ M0 i.i.d. samples from

µC , dTV (L(X
νC,sample
T |UC,sample), µC) ≤ ϵTV /10, where νC,sample is the uniform distribution over

UC,sample. Then, for M ≥ min p−1
∗ {M0, 20ϵ

−2
TV log(|C|τ−1)}, with probability ≥ 1 − τ over the

choice of Usample consisting of M i.i.d. samples from µ,

dTV (L(X
νsample
T |Usample), µ) ≤ ϵTV .

Proof of Proposition 31. Since µ =
∑

C pCµC , a sample x(i) from µ can be drawn by first sampling
C(i) ∈ C from the distribution defined by the weights {pC}C∈C , then sample from µC(i) . Consider
M i.i.d. samples x(i) using this procedure, and let UC = {x(i) : C(i) = C}. Since M ≥ 20p−1

∗ ϵ−2
TV ,

and E[|UC |] = pCM, by Chernoff’s inequality and union bound, with probability 1− τ/2 over the
randomness of Usample, the following event E1 holds

∀C : | |UC |
M

− pC | ≤ pCϵTV /2
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Suppose E1 holds. Then, |UC |
M ≥ pC(1− ϵTV /2)M ≥ M0. Thus by union bound, with probability

1 − ϵTV /10 over the randomness of Usample, the following event E2 holds with νC be the uniform
distribution over UC

∀C : dTV (L(XνC

T |UC), µC) ≤ ϵTV /10

then let µ̃ =
∑

C
|UC |
M µC , by part 1 of Proposition 9,

dTV (L(X
νsample
T |Usample), µ̃) = dTV

(∑
C

|UC |
M

L(XνC

T |UC), µ̃

)
≤
∑
C

|UC |
M

ϵTV /10 = ϵTV /10

and dTV (µ̃, µ) ≤
∑

C | |UC |
M − pC | ≤ ϵTV /2. Condition on E1 and E2 both hold, which happens with

probability 1− τ, we have

dTV (L(X
νsample
T |Usample), µ) ≤ dTV (L(X

νsample
T |Usample), µ̃) + dTV (µ̃, µ)

≤ ϵTV /10 + ϵTV /2 ≤ ϵTV

H REMOVING THE DEPENDENCY ON p∗ = mini∈I pi.

In this section, we remove the dependency on the minimum weight p∗ = mini∈I pi. The idea is
to consider only the components µi with significant weight pi i.e. pi ≥ pthreshold for some chosen
threshold pthreshold. In Lemma 17, Theorems 7 and 8, and Corollary 2, we prove analogs of Lemma 11,
Theorems 5 and 6, and Corollary 1 respectively with no dependency on p∗.

We will need modified versions of Lemma 12 and Proposition 25, which are Lemma 16 and Proposi-
tion 32 respectively.

Definition 7 (Bad set for partition (modified)). Fix S ⊂ I, C∗ ⊆ S, S′ = S \ C∗. Suppose we
have a partition C = {C1, . . . , Cm} of S′. For x ∈ Rd, let imax,S′(x) = argmaxi∈S′ µi(x) and
µmax,S′(x) = µimax,S′ (x) = maxi∈S′ µi(x) as in Definition 4. Let Cmax,S′(x) is the unique part of
the partition C containing imax,S′(x). For γ ∈ (0, 1), γ∗ > 0 let

B̃S,C∗,C,γ,γ∗

= {x|∃j ∈ S′ \ Cmax,S′(x) : µmax,S′(x) ≤ γ−1µj(x) or ∃j ∈ C∗ : µmax,S′(x) ≤ γ−1
∗ µj(x)}

Note that if C∗ = ∅ then B̃S,C∗,C,γ,γ∗ = BS,C,γ as defined in Definition 5. If they are clear from
context, we omit S,C∗, C in the subscript.

Lemma 16 (Bad set bound (generalized version of Lemma 12)). Fix S ⊆ I, C∗ ⊆ C, C be a partition
of S′ = S \ C∗. Let pS =

∑
i∈S pi and p̄i = pip

−1
S . Recall that µS =

∑
i∈S p̄iµi. For γ, δ ∈ (0, 1),

define B̃γ = B̃S,C∗,C,γ,γ∗ as in Definition 7 with γ−1
∗ = γ−1δK/8 . Suppose

1. If i ∈ C∗ then p̄i ≤ δ/8

2. δij ≤ δ for i, j which are in S′ and are not in the same part of the partition C of S′

then µS(B̃γ) ≤ γ−1δK2.

