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Abstract

We study the effect of stochasticity in on-policy policy optimization, and make the
following four contributions. First, we show that the preferability of optimization
methods depends critically on whether stochastic versus exact gradients are used.
In particular, unlike the true gradient setting, geometric information cannot be
easily exploited in the stochastic case for accelerating policy optimization without
detrimental consequences or impractical assumptions. Second, to explain these
findings we introduce the concept of committal rate for stochastic policy opti-
mization, and show that this can serve as a criterion for determining almost sure
convergence to global optimality. Third, we show that in the absence of external
oracle information, which allows an algorithm to determine the difference between
optimal and sub-optimal actions given only on-policy samples, there is an inherent
trade-off between exploiting geometry to accelerate convergence versus achieving
optimality almost surely. That is, an uninformed algorithm either converges to
a globally optimal policy with probability 1 but at a rate no better than O(1/t),
or it achieves faster than O(1/t) convergence but then must fail to converge to
the globally optimal policy with some positive probability. Finally, we use the
committal rate theory to explain why practical policy optimization methods are
sensitive to random initialization, then develop an ensemble method that can be
guaranteed to achieve near-optimal solutions with high probability.

1 Introduction

Policy optimization is a central problem in reinforcement learning (RL) that provides a foundation
for both policy-based and actor-critic RL methods. Until recently it had generally been assumed
that methods based on following the policy gradient (PG) [1] could not be guaranteed to converge
to globally optimal solutions, given that the policy value function is not concave. However, this
assumption has been contradicted by recent findings that policy gradient methods can indeed prove
to converge to global optima, at least in the tabular setting. In particular, the standard softmax PG
method with a constant learning rate has been shown to converge to a globally optimal policy at
a Θ(1/t) rate for finite MDPs [2], albeit with challenging problem and initialization dependent
constants [3, 4]. Several techniques have been developed to further improve standard PG and achieve
better rates and constants. For example, adding entropy regularization has been shown to produce
faster O(e−c·t) convergence (c > 0) to the optimal regularized policy [2, 5, 6]. By exploiting natural
geometries based on Bregman divergences, natural PG (NPG) or mirror descent (MD) have been
shown to achieve better constants than standard PG [7, 5] and faster O(e−c·t) rates, with [5, 6] and
without regularization [8]. Alternative policy parameterizations, such as the escort parameterization,
have been shown to improve the constants achieved by softmax and yield faster plateau escaping [3].
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More recently, a geometry-aware normalized PG (GNPG) approach has been proposed to exploit the
non-uniformity of the value function, achieving faster O(e−c·t) rates with improved constants [9].

A key observation is that each of these four techniques—(i) entropy regularization, (ii) NPG (or
MD), (iii) alternative policy parameterization, and (iv) GNPG—accelerates the convergence of
standard softmax PG by better exploiting the geometry of the optimization landscape. In particular,
entropy regularization makes the regularized objective behave more like a quadratic [2, 5, 6], which
significantly improves the near-linear character of the softmax policy value [2]. Natural PG (or MD)
performs non-Euclidean updates in the parameter space, which is quite different from the Euclidean
geometry characterizing standard softmax PG updates [7, 5, 8]. The escort policy parameterization
induces an alternative policy-parameter relation [3]. GNPG exploits the non-uniform smoothness in
the optimization landscape via a simple gradient normalization operation [9].

However, these advantages have only been established for the true gradient setting. A natural question
therefore is whether geometry can also be exploited to accelerate convergence to global optimality
in stochastic gradient settings. In this paper, we show that in a certain fundamental sense, the
answer is no. That is, there exists a fundamental trade-off between leveraging geometry to accelerate
convergence and overcoming the noise introduced by stochastic gradients (possibly infinite); in
particular, no uninformed algorithm can improve the O(1/t) convergence rate without incurring a
positive probability of failure (i.e. diverging or converging to a sub-optimal stationary point).

The conditions used in vanilla stochastic gradient convergence analysis, i.e., unbiased and variance-
bounded gradient estimator [10], has been exploited to attempt to explain such a trade-off in policy
gradients [11, 6]. However, the bounded variance requires the sample policy to be bounded away
from zero everywhere, which is impractical. Meanwhile, a variant of NPG can converge even with
unbounded variance [12]. These gaps raise the question that if not the bounded variance, then what is
the key factor to ensure the convergence of stochastic policy optimization algorithms? Motivated by
this question, we introduce the concept committal rate to characterize the update behaviors, which
significantly affect whether convergence to a correct solution can be guaranteed in the stochastic
on-policy setting. In particular, we make the following contributions.

• First, we illustrate the anomaly that the preferability of policy optimization algorithms (softmax
PG vs. NPG and GNPG) changes dramatically depending on whether true versus on-policy
stochastic gradients are considered, and reveal the impracticality and unnecessity of a bounded
variance requirement in Section 2;

• Second, we introduce the concept of the committal rate in Section 3 to characterize the aggressive-
ness of an update, which provide us tools for analyzing the stochasticity effect in convergences;

• Third, we use the committal rate to study general stochastic policy optimization behaviors
rigorously and reveal the inherent geometry-convergence trade-off in Section 4;

• Finally, we explain the sensitivity to random initialization in practical policy optimization
algorithms. From these results, we then develop an ensemble method that can achieve fast
convergence to global optima with high probability in Section 5.

2 Understanding Algorithm Preferability in On-line Policy Optimization

To illustrate the key aspects of policy optimization methods and their comparative preferability, it
suffices to consider deterministic, single-state, finite-action Markov decision processes (MDPs). The
main results extend to general finite MDPs, but for clarity of exposition we restrict attention to
one-state MDPs.

A deterministic, single-state, finite-action MDP can be simply be specified by an action space is
[K] := {1, 2, . . .K} and a K-dimensional reward vector r ∈ RK . The problem is to maximize the
expected reward of a parametric policy πθ,

max
θ:[K]→R

E
a∼πθ(·)

[r(a)]. (1)

where πθ is parameterized by θ using the standard softmax transform,

πθ(a) =
exp{θ(a)}∑

a′∈[K] exp{θ(a′)}
, for all a ∈ [K]. (2)
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Without loss of generality, we assume there exists a unique optimal action a∗ = arg maxa∈[K] r(a),
hence there exists a unique optimal deterministic policy π∗ such that π∗>r = supθ∈RK π

>
θ r = r(a∗).

We make the following assumption on the reward.
Assumption 1 (Positive reward). r(a) ∈ (0, 1], ∀a ∈ [K].

2.1 Exact Gradient Setting

It is known that Eq. (1) is a non-concave maximization over the policy parameter θ [2]. Nevertheless,
it has recently become better understood how policy gradient (PG) methods still converge to global
optima for Eq. (1) when exact gradients are used. To illustrate the main considerations, we focus on
the following three representative algorithms that have recently been proved to achieve convergence
to global optima but at different rates: softmax policy gradient (PG), natural PG (NPG), and geometry-
aware normalized PG (GNPG), while similar conclusions can be drawn for other variants [12, 13].

2.1.1 Softmax PG

The standard softmax PG method is specified by the following update.

Update 1 (Softmax PG, true gradient). θt+1 ← θt + η · dπ
>
θt
r

dθt
, where dπ>θ r

dθ =
(
diag(πθ)− πθπ>θ

)
r,

and thus dπ>θ r
dθ(a) = πθ(a) · (r(a)− π>θ r) for all a ∈ [K].

As shown in Mei et al. [2], the convergence of this update to a globally optimal policy, given exact
gradients, can be established by considering the following non-uniform Łojasiewicz (NŁ) inequality,

Lemma 1 (NŁ, [2]).
∥∥∥dπ>θ rdθ

∥∥∥
2
≥ πθ(a∗) · (π∗ − πθ)>r.

By considering smoothness of π>θ r, Mei et al. [2] shows that the progress in each iteration of PG can

be lower bounded by the squared norm of the gradient,
∥∥∥dπ>θtrdθt

∥∥∥2

2
, which leads to a O(1/t) rate.

Proposition 1 (PG upper bound [2]). Using Update 1 with η = 2/5, we have (π∗−πθt)>r ≤ 5/(c2·t)
for all t ≥ 1, such that c = inft≥1 πθt(a

∗) > 0 is a constant that depends on r and θ1, but it does
not depend on the time t. In particular, if πθ1(a) = 1/K ∀a then c ≥ 1/K.
Proposition 2 (PG lower bound [2]). For sufficiently large t ≥ 1, Update 1 with η ∈ (0, 1] exhibits
(π∗ − πθt)>r ≥ ∆2/ (6 · t), where ∆ = r(a∗)−maxa6=a∗ r(a) > 0 is the reward gap of r.
Remark 1. The constant dependence of PG follows a Ω(1/c) lower bound for one-state MDPs [3],
while c can be exponentially small in terms of the number of states for general finite MDPs [4].

To summarize, using η ∈ O(1), softmax PG achieves convergence to a global optima, but with a
Θ(1/t) rate that exhibits poor constant dependence.

2.1.2 Natural PG (NPG)

An alternative method, natural PG (NPG) [14], provides the prototype for many practical policy
optimization methods, such as TRPO and PPO [15, 16]. NPG is based on the following update.
Update 2 (Natural PG (NPG), true gradient). θt+1 ← θt + η · r.

For softmax policies, it turns out that Update 2 is identical to mirror descent (MD) with a Kullback-
Leibler (KL) divergence. Therefore a standard MD analysis shows that Update 2 achieves convergence
to a global optimum at a rate of O(1/t) [7]. Very recently, work concurrent to this submission [8] has
shown that Update 2 actually enjoys a much fasterO(e−c·t) rate. In fact, here too we can establish the
same O(e−c·t) rate, but using a simpler argument based on the following variant of the NŁ inequality
for natural gradients. These results are new to this paper. Due to space limitation, we postpone all
the proofs to the appendix.

Lemma 2 (Natural NŁ inequality, continuous).
〈dπ>θ r

dθ , r
〉
≥ πθ(a∗) ·∆ · (π∗ − πθ)> r.

Lemma 3 (Natural NŁ, discrete). Let π′(a) := π(a)·eη·r(a)∑
a′ π(a′)·eη·r(a′) , ∀ a ∈ [K], where η > 0. Then,

(π′ − π)
>
r ≥

[
1− 1

π(a∗) · (eη·∆ − 1) + 1

]
· (π∗ − π)

>
r. (3)
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In particular, by using a non-Euclidean update and analysis, the progress of each iteration of NPG can

be lower bounded by the larger bound
〈dπ>θtr
dθt

, r
〉

instead of the weaker bound
∥∥∥dπ>θtrdθt

∥∥∥2

2
established

for standard PG. Based on this inequality, one can easily establish a much fasterO(e−c·t) convergence
to a globally optimal solution for NPG, making it far preferable to PG if true gradients are available.
Theorem 1 (NPG upper bound). Using Update 2 with any η > 0, we have, for all t ≥ 1,

(π∗ − πθt)
>
r ≤ (π∗ − πθ1)

>
r · e−c·(t−1), (4)

where c := log
(
πθ1(a∗) ·

(
eη·∆ − 1

)
+ 1
)
> 0 for any η > 0, and ∆ = r(a∗)−maxa 6=a∗ r(a) > 0.

2.1.3 Geometry-aware Normalized PG (GNPG)

The Geometry-aware Normalized PG (GNPG) update is investigated in [9] to accelerate the conver-
gence of PG by exploiting local smoothness properties of the optimization landscape.

Update 3 (Geometry-aware Normalized PG (GNPG), true gradient). θt+1 ← θt+η·
dπ>θtr

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
.

The analysis in [9] focuses on exploiting non-uniform smoothness (NS) rather than improving the NŁ
inequality as for NPG above.

Lemma 4 (NS, [9]). The spectral radius of Hessian matrix d2π>θ r
dθ2 is upper bounded by 3 ·

∥∥∥dπ>θ rdθ

∥∥∥
2
.

Given this NS property, [9] shows that the progress in GNPG can be lower bounded by the larger

quantity
∥∥∥dπ>θtrdθt

∥∥∥
2

instead of the weaker
∥∥∥dπ>θtrdθt

∥∥∥2

2
for standard PG. Then, using the same NŁ

inequality as for PG, GNPG also converges to a globally optimal solution at rate O(e−c·t). Again,
one naturally concludes that GNPG is preferable to PG if exact gradients are used.
Proposition 3 (GNPG upper bound [9]). Using Update 3 with η = 1/6, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤ (π∗ − πθ1)
>
r · e−

c·(t−1)
12 , (5)

where c = inft≥1 πθt(a
∗) > 0 does not depend on t. If πθ1(a) = 1/K, ∀a, then c ≥ 1/K.

2.2 The Anomalous Behaviour of Some On-policy Stochastic Gradient Updates

Although the above results show that exploiting geometric information can allow linear convergence
to an optimal solution given true gradients—obviously O(e−c·t) represents an exponential speedup
over the Ω(1/t) lower bound for standard PG—it is critical to understand whether such advantages
can also be obtained in the more natural stochastic gradient setting. Given the previous results, it
would seem natural to prefer accelerated algorithms over PG in practice, and there is some evidence
that such thinking has become mainstream based on the popularity of TRPO and PPO over PG.
Indeed, TRPO and PPO are often interpreted as instances of NPG and the faster convergence of NPG
is used to explain their empirical success. However, by more closely examining the behavior of these
algorithms when true gradients are replaced by on-policy stochastic estimates, serious shortcomings
begin to emerge, as empirically observed in Chung et al. [12], and it is far from obvious that similar
advantages from the true gradient case might be recoverable in the more practical stochastic scenario.

We begin by examining the behavior of the previous algorithms in the context of on-policy stochastic
gradients. To enable this analysis, first note that each of the above PG methods, Updates 1 to 3,
can be adapted to the stochastic setting by using on-policy importance sampling (IS) to provide an
unbiased estimate of the true reward. We do not make assumptions like each action is sufficiently
explored, since πθt is the behaviour policy as well as the policy to be optimized. It is possible that πθt
approaches a near deterministic policy, ruling out positive results based on such assumptions [11].
Definition 1 (On-policy IS). At iteration t, sample one action at ∼ πθt(·). The IS reward estimator
r̂t is constructed as r̂t(a) = I{at=a}

πθt (a) · r(a) for all a ∈ [K].

