
A Full proofs for Section 4

A.1 Simplifying calculations and notation

We introduce the following calculations and notation to simplify the subsequent proofs.

Let I = [k + 1] \ {i?}.

For any given t, we decompose w(t) = (w(t) ·w?)w? + w
(t)
⊥ .

We let ct := w(t) · w? and vt := ‖w(t)
⊥ ‖2. For i ∈ I , we define Ai := Xi · w? and Bi :=

Xi ·w(t)
⊥ /‖w

(t)
⊥ ‖2. Since Xi is a spherically symmetric Gaussian vector and w? and w

(t)
⊥ /‖w

(t)
⊥ ‖2

define two fixed (per t) orthogonal directions, we have

Ai, Bi
i.i.d.∼ N (0, σ2).

Finally, we define Zi := ctAi + vtBi ∼ N (0, (c2t + v2
t )σ2) and s2

t := (c2t + v2
t )σ2. With this

notation, we obtain the following simplification of ft(X), used extensively throughout the proofs:

ft(X) =

k+1∑
i=1

[
ReLU(〈wt, Xi〉+ bt)− ReLU(−〈wt, Xi〉+ bt)

]
=
∑
i∈I

[
ReLU(Zi + bt)− ReLU(−Zi + bt)

]
+ ReLU(ctY + bt)− ReLU(−ctY + bt).

The population gradients then simplify as follows:

∇wE[`(ft(X), y)] = E

[
−Y σ(−Y ft(X))

∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
w?

+ E
[
−σ(−Y ft(X))

[
I{ctY ≥ −bt}+ I{ctY ≤ bt}

]]
w?

+ E

[
−Y σ(−Y ft(X))

∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
w⊥/‖w⊥‖2.

∇bE[`(ft(X), y)] = E

[
−Y σ(−Y ft(X))

∑
i∈I

[
I{Zi ≥ −bt} − I{Zi ≤ bt}

]]
+E [−Y σ(−Y ft(X)) [I{ctY ≥ −bt} − I{ctY ≤ bt}]] .

We define the following variants of the sum over I:

S :=
∑
i∈I

[
ReLU(Zi + bt)− ReLU(−Zi + bt)

]
Si := ReLU(Zi + bt)− ReLU(−Zi + bt)

S−i :=
∑

j∈I\{i}

[
ReLU(Zj + bt)− ReLU(−Zj + bt)

]
Thus, for any i ∈ I , S = S−i + Si.

We further define:

f−i(X) := ft(X)− Si = S−i + ReLU(ctY + bt)− ReLU(−ctY + bt).

We define αt := |bt|/st.
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A.2 Frequently-used Gaussian facts

Following common notation, we let φ(x) denote the standard normal PDF, Φ(x) denote the standard
normal CDF, and Φc(x) denote the standard normal complementary CDF.

Using the notation defined in Section A.1, we have:

E[Zi | Zi ≥ −bt] = st
φ(αt)

Φc(αt)
=
√
c2t + v2

t σ
φ(αt)

Φc(αt)
. (1)

Var[Zi | Zi ≥ −bt] = s2
t

[
1 + αt

φ(αt)

Φc(αt)
−
(
φ(αt)

Φc(αt)

)2
]
. (2)

E[Z2
i | Zi ≥ −bt] = s2

t

[
1 + αt

φ(αt)

Φc(αt)

]
= (c2t + v2

t )σ2

[
1 + αt

φ(αt)

Φc(αt)

]
. (3)

E[ctAi | Zi] = Zi
c2tσ

2

c2tσ
2 + v2

t σ
2

= Zi
c2t

c2t + v2
t

. (4)

E[vtBi | Zi] = Zi
v2
t σ

2

v2
t σ

2 + c2tσ
2

= Zi
v2
t

c2t + v2
t

. (5)

We use the following (relatively tight) bounds on Mills ratio Φc(x)
φ(x) , for x ≥ 0:

2√
x2 + 4 + x

≤ Φc(x)

φ(x)
≤ 2√

x2 + 2 + x
. (6)

Lemma 4. Let X1, . . . , Xn be i.i.d. N (0, σ2) RVs. Then P
[
maxj≤nXj ≥ 2σ

√
log n

]
≤ 1/n.

Proof. For all t > 0, P[maxj Xj ≥ t] ≤
∑
j P[Xj ≥ t] ≤ n · exp

(
− t2

2σ2

)
. Now let t = 2σ

√
log n.

Then P[maxj Xj ≥ t] ≤ n exp
(
− 4σ2 logn

2σ2

)
= n exp(−2 log n) = 1/n.

Lemma 5. Let X1, . . . , Xn be i.i.d. N (0, σ2) RVs. Then P
[
maxj≤n |Xj | ≥ 2σ

√
log n

]
≤ 2/n.

Proof. For all t > 0, P[maxj |Xj | ≥ t] ≤
∑
j P[|Xj | ≥ t] ≤ n · 2 exp

(
− t2

2σ2

)
. Now let t =

2σ
√

log n.

Then P[maxj |Xj | ≥ t] ≤ 2n exp
(
− 4σ2 logn

2σ2

)
= 2n exp(−2 log n) = 2/n.
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A.3 Neural network upper bound proofs

A.3.1 Training invariants

Lemma 6 (Initialization). Initialize w(0) ∼ N
(

0, δ
2

kdId×d

)
. Then with probability at least 1 −

e−Ω(k), we have |c(0)|, v(0) ≤ δ.

Proof. Let E denote the event that, ∀i ∈ [d], w(0)
i ≤ δ√

d
. Then via a Gaussian tail bound and union

bound, we have

P[¬E] ≤
∑
i∈[d]

P
[
|w(0)
i | ≥

δ√
d

]
≤ d · 2e−k/2.

E implies ‖w(0)‖2 ≤ δ, so |c(0)|, v(0) ≤ δ.

Remark 1. We choose δ = 1/k100. Thus, w(0) ∼ N
(
0, σ2

0Id×d
)
, where σ0 is 1/poly(k). We

choose η so that η/δ = Ω(k).

Lemma 7 (Stochastic gradients). Using n = poly(k) samples per mini-batch, at any given time step
t ≤ T , with probability at least 1− e−Ω̃(k), we have:∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(ft(X), y)− E [∇w`(ft(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
.

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

∇b`(ft(X), y)− E [∇b`(ft(X), y)]

∣∣∣∣∣∣ ≤ 1

k
.

Proof. Consider a mini-batch of n examples Z ∼ Dn, where n = poly(k).

For some (X, y), j ∈ [d], letEj be the event that |Xi,j | ≤ 1 for all i ∈ I and gj := (∇w`(f(X), y))j .

E[gj ] = E[gj | Ej ]P[Ej ] + E[gj | ¬Ej ]P[¬Ej ]

= E[gj | Ej ]
(

1− e−Ω̃(k)
)

+ E[gj | ¬Ej ]e−Ω̃(k)

E[gj ]− E[gj | Ej ] = e−Ω̃(k) (E[gj | ¬Ej ]− E[gj | Ej ])

|E[gj ]− E[gj | Ej ]| ≤ e−Ω̃(k)O(k)

|E[gj ]− E[gj | Ej ]| ≤ e−Ω̃(k).