Proof of Lemmas 12 and 16. We prove Lemma 16, then Lemma 12 follows immediately by setting
C∗ = ∅ in Definition 7.

Consider x ∈ B̃γ s.t. imax,S′(x) = i. For j ∈ S′, let C(j) denote the unique part of the partition
C containing j. Let k = imax 2,S′(x) = argmaxj∈S′\C(i) µj(x). If j ∈ C(i) then by definition of
imax,S′(x) = i, µj(x) ≤ µi(x). If j ∈ S′ \ C(i), then by definition of k, µj(x) ≤ µk(x). Let

B′
γ = {x | ∃j ∈ S′ \ Cmax,S′(x) : µmax,S′(x) ≤ γ−1µj(x)}

and
B∗ = {x | ∃j ∈ C∗ : µmax,S′ ≤ γ−1

∗ µj(x)}.
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Let p̄j = pjp
−1
S for j ∈ S. If x ∈ B′

γ , µi(x) ≤ γ−1µk(x), and for

µS(x) =
∑

p̄jµj(x) =
∑

j∈C(i)

pjµj(x) +
∑

j∈S′\C(i)

p̄jµj(x) +
∑
j∈C∗

p̄jµj(x)

≤
∑

j∈C(i)

p̄jµi(x) +
∑

j∈S′\C(i)

p̄jµk(x) +
∑
j∈C∗

p̄jµj(x)

≤
∑
j∈S′

p̄jγ
−1µk(x) +

∑
j∈C∗

p̄jµj(x)

≤ γ−1µk(x) +
∑
j∈C∗

p̄jµj(x)

Let p̄C∗ :=
∑

j∈C∗
p̄j then p̄C∗ ≤ K × δ/8 ≤ γ−1δK/8 since γ−1 > 1. For i, k ∈ S′, let Ωi,k be

the set of x s.t. imax,S′(x) = i and imax 2,S′(x) = k. Since {Ωi,k|i, k ∈ S′, C(i) ̸= C(k)} forms a
partition of Rd, we have

µS(B
′
γ) =

∑
i,k∈S′:C(i) ̸=C(k)

∫
x∈Bγ∩Ωi,k

µS(x)dx

≤
∑

i,k:C(i) ̸=C(k)

∫
x∈Bγ∩Ωi,k

(γ−1µk(x) +
∑
j∈C∗

p̄jµj(x))dx

= γ−1
∑

i<k:C(i)̸=C(k)

(∫
x∈Bγ∩Ωi,k

µk(x)dx+

∫
x∈Bγ∩Ωk,i

µi(x)dx

)

+
∑
j∈C∗

p̄j

∑
i,k

µj(Bγ ∩ Ωi,k)


= γ−1

∑
i<k:C(i)̸=C(k)

∫
x∈Bγ∩(Ωi,k∪Ωk,i)

min{µi(x), µk(x)}dx+
∑
j∈C∗

p̄j

≤ γ−1
∑

i<k:C(i)̸=C(k)

δ + γ−1δK/8

≤ γ−1δK2/2 + γ−1δK/8

where in the penultimate inequality, we use the fact that δik ≤ δ for i, k which are not in C∗ and not
in the same part of the partition, and pj ≤ δK/2 ≤ γ−1δK/2 for j ∈ C∗.

For i ∈ C∗, let Ω∗
i be the set of x s.t. imax,C∗ = i. If x ∈ Ω∗

i ∩B∗ then

µS(x) =
∑
j∈C∗

p̄jµj(x) +
∑
j∈S′

p̄jµj(x) ≤
∑
j∈C∗

p̄jµi(x) +
∑
j∈S′

p̄jγ
−1
∗ µi(x) = µi(x)(p̄C∗ + γ−1

∗ ).

Thus

µS(B∗) =
∑
i∈C∗

∫
x∈B∗∩Ω∗

i

µS(x)dx

≤
∑
i∈C∗

∫
x∈B∗∩Ω∗

i

(p̄C∗ + γ−1
∗ )µi(x)dx

≤ (p̄C∗ + γ−1
∗ )

∑
i∈C∗

µi(B∗ ∩ Ω∗
i ) ≤ (γ−1δK/8 + γ−1δK/8)K

where in the last inequality we use the definition of γ∗ and the fact that µi(B∗ ∩ Ω∗
i ) ≤ 1. Thus by

union bound
µS(B̃S,C∗,C,γ,γ∗) ≤ µS(B

′
γ) + µS(B∗) ≤ γ−1δK2.
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Proposition 32 (Absolute gradient difference bound (generalized version of Proposition 25)). Fix
S ⊆ I, C∗ ⊆ S. Let S′ = S \C∗. For i ∈ S, let p̄i = pip

−1
S and recall that µS(x) =

∑
i∈S p̄iµi(S).