Remark 2. We consider sampling one action in each iteration, but the results continue to hold for
sampling a constant B > 0 mini-batch of actions. A significant limitation of our results is that the
reward is observed without noise, which is an idealized case. It remains to be seen which conclusions
of this work can be extended to the more general case when the rewards are observed in noise.
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In the next subsections we consider the mentioned three on-policy update rules. As we shall see, only
the first update rule, vanilla policy gradient with softmax parameterization is sound.

2.2.1 Softmax PG

Update 4 (Softmax PG, on-policy stochastic gradient). θt+1 ← θt + η · dπ
>
θt
r̂t

dθt
, where

dπ>θt r̂t

dθt(a) =

πθt(a) · (r̂t(a)− π>θt r̂t) for all a ∈ [K].

Using the IS reward estimate, the softmax PG is unbiased and bounded by constant:
Lemma 5. Let r̂ be the IS estimator using on-policy sampling a ∼ πθ(·). The stochastic softmax PG

estimator is unbiased and bounded, i.e., Ea∼πθ(·)

[
dπ>θ r̂
dθ

]
=

dπ>θ r
dθ , and Ea∼πθ(·)

∥∥∥dπ>θ r̂dθ

∥∥∥2

2
≤ 2.

These observations imply that stochastic softmax PG converges to a global optimum in probabil-
ity, which was also proved by Chung et al. [12]. Here we use the non-uniform smoothness in
Lemma 4 to prove that Eat∼πθt (·)

[
(π∗ − πθt)

>
r
]
∈ O(1/

√
t)→ 0 as t→∞, which implies that

limt→∞ Pr
(

(π∗ − πθt)
>
r > 0

)
→ 0, i.e., sub-optimality converges to 0 in probability.

Theorem 2. Using Update 4, (π∗ − πθt)
>
r → 0 as t→∞ in probability.

2.2.2 NPG

Similarly, we can use on-policy IS estimation to adapt NPG to the stochastic setting.
Update 5 (NPG, on-policy stochastic gradient). θt+1 ← θt + η · r̂t.

Although the NPG is unbiased, its variance can be possibly unbounded in the on-policy setting.

Lemma 6. For NPG, we have, Ea∼πθ(·) [r̂] = r, and Ea∼πθ(·) ‖r̂‖
2
2 =

∑
a∈[K]

r(a)2

πθ(a) .

The variance becomes unbounded as πθ(a) → 0, which predicts trouble when using the standard
analysis for stochastic gradient methods2 (e.g., [10]). In fact, we provide a more direct result showing
that stochastic NPG has a positive probability of converging to a sub-optimal deterministic policy.
Theorem 3. Using Update 5, we have: (i) with positive probability,

∑
a 6=a∗ πθt(a)→ 1 as t→∞;

(ii) ∀a ∈ [K], with positive probability, πθt(a)→ 1, as t→∞.

This result extends the result of [12] for the two-action (K = 2) case only. The intuition is that the
stochastic NPG accumulates too much probability on sampled sub-optimal actions and cannot recover
due to the “vicious circle” between sampling and updating.

2.2.3 GNPG

Finally, we consider the stochastic version of GNPG.

Update 6 (GNPG, on-policy stochastic gradient). θt+1 ← θt + η · dπ
>
θt
r̂t

dθt

/∥∥∥dπ>θt r̂tdθt

∥∥∥
2
.

Unfortunately, this estimator involves a ratio of random variables, and its bias can be large. As for
NPG we can show that stochastic GNPG fails with positive probability in the stochastic case.
Theorem 4. Using Update 6, we have, ∀a ∈ [K], with positive probability, πθt(a)→ 1, as t→∞.

2.3 Why Consider the On-policy Stochastic Setting?

The findings of the previous sections are summarized in Table 1. The two methods that converge
faster when the exact gradient is available are exactly those that fail in the worse possible way in the
on-policy setting. This raises the question of should one even consider the on-policy setting?

One possible reason to consider this setting is because on-policy sampling is the simplest and most
straightforward approach to extend algorithms developed for the “exact gradient” setting and with

2Standard treatment of stochastic approximation algorithms does deal with unbounded noise in a controlled
way to still get positive results [17], which means that bounded variance is far from being necessary.
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Softmax PG NPG GNPG

True gradient converges Θ(1/t) 33
converges O(e−c·t)
333

converges O(e−c·t)
333

Stochastic on-policy converges in prob. 3 fails w.p. > 0 7 fails w.p. > 0 7

Table 1: Convergence properties of softmax PG, NPG and GNPG in the alternative settings.

a minor twist, Occam’s razor dictates that one should consider simple solutions before considering
more complex ones. Indeed, off-policy algorithms are more complex with many more choices to be
made and while having the extra freedom may ultimately be useful (and even perhaps necessary), it
is worthwhile to first thoroughly examine whether this complexity can be avoided. Indeed, there is
some empirical evidence that the simple, on-policy approach may sometimes be a reasonable one:
The method PPO [16] uses on-policy sampling and yet, remarkably, it achieved outstanding results
on challenging tasks, a good example of which is to learn dexterous in-hand manipulation [18].

A second reason is that the on-policy setting presents unique challenges and as such is interesting on
its own for learning about how to design and reason about stochastic methods. Indeed, the standard
approach in analyzing stochastic update rules, such as SGD, is to start with the assumption that the
gradient estimates are unbiased and have a uniformly bounded variance. This has been used both in
the analysis of SGD [10], and later adopted to policy gradient methods [11, 6, 19, 20]. However, such
conditions are only sufficient and not necessary as the numerous results in the literature of the analysis
and design of stochastic approximation methods also show [17]. In fact, the bounded variance
assumption can be difficult to satisfy. For example, in the problems studied here this assumption
requires that the probabilities induced by a behaviour policy are bounded away from 0 everywhere
[12], which is impractical for large state and action spaces and impossible when they are infinite.

Another observation that suggests that it is worthwhile to consider methods which potentially
unbounded variance is made by Chung et al. [12] who explored the role of baselines in policy opti-
mization. They show that variance reduction techniques are not able to overcome unbounded variance,
while NPG can still achieve global convergence almost surely with a judicious choice of baseline
even though its variance remains unbounded (see Update 7 for details). This is another example that
shows that bounded variance is not necessary for convergence, and some other factors rather than
variance account for the convergence behaviour of stochastic policy optimization algorithms.

This leave us an important question to be answered to bridge the gap between theory and practice,
What are the key factors determining the convergence of stochastic policy optimization?

As an answer to this question we propose a new notion, the committal rate of policy optimization
methods and will demonstrate that small committal rates are necessary to ensure the convergent
behavior of policy optimization methods.

3 Committal Rate of Stochastic Policy Optimization Algorithms

Although the baseline study [12] only focuses on two- and three-action bandits primarily, it develops a
useful intuition that stochastic policy optimization in practical settings consists of separate “sampling”
and “updating” steps that become coupled in the on-policy setting. Building from this observation, and
seeking to explain the outcomes in Section 2, we formalize the following “committal rate” function
of a policy optimization algorithm. The main idea is to decouple the “sampling” and “updating” by
fixing sampling one action and characterizing the aggressiveness of an update in a deterministic way.
Thus, in what follows, by a policy optimization algorithm A we mean a mapping from all sequences
of pairs of action-reward pairs to the set of parameter vectors.
Definition 2 (Committal Rate). Fix a reward function r ∈ (0, 1]K and an initial parameter vector
θ1 ∈ RK . Consider a policy optimization algorithm A. Let action a be the sampled action forever
after initialization and let θt be the resulting parameter vector obtained by using A on the first t
observations. The committal rate of algorithm A on action a (given r and θ1) is then defined as

κ(A, a) = sup

{
α ≥ 0 : lim sup

t→∞
tα · [1− πθt(a)] <∞

}
. (6)

Note that in the definition we have suppressed the dependence of κ on the rewards and the initial
parameter vector. Definition 2 accounts for how aggressive an update rule is: An algorithm with
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committal rate α will make πθt(a) approach 1 at the polynomial rate of 1/tα provided that the
sampling rule only chooses action a. Thus, a larger value of κ(A, a) indicates an algorithm that
quickly commits to the action a. For example, if πθt(a) = 1 − 1/(t · log (t)), then κ(A, a) = 1.
Similarly, if πθt(a) = 1 − 1/et, then κ(A, a) = ∞, which means πθt(a) approaches 1 extremely
quickly. On the other hand, if 1−πθt(a) ∈ Ω(1), then κ(A, a) = 0, implying that πθt never becomes
committal, since πθt(a) never approaches 1.

Our next results shows that a small committal rate with respect to sub-optimal actions is necessary
for almost sure convergence to a globally optimal policy.
Theorem 5 (Committal rate main theorem). Consider a policy optimization method A, together with
r ∈ (0, 1]K and an initial parameter vector θ1 ∈ RK . Then,

max
a:r(a)<r(a∗),πθ1 (a)>0

κ(A, a) ≤ 1 (7)

is a necessary condition for ensuring the almost sure convergence of the policies obtained using A
and online sampling to the global optimum starting from θ1.

In words, Eq. (7) shows that slow reaction to constantly sampling sub-optimal actions is necessary
for the success of policy optimization methods when they are used with online sampling.

Using this result, we can now interrogate the committal rates of the previously listed algorithms.
Theorem 6. Let Assumption 1 holds. For the stochastic updates NPG and GNPG from Updates 5
and 6 we obtain κ(NPG, a) =∞ and κ(GNPG, a) =∞ for all a ∈ [K] respectively.

Theorem 6 explains why stochastic NPG and GNPG have a non-zero failure probability in the on-
policy stochastic setting: they do not obey a necessary condition for almost sure global convergence.
Intuitively, these algorithms can fail by prematurely allocating too much probability to a sub-optimal
action: each sampling of an action a ∈ [K] increments its parameter by Θ(1), so if a is sampled t
times successively, then we have 1− πθt(a) ∈ O(e−c·t), which means κ(A, a) =∞. According to
Theorem 5, there is a positive probability that a single sub-optimal action can receive a long enough
sampling run to ensure the other actions will never again be sampled.

By contrast, we can compare these outcomes to the committal rate of the softmax PG algorithm.
Theorem 7. Let r(a) > 0 and πθ1(a) > 0. Softmax PG obtains κ(PG, a) = 1 for all a ∈ [K].

Theorems 5 and 7 provide (partial) explanations of the observations in Section 2: stochastic NPG
and GNPG can fail while PG almost surely converges to a global optimum, but their committal rates
lie on different sides of the necessary condition. Since κ(PG, a) = 1 for softmax PG, it follows that∏∞
t=1 πθt(a) = 0 (see Lemma 18), hence it is not possible to sample sub-optimal actions forever, and

the optimal action a∗ always has a sufficient chance to be sampled, which ensures learning.

Next, following [12], we consider NPG using an “oracle baseline”, which assumes the knowledge
of the gap ∆. Chung et al. [12] considered this baseline to point out that convergence in on-policy
stochastic gradient methods can happen even if the variance of the gradient estimates “explodes”:

Update 7 (NPG with oracle baseline). θt+1 ← θt + η ·
(
r̂t − b̂t

)
, where b̂t(a) =

(
I{at=a}
πθt (a) − 1

)
· b

for all a ∈ [K], and b ∈ (r(a∗)−∆, r(a∗)).

Theorem 8. Using Update 7, (π∗ − πθt)
>
r → 0 as t→∞ with probability 1.

As noted, while the variance of the updates provably explodes [12], the necessary condition in
Theorem 5 is satisfied. Indeed, if at 6= a∗, πθt+1(at) < πθt(at), while the optimal action’s
probability always increases after any update. Therefore, we have κ(A, a∗) =∞ and κ(A, a) = 0
for all a 6= a∗. This example shows that the committal rate gives useful information regardless of
whether the variance of the update stays bounded.

4 The Geometry-Convergence Trade-off in Stochastic Policy Optimization

Theorem 7 raises the question of whether κ(A, a) ≤ 1 for all sub-optimal actions a ∈ [K] is sufficient
to ensure an algorithm A converges to an optimal policy almost surely. Unfortunately, this is not the
case, and the complete picture of global optimality in stochastic policy optimization is more complex
and requires detailed study of different iteration behaviors.
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4.1 Iteration Behaviours

Remark 3. The condition that κ(A, a) ≤ 1 for all sub-optimal actions a ∈ [K] is not sufficient for
ensuring almost sure convergence to global optimality. In addition to “convergence to a sub-optimal
policy with positive probability” and “convergence to a globally optimal policy with probability 1”
there exist other possible optimization behaviours, such as “not converging to any policy”.

In particular, consider the following update behaviors.

Staying. For the stationary update A : θt+1 ← θt we obtain κ(A, a) = 0 ≤ 1 for all a ∈ [K], yet
πθt = πθ1 does not converge to the optimal policy nor any sub-optimal deterministic policy.

Wandering (NPG with a large baseline). Consider A : θt+1 ← θt + η ·
(
r̂t − b̂t

)
with b̂t(a) =(

I{at=a}
πθt (a) − 1

)
· b for all a ∈ [K]. If b > r(a∗), then we have πθt+1

(at) < πθt(at), i.e., a selected
action’s probability will decrease after updating, hence κ(A, a) = 0 for all a ∈ [K]. However,
πθt(a) 6→ 1 as t→∞ for all a ∈ [K], therefore πθt will wander within the simplex forever.

The above examples show that not converging to a sub-optimal policy does not necessarily imply
converging to an optimal policy almost surely, and a stronger condition is needed to eliminate
unreasonable behaviors like θt+1 ← θt. We leave it as an open question to identify necessary and
sufficient conditions for almost sure convergence to a global optimum.