Let Êj be the event that |Xi,j | ≤ 1 for all i ∈ I , for all (X, y) ∈ Z . For any j ∈ [d], t > 0, we have:

P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j ]

∣∣∣∣∣∣ ≥ t


= P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j ]

∣∣∣∣∣∣ ≥ t
∣∣∣∣ Êj

P[Êj ]

+ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j ]

∣∣∣∣∣∣ ≥ t
∣∣∣∣ ¬Êj

P[¬Êj ]

≤ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j ]

∣∣∣∣∣∣ ≥ t
∣∣∣∣ Êj

+ e−Ω̃(k)
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≤ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[gj | Ej ]

∣∣∣∣∣∣+

∣∣∣∣E[gj | Ej ]− E[gj ]

∣∣∣∣ ≥ t ∣∣∣∣ Êj
+ e−Ω̃(k)

≤ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[gj | Ej ]

∣∣∣∣∣∣ ≥ t−
∣∣∣∣E[gj | Ej ]− E[gj ]

∣∣∣∣ ∣∣∣∣ Êj
+ e−Ω̃(k)

We can now apply a Hoeffding bound with t = δ
η
√
dpoly(k)

. For sufficiently large n = poly(k), we
obtain:

P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j ]

∣∣∣∣∣∣ ≥ t
 ≤ e−Ω̃(k).

Finally, with probability at least 1− e−Ω̃(k), we have:∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(f(X), y)− E [∇w`(f(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
.

For all (X, y) ∈ R(k+1)×d × {−1, 1}, we have |∇b`(f(X), y)| ≤ poly(k) (deterministically).

Then, by a Hoeffding bound for sufficiently large n = poly(k), with probability at least 1− e−Ω̃(k),
we have: ∣∣∣∣∣∣ 1n

∑
(X,y)∈Z

∇b`(f(X), y)− E [∇b`(f(X), y)]

∣∣∣∣∣∣ ≤ 1

k
.

Lemma 8. There exists an absolute constant k0 such that, for every k ≥ k0, we have αt ≤ 2
√

log k
for all t such that P(X,y)∼D[sign(ft(X)) 6= y] ≥ 0.01.

Proof. Recall that we have defined αt := |bt|/st in Section A.1.

At the start of training, when the derivatives of b and c are each coming from the signal patch and
thus both b and c are increasing, the ratio b/c is determined by ηb/ηw = 1/k.

Once b starts to decrease, we consider αt for bt < 0 and ct > 0. We prove this case by contradiction.

Suppose αt > 2
√

log k. Then we have:

P(X,y)∼D[sign(ft(X)) 6= y] ≤ P[max
i
|Zi| ≥ |bt|] ≤

∑
i∈I

P[|Zi| ≥ |bt|] ≤ k · 2e−α
2
t/2 < 2/k.

For sufficiently large k, we obtain P(X,y)∼D[sign(ft(X)) 6= y] < 0.01, a contradiction. Thus, we
must have αt ≤ 2

√
log k.

Lemma 9. There exists a constant β > 0 and a constant k0 such that, for every k ≥ k0, the following
holds for all t ≤ T such that P(X,y)∼D[sign(ft(X)) 6= y] ≥ 0.01:

Var[Si | |Si| ≤ st log2 k] ≥ β(ct + bt)
2/k ∀i ∈ I.

Proof. For any M > 0, let EM be the event that |Si| ≤M ∀i ∈ I . For any t > 0, we then have:

P

[∑
i∈I

Si ≥ t

]
= P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ EM
]
P[EM ] + P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ ¬EM
]
P[¬EM ]
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≤ P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ EM
]

+ P[¬EM ]

≤ P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ EM
]

+ kP[|S1| > M ]

≤ exp

(
− t2

2kVar[S1 | |S1| ≤M ] + 2Mt/3

)
+ kP[|Z1| > M − b]

≤ exp

(
− t2

2kVar[S1 | |S1| ≤M ] + 2Mt/3

)
+ 2k exp

(
− (M − b)2

2s2
t

)
,

by applying a Bernstein inequality.

Choosing M = st log2 k and t = ct + bt and defining u2
t := Var[S1 | |S1| ≤M ], we obtain:

P

[∑
i∈I

Si ≥ ct + bt

]
≤ exp

(
− (ct + bt)

2

2ku2
t + 2st log2 k(ct + bt)/3

)
+ 2k exp

(
− (st log2 k − bt)2

2s2
t

)
.

2k exp
(
− (st log2 k−bt)2

2s2t

)
= e−Ω(log4 k), and 2st log2 k(ct + bt)/3 = O(c2t log3 k/

√
k). Therefore,

unless u2
t ≥ β(ct + bt)

2/k for some constant β > 0, we will have P
[∑

i∈I Si ≥ ct + bt
]
< 0.01

for sufficiently large k.

Corollary 1. There exists a constant β > 0 and a constant k0 such that, for every k ≥ k0, the
following holds for all t ≤ T such that P(X,y)∼D[sign(ft(X)) 6= y] ≥ 0.01 and all i ∈ I:

Var[Si] ≥ β
(ct + bt)

2

k
.
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A.3.2 Function value stays O(1) with Ω(1) probability

Lemma 10. There exists a constant C > 0 and constant k0 such that, for all k ≥ k0, the following
holds for all t ≤ T :

ct ≤ C.

Proof. Since we are doing stochastic gradient descent with stochastic gradients very close to
the population gradients, we can easily conclude that the loss cannot grow throughout training.
E[`(f0(X), y)] ≤ 1 at the start of training, so we must have E[`(ft(X), y)] ≤ 1 for all t ≤ T .

Let E denote the event that |Si| ≤ st log2 k ∀i ∈ I .
1 ≥ E[`(ft(X), y)]

= E[log(1 + exp(−Y ft(X)))]

=
1

2
E[log(1 + exp(−ft(X))) | Y = 1] +

1

2
E[log(1 + exp(ft(X))) | Y = −1]

≥ 1

2
E[ReLU(−ft(X)) | Y = 1] +

1

2
E[ReLU(ft(X)) | Y = −1]

= E[ReLU(−ft(X)) | Y = 1]

= E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

)]

≥ E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

) ∣∣∣∣∣ ∑
i∈I

Si ≤ −2(ct + bt)

]
P

[∑
i∈I

Si ≤ −2(ct + bt)

]

≥ (ct + bt)P

[∑
i∈I

Si ≤ −2(ct + bt)

]

= (ct + bt)

(
P

[∑
i∈I

Si ≤ −2(ct + bt) | E

]
P[E] + P

[∑
i∈I

Si ≤ −2(ct + bt) | ¬E

]
P[¬E]

)

≥ (ct + bt)P

[∑
i∈I

Si ≤ −2(ct + bt) | E

]
P[E].

Following the notation in the proof of Lemma 9, we let u2
t := Var[Si | |Si| ≤ st log2 k], for any

i ∈ I . Since E[Si | |Si| ≤ st log2 k] = 0, we also have E[S2
i | |Si| ≤ st log2 k] = u2

t .

We then use Lemma 9 and Berry-Esseen to lower bound P
[∑

i∈I Si ≤ −2(ct + bt) | E
]

as follows,
where C1 is some positive constant.

sup
x∈R

∣∣∣∣P(∑i∈I Si

ut
√
k
≤ x

∣∣∣∣ E)− Φ(x)

∣∣∣∣ ≤ C1√
k
· E[|Si|3 | |Si| ≤ st log2 k]

u3

≤ C1√
k
· st log2 k · E[|Si|2 | |Si| ≤ st log2 k]

u3
t

=
C1√
k
· st log2 k

ut

≤ C1st log2 k√
β(ct + bt)

≤ C1

2
√
β

log3 k√
k
,

by Lemma 9, which says that ut ≥
√
β ct+bt√

k
for some constant β > 0. Based on Lemma 9, we

choose x such that x < 0 and |x| ≤ 2/
√
β. We obtain

P

[∑
i∈I

Si ≤ −2(ct + bt) | E

]
≥ Φ(x)− C1

2
√
β

log3 k√
k
≥ 1

2
Φ(x)
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for sufficiently large k.

By Lemma 9’s proof, we know that P[E] = 1− e−Ω(log4 k).

Putting these pieces together, we obtain 1 ≥ E[`(ft(X), y)] = Φ(x)
4 (ct + bt), and by Lemma 8, we

conclude that there must exist a constant C > 0 such that ct ≤ C.

Lemma 11. For all t ≤ T , P[|S| < ct + bt + 10] ≥ 4/5.