Suppose p̄j ≤ δ
8 for j ∈ C∗. Let i := imax,S′(x) = argmaxi′∈S′ µi′(x). Suppose i ∈ C ⊆ S′ and

1. µi(x) ≥ γ−1µj(x)∀j ∈ S′ \ C

2. µi(x) ≥ γ−1
∗ µj(x)∀j ∈ C∗ where γ−1

∗ = γ−1δK/8.

Let GS(x) = maxi∈S ||∇Vi(x)|| then

||∇VS(x)−∇VC(x)|| ≤
4γ

p̄i
GS(x)

Proof of Proposition 32 and Proposition 25. We prove Proposition 32, then Proposition 25 follows
immediately by setting C∗ = ∅. For C ′ ⊆ S, let p̄C′ =

∑
i∈C′ p̄i. By Proposition 6, we can write

∇VS(x)−∇VC(x) =
p̄CµC(x)∇VC(x) +

∑
j∈S\C p̄jµj(x)∇Vj(x)

µS(x)
−∇VC(x)

=
p̄CµC(x)∇VC(x) +

∑
j∈S\C p̄jµj(x)∇Vj(x)

p̄CµC(x) +
∑

j∈S\C p̄jµj(x)
−∇VC(x)

=
∑

j∈S\C

p̄jµj(x)

p̄CµC(x) +
∑

j∈S\C p̄jµj(x)
(∇Vj(x)−∇VC(x))

For j ∈ S′ \ C,
p̄CµC(x) +

∑
j′∈S\C p̄jµj(x)

p̄jµj(x)
≥ p̄iµi(x)

p̄jµj(x)
≥ p̄i

p̄j
γ−1

and for j ∈ C∗, using the upper bound on pj and the assumption µi(x) ≥ γ−1
∗ µj(x)

p̄CµC(x) +
∑

j′∈S\C p̄j′µj(x)

p̄jµj(x)
≥ p̄iµi(x)

p̄jµj(x)
≥ p̄iγ

−1
∗

p̄j
≥ p̄iKγ−1

Next, by Proposition 6, ||∇VC(x)|| ≤ GS(x) thus,

||∇VS(x)−∇VC(x)|| ≤ 2GS(x)γ

 ∑
j∈S\(C∪C∗)

p̄j
p̄i

+
∑
j∈C∗

1

Kp̄i

 ≤ 4γGS(x)

p̄i

The following is a modified version of Lemma 11.
Lemma 17. Fix ϵTV , τ ∈ (0, 1/2), δ ∈ (0, 1]. Fix S ⊆ I. Let p̄i = pip

−1
S and recall that µS =∑

i∈S p̄iµi. Suppose for i ∈ S, µi are α-strongly log-concave and β-smooth with β ≥ 1.Let

ui = argminx Vi(x) and D ≥ 5
√

d
α be as defined in Lemma 5. Suppose there exists L ≥ 10D such

that for any i, j ∈ S, ||ui − uj || ≤ L. Fix p∗ > 0. Let S′ = {i ∈ S : p̄i ≥ p∗} and C∗ = S \ S′. Let
Gδ := Gδ(S′, E) be the graph on S′ with an edge between i, j iff δij ≤ δ. Let

T =
2Cp∗,K

δα

(
ln(

β2L

α
) + ln ln τ−1 + 2 ln ϵ̃−1

TV

)
.

and

δ′ =
δ3/2α3/2p

5/2
∗ ϵ2TV τ

105K5d(βL)3 ln3/2(p−1
∗ ) ln3/2

β2Lϵ−1
TV ln τ−1

α ln2.51 16d(βL)2

ϵTV τδα

.

Suppose maxi∈C∗ p̄i ≤ δ′/8 and for all i, j in S′ that are not in the same connected component of
Gδ , δij ≤ δ′.

For x ∈ Rd, let (X̄δx
t )t≥0 denote the continuous Langevin diffusion with score ∇VS initialized at δx.

Let Cmax,S′ be the unique connected component of Gδ containing imax,S′(x) = argmaxi′∈S′ µi′(x).