4.2 Geometry-Convergence Trade-off

In Section 2 we see that NPG and GNGP can use true gradients to significantly accelerate PG by better
exploiting geometry. However, in the stochastic setting, any estimated geometry might be inaccurate,
and intuitively, accelerated methods risk leveraging inaccurate information too aggressively. On the
one hand, if progress is sufficiently fast (i.e., with a large committal rate), then an algorithm might
never recover from aggressive yet inaccurate updates (Theorem 5). On the other hand, large progress
is necessary for fast convergence. The tension between these observations suggest that there might be
an inherent trade-off between exploiting geometry and avoiding premature convergence in stochastic
policy optimization. We formalize this intuition with the following results. For the first result, we
need to restrict to the class of policy optimization methods that do not decrease the probability of the
optimal action whenever that action is chosen: In particular, a policy optimization method is said
to be optimality-smart if for any t ≥ 1, πθ̃t(a

∗) ≥ πθt(a
∗) holds where θ̃t is the parameter vector

obtained when a∗ is chosen in every time step, starting at θ1, while θt is any parameter vector that
can be obtained with t updates (regardless of the action sequence chosen), but also starting from θ1.
Theorem 9. Let A be optimality-smart and pick a bandit instance. If A together with on-policy
sampling leads to {θt}t≥1 such that {πθt}t≥1 converges to a globally optimal policy at a rate
O(1/tα) with positive probability, for α > 0, then κ(A, a∗) ≥ α.

This theorem implies that a large committal rate for the optimal action is necessary for achieving fast
convergence to the globally optimal policy, since the sub-optimality dominates how close the optimal
action’s probability is to 1, i.e., (π∗ − πθt)

>
r ≥ (1− πθt(a∗)) · ∆. Therefore (π∗ − πθt)

>
r ∈

O(1/tα) implies 1−πθt(a∗) ∈ O(1/tα). Combining this result with Theorem 5 formally establishes
the following inherent trade-off between exploiting geometry to accelerate convergence versus
achieving global optimality almost surely (aggressiveness vs. stability).
Theorem 10 (Geometry-Convergence trade-off). If an algorithm A is optimality-smart, and
κ(A, a∗) = κ(A, a) for at least one a 6= a∗, then A with on-policy sampling can only exhibit
at most one of the following two behaviors: (i)A converges to a globally optimal policy almost surely;
(ii) A converges to a deterministic policy at a rate faster than O(1/t) with positive probability.

In other words, if A has a chance to converge to a global optimum, then either A converges to the
globally optimal policy with probability 1 (A is stable) but at a rate no better than O(1/t), or it
achieves a faster than O(1/t) convergence rate (A is aggressive) but fails to converge to the globally
optimal policy with some positive probability. This trade-off between the geometry and convergence
is faced by any stochastic policy optimization algorithm that is not informed by external oracle
information that allows it to distinguish optimal and sub-optimal actions based on on-policy samples.
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Remark 4. Theorem 10 implies that an algorithm can achieve at most one of the mentioned two
results. It is possible that an algorithm achieves neither (e.g., staying or wandering).

4.3 Exploiting External Information

In Theorem 10, the condition of κ(A, a∗) = κ(A, a) for at least one sub-optimal action a ∈ [K] is
necessary for the trade-off to hold. If this condition can somehow be bypassed, then it is possible to
simultaneously achieve faster rates and almost sure convergence to a global optimum. For example,
consider Update 7. As mentioned before, we have κ(A, a∗) = ∞ and κ(A, a) = 0 for all a 6= a∗,
breaking the mentioned condition, which allowsA to enjoy almost sure global convergence as well as
a O(e−c·t) rate. Of course, such a fortuitous outcome required a very specific baseline that is aware
of both the optimal reward and the reward gap. Without introducing external mechanisms that inform
an on-policy algorithm it appears that such information cannot be recovered sufficiently quickly from
sample data alone [21]. Nevertheless, it remains an open question to prove that this is not possible, or
whether some other strategy might allow an on-policy stochastic policy optimization algorithm to
avoid the condition of Theorem 10 and achieve both fast rates and almost sure global convergence.

Figure 1: Different algorithmic behaviours subdivided by two properties of committal rate. SAMBA
[13] does not use parametric policies and is discussed in the appendix.

Figure 1 summarizes all the iteration behaviours we studied in this paper, organized by two properties
of committal rate: (i) possible failure if κ(A, a) > 1 for at least one sub-optimal action a; and (ii) an
inherent geometry-convergence trade-off if κ(A, a∗) = κ(A, a) for at least one sub-optimal action a.
It remains open to study where other algorithms suit themselves in this diagram.

5 Initialization Sensitivity and Ensemble Methods

We use the committal rate to further reveal mystery observed in practice about the initialization
sensitivity [22]. With the understanding of this unavoidable phenomenon, we introduce ensemble
method and quantitatively characterize the successful rate in terms of number of trials.

5.1 Initialization Sensitivity

It has been observed empirically that RL algorithms are sensitive to initialization in practice: the
same algorithm can produce remarkably different performance given different random seeds [22].
Some existing work has attempted to explain initialization sensitivity due to the softmax transform
[3], but such results only hold for true gradients and apply to standard PG methods.

Using the committal rate theory developed above, we can provide a new explanation and additional
understanding of the initialization sensitivity of practical policy optimization algorithms. Most well-
performing policy optimization algorithms in practice, such as TRPO and PPO [15, 16], are based
on NPG, which exploits geometry to accelerate PG in true gradient settings. However, according
to Theorem 10, such fast convergence must incur a positive probability of failing to reach a global
optimum, even in bandit settings. Therefore, the need to attempt multiple random seeds to achieve
success is an unavoidable consequence of using these algorithms according to this theory.

5.2 Ensemble Methods

The committal rate theory also explains why ensemble methods [23–25], i.e., running a policy
optimization algorithm in multiple parallel threads and picking the best performing one, can provably
work well. This is because a fast algorithm for the true gradient setting can have a positive probability
of success or failure across different initializations while always converging quickly. In which case,

9



multiple independent runs can then be used to reduce the failure probability to any desired positive
value, while retaining efficiency (if full parallelism can be maintained).
Theorem 11. With probability 1− δ, the best single run among O(log (1/δ)) independent runs of
NPG (GNPG) converges to a globally optimal policy at an O(e−c·t) rate.

It is known that softmax PG can get stuck on long plateaus for even true gradient settings [3, 4],
which means almost sure global convergence does not necessarily imply good practical performance.
Therefore, it is a reasonable choice to perform well with the compromise of small failure probability.
Here we consider simply best selection, and it remains open to understand other practical training
tricks, such as proximal update [16, 26] and regularization [27] under stochastic settings.

6 Discussions

6.1 Sufficient and Necessary Conditions for Almost Sure Global Convergence

We make the following conjecture with some intuitions for the sufficient and necessary condition for
global convergence, a question left open in Section 4.
Conjecture 1. Given a stochastic policy optimization algorithm A, if κ(A, a∗) = κ(A, a) for at
least one sub-optimal action a, then κ(A, a∗) ∈ (0, 1] is a sufficient and necessary condition for
global convergence to π∗ with polynomial convergence rate of O(1/tα), where α > 0.

The necessary condition is from Theorem 5. For the sufficient condition, Theorem 9 can potentially
be strengthened to κ(A, a∗) ≥ α is a sufficient and necessary condition for global convergence rate
O(1/tα) (α > 0). The observation here is that Assumption 1 leads to (π∗ − πθt)

>
r ≤ 1− πθt(a∗).

This suggests that if 1−πθt(a∗) ∈ O(1/tα), then (π∗ − πθt)
>
r ∈ O(1/tα). However, a gap here is

κ(A, a∗) ≥ α means “1−πθt(a∗) ∈ O(1/tα) if we fix sampling a∗ forever”, and it is not clear if this
implies “1− πθt(a∗) ∈ O(1/tα) if we run the algorithm A using on-policy sampling at ∼ πθt(·)”.

6.2 Lower Bounds in Bandit Literature

In the bandit literature [28], the Ω(log T ) result implies that the convergence speed in terms of sub-
optimality (“average regret”) cannot be faster than O(1/t). However, the lower bound construction
there holds for stochastic reward settings. Theorem 10 holds for a simpler optimization setting: the
reward is fixed and deterministic, but the policy gradient is estimated by on-policy sampling. There-
fore, the difficulty and trade-off are from the restriction on the action-selection scheme (balancing the
aggressiveness and the stability), not from estimating or tracking the reward signal.

6.3 General MDPs

The one-state MDP results already show the main findings, since a large portion is about constructing
counterexamples showing that the stochastic policy optimization algorithms do not perform well as in
the true gradient setting. A counterexample for one-state MDPs is also a counterexample for general
MDPs. Therefore, there is no loss of generality by establishing negative results using one-state MDPs.
We include extensions to general finite MDPs in Appendix E for completeness.

7 Conclusion and Future Work

This paper introduces the committal rate theory, which not only explains why faster policy optimiza-
tion algorithms in the true gradient setting become dominated by slower counterparts in the on-policy
stochastic setting, but also reveals an inherent geometry-convergence trade-off in stochastic policy
optimization. The theory also explains empirical observations of sensitivity to random initialization
for practical policy optimization algorithms as well as the effectiveness of ensemble methods.

One interesting future direction is to study necessary and sufficient conditions for almost sure global
convergence, which could be weaker than the bounded variance assumption. Another important
direction is to investigate whether other techniques might be used in on-policy settings to break the
condition of Theorem 10 to achieve almost sure global convergence with a fast rate. One also expects
that some generalized versions of committal rate would be meaningful in stochastic reward settings.

10



Acknowledgments and Disclosure of Funding

The authors would like to thank anonymous reviewers for their valuable comments. Jincheng Mei, Bo
Dai and Dale Schuurmans would like to thank Lihong Li for helpful early discussions. Jincheng Mei
and Bo Dai would like to thank Nicolas Le Roux for providing feedback on a draft of this manuscript.
Jincheng Mei would like to thank Michael Bowling for carefully checking the paper draft in a thesis
chapter. Csaba Szepesvári and Dale Schuurmans gratefully acknowledge funding from the Canada
CIFAR AI Chairs Program, Amii and NSERC.

References
[1] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient

methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 2000.

[2] Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global con-
vergence rates of softmax policy gradient methods. In International Conference on Machine
Learning, pages 6820–6829. PMLR, 2020.

[3] Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvári, and Dale Schuurmans.
Escaping the gravitational pull of softmax. Advances in Neural Information Processing Systems,
33, 2020.

[4] Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Softmax policy gradient methods
can take exponential time to converge. arXiv preprint arXiv:2102.11270, 2021.

[5] Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. arXiv preprint arXiv:2007.06558,
2020.

[6] Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new
sampling complexity, and generalized problem classes. arXiv preprint arXiv:2102.00135, 2021.

[7] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approxi-
mation with policy gradient methods in markov decision processes. In Conference on Learning
Theory, pages 64–66. PMLR, 2020.

[8] Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja Maguluri.
On the linear convergence of natural policy gradient algorithm. arXiv preprint arXiv:2105.01424,
2021.

[9] Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvari, and Dale Schuurmans. Leveraging non-
uniformity in first-order non-convex optimization. arXiv preprint arXiv:2105.06072, 2021.

[10] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):
1574–1609, 2009.

[11] Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692–3702. PMLR, 2019.

[12] Wesley Chung, Valentin Thomas, Marlos C Machado, and Nicolas Le Roux. Beyond variance
reduction: Understanding the true impact of baselines on policy optimization. arXiv preprint
arXiv:2008.13773, 2020.

[13] Denis Denisov and Neil Walton. Regret analysis of a markov policy gradient algorithm for
multi-arm bandits. arXiv preprint arXiv:2007.10229, 2020.

[14] Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing
Systems, pages 1531–1538, 2002.

11



[15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[17] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive Algorithms and Stochastic
Approximations, volume 22. Springer, 1990.

[18] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

[19] Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient rein-
forcement learning with reinforce. arXiv preprint arXiv:2010.11364, 2020.

[20] Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari, and Mengdi Wang. On the con-
vergence and sample efficiency of variance-reduced policy gradient method. arXiv preprint
arXiv:2102.08607, 2021.

[21] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines in reinforcement learning. In
International Conference on Machine Learning, pages 5015–5024, 2018.

[22] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[23] Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4):930–936, 2008.

[24] Whiyoung Jung, Giseung Park, and Youngchul Sung. Population-guided parallel policy search
for reinforcement learning. In International Conference on Learning Representations, 2020.

[25] Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts. Effective
diversity in population-based reinforcement learning. arXiv preprint arXiv:2002.00632, 2020.
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A Proofs for Algorithm Preferability (Section 2)

A.1 True Gradient Setting

A.1.1 Softmax PG

Lemma 1 (Non-uniform Łojasiewicz (NŁ), [2]) . Let a∗ be the uniqe optimal action. Denote
π∗ = arg maxπ∈∆ π>r. Then, ∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a∗) · (π∗ − πθ)>r. (8)

Proof. See the proof in [2, Lemma 3]. We include a proof for completeness.

Using the expression of the policy gradient in Update 1, we have,

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=

[∑
a∈A

πθ(a)2 · (r(a)− π>θ r)2

] 1
2

(9)

≥ πθ(a∗) · (r(a∗)− π>θ r).

Proposition 1 (PG upper bound [2]). Using Update 1 with η = 2/5, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤ 5/(c2 · t), (10)

such that c = inft≥1 πθt(a
∗) > 0 is a constant that depends on r and θ1, but it does not depend on

the time t. In particular, if πθ1(a) = 1/K, ∀a, then c ≥ 1/K, i.e.,

(π∗ − πθt)>r ≤ 5K2/t. (11)

Proof. See the proof in [2, Theorem 2]. We include a proof for completeness.

First part. Eq. (10).