Proof. We closely follow the proof of Lemma 10. Since we are doing stochastic gradient descent
with stochastic gradients very close to the population gradients, we can easily conclude that the
loss cannot grow throughout training. E[`(f0(X), y)] ≤ 1 at the start of training, so we must have
E[`(ft(X), y)] ≤ 1 for all t ≤ T .

1 ≥ E[`(ft(X), y)]

= E[log(1 + exp(−Y ft(X)))]

=
1

2
E[log(1 + exp(−ft(X))) | Y = 1] +

1

2
E[log(1 + exp(ft(X))) | Y = −1]

≥ 1

2
E[ReLU(−ft(X)) | Y = 1] +

1

2
E[ReLU(ft(X)) | Y = −1]

= E[ReLU(−ft(X)) | Y = 1]

= E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

)]

≥ E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

) ∣∣∣∣∣ ∑
i∈I

Si ≤ −(ct + bt)− 10

]
P

[∑
i∈I

Si ≤ −(ct + bt)− 10

]

≥ 10 · P

[∑
i∈I

Si ≤ −(ct + bt)− 10

]

= 5 · P

[∣∣∣∣∣∑
i∈I

Si

∣∣∣∣∣ ≥ (ct + bt) + 10

]

= 5 ·

(
1− P

[∣∣∣∣∣∑
i∈I

Si

∣∣∣∣∣ < (ct + bt) + 10

])
,

finally yielding

P

[∣∣∣∣∣∑
i∈I

Si

∣∣∣∣∣ < (ct + bt) + 10

]
≥ 4/5.

22



A.3.3 Initial growth of c

Lemma 1 (Full). For any constant H > 0, there exist constants A > 0 and k0 such that, for all
k ≥ k0, for any t ≤ T such that |ct| ≤ H/ log4 k, we have the following with probability at least
1− e−Ω̃(k) over a mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? ≤ −A.

Proof. We recall the following:

∇wE[`(ft(X), y)] ·w? = E

[
−Y σ(−Y ft(X))

∑
i∈I

Ai

[
I{Zi + bt ≥ 0}+ I{−Zi + bt ≥ 0}

]]
︸ ︷︷ ︸

(1)

+

E

[
−σ(−Y f(X))

[
I{ctY + bt ≥ 0}+ I{−ctY + bt ≥ 0}

]]
︸ ︷︷ ︸

(2)

.

Let g(Y ) := ReLU
(
ctY + b

)
− ReLU

(
−ctY + b

)
. Then g(1) = −g(−1) and f(X) = S + g(Y ).

We first simplify (1) as follows:

(1) = E

[
−Y σ(−Y ft(X))

∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]

= E

[
−σ
(
−S − g(1)

)∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = +1]

+ E

[
σ
(
S + g(−1)

)∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = −1]

=
1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
AiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
AiI{Zi ≤ bt}

]
(g(−1) = −g(1))

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≤ bt}

]
(S−i

d
= −S−i)

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≥ −bt}

]
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+
1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≥ −bt}

]
(Zi

d
= −Zi).

We then collapse the four summands above. Letting a2 := −g(1)+S−i+Si, a1 := −g(1)+S−i−Si,
and ∆ := a2 − a1 = 2Si, we have:

(1) =
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
AiI{Zi ≥ −bt}

]
=
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Ai

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[
E
[(
σ(a2)− σ(a1)

)
Ai

∣∣∣ Zj ∀j ∈ I, Zi ≥ −bt] ∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[(
σ(a2)− σ(a1)

) 1

ct
Zi

c2t
c2t + v2

t

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
ct

c2t + v2
t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt].

We first note that (σ(a2) − σ(a1))Zi ≥ 0 for all instantiations of the random variables Zi, i ∈ I .
This is because σ is monotonically increasing and sign(Si) = sign(Zi).

Then, using the fact that σ is 1/4-Lipschitz and |Si| ≤ max{2|Zi|, |Zi|+ |bt|} ≤ 2|Zi|+ |bt|, we
upper bound |(1)| as follows:

|(1)| = |ct|
c2t + v2

t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ |ct|
c2t + v2

t

∑
i∈I

E
[

1

2
SiZi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ |ct|
c2t + v2

t

∑
i∈I

E
[

1

2
(2Z2

i + |bt||Zi|)
∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
|ct|

c2t + v2
t

∑
i∈I

(
E[Z2

i | Zi ≥ −bt] +
1

2
|bt|E[|Zi| | Zi ≥ −bt]

)
P[Zi ≥ −bt]

≤ |ct|
c2t + v2

t

∑
i∈I

(
E[Z2

i | Zi ≥ |bt|] +
1

2
|bt|E[|Zi| | Zi ≥ |bt|]

)
P[Zi ≥ −bt]

=
|ct|

c2t + v2
t

∑
i∈I

(
(c2t + v2

t )σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|
√
c2t + v2

t σ
φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= |ct|
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|

1√
c2t + v2

t

σ2

σ

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= |ct|
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= |ct|
∑
i∈I

(
σ2 +

3

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt].

Since αt ≤ 2
√

log k by Lemma 8, we have |(1)| ≤ A1|ct| log3 k for some constant A1 > 0.
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By Lemmas 10 and 11, there exists a constant A2 > 0 such that (2) ≤ −A2.

Thus, if |ct| ≤ H 1
log4 k

for any constant H > 0, then there exists a constant A3 > 0 such that
(1) + (2) ≤ −A3 for any sufficiently large k.

Finally, by Lemma 7, we have with probability at least 1− e−Ω̃(k),∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(ft(X), y)− E [∇w`(ft(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
,

and therefore with probability at least 1− e−Ω̃(k),∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

∇w`(ft(X), y) ·w? − E [∇w`(ft(X), y)] ·w?

∣∣∣∣∣∣ ≤ δ

ηpoly(k)
.

We conclude that, with probability at least 1− e−Ω̃(k), we have

1

n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? ≤ −A3 +
δ

ηpoly(k)
≤ −A

for some constant A > 0, for any sufficiently large k.
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A.3.4 Bounded growth of ‖w(t)
⊥ ‖2

Lemma 2 (Full). For any t ≤ T , we have the following with probability at least 1− e−Ω̃(k) over a
mini-batch Z ∼ Dn of n = poly(k) samples:

‖w(t)
⊥ ‖2 − ‖w

(t−1)
⊥ ‖2 ≤

δ

poly(k)
.

Proof.

∇wE[`(ft(X), y)] ·w(t)
⊥ /‖w

(t)
⊥ ‖2 = E

[
−Y σ(−Y ft(X))

∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
.︸ ︷︷ ︸

(1)

Let g(Y ) := ReLU
(
ctY +bt

)
−ReLU

(
−ctY +bt

)
. Then g(1) = −g(−1) and ft(X) = S+g(Y ).

We simplify (1) as follows:

(1) = E

[
−Y σ(−Y ft(X))

∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]

= E

[
−σ
(
−S − g(1)

)∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = +1]

+ E

[
σ
(
S + g(−1)

)∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = −1]

=
1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
BiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
BiI{Zi ≤ bt}

]
(g(−1) = −g(1))

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≤ bt}

]
(S−i

d
= −S−i)

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≥ −bt}

]
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+
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≥ −bt}

]
(Zi

d
= −Zi).

We then collapse the four summands above. Letting a2 := −g(1)+S−i+Si, a1 := −g(1)+S−i−Si,
and ∆ := a2 − a1 = 2Si, we have:

(1) =
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
BiI{Zi ≥ −bt}

]
=
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Bi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[
E
[(
σ(a2)− σ(a1)

)
Bi

∣∣∣ Zj ∀j ∈ I, Zi ≥ −bt] ∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[(
σ(a2)− σ(a1)

) 1

vt
Zi

v2
t

c2t + v2
t

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
vt

c2t + v2
t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt].