Px∼µS
[dTV (L(X̄δx

T |x), µCmax,S′ (x)) ≤ ϵTV ] ≥ 1− τ
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Proof. The proof is same as Lemma 11, but we replace Lemma 12 with Lemma 16, Proposition 25
with Proposition 32 and Proposition 21 with Proposition 22. Note that we use γ = p∗ϵTV

100L̃
√
T

and B̃γ as defined in Lemma 16 to ensure that for y ̸∈ B̃γ , ||∇VCmax,S′ (y)(y) − ∇VS(y)|| ≤
4γ(βL

√
ln(βLϵ−1

TV τ−1T ))

p∗
≤ ϵTV

10
√
T

so that we can bound the total variation distance between the
continuous Langevin diffusions with scores ∇VS and ∇VCmax,S′ (x) by ϵTV /10.

Theorem 7. Fix ϵTV , τ ∈ (0, 1/2). Fix S ⊆ I. Suppose for i ∈ S, µi are α-strongly log-concave and

β-smooth with β ≥ 1. Let ui = argminx Vi(x) and D ≥ 5
√

d
α be as defined in Lemma 5. Suppose

there exists L ≥ 10D such that for any i, j ∈ S, ||ui − uj || ≤ L. Let Usample be a set of M i.i.d. sam-
ples from µS and νsample be the uniform distribution over Usample. Let (X̄νsample

t )t≥0 be the continuous
Langevin diffusion with score µS initialized at νsample. For M ≥ 105(ϵ3TV )

−1K3 log(Kτ−1) and

T ≥ Θ

α−1

108d(βL)3exp(K) ln5 16d(βL)2

ϵTV α

ϵ3TV α
3/2

exp(20(K+1))


then
PUsample [dTV (L(X̄

νsample
t |Usample), µS) ≤ ϵTV ] ≥ 1− τ

Proof. For i ∈ S, let p̄i = pip
−1
S . As in Lemma 17, fix p0,∗ = 1

K and let S′
0 = {i ∈ S : p̄i ≥

p0,∗}, C0,∗ = S \ S′
0 then S′

0 ̸= ∅, since there must be at least one i s.t. p̄i ≥ 1
K . By the same

argument as in proof of Theorem 5, we take the sequence 1 = δ0,0 > δ0,1 > · · · > δ0,K where we
use the notation δ0,s to emphasizes its dependency on p0,∗. If maxi∈C0,∗ p̄i <

δ0,K
8 then Lemma 17

applies. More precisely, we will use Proposition 24 and the inductive argument on δ0,s as in
the proof of Theorem 5 to show that the continuous Langevin diffusion initialized at M samples
will converge to µS after a suitable time T defined by δ0,K−1. If this is not the case, then we let
p1,∗ =

δ0,K
8 and S′

1 = {i ∈ S : pi ≥ p1,∗} then |S′
1| ≥ |S′

0| + 1. In general, we inductively set
ps+1,∗ =

δs,K
8 . If maxi∈Cs,∗ pi ≤ ps+1,∗ for some s ≤ K − 2 then we are done, else CK−1,∗ = ∅

thus mini∈S p̄i ≥ pK−1,∗ and we can use Theorem 5. In all cases, for p∗ = pK−1,∗, the continuous
Langevin diffusion initialized at samples converges to µS after time

T ≥ Θ
(
α−1K2p−1

∗ ln(10p−1
∗ )δ−1

K−1,K−1

)
= Θ(α−1Ξ− exp(20(K+1)))

To justify the above equation, we lower bound p∗ = pK−1,∗ and δK−1,K−1.

Let Γ̃s =
p7/2
s,∗ ϵ3TV α3/2

8000d(βL)3exp(K) ln3/2(p−1
s,∗) ln

5 16d(βL)2

ϵTV α

≥ p3.51
s,∗ ϵ3TV α3/2

105d(βL)3exp(K) ln5 16d(βL)2

ϵTV α

then

δs,K−1 > δs,K ≥ Γ̃2((3/2)K+1−1)
s ≥ p

7.02((3/2)K+1−1)
s,∗ Ξ

with Ξ = (
ϵ3TV α3/2

105d(βL)3exp(K) ln5 16d(βL)2

ϵTV α

)2((3/2)
K+1−1) and we can prove by induction on s that

ps,∗ ≥ K− exp(10(s+1))Ξexp(2(s+1)) ≥ Ξexp(4.9(s+1)),

thus

δ−1
K−1,K−1 ≤ (p

7.02((3/2)K+1−1)
K−1,∗ Ξ)−1

≤ (Ξexp(4.9(K+1)))−7.02((3/2)K+1−1) · Ξ−1

≤ Ξ− exp(12(K+1))
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Theorem 8. Suppose each µi is α strongly-log-concave and β-smooth for all i with β ≥ 1. Let
ui = argminVi(x). Set

L0 = Θ
(
κ2K

√
d(ln(10κ) + exp(60K) ln(dϵ−1

TV ))
)
.