According to [2, Lemma 2], for any r ∈ [0, 1]
K , θ 7→ π>θ r is 5/2-smooth,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ 5

4
· ‖θ′ − θ‖22. (12)

Denote δ(θt) := (π∗ − πθt)>r. We have, for all t ≥ 1,

δ(θt+1)− δ(θt) = −π>θt+1
r + π>θtr +

〈dπ>θtr
dθt

, θt+1 − θt
〉
−
〈dπ>θtr
dθt

, θt+1 − θt
〉

(13)

≤ 5

4
· ‖θt+1 − θt‖22 −

〈dπ>θtr
dθt

, θt+1 − θt
〉

(by Eq. (12)) (14)

= −1

5
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(using Update 1 and η = 2/5) (15)

≤ −1

5
·
[
πθt(a

∗) · (π∗ − πθt)>r
]2

(by Lemma 1) (16)

≤ −c
2

5
· δ(θt)2, (17)
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where c = inft≥1 πθt(a
∗) > 0 is from [2, Lemma 5]. Then we have, for all t ≥ 1,

1

δ(θt)
=

1

δ(θ1)
+

t−1∑
s=1

[
1

δ(θs+1)
− 1

δ(θs)

]
(18)

=
1

δ(θ1)
+

t−1∑
s=1

1

δ(θs+1) · δ(θs)
· (δ(θs)− δ(θs+1)) (19)

≥ 1

δ(θ1)
+

t−1∑
s=1

1

δ(θs+1) · δ(θs)
· c

2

5
· δ(θs)2 (by Eq. (13)) (20)

≥ 1

δ(θ1)
+
c2

5
· (t− 1) (0 < δ(θt+1) ≤ δ(θt), by Eq. (13)) (21)

≥ c2

5
· t,

(
δ(θ1) ≤ 1 < 5/c2

)
(22)

which implies Eq. (10).

Second part. Eq. (11).

Suppose πθ1(a) = 1/K, ∀a. Using similar arguments in [2, Proposition 2], we prove that if
πθt(a

∗) ≥ πθt(a), for all a 6= a∗, then πθt+1
(a∗) ≥ πθt(a∗). We have, ∀a 6= a∗,

dπ>θtr

dθt(a∗)
= πθt(a

∗) ·
(
r(a∗)− π>θtr

)
(23)

≥ πθt(a∗) ·
(
r(a)− π>θtr

) (
r(a∗)− π>θ r > 0 and r(a∗) > r(a)

)
(24)

> πθt(a) ·
(
r(a)− π>θtr

)
(πθt(a

∗) ≥ πθt(a), by assumption) (25)

=
dπ>θtr

dθt(a)
. (26)

After one step policy gradient update, we have,

πθt+1
(a∗) =

exp {θt+1(a∗)}∑
a exp {θt+1(a)}

(27)

=
exp

{
θt(a

∗) + η · dπ>θtr

dθt(a∗)

}
∑
a exp

{
θt(a) + η ·

dπ>θt
r

dθt(a)

} (28)

≥
exp

{
θt(a

∗) + η · dπ>θtr

dθt(a∗)

}
∑
a exp

{
θt(a) + η ·

dπ>θt
r

dθt(a∗)

} (by Eq. (23)) (29)

=
exp {θt(a∗)}∑
a exp {θt(a)}

= πθt(a
∗). (30)

Note that πθ1(a∗) ≥ πθ1(a), and thus we have,

c = inf
t≥1

πθt(a
∗) ≥ πθ1(a∗) = 1/K.

Proposition 2 (PG lower bound [2]). For sufficiently large t ≥ 1, Update 1 with η ∈ (0, 1] exhibits

(π∗ − πθt)>r ≥ ∆2/ (6 · t) , (31)

where ∆ = r(a∗)−maxa6=a∗ r(a) > 0 is the reward gap of r.

Proof. See the proof in [2, Theorem 9]. We include a proof for completeness.

According to [2, Lemma 17], ∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤
√

2

∆
· (π∗ − πθ)>r. (32)
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Denote δ(θt) := (π∗ − πθt)>r. We have, for all t ≥ 1,

δ(θt)− δ(θt+1) = (πθt+1
− πθt)>r −

〈dπ>θtr
dθt

, θt+1 − θt
〉

+
〈dπ>θtr
dθt

, θt+1 − θt
〉

(33)

≤ 5

4
· ‖θt+1 − θt‖22 +

〈dπ>θtr
dθt

, θt+1 − θt
〉

(by Eq. (12)) (34)

≤
(

5

4
+ 1

)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(using Update 1 and η ∈ (0, 1]) (35)

≤ 9

2
· 1

∆2
· δ(θt)2. (by Eq. (32)) (36)

According to Proposition 1, we have δ(θt)→ 0 as t→∞. We show that for all large enough t ≥ 1,
δ(θt) ≤ 10

9 · δ(θt+1) by contradiction. Suppose δ(θt) > 10
9 · δ(θt+1). We have,

δ(θt+1) ≥ δ(θt)−
9

2
· 1

∆2
· δ(θt) (by Eq. (33)) (37)

>
10

9
· δ(θt+1)− 9

2
· 1

∆2
·
(

10

9
· δ(θt+1)

)2

(38)

=
10

9
· δ(θt+1)− 50

9
· 1

∆2
· δ(θt+1)2, (39)

where the second inequality is because of the function f : x 7→ x−a ·x2 with a > 0 is monotonically
increasing for all 0 < x ≤ 1

2a . Eq. (37) implies that,

δ(θt+1) >
∆2

50
, (40)

for large enough t ≥ 1, which is a contradiction with δ(θt) → 0 as t → ∞. Thus we have
δ(θt+1)
δ(θt)

≥ 9
10 holds for all large enough t ≥ 1. Next, we have,

1

δ(θt+1)
− 1

δ(θt)
=

1

δ(θt+1) · δ(θt)
· (δ(θt)− δ(θt+1)) (41)

≤ 1

δ(θt+1) · δ(θt)
· 9

2
· 1

∆2
· δ(θt)2 (by Eq. (33)) (42)

≤ 5

∆2
.

(
δ(θt)

δ(θt+1)
≤ 10

9

)
(43)

Summing up from T1 (some large enough time) to T1 + t, we have
1

δ(θT1+t)
− 1

δ(θT1
)
≤ 5

∆2
· (t− 1) ≤ 5

∆2
· t. (44)

Since T1 is a finite time, δ(θT1
) ≥ 1/C for some constant C > 0. Rearranging, we have

(π∗ − πθT1+t
)>r = δ(θT1+t) ≥

1
1
δT1

+ 5
∆2 · t

≥ 1

C + 5
∆2 · t

≥ 1

C + 5
∆2 · (T1 + t)

. (45)

By abusing notation t := T1 + t and C ≤ t
∆2 , we have

(π∗ − πθt)>r ≥
1

C + 5
∆2 · t

≥ 1
t

∆2 + 5
∆2 · t

=
∆2

6 · t
, (46)

for all large enough t ≥ 1.

A.1.2 NPG

Lemma 2 (Natural Non-uniform Łojasiewicz (NŁ) inequality, continuous). Let r ∈ (0, 1)K . Denote
∆(a) := r(a∗) − r(a), and ∆ := r(a∗) −maxa6=a∗ r(a) as the reward gap of r. We have, for any
policy πθ := softmax(θ), 〈dπ>θ r

dθ
, r
〉
≥ πθ(a∗) ·∆ · (π∗ − πθ)> r. (47)
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Proof. Without loss of generality, let r(1) > r(2) > · · · > r(K). We have,〈dπ>θ r
dθ

, r
〉

= r>
(
diag(πθ)− πθπ>θ

)
r (48)

=

K∑
i=1

πθ(i) · r(i)2 −

[
K∑
i=1

πθ(i) · r(i)

]2

(49)

=

K∑
i=1

πθ(i) · r(i)2 −
K∑
i=1

πθ(i)
2 · r(i)2 − 2 ·

K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (50)

=

K∑
i=1

πθ(i) · r(i)2 · [1− πθ(i)]− 2 ·
K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (51)

=

K∑
i=1

πθ(i) · r(i)2 ·
∑
j 6=i

πθ(j)− 2 ·
K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (52)

=

K−1∑
i=1

πθ(i) ·
K∑

j=i+1

πθ(j) ·
[
r(i)2 + r(j)2

]
− 2 ·

K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (53)

=

K−1∑
i=1

πθ(i) ·
K∑

j=i+1

πθ(j) · [r(i)− r(j)]2, (54)

which can be lower bounded as,〈dπ>θ r
dθ

, r
〉
≥ πθ(1) ·

K∑
j=2

πθ(j) · [r(1)− r(j)]2 (fewer terms) (55)

= πθ(a
∗) ·

∑
a 6=a∗

πθ(a) ·∆(a)2 (a∗ = 1) (56)

≥ πθ(a∗) ·∆ ·
∑
a6=a∗

πθ(a) ·∆(a) (∆(a) ≥ ∆) (57)

= πθ(a
∗) ·∆ · (π∗ − πθ)> r.

Remark 5. The natural NŁ inequality of Lemma 2 is tight. Consider K = 2, we have,

r>
(
diag(πθ)− πθπ>θ

)
r = πθ(1) · r(1)2 + πθ(2) · r(2)2 − [πθ(1) · r(1) + πθ(2) · r(2)]

2 (58)

= πθ(1) · r(1)2 · [1− πθ(1)] + πθ(2) · r(2)2 · [1− πθ(2)]− 2 · πθ(1) · r(1) · πθ(2) · r(2)
(59)

= πθ(1) · r(1)2 · πθ(2) + πθ(2) · r(2)2 · πθ(1)− 2 · πθ(1) · r(1) · πθ(2) · r(2) (πθ(1) + πθ(2) = 1)
(60)

= πθ(1) · πθ(2) · [r(1)− r(2)]
2 (61)

= πθ(a
∗) ·∆ · (π∗ − πθ)> r,

(
a∗ = 1, ∆ = r(1)− r(2), (π∗ − πθ)> r = πθ(2) · [r(1)− r(2)]

)
(62)

which means the equality holds for the above problem.
Remark 6. For the continuous natural PG flow: dθt

dt = η · r, and πθt = softmax(θt), Lemma 2 can
be used to characterize the progress at each time step. We have, for all t ≥ 1,

d (π∗ − πθt)
>
r

dt
= −

dπ>θtr

dt
(63)

= −
(
dθt
dt

)>(dπ>θtr
dθt

)
(64)

= −η · r>
(
diag(πθt)− πθtπ>θt

)
r (NPG flow) (65)

≤ −η · πθt(a∗) ·∆ · (π∗ − πθt)
>
r, (by Lemma 2) (66)
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which means the progress at time t is proportional to the sub-optimality gap (π∗ − πθt)
>
r, leading

to a linear convergence rate.

Lemma 3 (Natural NŁ inequality, discrete). Given any policy π, define π′ as

π′(a) :=
π(a) · eη·r(a)∑
a′ π(a′) · eη·r(a′)

, for all a ∈ [K], (67)

where η > 0 is the learning rate. We have,

(π′ − π)
>
r ≥

[
1− 1

π(a∗) · (eη·∆ − 1) + 1

]
· (π∗ − π)

>
r. (68)

Proof. Without loss of generality, let r(1) > r(2) > · · · > r(K). We have,

(π′ − π)
>
r =

K∑
i=1

[π′(i) · r(i)− π(i) · r(i)] (69)

=

K∑
i=1

[
π(i) · eη·r(i) · r(i)∑K
j=1 π(j) · eη·r(j)

− π(i) · r(i)

]
(by definition of π′) (70)

=
1∑K

j=1 π(j) · eη·r(j)
·

 K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i) · r(i) ·
K∑
j=1

π(j) · eη·r(j)
 .

(71)

Next, we have,

K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i) · r(i) ·
K∑
j=1

π(j) · eη·r(j) (72)

=

K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i)2 · eη·r(i) · r(i)−
K∑
i=1

π(i) · r(i) ·
∑
j 6=i

π(j) · eη·r(j)

(73)

=

K∑
i=1

π(i) · eη·r(i) · r(i) · [1− π(i)]−
K∑
i=1

π(i) · r(i) ·
∑
j 6=i

π(j) · eη·r(j) (74)

=

K∑
i=1

π(i) · eη·r(i) · r(i) ·
∑
j 6=i

π(j)−
K∑
i=1

π(i) · r(i) ·
∑
j 6=i

π(j) · eη·r(j) (75)

=

K−1∑
i=1

π(i) ·
K∑

j=i+1

π(j) ·
[
eη·r(i) · r(i) + eη·r(j) · r(j)

]
−
K−1∑
i=1

π(i) ·
K∑

j=i+1

π(j) ·
[
eη·r(j) · r(i) + eη·r(i) · r(j)

]
(76)

=

K−1∑
i=1

π(i) ·
K∑

j=i+1

π(j) ·
[
eη·r(i) − eη·r(j)

]
· [r(i)− r(j)], (77)
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which can be lower bounded as,

K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i) · r(i) ·
K∑
j=1

π(j) · eη·r(j) (78)

≥ π(1) ·
K∑
j=2

π(j) ·
[
eη·r(1) − eη·r(j)

]
· [r(1)− r(j)] (fewer terms) (79)

≥ π(1) ·
K∑
j=2

π(j) ·
[
eη·r(1) − eη·r(2)

]
· [r(1)− r(j)] (r(j) ≤ r(2), for all j ≥ 2) (80)

= π(1) · eη·r(2) ·
(
eη·∆ − 1

)
·
∑
a 6=a∗

π(a) ·∆(a) (∆ = r(1)− r(2)) (81)

= π(1) · eη·r(2) ·
(
eη·∆ − 1

)
· (π∗ − π)

>
r. (82)

Combining Eqs. (69) and (72), we have,

(π′ − π)
>
r ≥

π(1) · eη·r(2) ·
(
eη·∆ − 1

)
π(1) · eη·r(1) +

∑K
j=2 π(j) · eη·r(j)

· (π∗ − π)
>
r (83)

=
π(1) ·

(
eη·∆ − 1

)
π(1) · eη·∆ +

∑K
j=2 π(j) · eη·[r(j)−r(2)]

· (π∗ − π)
>
r (84)

≥
π(1) ·

(
eη·∆ − 1

)
π(1) · eη·∆ +

∑K
j=2 π(j)

· (π∗ − π)
>
r (r(j)− r(2) ≤ 0, for all j ≥ 2) (85)

=
π(1) ·

(
eη·∆ − 1

)
π(1) · eη·∆ + 1− π(1)

· (π∗ − π)
>
r (86)

=

[
1− 1

π(a∗) · (eη·∆ − 1) + 1

]
· (π∗ − π)

>
r. (a∗ = 1)

Remark 7. The natural NŁ inequality of Lemma 3 is tight. Consider K = 2, we have,

(π′ − π)
>
r =

π(1) · eη·r(1) · r(1) + π(2) · eη·r(2) · r(2)

π(1) · eη·r(1) + π(2) · eη·r(2)
− [π(1) · r(1) + π(2) · r(2)] (87)

=
π(1) · π(2) · [r(1)− r(2)] ·

[
eη·r(1) − eη·r(2)

]
π(1) · eη·r(1) + π(2) · eη·r(2)

(88)

=
π(1) ·

(
eη·[r(1)−r(2)] − 1

)
π(1) · eη·[r(1)−r(2)] + π(2)

· π(2) · [r(1)− r(2)] (89)

=
π(a∗) ·

(
eη·∆ − 1

)
π(a∗) · eη·∆ + 1− π(a∗)

· (π∗ − π)
>
r, (a∗ = 1, ∆ = r(1)− r(2)) (90)

which means the equality holds for the above problem.