We first note that (σ(a2) − σ(a1))Zi ≥ 0 for all instantiations of the random variables Zi, i ∈ I .
This is because σ is monotonically increasing and sign(Si) = sign(Zi). Then, using the fact that σ
is 1/4-Lipschitz and |Si| ≤ max{2|Zi|, |Zi|+ |bt|} ≤ 2|Zi|+ |bt|, we upper bound (1) as follows:

(1) =
vt

c2t + v2
t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ vt
c2t + v2

t

∑
i∈I

E
[

1

2
SiZi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ vt
c2t + v2

t

∑
i∈I

E
[

1

2
(2Z2

i + |bt||Zi|)
∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
vt

c2t + v2
t

∑
i∈I

(
E[Z2

i | Zi ≥ −bt] +
1

2
|bt|E[|Zi| | Zi ≥ −bt]

)
P[Zi ≥ −bt]

≤ vt
c2t + v2

t

∑
i∈I

(
E[Z2

i | Zi ≥ |bt|] +
1

2
|bt|E[|Zi| | Zi ≥ |bt|]

)
P[Zi ≥ −bt]

=
vt

c2t + v2
t

∑
i∈I

(
(c2t + v2

t )σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|
√
c2t + v2

t σ
φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= vt
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|

1√
c2t + v2

t

σ2

σ

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= vt
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= vt
∑
i∈I

(
σ2 +

3

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt].

Since αt ≤ 2
√

log k by Lemma 8, we have (1) ≤ Avt log3 k for some constant A > 0. On its own,
this would cause vt to decrease toward 0. Finally, by Lemma 7, with probability at least 1− e−Ω̃(k):∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(f(X), y)− E [∇w`(f(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
.

Thus, for any t, ‖w(t+1)
⊥ ‖2 − ‖w(t)

⊥ ‖2 ≤
δ

poly(k) .
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A.3.5 b decreasing

Lemma 12. There exists a constant C1 > 0 and a constant k0 such that, for all k ≥ k0, we have the
following for all t ≤ T for which bt < 0 and for all i ∈ I:

E[|Si|] ≥ C1

√
Var[Si]

k3/4
.

Proof. Consider an arbitrary t ≤ T .

The probability of misclassification is P[S > ct + bt].

Let B denote the event that ∀i ∈ I , Zi ≤ 2st
√

log k. By Lemma 4, P[¬B] ≤ 1/k.

Let M =
∑
i∈I I{Zi ≥ −bt}.

We first note that, for sufficiently large k, we have P[S > ct + bt | B,M < k1/4] = 0. This is
because, conditioned on both B and M < k1/4, we have:

S < k1/4 · 2st
√

log k

=
2k1/4

√
c2t + v2

t log3/2 k√
k

=
2
√
c2t + v2

t log3/2 k

k1/4

<
1

2
ct

< ct + bt,

by Lemmas 2 and 8, for sufficiently large k.

Let P = P[Zi ≥ −bt] and let P ′ = P[Zi ≥ −bt | B], for any i ∈ I . We note that 1
2P[Si 6= 0] =

P ≥ P ′, and therefore P[Si 6= 0] ≥ 2P ′.

We then upper bound P[S > ct + bt] as follows:
0.01 ≤ P[S > ct + bt] = P[S > ct + bt | B]P[B] + P[S > ct + bt | ¬B]P[¬B]

≤ P[S > ct + bt | B] + P[¬B]

= P[S > ct + bt | B,M < k1/4]P[M < k1/4 | B]

+ P[S > ct + bt | B,M ≥ k1/4]P[M ≥ k1/4 | B] + P[¬B]

= P[S > ct + bt | B,M ≥ k1/4]P[M ≥ k1/4 | B] + P[¬B]

≤ P[M ≥ k1/4 | B] + P[¬B]

≤ P[M ≥ k1/4 | B] + 1/k.

We therefore have P[M ≥ k1/4 | B] ≥ 0.01− 1/k ≥ 0.005 for sufficiently large k. So, via Chernoff,
we conclude that there exists a constant C6 > 0 such that P ′ ≥ C6

1
k3/4

and thus there exists a
constant C5 > 0 such that P[Si 6= 0] ≥ C5

1
k3/4

.

Via Equations 1 and 2, we have

E[|Si|]√
Var[Si]

≥ C ′4
√

Φc(αt) = C4

√
P[Si 6= 0] ≥ C4C5

√
1

k3/4
,

completing the proof.

Lemma 3 (Full). There exist constants C,C2 > 0 and a constant k0 such that, for all k ≥ k0, for
any t ≤ T such that ct ≥ C2/ log4 k, we have the following with probability at least 1− e−Ω̃(k) over
a mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇b`(ft(X), y) ≥ C.
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Proof. Consider an arbitrary t ≤ T such that ct ≥ C2/ log4 k.

∇bE[`(ft(X), y)] =
∑
i∈I

E
[
σ′(−Y f−i(X)) (ReLU(Zi + bt) + ReLU(−Zi + bt))

]
︸ ︷︷ ︸

(1)

− E [Y σ(−Y ft(X)) (I{ctY ≥ −bt} − I{ctY ≤ bt})]︸ ︷︷ ︸
(2)

,

where (1) comes from a first-order Taylor expansion of the sigmoid function σ around −Y f−i(X),
σ′ is the first derivative of σ, and −Y f−i(X) is some value between −Y f−i(X) and −Y ft(X) so
that σ(−Y ft(X)) = σ(−Y f−i(X)) +σ′(−Y f−i(X))(−Y ft(X) +Y f−i(X)) holds with equality.

By Corollary 1, Var[Si] ≥ β(ct + bt)
2/k.

By Lemma 12, when bt < 0, we have

E[|Si|] ≥ C1

√
Var[Si]

k3/4
≥ C1

√
β
ct + bt
k7/8

.

When bt ≥ 0 instead of < 0, this only increases E[|Si|]. Combined with Lemma 8, we conclude that,
for any bt, we have: ∑

i∈I
E[|Si|] ≥ C ′1ctk1/8,

for some constant C ′1 > 0.

Let E1 be the event that f−i(X) ≤ C + 10. Let E2 be the event that fi(X) ≤ 1. Let E = E1 ∩ E2.
Under E and Lemma 10, σ′(−Y f−i(X)) is at least some constant D > 0.

(1) = E
[
σ′(−Y f−i(X)) (ReLU(Zi + b) + ReLU(−Zi + b)) | E1, E2

]
P[E1]P[E2]

+ E
[
σ′(−Y f−i(X)) (ReLU(Zi + b) + ReLU(−Zi + b)) | ¬E

]
P[¬E]

≥ D′ · E[ReLU(Zi + b) + ReLU(−Zi + b) | E2],

for some constant D′ = D · P[E].

Finally, we related the conditioned expectation to the unconditioned expectation as follows:

E[ReLU(Zi + b) + ReLU(−Zi + b)]

= E[ReLU(Zi + b) + ReLU(−Zi + b) | E2]P[E2]

+ E[ReLU(Zi + b) + ReLU(−Zi + b) | ¬E2]P[¬E2]

= E[ReLU(Zi + b) + ReLU(−Zi + b) | E2](1− e−Ω̃(k)) + e−Ω̃(k),

so we have

E[ReLU(Zi + b) + ReLU(−Zi + b) | E2] =
E[ReLU(Zi + b) + ReLU(−Zi + b)]− e−Ω̃(k)

1− e−Ω̃(k)
.

Thus, (1) ≥ A · E[ReLU(Zi + b) + ReLU(−Zi + b)], for some constant A > 0.

We have a trivial upper bound on (2) of 1 (because σ and the indicators are bounded).

Therefore, for ct ≥ C2/ log4 k, as specified, we have ∇bE[`(ft(X), y)] = k · (1) − (2) ≥ 2C for
sufficiently large k.