Let S be a connected component of HL, where there is an edge between i, j if ||ui − uj || ≤ L :=
L0/(κK). Let Usample be a set of M i.i.d. samples from µS and νsample be the uniform distribution
over Usample. Let (Xνsample

nh )n∈N be the LMC with score s and step size h initialized at νsample. Set

T = Θ

α−1

108d(βL0)
3exp(K) ln5 16d(βL0)

2

ϵTV α

ϵ3TV α
3/2

exp(20(K+1))


Let the step size h = Θ(
ϵ4TV

(βL0)4dT
). Suppose pS ≥ ϵTV

K and s satisfies Definition 1

with ϵscore ≤ ϵ
5/2
TV

√
h

7
√
KT

≤ p
1/2
S ϵ2TV

√
h

7T . Suppose the number of samples M satisfies M ≥
107ϵ−5

TV K
3 log(Kϵ−1

TV ) log(τ
−1), then

PUsample [dTV (L(X
νsample
T | Usample), µS) ≤ ϵTV ] ≥ 1− τ

Proof. The proof is identical to proof of Theorem 6, but we plug in T from Theorem 7 instead of
Theorem 5. With the same setup as in proof of Theorem 6, ϵ2score,0 = 3p−1

S (ϵ2score+8β2K exp(− L2

80κ )),
thus as long as we assume pS ≥ ϵTV

K , we can ensure that with our choice of L and ϵscore, ϵscore,0 ≤
p
1/2
S ϵ2TV

√
h

7T as required.

Corollary 2. Suppose µi is α strongly-log-concave and β-smooth for all i with β ≥ 1. Suppose s
satisfies Definition 1. Let Usample be a set of M i.i.d. samples from µ and νsample be the uniform distri-
bution over Usample. With T, h, ϵ2score as in Theorem 8 and M ≥ 108ϵ−6

TV K
4 log(Kϵ−1

TV ) log(Kτ−1).
Let (Xνsample

nh )n∈N be the LMC with score s and step size h initialized at νsample, then

PUsample [dTV (L(X
νsample
T | Usample), µ) ≤ ϵTV ] ≥ 1− τ

Proof. This is a consequence of Theorem 8 and Proposition 33. Here we apply Proposition 33 with
M0 = 107ϵ−5

TV K
3 log(Kϵ−1

TV ) log(Kτ−1).

To remove dependency on p∗, we will use the following variant of Proposition 31.
Proposition 33. For a set Usample ⊆ Rd, let (Xνsample

t )t be a process initialized at the uniform
distribution νsample over Usample. Consider distributions µC for C ∈ C. Let µ =

∑
pCµC with

pC > 0 and
∑

pC = 1. Suppose if pC ≥ ϵTV

8|C| , there exists T > 0, ϵTV ∈ (0, 1) s.t. with
probability ≥ 1 − τ

10|C| over the choice of UC,sample consisting of M ≥ M0 i.i.d. samples from
µC , dTV (L(X

νC,sample
T |UC,sample), µC) ≤ ϵTV /10 where νC,sample is the uniform distribution over

UC,sample. Then, for M ≥ ( ϵTV

8|C| )
−1 min{M0, 20ϵ

−2
TV log(|C|τ−1)}, with probability ≥ 1− τ over the

choice of Usample consisting of M i.i.d. samples from µ, dTV (L(X
νsample
T |Usample), µ) ≤ ϵTV

Proof of Proposition 33. The proof is analogous to Proposition 31. We use the same setup and will
spell out the differences between the two proofs. Let C′ = {C ∈ C : pC ≥ ϵTV