Theorem 1 (NPG upper bound). Using Update 2 with any η > 0, i.e., ∀t ≥ 1,

θt+1 ← θt + η · r, and πθt+1
= softmax(θt+1), (91)

where η > 0 is the learning rate. We have, for all t ≥ 1,

(π∗ − πθt)
>
r ≤ (π∗ − πθ1)

>
r · e−c·(t−1), (92)

where c := log
(
πθ1(a∗) ·

(
eη·∆ − 1

)
+ 1
)
> 0 for any η > 0, and ∆ = r(a∗)−maxa 6=a∗ r(a) > 0.
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Proof. We have, for all t ≥ 1,(
π∗ − πθt+1

)>
r = (π∗ − πθt)

>
r −

(
πθt+1 − πθt

)>
r (93)

≤ 1

πθt(a
∗) · (eη·∆ − 1) + 1

· (π∗ − πθt)
>
r (by Lemma 3) (94)

≤ 1

πθ1(a∗) · (eη·∆ − 1) + 1
· (π∗ − πθt)

>
r (see below) (95)

≤ 1

[πθ1(a∗) · (eη·∆ − 1) + 1]
t · (π

∗ − πθ1)
>
r (96)

=
(π∗ − πθ1)

>
r

ec·t
, (97)

where the second inequality is because of for all t ≥ 1,

πθt+1(a∗) =
πθt(a

∗) · eη·r(a∗)∑
a πθt(a) · eη·r(a)

(98)

=
πθt(a

∗)∑
a πθt(a) · e−η·∆(a)

(99)

≥ πθt(a∗). (∆(a) ≥ 0)

A.1.3 GNPG

Lemma 4 (Non-uniform Smoothness (NS), [9]). The spectral radius (largest absolute eigenvalue) of
Hessian matrix d2π>θ r

dθ2 is upper bounded by 3 ·
∥∥∥dπ>θ rdθ

∥∥∥
2
.

Proof. See the proof in [9, Lemma 2]. We include a proof for completeness.

Let S := S(r, θ) ∈ RK×K be the second derivative of the value map θ 7→ π>θ r. Denote H(πθ) :=
diag(πθ)− πθπ>θ as the Jacobian of θ 7→ softmax(θ). Now, by its definition we have

S =
d

dθ

{
dπ>θ r

dθ

}
(100)

=
d

dθ
{H(πθ)r} (101)

=
d

dθ

{
(diag(πθ)− πθπ>θ )r

}
. (102)

Continuing with our calculation fix i, j ∈ [K]. Then,

S(i,j) =
d{πθ(i) · (r(i)− π>θ r)}

dθ(j)
(103)

=
dπθ(i)

dθ(j)
· (r(i)− π>θ r) + πθ(i) ·

d{r(i)− π>θ r}
dθ(j)

(104)

= (δijπθ(j)− πθ(i)πθ(j)) · (r(i)− π>θ r)− πθ(i) · (πθ(j)r(j)− πθ(j)π>θ r) (105)

= δijπθ(j) · (r(i)− π>θ r)− πθ(i)πθ(j) · (r(i)− π>θ r)− πθ(i)πθ(j) · (r(j)− π>θ r),
(106)

where

δij =

{
1, if i = j,

0, otherwise
(107)
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is Kronecker’s δ-function. To show the bound on the spectral radius of S, pick y ∈ RK . Then,

∣∣y>Sy∣∣ =

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

S(i,j) · y(i) · y(j)

∣∣∣∣∣∣ (108)

=

∣∣∣∣∣∣
∑
i

πθ(i)(r(i)− π>θ r)y(i)2 − 2
∑
i

πθ(i)(r(i)− π>θ r)y(i)
∑
j

πθ(j)y(j)

∣∣∣∣∣∣ (109)

=
∣∣∣(H(πθ)r)

>
(y � y)− 2 · (H(πθ)r)

>
y ·
(
π>θ y

)∣∣∣ (110)

≤ ‖H(πθ)r‖∞ · ‖y � y‖1 + 2 · ‖H(πθ)r‖2 · ‖y‖2 · ‖πθ‖1 · ‖y‖∞ (111)

≤ 3 · ‖H(πθ)r‖2 · ‖y‖
2
2 (112)

= 3 ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

· ‖y‖22 , (113)

where� is Hadamard (component-wise) product, and the third last inequality uses Hölder’s inequality
together with the triangle inequality.

Proposition 3 (GNPG upper bound [9]). Using Update 3 with η = 1/6, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤ (π∗ − πθ1)
>
r · e−

c·(t−1)
12 , (114)

where c = inft≥1 πθt(a
∗) > 0 does not depend on t. If πθ1(a) = 1/K, ∀a, then c ≥ 1/K.

Proof. See the proof in [9, Theorem 2]. We include a proof for completeness.

Denote θζt := θt + ζt · (θt+1 − θt) with some ζt ∈ [0, 1]. According to Taylor’s theorem,∣∣∣∣∣(πθt+1
− πθt)>r −

〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣∣ =

1

2
·
∣∣∣(θt+1 − θt)> S(r, θζt) (θt+1 − θt)

∣∣∣ (115)

≤ 3

2
·
∥∥∥∥dπ>θζt rdθζt

∥∥∥∥
2

· ‖θt+1 − θt‖22 (by Lemma 4) (116)

≤ 3 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖22, (117)

and the last inequality is from [9, Lemma 3]. Denote δ(θt) := (π∗ − πθt)>r. We have, for all t ≥ 1,

δ(θt+1)− δ(θt) = −π>θt+1
r + π>θtr +

〈dπ>θtr
dθt

, θt+1 − θt
〉
−
〈dπ>θtr
dθt

, θt+1 − θt
〉

(118)

≤ 3 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖22 −
〈dπ>θtr
dθt

, θt+1 − θt
〉

(by Eq. (115)) (119)

= − 1

12
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

(using Update 3 and η = 1/6) (120)

≤ − 1

12
· πθt(a∗) · (π∗ − πθt)>r (by Lemma 1) (121)

≤ − c

12
· δ(θt), (122)

where c = inft≥1 πθt(a
∗) > 0 is from [9, Lemma 4]. Then we have, for all t ≥ 1,

δ(θt) ≤ δ(θt−1) ·
(

1− c

12

)
(123)

≤ δ(θt−1) · e− c
12 (124)

≤ δ(θ1) · e−
c·(t−1)

12 . (125)

If πθ1(a) = 1/K, ∀a, then similar arguments to Eq. (23) give c ≥ 1/K.
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A.2 On-policy Stochastic Gradient Setting

A.2.1 Softmax PG

Lemma 5. Let r̂ be the IS estimator using on-policy sampling a ∼ πθ(·). The stochastic softmax PG
estimator is unbiased and bounded, i.e.,

E
a∼πθ(·)

[
dπ>θ r̂

dθ

]
=
dπ>θ r

dθ
, and (126)

E
a∼πθ(·)

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

≤ 2. (127)

Proof. First part. Ea∼πθ(·)

[
dπ>θ r̂
dθ

]
=

dπ>θ r
dθ .

We have, for all i ∈ [K], the true softmax PG is,

dπ>θ r

dθ(i)
= πθ(i) ·

(
r(i)− π>θ r

)
. (128)

On the other hand, we have, for all i ∈ [K],

dπ>θ r̂

dθ(i)
= πθ(i) ·

(
r̂(i)− π>θ r̂

)
(129)

= πθ(i) ·

 I {a = i}
πθ(i)

· r(i)−
∑
j

I {a = j} · r(j)

 (by Definition 1) (130)

= I {a = i} · r(i)− πθ(i) · r(a). (131)

The expectation of stochastic softmax PG is,

E
a∼πθ(·)

[
dπ>θ r̂

dθ(i)

]
=
∑
a∈[K]

πθ(a) · (I {a = i} · r(i)− πθ(i) · r(a)) (132)

= πθ(i) · r(i)− πθ(i) · π>θ r (133)

=
dπ>θ r

dθ(i)
. (134)

Second part. Ea∼πθ(·)

∥∥∥dπ>θ r̂dθ

∥∥∥2

2
≤ 2.

The squared stochastic PG norm is,∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

=

K∑
i=1

(
dπ>θ r̂

dθ(i)

)2

=

K∑
i=1

πθ(i)
2 ·
(
r̂(i)− π>θ r̂

)2
(135)

=

K∑
i=1

πθ(i)
2 ·

[
(I {a = i})2

πθ(i)2
· r(i)2 − 2 · I {a = i}

πθ(i)
· r(i) ·

K∑
j=1

I {a = j} · r(j) +

( K∑
j=1

I {a = j} · r(j)
)2
]

(136)

= r(a)2 − 2 · πθ(a) · r(a)2 +

K∑
i=1

πθ(i)
2 · r(a)2 (137)

= (1− πθ(a)) · r(a)2 − πθ(a) · r(a)2 + πθ(a)2 · r(a)2 +
∑
a′ 6=a

πθ(a
′)2 · r(a)2 (138)

= (1− πθ(a))
2 · r(a)2 +

∑
a′ 6=a

πθ(a
′)2 · r(a)2. (139)
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Taking expectation of a ∼ πθ(·), the expected squared stochastic PG norm is,

E
a∼πθ(·)

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

=
∑
a∈[K]

πθ(a) · (1− πθ(a))
2 · r(a)2 +

∑
a∈[K]

πθ(a) ·
∑
a′ 6=a

πθ(a
′)2 · r(a)2

(140)

≤
∑
a∈[K]

πθ(a) · (1− πθ(a))
2 · r(a)2 +

∑
a∈[K]

πθ(a) ·

∑
a′ 6=a

πθ(a
′)

2

· r(a)2 (‖x‖2 ≤ ‖x‖1)

(141)

= 2 ·
∑
a∈[K]

πθ(a) · (1− πθ(a))
2 · r(a)2 (142)

≤ 2 ·
∑
a∈[K]

πθ(a)
(
r ∈ (0, 1]K , and πθ(a) ∈ (0, 1) for all a ∈ [K]

)
(143)

= 2.

Lemma 7 (Non-uniform Smoothness (NS) between two iterations). Let θ′ = θ + η · dπ
>
θ r̂
dθ (using

stochastic PG update). We have, for η = 1
12 ·

∥∥∥dπ>θ rdθ

∥∥∥
2

(using true PG norm in learning rate),∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ 3 ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

· ‖θ′ − θ‖22. (144)

Proof. Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. According to Taylor’s theorem, ∀θ, θ′,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·

∣∣∣∣∣(θ′ − θ)> d
2π>θζr

dθζ
2 (θ′ − θ)

∣∣∣∣∣ (145)

≤ 3

2
·
∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

· ‖θ′ − θ‖22. (by Lemma 4) (146)

Denote ζ1 := ζ. Also denote θζ2 := θ + ζ2 · (θζ1 − θ) with some ζ2 ∈ [0, 1]. We have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ 1

0

〈d2{π>θζ2 r}
dθ2
ζ2

, θζ1 − θ
〉
dζ2

∥∥∥∥∥
2

(147)

≤
∫ 1

0

∥∥∥∥∥d
2{π>θζ2 r}
dθ2
ζ2

∥∥∥∥∥
2

· ‖θζ1 − θ‖2 dζ2 (by Cauchy–Schwarz) (148)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· ζ1 · ‖θ′ − θ‖2 dζ2 (by Lemma 4) (149)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· η ·
∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

dζ2,

(
ζ1 ∈ [0, 1], using θ′ = θ + η · dπ

>
θ r̂

dθ

)
(150)

where the second inequality is because of the Hessian is symmetric, and its operator norm is equal to
its spectral radius. Therefore we have,∥∥∥∥∥dπ

>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

(by triangle inequality) (151)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

·
∫ 1

0

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

dζ2. (by Eq. (147)) (152)
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Denote θζ3 := θ + ζ3 · (θζ2 − θ) with ζ3 ∈ [0, 1]. Using similar calculation in Eq. (147), we have,∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ2
r

dθζ2
− dπ>θ r

dθ

∥∥∥∥∥
2

(153)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

·
∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3. (154)

Combining Eqs. (151) and (153), we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
(

1 + 3η ·
∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

)
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

(
3η ·

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

)2

·
∫ 1

0

∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3dζ2,

(155)

which implies,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
∞∑
i=0

(
3η ·

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

)i
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(156)

=
1

1− 3η ·
∥∥∥dπ>θ r̂dθ

∥∥∥
2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(
3η ·

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

∈ (0, 1), see below
)

(157)

=
1

1− 1
4 ·
∥∥∥dπ>θ r̂dθ

∥∥∥
2
·
∥∥∥dπ>θ rdθ

∥∥∥
2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(
η =

1

12
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

)
(158)

≤ 1

1− 1
4 ·
∥∥∥dπ>θ r̂dθ

∥∥∥
2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤ 1, see below
)

(159)

≤ 1

1− 1
2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

≤ 2, see below
)

(160)

= 2 ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

, (161)

where the last inequality is from,∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

= (1− πθ(a))
2 · r(a)2 +

∑
a′ 6=a

πθ(a
′)2 · r(a)2 (by Eq. (135)) (162)

≤ 2 · (1− πθ(a))
2 · r(a)2 (‖x‖2 ≤ ‖x‖1) (163)

≤ 2,
(
r ∈ (0, 1]K , and πθ(a) ∈ (0, 1) for all a ∈ [K]

)
(164)

which implies that, ∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

≤
√

2 ≤ 2, (165)

and the second last inequality is from,∥∥∥∥dπ>θ rdθ

∥∥∥∥2

2

=

K∑
i=1

πθ(i)
2 ·
(
r(i)− π>θ r

)2
(166)

≤
K∑
i=1

πθ(i)
2

(
r ∈ (0, 1]K

)
(167)

≤

[
K∑
i=1

πθ(i)

]2

(‖x‖2 ≤ ‖x‖1) (168)

= 1. (169)

Combining Eqs. (145) and (156) finishes the proof.
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Theorem 2. Using Update 4 with learning rate

η =
1

12
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

, (170)

for all t ≥ 1, we have (π∗ − πθt)
>
r → 0 as t→∞ in probability.