Finally, by Lemma 7, we have the following with probability at least 1− e−Ω̃(k), over a mini-batch
Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇b`(ft(X), y) ≥ C.
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A.3.6 Conclusion: efficiency in time and sample complexity

Theorem 1. There exists an absolute constant k0 such that, for every k ≥ k0, using poly(k) samples
from D, learning rate η = 1/poly(k), and T = poly(k) iterations, w.h.p. over the randomness of the
initialization and the samples, we have Pr(X,y)∼D[sign(fT (X)) 6= y] ≤ 0.01, for the final network
fT returned by Algorithm 1.

Proof. Throughout, consider the largest k0 such that all intermediate lemmas hold for all k ≥ k0.
Then, for all k ≥ k0, we have the following.

By Lemma 3, there exist constants C,C2 > 0 such that, for all k ≥ k0, for any t ≤ T such that
ct ≥ C2/ log4 k, the following holds with probability at least 1− e−Ω̃(k) over a mini-batch Z ∼ Dn
of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇b`(ft(X), y) ≥ C.

By Lemma 1, plugging in H = 2C2, there exists a constant A > 0 such that, for all k ≥ k0, for any
t ≤ T such that |ct| ≤ 2C2/ log4 k, we have the following with probability at least 1− e−Ω̃(k) over
a mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? ≤ −A.

Therefore, within T1 = ( 2C2

log4 k
+ δ) 1

ηA = poly(k) iterations, ct will rise to 2C2/ log4 k. Since

we only have poly(k) iterations, the overall failure probability for this first phase is still e−Ω̃(k).
Although ct is not guaranteed to continue increasing, Lemma 1 guarantees that ct will not drop below
C2/ log4 k after it reaches 2C2/ log4 k.

Once ct has reached C2/ log4 k, Lemma 3 says that, with probability at least 1− e−Ω̃(k) per iteration,
1
n

∑
(X,y)∈Z ∇b`(ft(X), y) ≥ C. Thus, bt will decrease at a rate of ηbC per iteration.

By Lemma 2, while t ≤ poly(k), we have vt ≤ 2δ. Since ct ≥ C2/ log4 k and vt ≤ 2δ, we have
(loosely) st ≤ 2ctσ, and so |bt|st ≥

|bt|
2ctσ

.

By Lemma 8, once we have αt = |bt|/st > 2
√

log k, we will have P(X,y)∼D[sign(ft(X)) 6= y] <

0.01. By Lemma 10, there exists a constant C3 > 0 such that ct ≤ C3. Thus, once |bt|
2C3σ

> 2
√

log k,

or equivalently |bt| > 4C3
log3/2 k√

k
, we will have P(X,y)∼D[sign(ft(X)) 6= y] < 0.01.

Since b is decreasing at a rate of at least ηbC per iteration, this occurs within T2 = (4C3
log3/2 k√

k
+

C2

log4 k
ηb
η ) 1

ηbC
iterations, where C2

log4 k
ηb
η accounts for b’s initial growth at the beginning of training.

Since T1 + T2 = poly(k), we reach final classification error ≤ 0.01 within poly(k) iterations
(assuming the poly(k) in Lemma 2 is at least T1 + T2).

Since a mini-batch of size n = poly(k) is used per iteration, the final sample complexity over poly(k)
total iterations is also poly(k).

Since the failure probability per iteration is e−Ω̃(k), the total failure probability over initialization and
poly(k) iterations is also e−Ω̃(k). This completes the proof.
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B Full proofs for Section 5

Lemma 13 (Small ball probability, [Tao, 2010]). Consider n independent Rademacher random
variables ξi for i ∈ [n] and constants ai for i ∈ [n] such that |ai| ≥ 1. Then, for any length-

2∆ interval B, for ∆ > 0, we have P
[∑

i∈[n] ξiai ∈ B
]
≤ s
√

2
π+o(1)√
n

whenever s ≤ n and
s− 1 ≤ ∆ < s for some natural number s.

B.1 Warm up: one filter

We first present a proof when there is only one filter, to help elucidate the proof skeleton. Then, in
Section B.2, we provide the full proof of Theorem 2. Readers can ignore this subsection and skip
directly to Section B.2 if they like; this subsection is merely provided to help make some of the
themes in Section B.2 a bit clearer.
Theorem 3 (m = 1). There exists k1 ∈ N such that, for all k ≥ k1, with probability at least 0.999
over the random initialization w(0) ∼ N (0, σ2

0Id), the following holds for all w ∈ Rd, b ∈ R:

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.1.

Proof. We recall that the finite-width CNTK is defined as:

kw(X) =
∑

i∈[k+1]

〈w, Xi〉1|〈w(0),Xi〉|+b≥0.

This comes from the gradient of the CNN function fw,b(X) with respect to w:

∇wfw,b(X) =

k+1∑
i=1

Xi [I{〈w, Xi〉+ b > 0}+ I{−〈w, Xi〉+ b > 0}] .

For convenience, for a single row of the input image X , denoted x ∈ Rd, we define

g(x) := 〈w, x〉1|〈w(0),x〉|+b≥0,

which represents the total contribution to kw(X) coming from x. We thus have

kw(X) =
∑

i∈[k+1]

g(Xi) = g(yw?) +
∑
i∈I

g(εi).

If y(g(yw?)) ≤ 0, then by symmetry of g(εi), we have PX,y∼D
[
y
∑
i∈I g(εi) ≤ 0

]
= 0.5, so

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.5 > 0.1.

It thus remains to consider the more complex case y(g(yw?)) > 0.

There exists some constant D0.999 > 0 such that

Pw(0)∼N (0,σ2
0I)


∣∣∣∣〈 w(0)

‖w(0)‖
,w?

〉∣∣∣∣ ≤ D0.999√
d︸ ︷︷ ︸

Init Event

 ≥ 0.999.

We assume w(0) satisfies the Init Event. Then, by Lemma 14, for any w, b, there exist constants
C > 0, pC ∈ (0, 1] such that

p := Pεi∼N (0,σ2Id)

[
|g(εi)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≥ pC .

Since each noise row has the same distribution, the same C, p, pC hold for all i ∈ I .

Let I+ := {i ∈ I : |g(εi)| ≥ Cσ|g(w?)|} and let I− := I \ I+.
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By Chernoff, P[|I+| ≤ 0.5kp] ≤ e−0.52kp/2.

Applying Lemma 13, we obtain:

P

[∑
i∈I+

g(εi) ∈
[
−|g(w?)|, |g(w?)|

]]
= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− |g(w?)|
Cσ|g(w?)|

,
|g(w?)|

Cσ|g(w?)|

]]

= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− 1

Cσ
,

1

Cσ

]]

= O

(
1

σ
√
|I+|

)
.

Thus, the probability of misclassification P(X,y)∼D[sign(kw(X)) 6= y] is at least:
(We have sign(0) := 0, so kw(X) = 0 is necessarily a misclassification event.)

P(X,y)∼D[sign(kw(X)) 6= y] = P(X,y)∼D[ykw(X) ≤ 0]

= P(X,y)∼D

[
y
∑
i∈I

g(εi) ≤ −yg(w?)

]

≥ P(X,y)∼D

[∑
i∈I

g(εi) ≥ |g(w?)|

]

≥ P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|,
∑
i∈I−

g(εi) ≥ 0

]

= P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]
· P(X,y)∼D

[∑
i∈I−

g(εi) ≥ 0

]

=
1

2
P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]

=
1

4
P(X,y)∼D

[∑
i∈I+

g(εi) /∈
(
−|g(w?)|, |g(w?)|

)]

=
1

4

(
1− P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)])

P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)]

= P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| ≤ 0.5kp

]
︸ ︷︷ ︸

≤1

P[|I+| ≤ 0.5kp]

+ P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| > 0.5kp

]
P[|I+| > 0.5kp]︸ ︷︷ ︸

≤1

≤ e−0.52kp/2 +O

(
1

σ
√
kp

)

≤ O

(
1

(log k)
√
pC

)
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= O

(
1

log k

)
.