8|C| }. We redefine the
event E1 as

∀C ∈ C′ : | |UC |
M

− pC | ≤ pCϵTV /8

and E2 as, for νC be the uniform distribution over µC

∀C ∈ C′ : dTV (L(XνC

T |UC), µC) ≤ ϵTV /10

Let U∅ = Usample \
⋃

C∈C′ C then

|U∅|
M

=

∑
C ̸∈C′ |UC |
M

≤ 1−
∑
C∈C′

pC(1− ϵTV /8) ≤ 1− (1− ϵTV /8)(1− ϵTV /8) ≤ ϵTV /4.
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Suppose E1 and E2 both hold, which occur with probability 1 − τ by Chernoff’s inequality. Let
µ̃ =

∑
C∈C

|UC |
M µC . By part 1 of Proposition 9

dTV (L(X
νsample
T |Usample), µ̃) = dTV

(∑
C

|UC |
M

L(XνC

T |UC),
∑
C

|UC |
M

µC

)

≤
∑
C∈C′

|UC |
M

ϵTV /10 +
∑
C ̸∈C′

|UC |
M

≤ ϵTV /10 + ϵTV /4 ≤ ϵTV /2

By part 2 of Proposition 9∑
C

| |UC |
M

− pC | ≤
∑
C∈C′

pCϵTV /8 +
∑
C ̸∈C′

max{ |UC |
M

,pC} ≤ ϵTV /8 + ϵTV /4

By triangle inequality

dTV (L(X
νsample
T |Usample), µ) ≤ dTV (L(X

νsample
T |Usample), µ̃) + dTV (µ̃, µ)

≤ ϵTV /2 + 3ϵTV /8 ≤ ϵTV

I ADDITIONAL SIMULATIONS

In this section we give some additional details about the simulations in the main text as well as a few
supplementary ones.

For the simulation in Figure 1 of the main text, the estimated score function was learned from data by
running 3× 105 steps of stochastic gradient descent without batching, using a fresh sample at each
step with learning rate 10−5. The loss function was the vanilla score matching loss from Hyvärinen
(2005). The neural network architecture used had a single hidden layer with tanh nonlinearity and
2048 units. The stationary distribution shown in the rightmost subfigure was computed by numerical
integration of the estimated score.

For the 32-dimensional simulation in Figure 2 of the main text, to train the network we used ADAM
with a batch size of 256 examples, again generated fresh each time; we used 200 batches per epoch
and 300 epochs and we learned the vanilla score function using an equivalent denoising formulation
as in Vincent (2011). Figure 3 is the same but the network was trained for only 30 epochs. In Figure 4,
we performed the same experiment as Figure 2 but we used Contrastive Divergence (CD) training
Hinton (2012), which has been used by numerous experimental papers in the literature, instead of
score matching as the mechanism to learn the approximate gradient. More precisely, we used CD
(again trained over 300 epochs) to learn a distribution of the form exp(f(x)) where the potential f
was parameterized by a 8192 unit one-hidden-layer neural network with tanh activations. Once this
network is learned, ∇f was used as the approximate score function since this is the score function
of the learned distribution. We also observed in Figure 5 that the score matching loss, which was
explicitly trained in the other figures, is also monotonically decreasing over time under CD training.
The fact that the behavior is somewhat similar under CD and score matching is morally in agreement
with theoretical connections between the two observed by Hyvärinen (2007b). Note that in all three
of these figures, the same random seeds were used so that colored trajectories will correspond to each
other.

50



Published as a conference paper at ICLR 2024

(a) T = 300 (b) T = 12000 (c) T = 120000

Figure 3: Failure to approximate the ground truth with a less accurate score function. This is exact
same simulation as Figure 2, except that the network estimating the score function was trained for 30
rather than 300 epochs. We see that while the short time evolution is similar, at moderate times (Figure
(b)) the output of the dynamics have drifted away from the true distribution due to accumulation of
errors and in particular one trajectory has escaped far right of the rightmost component.

(a) T = 300 (b) T = 12000 (c) T = 120000

Figure 4: Variant of Figure 2 where the approximate score function is learned via Contrastive Diver-
gence (CD) instead of directly trying to match the score function. We used the most basic/efficient
version of CD, with only a single step of Langevin dynamics, and we used a larger step size of 0.05
when sampling in the training loop to compensate for only taking a single step. Qualitatively, the
behavior seems similar to Figure 2; at large times, while none of these particular trajectories crossed
between components, one trajectory escaped into a low-density region left of the leftmost component.

Figure 5: Score matching training loss (precisely the same loss used to train the models in Figures 2
and 3) curve for the CD-trained model in Figure 2. Although the score matching loss is not being
explicitly optimized, we see it goes down monotonically over the epochs of CD training nonetheless.
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