Proof. See [12, Proposition 4]. We provide a different proof using the non-uniform smoothness.

Denote δ(θt) := (π∗ − πθt)>r. We have, for all t ≥ 1,

δ(θt+1)− δ(θt) = −π>θt+1
r + π>θtr +

〈dπ>θtr
dθt

, θt+1 − θt
〉
−
〈dπ>θtr
dθt

, θt+1 − θt
〉

(171)

≤ 3 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖22 −
〈dπ>θtr
dθt

, θt+1 − θt
〉

(by Lemma 7) (172)

= 3 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

·
∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

− η ·
〈dπ>θtr
dθt

,
dπ>θt r̂t

dθt

〉
. (using Update 4) (173)

Next, taking expectation over the random sampling on Eq. (171), we have,

E [δ(θt+1)]− E [δ(θt)] ≤ 3 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· E

[∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

]
− η ·

〈dπ>θtr
dθt

,E

[
dπ>θt r̂t

dθt

]〉
(174)

= 3 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· E

[∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

]
− η ·

∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(unbiased PG, by Lemma 5)

(175)

≤ 3 · 2 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

− η ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(
E

[∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

]
≤ 2, by Lemma 5

)
(176)

= − 1

24
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥3

2

(
using η =

1

12
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

)
(177)

≤ − 1

24
· E
[
πθt(a

∗)3
]
· E
[
δ(θt)

3
]

(by Lemma 1) (178)

≤ − c

24
· (E [δ(θt)])

3
, (by Jensen’s inequality) (179)

where

c := inf
t≥1

E
[
πθt(a

∗)3
]

(180)

≥ inf
t≥1

(E [πθt(a
∗)])

3
(by Jensen’s inequality) (181)

> 0, (182)
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and the last inequality is from [2, Lemma 5], since the expected iteration equals the true gradient
update, which converges to global optimal policy. Denote δ̃(θt) := E [δ(θt)]. We have, for all t ≥ 1,

1

δ̃(θt)2
=

1

δ̃(θ1)2
+

t−1∑
s=1

[
1

δ̃(θs+1)2
− 1

δ̃(θs)2

]
(183)

=
1

δ̃(θ1)2
+

t−1∑
s=1

1

δ̃(θs+1)2
·

[
1− δ̃(θs+1)2

δ̃(θs)2

]
(184)

≥ 1

δ̃(θ1)2
+

t−1∑
s=1

2
XXXXδ̃(θs+1)2 ·

XXXXδ̃(θs+1)2

δ̃(θs)2
·

[
1− δ̃(θs+1)

δ̃(θs)

] (
1− x2 ≥ 2 · x2 · (1− x) for all x ∈ (0, 1]

)
(185)

=
1

δ̃(θ1)2
+ 2 ·

t−1∑
s=1

1

δ̃(θs)3
·
(
δ̃(θs)− δ̃(θs+1)

)
(186)

≥ 1

δ̃(θ1)2
+ 2 ·

t−1∑
s=1

1
H
HHδ̃(θs)

3
· c

24
·HHHδ̃(θs)

3 (by Eq. (174)) (187)

=
1

δ̃(θ1)2
+

c

12
· (t− 1) (188)

≥ c · t
12

,

(
δ̃(θ1)2 ≤ 1 <

12

c

)
(189)

which implies that,

E
at∼πθt (·)

[
(π∗ − πθt)>r

]
≤
√

12√
c
· 1√

t
, (190)

where c is from Eq. (180). This implies (π∗ − πθt)
>
r → 0 as t→∞ in probability, i.e.,

lim
t→∞

Pr
(

(π∗ − πθt)
>
r > ε

)
= 0, (191)

for all ε > 0.

A.2.2 NPG

Lemma 6. For NPG, we have, Ea∼πθ(·) [r̂] = r, and Ea∼πθ(·) ‖r̂‖
2
2 =

∑
a∈[K]

r(a)2

πθ(a) .

Proof. First part. Ea∼πθ(·) [r̂] = r.

We have, for all i ∈ [K],

E
a∼πθ(·)

[r̂(i)] =
∑
a∈[K]

πθ(a) · I {a = i}
πθ(i)

· r(i) = r(i). (192)

Second part. Ea∼πθ(·) ‖r̂‖
2
2 =

∑
a∈[K]

r(a)2

πθ(a) .

The squared `2 norm of natural policy gradient is,

‖r̂‖22 =
∑
i

r̂(i)2 =
∑
i

(I {a = i})2

πθ(i)2
· r(i)2 =

∑
i

I {a = i}
πθ(i)2

· r(i)2. (193)
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The expected squared norm is,

E
a∼πθ(·)

‖r̂‖22 =
∑
a∈[K]

πθ(a) ·
∑
i

I {a = i}
πθ(i)2

· r(i)2 (194)

=
∑
a∈[K]

πθ(a) · 1

πθ(a)2
· r(a)2 (195)

=
∑
a∈[K]

r(a)2

πθ(a)
.

Theorem 3. Using Update 5, we have: (i) with positive probability,
∑
a 6=a∗ πθt(a)→ 1 as t→∞;

(ii) ∀a ∈ [K], with positive probability, πθt(a)→ 1, as t→∞.

Proof. First part. With positive probability,
∑
a 6=a∗ πθt(a)→ 1 as t→∞.

Let Pr denote the probability measure that over the probability space (Ω,F) that holds all of our
random variables. Let B = {a ∈ [K] : a 6= a∗}. By abusing notation, for any π : [K]→ [0, 1] map
we let πθt(B) to stand for

∑
a∈B πθt(a). Define for t ≥ 1 the event Bt = {at 6= a∗}(= {at ∈ B})

and let Et = B1 ∩ · · · ∩ Bt. Thus, Et is the event that a∗ was not chosen in the first t time steps. Note
that {Et}t≥1 is a nested sequence and thus, by the monotone convergence theorem,

lim
t→∞

Pr (Et) = Pr (E) , (196)

where E = ∩t≥1Bt. We start with a lower bound on the probability of Et. The lower bound is stated
in a generic form: In particular, let (bt)t≥1 be a deterministic sequence which satisfies that for any
t ≥ 1,

IEt−1
· πθt(B) ≥ IEt−1

· bt holds Pr-almost surely, (197)
where we let E0 = Ω and for an event E , IE stands for the characteristic function of E (i.e., IE(ω) = 1
if ω ∈ E and IE(ω) = 0, otherwise). We make the following claim:

Claim 1: Under the above assumption, for any t ≥ 1 it holds that

Pr(Et) ≥
t∏

s=1

bs . (198)

For the proof of this claim letHt denote the sequence formed of the first t actions:
Ht := (a1, a2, · · · , at) . (199)

By definition,
θt = A (θ1, a1, r(a1), θ2, a2, r(a2), · · · , θt−1, at−1, r(at−1)) . (200)

By our assumption that the tth action is chosen from πθt , it follows that Pr satisfies that for all a and
t ≥ 1,

Pr (at = a | Ht−1) = πθt(a) Pr-almost surely. (201)

We prove the claim by induction on t. For t = 1, from Eqs. (197) and (201), using that E0 = Ω and
H0 = (), we have that Pr-almost surely,

Pr (E1) = πθ1(B). (202)
Suppose the claim holds up to t− 1. We have,

Pr (Et) = E [Pr (Et | Ht−1)] (by the tower rule)

= E
[
IEt−1 · Pr (Bt | Ht−1)

]
(Et−1 isHt−1-measurable)

= E
[
IEt−1

· πθt(B)
]

(by Eq. (201))

≥ E
[
IEt−1

· bt
]

(by Eq. (197))

= bt · Pr (Et−1) (bt is deterministic)

=

t∏
s=1

bs . (induction hypothesis)
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Now, we claim the following:

Claim 2: A suitable choice for bt is

bt = exp

 − exp {θ1(a∗)}

(K − 1) · exp
{∑

a6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
 . (203)

Proof of Claim 2: Clearly, it suffices to show that for any sequence (a1, . . . , at−1) such that as 6= a∗,
θt := A(θ1, a1, r(a1), . . . , at−1, r(at−1)) is such that πθt(B) ≥ bt with bt as defined in Eq. (203).

We have, for each sub-optimal action a 6= a∗,

θt(a) = θ1(a) + η ·
t−1∑
s=1

r̂s(a) (by Update 5) (204)

= θ1(a) + η ·
t−1∑
s=1

I {as = a}
πθs(a)

· r(a) (by Definition 1) (205)

≥ θ1(a) + η ·
t−1∑
s=1

I {as = a} · r(a) (πθs(a) ∈ (0, 1), r(a) ∈ (0, 1]) (206)

≥ θ1(a) + η · rmin ·
t−1∑
s=1

I {as = a},
(
rmin := min

a6=a∗
r(a)

)
(207)

where rmin ∈ (0, 1] according to Assumption 1, i.e., r(a) ∈ (0, 1] for all a ∈ [K]. Then we have,∑
a 6=a∗

exp {θt(a)} ≥ (K − 1) · exp

{∑
a6=a∗ θt(a)

K − 1

}
(by Jensen’s inequality) (208)

≥ (K − 1) · exp

{∑
a6=a∗ θ1(a) + η · rmin ·

∑
a6=a∗

∑t−1
s=1 I {as = a}

K − 1

}
(by Eq. (204))

(209)

= (K − 1) · exp

{∑
a 6=a∗ θ1(a) + η · rmin · (t− 1)

K − 1

}
. (a1 6= a∗, a2 6= a∗, · · · , at−1 6= a∗)

(210)

On the other hand, we have,

θt(a
∗) = θ1(a∗) + η ·

t−1∑
s=1

I {as = a∗}
πθs(a

∗)
· r(a∗) (by Update 5 and Definition 1) (211)

= θ1(a∗). (as 6= a∗ for all s ∈ {1, 2, . . . , t− 1}) (212)

Next, we have,∑
a 6=a∗

πθt(a) = 1− πθt(a∗) (213)

= 1− exp {θt(a∗)}∑
a 6=a∗ exp {θt(a)}+ exp {θt(a∗)}

(214)

≥ 1− exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
+ exp {θ1(a∗)}

. (by Eqs. (208) and (211))

(215)

According to Lemma 14, for all x ∈ (0, 1),

1− x ≥ exp
{ −1

1/x− 1

}
. (216)
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Let

x =
exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
+ exp {θ1(a∗)}

∈ (0, 1). (217)

We have,

∑
a 6=a∗

πθt(a) ≥ exp

 −1

(K−1)·exp
{∑

a6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
+exp{θ1(a∗)}

exp{θ1(a∗)} − 1

 (by Eqs. (213) and (216))

(218)

= exp

 − exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
 = bt, (219)

finishing the proof of the claim.

Combining Eq. (196) with the conclusions of Claim 1 and 2 together, we get

Pr (E) ≥
∞∏
t=1

exp

 − exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
 (by Eq. (218)) (220)

= exp

− exp {θ1(a∗)}

exp
{∑

a6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
K − 1

·
∞∑
t=1

1

exp
{
η·rmin·t
K−1

}
 (221)

≥ exp

− exp {θ1(a∗)}

exp
{∑

a6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
K − 1

·
∫ ∞
t=0

1

exp
{
η·rmin·t
K−1

}dt
 (222)

= exp

− exp {θ1(a∗)}

exp
{∑

a6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
K − 1

· K − 1

η · rmin

 (223)

= exp

− exp {θ1(a∗)}

exp
{∑

a6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
η · rmin

. (224)

Note that rmin ∈ Θ(1), exp {θ1(a∗)} ∈ Θ(1), η ∈ Θ(1), exp
{
η·rmin

K−1

}
∈ Θ(1) and,

exp

{∑
a6=a∗ θ1(a)

K − 1

}
∈ Θ(1). (225)

Therefore, we have “the probability of sampling sub-optimal actions forever using on-policy sampling
at ∼ πθt(·)” is lower bounded by a constant of 1

exp{Θ(1)} ∈ Θ(1), which implies that with positive
probability Θ(1), we have

∑
a6=a∗ πθt(a)→ 1 as t→∞.

Second part. ∀a ∈ [K], with positive probability, πθt(a)→ 1, as t→∞.