Putting this together, we get

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 1

4
(1−O(1/ log k)) .

Thus, there exists k1 ∈ N such that, for all k ≥ k1, with probability at least 0.999 over the random
initialization w(0) ∼ N (0, σ2

0Id), the following holds for all w ∈ Rd, b ∈ R:

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.1.

Lemma 14 (m = 1). Assume w(0) satisfies the Init Event. Then, for any w, b, there exist constants
C > 0, pC ∈ (0, 1] such that

Pε∼N (0,σ2Id)

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≥ pC .

Proof. As a reminder, in this lemma, we are looking exclusively at the m = 1 case. When m = 1,
we have:

g(w?) = 〈w,w?〉1|〈w(0),w?〉|+b≥0.

We now consider different possible settings of w(0),w, b, via a case analysis.

Case 1: Suppose |〈w(0),w?〉| + b < 0. Then g(w?) = 0. |g(ε)| ≥ 0, so for all C > 0, pC = 1
satisfies the lemma statement.

Case 2: Suppose |〈w(0),w?〉|+ b ≥ 0. Then g(w?) = 〈w,w?〉, so Event A becomes:

|〈w, ε〉1|〈w(0),ε〉|+b≥0| ≥ Cσ|〈w,w?〉|.

Let E be the event that |〈w(0), ε〉| ≥ |〈w(0),w?〉|. We are introducing E so that we can condition A
on E and thus simplify our analysis of P[A]. We can simplify P[E] as follows, for use later:

Pε∼N (0,σ2Id)[E] = Px∼N (0,σ2)

[
|x| ≥

∣∣∣∣〈 w(0)

‖w(0)‖
,w?

〉∣∣∣∣] .
We therefore analyze P[A] as follows:

Pε∼N (0,σ2Id)[A] = Pε∼N (0,σ2Id)[A | E]Pε∼N (0,σ2Id)[E] + Pε∼N (0,σ2Id)[A | ¬E]Pε∼N (0,σ2Id)[¬E]

≥ Pε∼N (0,σ2Id)[A | E]Pε∼N (0,σ2Id)[E]

= Pε∼N (0,σ2Id)[|〈w, ε〉| ≥ Cσ|〈w,w?〉| | E]Pε∼N (0,σ2Id)[E]

≥ Pε∼N (0,σ2Id)[|〈w, ε〉| ≥ Cσ|〈w,w?〉|]Pε∼N (0,σ2Id)[E]

= Pε∼N (0,σ2Id)

[
1

σ

∣∣∣∣〈 w

‖w‖
, ε

〉∣∣∣∣ ≥ C ∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]Pε∼N (0,σ2Id)[E]

= Px∼N (0,1)

[
|x| ≥ C

∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]Pε∼N (0,σ2Id)[E]

= Px∼N (0,1)

[
|x| ≥ C

∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]Px∼N (0,σ2)

[
|x| ≥

∣∣∣∣〈 w(0)

‖w(0)‖
,w?

〉∣∣∣∣]
≥ Px∼N (0,1)

[
|x| ≥ C

∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]︸ ︷︷ ︸
(1)

Px∼N (0,σ2)

[
|x| ≥ D0.999√

d

]
︸ ︷︷ ︸

(2)

= pC

for some constant pC > 0, since probability (1) only depends on C and the angle between w and
w?, and probability (2) is just Px∼N (0,1)[|x| ≥ D0.999] due to the assumption that σ2 = 1/d.
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Remark 2. We note that, as long as σ2 = Ω(1/d), probability (2) above will be Ω(1), which satisfies
the lemma. However, Lemma 15 (the analogous theorem in the case where we have multiple filters)
depends more subtly on having σ2 = Θ(1/d), not just σ2 = Ω(1/d).

B.2 Multiple filters

Throughout, we use the shorthand w(0) to denote {w(0)
j }j∈[m], w to denote {wj}j∈[m], and b to

denote {bj}j∈[m].
Theorem 2. For any C > 0, if there exists k0 such that m ≤ C for all k ≥ k0, then there exists
k1 ≥ k0 such that, for all k ≥ k1, with probability at least 0.999 over the random initialization
{w(0)

j }j∈[m] where each w
(0)
j i.i.d. ∼ N (0, σ2

0I), the following holds for every set of weights
w := {wj}j∈[m] and every set of biases b := {bj}j∈[m],

Pr
X,y∼D

[sign(kw(X)) 6= y] ≥ 0.1,

where σ2 = 1/d.

Proof. We recall that the finite-width CNTK is defined as:

kw(X) =
∑

i∈[k+1]

∑
j∈[m]

〈wj , Xi〉1|〈w(0)
j ,Xi〉|+bj≥0

.

This comes from the gradient of the CNN function fw,b(X) with respect to w:

∇wfw,b(X) =

k+1∑
i=1

Xi [I{〈w, Xi〉+ b > 0}+ I{−〈w, Xi〉+ b > 0}] .

For j ∈ [m], let v̂j :=
w

(0)
j

‖w(0)
j ‖

, and define the set J := {(j, j′) ∈ [m]× [m] : j 6= j′}.

Then there exist some positive constants D(l)
0.999, D

(u)
0.999, D

(p)
0.999 > 0 such that

Pw(0)

∀j ∈ [m],
D

(l)
0.999√
d
≤ |〈v̂j ,w?〉| ≤

D
(u)
0.999√
d

⋂
∀(j, j′) ∈ J , |〈v̂j , v̂j′〉| ≤

D
(p)
0.999√
d︸ ︷︷ ︸

Init Event

 ≥ 0.999.

(We provide the following two references for completeness: Lalley Lemma 2.7, and Gorban and
Tyukin [2018], Proposition 2.1.)

For convenience, for a single row of the input image X , denoted x ∈ Rd, we define

g(x) :=
∑
j∈[m]

〈wj , x〉1|〈w(0)
j ,x〉|+bj≥0

,

which represents the total contribution to kw(X) coming from x. We thus have

kw(X) =
∑

i∈[k+1]

g(Xi) = g(yw?) +
∑
i∈I

g(εi).

Throughout the remainder of the proof, we consider arbitrary initialization w(0) satisfying the above
criteria and arbitrary w, b.

If y(g(yw?)) ≤ 0, then by symmetry of g(εi), we have PX,y∼D
[
y
∑
i∈I g(εi) ≤ 0

]
= 0.5, so

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.5 > 0.1.

It thus remains to consider the more complex case y(g(yw?)) > 0.
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By Lemma 15, for any w, b, there exist constants C > 0, pC ∈ (0, 1] such that

p := Pεi∼N (0,σ2Id)

[
|g(εi)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≥ pC .

Since each noise row has the same distribution, the same C, p, pC hold for all i ∈ I .

Let I+ := {i ∈ I : |g(εi)| ≥ Cσ|g(w?)|} and let I− := I \ I+.

By Chernoff, P[|I+| ≤ 0.5kp] ≤ e−0.52kp/2.

Applying Lemma 13, we obtain:

P

[∑
i∈I+

g(εi) ∈
[
−|g(w?)|, |g(w?)|

]]
= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− |g(w?)|
Cσ|g(w?)|

,
|g(w?)|

Cσ|g(w?)|

]]

= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− 1

Cσ
,

1

Cσ

]]

= O

(
1

σ
√
|I+|

)
.

Thus, the probability of misclassification P(X,y)∼D[sign(kw(X)) 6= y] is at least:
(We have sign(0) := 0, so kw(X) = 0 is necessarily a misclassification event.)

P(X,y)∼D[sign(kw(X)) 6= y] = P(X,y)∼D[ykw(X) ≤ 0]

= P(X,y)∼D

[
y
∑
i∈I

g(εi) ≤ −yg(w?)

]

≥ P(X,y)∼D

[∑
i∈I

g(εi) ≥ |g(w?)|

]

≥ P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|,
∑
i∈I−

g(εi) ≥ 0

]

= P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]
· P(X,y)∼D

[∑
i∈I−

g(εi) ≥ 0

]

=
1

2
P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]

=
1

4
P(X,y)∼D

[∑
i∈I+

g(εi) /∈
(
−|g(w?)|, |g(w?)|

)]

=
1

4

(
1− P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)])

P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)]

= P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| ≤ 0.5kp

]
︸ ︷︷ ︸

≤1

P[|I+| ≤ 0.5kp]

+ P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| > 0.5kp

]
P[|I+| > 0.5kp]︸ ︷︷ ︸

≤1
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≤ e−0.52kp/2 +O

(
1

σ
√
kp

)

≤ O

(
1

(log k)
√
pC

)

= O

(
1

log k

)
.

Putting this together, we get

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 1

4
(1−O(1/ log k)) .

Thus, there exists k1 ∈ N such that, for all k ≥ k1, with probability at least 0.999 over the random
initialization w

(0)
j ∼ N (0, σ2

0Id), the following holds for all w, b:

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.1.

Lemma 15 (general case: 1 ≤ m ≤ C). Assume w(0) satisfies the Init Event. Then, for any w, b,
there exist constants C > 0, pC ∈ (0, 1] such that

Pε∼N (0,σ2Id)

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≥ pC .

Proof. We first consider the trivial case where g(w?) = 0. We necessarily have |g(ε)| ≥ 0, so for all
C > 0, pC = 1 satisfies the lemma statement. So throughout the rest of this proof, we focus on the
case where g(w?) 6= 0.

For any w ∈ Rd, define

M(w) := {j ∈ [m] : |〈w(0)
j ,w〉|+ bj ≥ 0}.

Note that, for any w,M(w) depends on the random initialization w(0) and the chosen bias b.

We useM to write g(w?), g(ε) as follows:

g(w?) =
∑
j∈[m]

〈wj ,w?〉1|〈w(0)
j ,w?〉|+bj≥0

=
∑

j∈M(w?)

〈wj ,w?〉 =

〈 ∑
j∈M(w?)

wj ,w?

〉

g(ε) =
∑
j∈[m]

〈wj , ε〉1|〈w(0)
j ,ε〉|+bj≥0

=
∑

j∈M(ε)

〈wj , ε〉 =

〈 ∑
j∈M(ε)

wj , ε

〉
.

We first show that P[M(ε) =M(w?)] ≥ q, for some constant q > 0, the proof of which continues
until (9).

For j ∈ [m], let v̂j :=
w

(0)
j

‖w(0)
j ‖

, and let {uj}j∈[m] be the unnormalized output of Gram-Schmidt

applied to {v̂j}j∈[m]. Formally, Gram-Schmidt will yield:

u1 = v̂1

uj = v̂j −
j−1∑
i=1

〈v̂j , ui〉
〈ui, ui〉

ui.

We will show that the following invariant holds for all j ∈ [m]:

uj = v̂j ±O
(

1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂j−1. (7)
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By the triangle inequality, (7) yields ‖uj‖ ≤ 1 +O
(

1√
d

)
and ‖uj‖ ≥ 1−O

(
1√
d

)
, which implies

‖uj‖ = Θ(1). (8)

For j = 1, (7) holds because uj = v̂1 by definition.

For any j > 1, assuming (7) holds for all i < j (and thus its corollary (8)), we have

uj = v̂j −
j−1∑
i=1

〈
v̂j , v̂i ±O

(
1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂i−1

〉
‖ui‖2

[
v̂i ±O

(
1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂i−1

]
= v̂j ±O

(
1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂j−1.

With invariants (7) and (8) holding for all j ∈ [m], we can now lower bound P[M(ε) =M(w?)].

We first define E1 as the event that, for all j ∈M(w?), |〈v̂j , ε〉| ≥ |〈v̂j ,w?〉|.
We define E2 as the event that, for all j ∈ [m] \M(w?), |〈v̂j , ε〉| ≤ |〈v̂j ,w?〉|.
We then have

P[M(ε) =M(w?)] ≥ P [E1 ∩ E2] .

We will then lower bound P [E1 ∩ E2] by considering the probability that each |〈v̂j , ε〉| belongs to a
particular interval.

We define the two intervals

I(l) :=

[
D

(l)
0.999

2
√
d
,
D

(l)
0.999√
d

]
, I(u) :=

[
D

(u)
0.999√
d

,
2D

(u)
0.999√
d

]
.

Since the Init Event holds, we can see that |〈v̂j , ε〉| ∈ I(l) =⇒ |〈v̂j , ε〉| ≤ |〈v̂j ,w?〉|.

Analogously, |〈v̂j , ε〉| ∈ I(u) =⇒ |〈v̂j , ε〉| ≥ |〈v̂j ,w?〉|.

Thus, for all j ∈M(w?), let Ij represent I(u), and for all j ∈ [m] \M(w?), let Ij represent I(l).

We then have

P [E1 ∩ E2] ≥ P[(∀j ∈ [m]) |〈v̂j , ε〉| ∈ Ij ]

=

m∏
j=1

P
[
|〈v̂j , ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
.

We consider P
[
|〈v̂j , ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
for an arbitrary j ∈ [m].

P
[
|〈v̂j , ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
= P

[∣∣∣∣〈uj ±O( 1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂j−1, ε

〉∣∣∣∣ ∈ Ij
∣∣∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]

= P

[∣∣∣∣〈uj , ε〉 ± O(1

d

)∣∣∣∣ ∈ Ij
∣∣∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]

= P
[∣∣∣∣〈uj , ε〉 ± O(1

d

)∣∣∣∣ ∈ Ij]
= Px∼N (0,‖uj‖2σ2)

[∣∣∣∣x±O(1

d

)∣∣∣∣ ∈ Ij]
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=


Px∼N (0,‖uj‖2σ2)

[
|x| ∈

[
D

(l)
0.999

2
√
d

+O
(

1
d

)
,
D

(l)
0.999√
d
−O

(
1
d

)]]
if Ij = I(l)

Px∼N (0,‖uj‖2σ2)

[
|x| ∈

[
D

(u)
0.999√
d

+O
(

1
d

)
,

2D
(u)
0.999√
d
−O

(
1
d

)]]
if Ij = I(u)

.

Since ‖uj‖σ = Θ
(

1√
d

)
, in either case the probability is at least a constant.

Thus, for some constant qj > 0, we have

P
[
|〈v̂j , ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
= qj .

So we obtain

P[M(ε) =M(w?)] ≥ P [E1 ∩ E2] ≥ P[(∀j ∈ [m]) |〈v̂j , ε〉| ∈ Ij ] =

m∏
j=1

qj =: q, (9)

for some constant q > 0.

Let

v̂ :=

∑
j∈M(w?) wj

‖
∑
j∈M(w?) wj‖2

.

Unless otherwise specified, P means Pε∼N (0,σ2Id):

P
[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≥ P

M(ε) =M(w?),

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj , ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


1− P

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≤ 1− P

M(ε) =M(w?),

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj , ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


= P

¬
M(ε) =M(w?),

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj , ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


= P

¬(M(ε) =M(w?)

)
∪ ¬

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj , ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


≤ 1− P[M(ε) =M(w?)] + P

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj , ε

〉∣∣∣∣∣∣ < Cσ|g(w?)|


≤ 1− q + P

[
1

σ
|〈v̂, ε〉| < C |〈v̂,w?〉|

]
= 1− q + Px∼N (0,1) [|x| < C |〈v̂,w?〉|] .

There exists a C > 0 such that Px∼N (0,1) [|x| < C |〈v̂,w?〉|] = q/2.