The proof is similar to the first part. Let B = {a}. For any π : [K] → [0, 1] map we let πθt(B) to
stand for πθt(a). Define for t ≥ 1 the event Bt = {at = a}(= {at ∈ B}) and let Et = B1 ∩ · · · ∩ Bt.
Thus, Et is the event that a was chosen in the first t time steps. Note that {Et}t≥1 is a nested sequence
and thus, by the monotone convergence theorem, limt→∞ Pr (Et) = Pr (E), where E = ∩t≥1Bt. We
show that by letting

bt = exp

{ −
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}

}
, (226)

we have Eqs. (197) and (198) hold using the arguments in the first part.
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It suffices to show that for any sequence (a1, . . . , at−1) such that as = a, for all s ∈ {1, 2, . . . , t−1},
θt := A(θ1, a1, r(a1), . . . , at−1, r(at−1)) is such that πθt(B) ≥ bt with bt as defined in Eq. (226).
Now suppose a1 = a, a2 = a, · · · , at−1 = a. We have,

θt(a) = θ1(a) + η ·
t−1∑
s=1

r̂s(a) (by Update 5) (227)

= θ1(a) + η ·
t−1∑
s=1

I {as = a}
πθs(a)

· r(a) (by Definition 1) (228)

= θ1(a) + η ·
t−1∑
s=1

r(a)

πθs(a)
(as = a for all s ∈ {1, 2, . . . , t− 1}) (229)

≥ θ1(a) + η ·
t−1∑
s=1

r(a) (πθs(a) ∈ (0, 1)) (230)

= θ1(a) + η · r(a) · (t− 1) . (231)

On the other hand, we have, for any other action a′ 6= a,

θt(a
′) = θ1(a′) + η ·

t−1∑
s=1

I {as = a′}
πθs(a

′)
· r(a′) (by Update 5 and Definition 1) (232)

= θ1(a′). (as 6= a′ for all s ∈ {1, 2, . . . , t− 1}) (233)

Therefore, we have,

πθt(a) = 1−
∑
a′ 6=a

πθt(a
′) (234)

= 1−
∑
a′ 6=a exp{θt(a′)}

exp{θt(a)}+
∑
a′ 6=a exp{θt(a′)}

(235)

≥ 1−
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑
a′ 6=a exp{θ1(a′)}

. (by Eqs. (227) and (232))

(236)

Let

x =

∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑
a′ 6=a exp{θ1(a′)}

∈ (0, 1). (237)

We have,

πθt(a) ≥ 1− x (by Eq. (234)) (238)

≥ exp

 −1
exp{θ1(a)+η·r(a)·(t−1)}+

∑
a′ 6=a exp{θ1(a′)}∑

a′ 6=a exp{θ1(a′)} − 1

 (by Lemma 14) (239)

= exp

{ −
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}

}
(240)

= bt. (241)
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Therefore we have,
∞∏
t=1

πθt(a) ≥
∞∏
t=1

exp

{ −
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}

}
(by Eq. (238)) (242)

= exp

{
−
∑
a′ 6=a

exp{θ1(a′)} · exp{η · r(a)}
exp{θ1(a)}

·
∞∑
t=1

1

exp{η · r(a) · t}

}
(243)

≥ exp

{
−
∑
a′ 6=a

exp{θ1(a′)} · exp{η · r(a)}
exp{θ1(a)}

·
∫ ∞
t=0

1

exp{η · r(a) · t}
dt

}
(244)

= exp

{
− exp{η · r(a)}

η · r(a)
·
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a)}

}
(245)

∈ Ω(1), (246)

where the last line is due to r(a) ∈ Θ(1), exp {θ1(a)} ∈ Θ(1) for all a ∈ [K], and η ∈ Θ(1).
With Eq. (242), we have “the probability of sampling action a forever using on-policy sampling
at ∼ πθt(·)” is lower bounded by a constant of Ω(1). Therefore, for all a ∈ [K], with positive
probability Ω(1), πθt(a)→ 1, as t→∞.

A.2.3 GNPG

Lemma 8. Using on-policy IS estimator of Definition 1, the stochastic GNPG is biased, i.e.,

E
a∼πθ(·)

[
dπ>θ r̂

dθ

/∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

]
6= dπ>θ r

dθ

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (247)

Proof. Consider a two-action example with r(1) > r(2). The true normalized PG of a∗ = 1 is,

g(1) :=
dπ>θ r

dθ(1)

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(248)

=
πθ(1) ·

(
r(1)− π>θ r

)√
πθ(1)2 ·

(
r(1)− π>θ r

)2
+ πθ(2)2 ·

(
r(2)− π>θ r

)2 (249)

=
πθ(1) · πθ(2) · (r(1)− r(2))√

πθ(1)2 · πθ(2)2 · (r(1)− r(2))
2

+ πθ(1)2 · πθ(2)2 · (r(1)− r(2))
2

(250)

=
1√
2
. (251)

On the other hand, the stochastic normalized PG of a∗ = 1 is,

ĝ(1) := E
a∼πθ(·)

[
dπ>θ r̂

dθ(1)

/∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

]
(252)

= πθ(1) ·
πθ(1) ·

(
r(1)
πθ(1) − πθ(1) · r(1)

πθ(1)

)
√
πθ(1)2 ·

(
r(1)
πθ(1) − πθ(1) · r(1)

πθ(1)

)2

+ πθ(2)2 ·
(

0− πθ(1) · r(1)
πθ(1)

)2
(253)

+ πθ(2) ·
πθ(1) ·

(
0− πθ(2) · r(2)

πθ(2)

)
√
πθ(1)2 ·

(
0− πθ(2) · r(2)

πθ(2)

)2

+ πθ(2)2 ·
(
r(2)
πθ(2) − πθ(2) · r(2)

πθ(2)

)2
(254)

= πθ(1) · πθ(2) · r(1)√
πθ(2)2 · r(1)2 + πθ(2)2 · r(1)2

− πθ(2) · πθ(1) · r(2)√
πθ(1)2 · r(2)2 + πθ(1)2 · r(2)2

(255)

=
1√
2
· (πθ(1)− πθ(2)) . (256)
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It is clear that the true normalized PG of a∗ = 1 is always positive g(1) > 0, while the expectation of
the stochastic normalized PG estimator of a∗ = 1 is negative when πθ(1) < πθ(2).

Theorem 4. Using Update 6, we have, ∀a ∈ [K], with positive probability, πθt(a)→ 1, as t→∞.

Proof. The proof is similar to the second part of Theorem 3. We first calculate the stochastic
normalized PG in each iteration. Denote at as the action sampled at t-th iteration. We have,

dπ>θt r̂t

dθt(at)
= πθt(at) · (r̂t(at)− π>θt r̂t) (257)

= πθt(at) ·
(
r(at)

πθt(at)
− πθt(at) ·

r(at)

πθt(at)

)
(by Definition 1) (258)

= (1− πθt(at)) · r(at). (259)
On the other hand, for all a′ 6= at,

dπ>θt r̂t

dθt(a′)
= πθt(a

′) · (r̂s(a′)− π>θt r̂t) (260)

= πθt(a
′) ·
(

0− πθt(at) ·
r(at)

πθt(at)

)
(by Definition 1) (261)

= −πθt(a′) · r(at). (262)
Therefore, the stochastic PG norm is,∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥
2

=

( dπ>θt r̂t

dθt(at)

)2

+
∑
a′ 6=at

(
dπ>θt r̂t

dθt(a′)

)2
 1

2

(263)

=

(1− πθt(at))
2 · r(at)2 +

∑
a′ 6=at

πθt(a
′)2 · r(at)2

 1
2

(by Eqs. (257) and (260))

(264)

≤

(1− πθt(at))
2 · r(at)2 +

( ∑
a′ 6=at

πθt(a
′)

)2

· r(at)2

 1
2

(‖x‖2 ≤ ‖x‖1) (265)

=
√

2 · (1− πθt(at)) · r(at). (266)
The proof is then similar to the second part of Theorem 3. Let B = {a}. For any π : [K]→ [0, 1] map
we let πθt(B) to stand for πθt(a). Define for t ≥ 1 the event Bt = {at = a}(= {at ∈ B}) and let
Et = B1 ∩ · · · ∩Bt. Thus, Et is the event that a was chosen in the first t time steps. Note that {Et}t≥1

is a nested sequence and thus, by the monotone convergence theorem, limt→∞ Pr (Et) = Pr (E),
where E = ∩t≥1Bt. We show that by letting

bt = exp

{ −
∑
a′ 6=a exp{θ1(a′)}

exp
{
θ1(a) + η√

2
· (t− 1)

}}, (267)

we have Eqs. (197) and (198) hold using the arguments in the first part of Theorem 3.

It suffices to show that for any sequence (a1, . . . , at−1) such that as = a, for all s ∈ {1, 2, . . . , t−1},
θt := A(θ1, a1, r(a1), . . . , at−1, r(at−1)) is such that πθt(B) ≥ bt with bt as defined in Eq. (267).
Now suppose a1 = a, a2 = a, · · · , at−1 = a. We have,

θt(a) = θ1(a) + η ·
t−1∑
s=1

dπ>θs r̂s

dθs(a)

/∥∥∥∥dπ>θs r̂sdθs

∥∥∥∥
2

(by Update 6) (268)

≥ θ1(a) + η ·
t−1∑
s=1

(1− πθs(a)) · r(a)√
2 · (1− πθs(a)) · r(a)

(by Eqs. (257) and (263)) (269)

= θ1(a) +
η√
2
· (t− 1) . (270)
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On the other hand, for all a′ 6= a, we have,

θt(a
′) = θ1(a′)− η ·

t−1∑
s=1

(πθs(a
′) · r(a))

/∥∥∥∥dπ>θs r̂sdθs

∥∥∥∥
2

(by Update 6 and Eq. (260)) (271)

≤ θ1(a′). (272)

Then we have,

πθt(a) = 1−
∑
a′ 6=a exp{θt(a′)}

exp{θt(a)}+
∑
a′ 6=a exp{θt(a′)}

(273)

≥ 1−
∑
a′ 6=a exp{θ1(a′)}

exp
{
θ1(a) + η√

2
· (t− 1)

}
+
∑
a′ 6=a exp{θ1(a′)}

(by Eqs. (268) and (271))

(274)

≥ exp

{ −
∑
a′ 6=a exp{θ1(a′)}

exp
{
θ1(a) + η√

2
· (t− 1)

}} (by Lemma 14) (275)

= bt. (276)

Using similar calculation to Eq. (238), we have,
∞∏
t=1

πθt(a) ≥
∞∏
t=1

exp

{ −
∑
a′ 6=a exp{θ1(a′)}

exp
{
θ1(a) + η√

2
· (t− 1)

}} (by Eq. (273)) (277)

= exp

{
−
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a)}
· exp

{ η√
2

}
·
∞∑
t=1

1

exp
{
η√
2
· t
}} (278)

≥ exp

{
−
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a)}
· exp

{ η√
2

}
·
∫ ∞
t=0

1

exp
{
η√
2
· t
}dt} (279)

= exp

{
−
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a)}
·

√
2 · exp

{
η√
2

}
η

}
(280)

∈ Ω(1), (281)

where the last line is due to, exp {θ1(a)} ∈ Θ(1) for all a ∈ [K], and η ∈ Θ(1). With Eq. (277),
we have “the probability of sampling action a forever using on-policy sampling at ∼ πθt(·)” is
lower bounded by a constant of Ω(1). Therefore, for all a ∈ [K], with positive probability Ω(1),
πθt(a)→ 1, as t→∞.

B Proofs for Committal Rate (Section 3)

Theorem 5 (Committal rate main theorem). Consider a policy optimization method A, together with
r ∈ (0, 1]K and an initial parameter vector θ1 ∈ RK . Then,

max
a:r(a)<r(a∗),πθ1 (a)>0

κ(A, a) ≤ 1 (282)

is a necessary condition for ensuring the almost sure convergence of the policies obtained using A
and online sampling to the global optimum starting from θ1.

Proof. It suffices to prove that if κ(A, a) > 1 happens for a suboptimal action a ∈ [K] while
πθ1(a) > 0, then if we let {θt}t≥1 be the parameter sequence obtained by using A with online
sampling, i.e., when at ∼ πθt(·), then the event E = {at = a holds for all t ≥ 1} happens with
positive probability, and it also holds that πθt converges to a sub-optimal deterministic policy with
positive probability.

For convenience, denote α := κ(A, a). Define the history of actions for the first t iterations,

Ht := (a1, a2, · · · , at) . (283)
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Given the historical iterations, sampled actions and rewards, the next iteration is a deterministic result
of the algorithm,

θt = A (θ1, a1, r(a1), θ2, a2, r(a2), · · · , θt−1, at−1, r(at−1)) . (284)

Let Pr denote the probability measure that over the probability space (Ω,F) that holds all of our
random variables. By construction, Pr satisfies that for all a and t ≥ 1,

Pr (at = a | Ht−1) = πθt(a) Pr almost surely. (285)

Define the following event, for all t ≥ 1,

Et := {as = a, for all 1 ≤ s ≤ t} . (286)

We have Et ⊇ Et+1, and Et approaches the limit event,

E := {at = a, for all t ≥ 1} . (287)

We have Pr (Et) is monotonically decreasing and lower bounded by zero. According to monotone
convergence theorem,

Pr (E) = lim
t→∞

Pr (Et). (288)

Next, we prove by induction on t the following holds

Pr (Et) = Pr (at = a | Et−1) · Pr (Et−1) (289)

=

t∏
s=1

πθ̃s(a), (290)

where θ̃1 = θ1, and,

θ̃t = A
(
θ1, a, r(a)︸ ︷︷ ︸

s=1

, · · · , a, r(a)︸ ︷︷ ︸
s=t−1

)
, (291)

which means a is used for the first t− 1 iterations.

First, by definition of θ̃1, we have,

Pr (E1) = πθ1(a) = πθ̃1(a), (292)

where the first equation is from Eq. (285). Suppose the equation holds up to t− 1. We have,

Pr (Et) = E [Pr (at = a, · · · , a1 = a | Ht−1)] (by the tower rule) (293)
= E [I {at−1 = a, · · · , a1 = a} · Pr (at = a | Ht−1)] ({a1, · · · , at−1} is deterministic givenHt−1)

(294)
= E [I {at−1 = a, · · · , a1 = a} · πθt(a)] (by Eq. (285)) (295)

= E
[
I {at−1 = a, · · · , a1 = a} · πθ̃t(a)

]
(by Eq. (291)) (296)

= πθ̃t(a) · Pr (Et−1) (from calculating the expectation) (297)

=

t∏
s=1

πθ̃s(a). (by induction hypothesis) (298)

Next, we show that
∏∞
t=1 πθ̃t(a) > 0, where πθ̃t(a) is the probability at tth iteration given A is

used when in the first t− 1 iterations action a is used. This is the sequence used in the definition of
committal rate κ. Further, for simplicity, assume that in the definition of κ, the supremum is achieved.
It follows that there exists a universal constant C > 0 such that on E , for all t ≥ 1,

1− πθ̃t(a) = tα ·
[
1− πθ̃t(a)

]
· 1

tα
(299)

≤ C

tα
. (by Definition 2) (300)
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Let ut := 1− πθ̃t(a) ∈ (0, 1) for all t ≥ 1. We have,

∞∑
t=1

ut ≤
∞∑
t=1

C

tα
(by Eq. (299)) (301)

<∞. (by Lemma 15, α := κ(A, a) > 1) (302)

Therefore we have,
∞∏
t=1

πθ̃t(a) =

∞∏
t=1

(1− ut) (303)

> 0. (by Lemma 16 and Eq. (301)) (304)

Hence, we have,

Pr(E) = lim
T→∞

Pr(ET ) (by Eq. (288)) (305)

= lim
T→∞

T∏
t=1

πθ̃t(a) (by Eq. (293)) (306)

=

∞∏
t=1

πθ̃t(a) > 0, (by Eq. (303)) (307)

and thus πθt(a)→ 1 as t→∞.