We thus have 1− P
[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≤ 1− q/2, so P

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

EventA

]
≥ q/2.
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C Experiment details

Details of all experiments are reported here.2 All experiments were run on a single Nvidia GeForce
RTX 2080 Ti GPU and took between 2 and 10 hours per run. Models were implemented using the
jax python library[Bradbury et al., 2018], with the neural-tangents library [Novak et al., 2020]
used for the NTK implementation and some code borrowed from the autol2 library [Lewkowycz
and Gur-Ari, 2020]. All three libraries are available under an Apache License, Version 2.0.

Synthetic data. The experiments with our model on synthetic data (Figure 3) were run on data
with the following parameters: k = 1000, d = 10, and σ = 1. The model was trained for 10,000
steps of SGD with learning rates ηw = 0.1 and ηb = 0.1/1000 and minibatches of size 500, with
new i.i.d. samples generated for each batch. Batch size and learning rate were chosen as large (resp.
small) as possible given computational constraints, to best simulate the population-gradient setting.

CIFAR variants. All experiments on CIFAR variants, including the sparsity experiments in Figure
2, all experiments in Section 6, and the experiments in Appendix D below, use the following:

• Dataset details. The IMAGENET Plants synset was constructed using all WordNet IDs
which are subclasses of the Plants ID n00017222. The CIFAR-VEHICLES task is to classify
between CIFAR-10 classes airplane, automobile, ship and truck, with animal classes as
noise (bird, cat, deer, dog, frog, and horse). IMAGENET and CIFAR-10 are both datasets of
public-domain images. Our modifications do not add any personally-identifiable information
or offensive content. Example images are included in the code repository.

• Model architectures. We use the same architectures as those in Allen-Zhu and Li [2020].
WRN: we use a WideResNet WRN10-10, meaning depth=10 and widening factor k=10.
This corresponds to a total of 3 residual blocks and 7 total convolutional layers. NTK:We
use the corresponding finite-width (linearized) NTK of the WRN.

• Training details. We again largely follow the protocol of Allen-Zhu and Li [2020].
However, we do not use data augmentation or Cutout since it is unclear how these may
interact with the constructed noise images. WRN: Momentum optimizer with mass = 0.9,
initial lr = 0.1, batch size = 128, weight decay = 0.0005, 200 epoch, and decay lr by 0.2
at epochs 80, 100, and 120 epochs. For the WRN experiments on larger images reported
below, we reduced batch size to 50 due to computational constraints. In order to maintain
stable training with this smaller batch size, we also had to reduce the initial learning rate to
0.05. NTK: Adam optimizer, initial lr = 0.001, batch size = 50, no weight decay, 200 epoch,
and decay lr by 0.2 at epochs 140 and 170 epochs.

MNIST. The MNIST experiments involving CNNs and finite-width NTKs are run using the same
settings as those on CIFAR. Instead of a WRN, the network architecture consists of two convolutional
layers with 8 and 16 channels, 3x3 kernels, stride 2, and ReLU activations, followed by a fully
connected layer. The widened finite-width NTKs are obtained by increasing the number of convo-
lutional channels and then taking the corresponding finite-width NTK. For the infinite-width NTK,
we use the nt.predict.gradient_descent_mse_ensemble method of the neural-tangents
library. We explored various diagonal regularization values between 1e-1 and 1e-8 (prior to the trace
scaling provided by neural-tangents library); however, we found this to have little effect on the
performance of the infinite-width NTK; the test accuracy stayed within approximately a 2% range per
Gaussian noise level. Therefore, for simplicity, we report the values at regularization strength 1e-5.

D Additional experiments

Image size and placement. In Section 6 we saw that as the background noise level increases,
NTK performance degrades significantly more quickly than WRN performance. Those experiments
are done with 16x16 images on a 32x32 noise background, and all but the CIFAR-VEHICLES
experiment place the image at a random location on the background. Here we conduct additional
experiments to show that the performance gap is not due to varying image location or small image
size. Specifically, we replicate the experiment on CIFAR-2 with Gaussian noise, but with two

2Code for experiments is available at https://github.com/skarp/local-signal-adaptivity.
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Figure 7: WRN vs NTK on CIFAR-2 with IMAGENET noise, varying size of the background noise
image.

additional image-placement methods and at a larger size of 32x32 images on a 64x64 background.
The image is either placed at a random location on the background, in a random corner, or in fixed
corner.

Table 2: Test accuracy of WRN and NTK on CIFAR-2 with Gaussian noise. The image is placed on
the noise background in a random location, random corner, or fixed corner. The image is sized 16x16
on a 32x32 background (first two rows), or 32x32 on a 64x64 background (last two rows).

random location random corner fixed corner

noise σ noise σ noise σ
size 0.0 0.5 1.0 2.0 0.0 0.5 1.0 2.0 0.0 0.5 1.0 2.0

16x16
on 32x32

WRN 94.7 94.0 92.8 91.7 94.3 94.2 92.7 92.6 94.4 94.3 94.0 92.9
NTK 89.9 87.3 83.7 76.9 91.6 88.3 84.5 78.3 92.0 88.8 85.2 80.0

32x32
on 64x64

WRN 96.1 96.2 95.8 94.9 96.5 96.5 96.5 95.9 96.9 96.6 96.0 95.6
NTK 91.2 89.4 84.6 82.2 91.8 89.1 85.3 79.1 93.1 91.0 88.3 82.9

Overall, we find that the gap in WRN vs. NTK performance degradation persists in all cases. With
respect to image size, we note that all models perform better on the larger images. However, the
WRN appears slightly less impacted by noise on the larger images, while degradation affects the NTK
roughly equally on large and small images. With respect to image placement, virtually all models
perform best with fixed-corner placement, followed by random-corner, followed by random-location.
It is not clear that either the WRN or NTK is more affected by placement than the other.

Noise background size. To experiment with tunable structured noise which is somewhat more
natural than pixel intensity, we conduct an additional experiment on CIFAR-2 with IMAGENET
noise, but maintaining the full pixel intensity and varying the size of the background noise image.
The 16x16 signal images are placed at a random location on IMAGENET images which are scaled
between 16x16 and 64x64. Note that a background image of size 16x16 means that there is no noise.

The results are shown in Figure 7. We observe the same pattern as that in Section 6: the NTK
degrades significantly as the size of the noise background increases, while the WRN performance is
unaffected.

Full MNIST finite-NTK width results. In Figure 8 we include the full results of the CNN vs.
finite-width NTK experiments shown in Figure 6 (right), for the full range of widths of NTK, from
50x to 100x wider than the CNN. We see that the degradation of the NTK performance is consistent
across widths.
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Figure 8: Comparison of CNN with various widths of finite-width NTK on MNIST.

E Societal impact

We elaborate on our ethics statement in the main paper as follows.

As stated there: “Our work is primarily theoretical in nature and analyzes existing methods; thus, to
the best of our knowledge, it does not have any negative societal impact.”

Here, we expand on “to the best of our knowledge”. We recognize that there is a delicate feedback
cycle created even by the community’s selection of paper topics. By writing a paper on the advantages
of neural networks over kernel methods, we are perhaps further advancing the perspective that neural
networks are, in fact, worthy of “awe”. We do not believe this perspective is inherently problematic.
However, we do recognize that we have an obligation to prevent over-hype as well. We believe that
this theoretical analysis of neural networks is an honest portrayal of one advantage of neural networks
but recognize that it might, in fact, further enforce the hype to some degree. Our choice of dataset
(CIFAR-10) also reinforces the community’s focus on benchmark datasets. We recognize that there is
a cost due to the community’s focus on a limited set of benchmark datasets, and our paper does not
push the community to move beyond such datasets. Thus, although this paper does not introduce any
new negative societal impact, we realize that, by participating in various trends in the community, we
are perpetuating certain cycles that likely need more careful, large-scale evaluation.
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