Theorem 6. Let Assumption 1 holds. For the stochastic updates NPG and GNPG from Updates 5
and 6 we obtain κ(NPG, a) =∞ and κ(GNPG, a) =∞ for all a ∈ [K] respectively.

Proof. First part (NPG). We first show that κ(NPG, a) = ∞ for all a ∈ [K]. According to
Definition 2, let action a be sampled forever after initialization. We have, for stochastic NPG update,

1− πθt(a) =
∑
a′ 6=a

πθt(a
′) (308)

≤
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑
a′ 6=a exp{θ1(a′)}

. (by Eq. (234)) (309)

Since exp{θ1(i)} ∈ Θ(1) for all i ∈ [K], we have, for any finite α ∈ (0,∞),

lim
t→∞

tα · [1− πθt(a)] ≤ lim
t→∞

tα ·
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑
a′ 6=a exp{θ1(a′)}

(by Eq. (308))

(310)

= lim
t→∞

Θ(tα)

Θ(exp{η · r(a) · (t− 1)})
= 0, (311)

which means κ(NPG, a) =∞ for all a ∈ [K].

Second part (GNPG). We next show that κ(GNPG, a) = ∞ for all a ∈ [K]. Let action a be
sampled forever after initialization. We have, for stochastic GNPG update,

1− πθt(a) =
∑
a′ 6=a

πθt(a
′) (312)

≤
∑
a′ 6=a exp{θ1(a′)}

exp
{
θ1(a) + η√

2
· (t− 1)

}
+
∑
a′ 6=a exp{θ1(a′)}

. (by Eq. (273)) (313)

Using similar arguments to Eq. (310), we have κ(GNPG, a) =∞ for all a ∈ [K].

Theorem 7. Softmax PG obtains κ(PG, a) = 1 for all a ∈ [K].
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Proof. First part. κ(PG, a) ≥ 1.

According to Definition 2, let action a be sampled forever after initialization. We have, for stochastic
PG update,(

1− πθt+1
(a)
)
− (1− πθt(a)) = πθt(a)− πθt+1

(a) +
〈dπθt(a)

dθt
, θt+1 − θt

〉
−
〈dπθt(a)

dθt
, θt+1 − θt

〉
(314)

≤ 5

4
· ‖θt+1 − θt‖22 −

〈dπθt(a)

dθt
, θt+1 − θt

〉
(by Eq. (12), smoothness) (315)

=
5 · η2

4
·
∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

− η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(using Update 4) (316)

=
5 · η2

4
·
(∑
a′ 6=a

πθt(a
′)2 · r(a)2 + (1− πθt(a))

2 · r(a)2

)
− η ·

〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(by Eqs. (257) and (260))

(317)

≤ 5 · η2

2
· (1− πθt(a))

2 · r(a)2 − η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(‖x‖2 ≤ ‖x‖1) (318)

=
5 · η2

2
· (1− πθt(a))

2 · r(a)2 − η · πθt(a) · r(a) ·
(∑
a′ 6=a

πθt(a
′)2 + (1− πθt(a))

2

)
(see below)

(319)

≤ 5 · η2

2
· (1− πθt(a))

2 · r(a)2 − η · πθt(a) · r(a) · (1− πθt(a))
2
, (320)

where the first inequality is because πθ(a) = π>θ ea, where ea ∈ {0, 1}K with ea(a) = 1 and
ea(a′) = 0 for all a′ 6= a, and the second last equality is because of

dπθt(a)

dθt(i)
=

{
πθt(i) · (1− πθt(i)) , if i = a,

−πθt(i) · πθt(a). otherwise
(321)

Using η =
πθt (a)

5·r(a) , for all t ≥ 1, we have,(
1− πθt+1

(a)
)
− (1− πθt(a)) ≤ − 1

10
· πθt(a)2 · (1− πθt(a))

2
, (322)

which means πθt+1
(a) ≥ πθt(a) for all t ≥ 1. Therefore, we have η ≥ πθ1 (a)

5·r(a) ∈ Θ(1) and,(
1− πθt+1(a)

)
− (1− πθt(a)) ≤ − 1

10
· πθ1(a)2 · (1− πθt(a))

2
. (323)

Then we have,

1

1− πθt(a)
=

1

1− πθ1(a)
+

t−1∑
s=1

[
1

1− πθs+1(a)
− 1

1− πθs(a)

]
(324)

=
1

1− πθ1(a)
+

t−1∑
s=1

1(
1− πθs+1

(a)
)
· (1− πθs(a))

·
[
(1− πθs(a))−

(
1− πθs+1

(a)
)]

(325)

≥ 1

1− πθ1(a)
+

t−1∑
s=1

1(
1− πθs+1

(a)
)
· (1− πθs(a))

· πθ1(a)2

10
· (1− πθs(a))

2
(by Eq. (323))

(326)

≥ 1

1− πθ1(a)
+
πθ1(a)2

10
· (t− 1)

(
πθt+1

(a) ≥ πθt(a)
)

(327)

≥ πθ1(a)2

10
· t,

(
1

1− πθ1(a)
≥ 1 ≥ πθ1(a)2

10

)
(328)
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which implies for all t ≥ 1,

t · [1− πθt(a)] ≤ t ·
[

10

πθ1(a)2
· 1

t

]
(by Eq. (324)) (329)

=
10

πθ1(a)2
, (330)

which means κ(PG, a) ≥ 1 for all a ∈ [K] according to Definition 2.

Second part. κ(PG, a) ≤ 1.

Let action a be sampled forever after initialization. We show that 1− πθt(a) cannot decrease faster
than O(1/t). Similar to Eq. (314), we have,

(1− πθt(a))−
(
1− πθt+1

(a)
)

= πθt+1
(a)− πθt(a)−

〈dπθt(a)

dθt
, θt+1 − θt

〉
+
〈dπθt(a)

dθt
, θt+1 − θt

〉
(331)

≤ 5

4
· ‖θt+1 − θt‖22 +

〈dπθt(a)

dθt
, θt+1 − θt

〉
(by Eq. (12), smoothness) (332)

=
5 · η2

4
·
∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

+ η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(using Update 4) (333)

≤ 5 · η2

2
· (1− πθt(a))

2 · r(a)2 + η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(by Eqs. (257) and (260))

(334)

=
5 · η2

2
· (1− πθt(a))

2 · r(a)2 + η · πθt(a) · r(a) ·
(∑
a′ 6=a

πθt(a
′)2 + (1− πθt(a))

2

)
(335)

≤ 5 · η2

2
· (1− πθt(a))

2 · r(a)2 + 2 · η · πθt(a) · r(a) · (1− πθt(a))
2

(‖x‖2 ≤ ‖x‖1)

(336)

≤ 9

2
· (1− πθt(a))

2 · r(a), (337)

where the last inequality is due to πθt(a) ∈ (0, 1), r(a) ∈ (0, 1], and η ∈ (0, 1]. Denote δ(θt) :=
1− πθt(a). We have, for all t ≥ 1,

δ(θt)− δ(θt+1) ≤ 9

2
· r(a) · δ(θt)2, (338)

which is similar to Eq. (33). Therefore, using similar calculations in the proofs for Proposition 2, we
have, for all large enough t ≥ 1,

t · [1− πθt(a)] ≥ t ·
[

1

6 · r(a)
· 1

t

]
(339)

=
1

6 · r(a)
, (340)

which means κ(PG, a) ≤ 1 for all a ∈ [K] according to Definition 2.

Theorem 8. Using Update 7, (π∗ − πθt)
>
r → 0 as t→∞ with probability 1.

Proof. Consider the sequence {πθt(a∗)}t≥1 produced by Update 7 using on-policy sampling at ∼
πθt(·). We show that πθt(a

∗)→ 1 as t→∞ with probability 1.

First, for convenience, we duplicate Update 7 here.

Update 7 (NPG with oracle baseline). θt+1 ← θt + η ·
(
r̂t − b̂t

)
, where b̂t(a) =

(
I{at=a}
πθt (a) − 1

)
· b

for all a ∈ [K], and b ∈ (r(a∗)−∆, r(a∗)).
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Note that Update 7 is equivalent to the following update,

θt+1(a) =

{
θt(a) + η

πθt (a) · (r(a)− b) , if a = at,

θt(a), otherwise
(341)

Next, we show that πθt+1(a∗) ≥ πθt(a∗) using on-policy sampling at ∼ πθt(·). There are two cases.

Case (a): If at = a∗, then we have,

θt+1(a∗) = θt(a
∗) +

η

πθt(a
∗)
· (r(a∗)− b) (by Eq. (341)) (342)

> θt(a
∗), (r(a∗) > b) (343)

while θt+1(a) = θt(a) for all sub-optimal actions a 6= a∗. Then we have,

πθt+1
(a∗) =

exp{θt+1(a∗)}
exp{θt+1(a∗)}+

∑
a 6=a∗ exp{θt+1(a)}

(344)

>
exp{θt(a∗)}

exp{θt(a∗)}+
∑
a6=a∗ exp{θt+1(a)}

(by Eq. (342)) (345)

=
exp{θt(a∗)}

exp{θt(a∗)}+
∑
a6=a∗ exp{θt(a)}

(θt+1(a) = θt(a), for all a 6= a∗) (346)

= πθt(a
∗). (347)

Case (b): If at = a 6= a∗, then we have,

θt+1(a) = θt(a) +
η

πθt(a)
· (r(a)− b) (by Eq. (341)) (348)

< θt(a), (r(a) ≤ r(a∗)−∆ < b) (349)

where ∆ = r(a∗)−maxa6=a∗ r(a) > 0 is the reward gap. Also θt+1(a′) = θt(a
′) for all the other

actions a′ 6= a. Then we have,

πθt+1
(a∗) =

exp{θt+1(a∗)}
exp{θt+1(a)}+

∑
a′ 6=a exp{θt+1(a′)}

(350)

>
exp{θt+1(a∗)}

exp{θt(a)}+
∑
a′ 6=a exp{θt+1(a′)}

(by Eq. (348)) (351)

=
exp{θt(a∗)}

exp{θt(a)}+
∑
a′ 6=a exp{θt(a′)}

(θt+1(a′) = θt(a
′), for all a′ 6= a) (352)

= πθt(a
∗). (353)

Therefore, we have πθt+1(a∗) ≥ πθt(a
∗), for all t ≥ 1. Note that πθt(a

∗) ≤ 1. According to
monotone convergence theorem, we have πθt+1(a∗) approaches to some finite value as t→∞.

Suppose πθt(a
∗) → πθ∞(a∗) as t → ∞. We show that πθ∞(a∗) = 1 by contradiction. Suppose

πθ∞(a∗) < 1. Then at the convergent point, according to Eqs. (344) and (350), we can further
improve the probability of a∗ by online sampling and updating once, which is a contradiction with
convergence.

Thus we have πθt(a
∗)→ 1 as t→∞ with probability 1, which implies that (π∗ − πθt)

>
r → 0 as

t→∞ with probability 1.

The Stochastic Approximation Markov Bandit Algorithm (SAMBA) [13] algorithm is mentioned in
Section 4 and Figure 1.
Update 8 (SAMBA). At iteration t ≥ 1, denote the greedy action āt := arg maxa∈[K] πt(a). Sample

action at ∼ πt(·). (i) If at = āt, then perform update πt+1(a′)← πt(a
′)− η · πt(a′)2 · r(at)πt(at)

for all

non-greedy action a′ 6= at; (ii) If at 6= āt, then perform update πt+1(at)← πt(at)+η·πt(at)2· r(at)πt(at)
.

After doing (i) or (ii), calculate πt+1(āt) = 1−
∑
a′ 6=āt πt+1(a′).
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The SAMBA algorithm does not maintain parameters θ, and the last step πt+1(āt) = 1 −∑
a′ 6=āt πt+1(a′) in Update 8 is a necessary projection to the probability simplex, such that πt

is a valid probability distribution over [K]. As shown in [13], if the learning rate has the knowledge
of the optimal action’s reward and reward gap, i.e.,

η <
∆

r(a∗)−∆
, (354)

then Update 8 converges to π∗ almost surely with a O(1/t) rate, i.e.,

(π∗ − πt)> r ≤ C/t. (355)
We calculate the committal rate of SAMBA.
Proposition 4. For SAMBA from Update 8, we have κ(SAMBA, a) = 1 for all a ∈ [K].

Proof. First part. κ(SAMBA, a) ≥ 1.

According to Definition 2, let action a be the greedy action and be sampled forever. According to (i)
in Update 8, we have, for all a′ 6= a,

πt+1(a′) = πt(a
′)− η · πt(a′)2 · r(at)

πt(at)
(356)

= πt(a
′)− η · πt(a′)2 · r(a)

πt(a)
(at = a by fixed sampling) (357)

≤ πt(a′)− η · πt(a′)2 · r(a). (πt(a) ∈ (0, 1)) (358)
Using similar calculations in Eq. (13), we have, for all a′ 6= a,

1

πt(a′)
=

1

π1(a′)
+

t−1∑
s=1

[
1

πs+1(a′)
− 1

πs(a′)

]
(359)

=
1

π1(a′)
+

t−1∑
s=1

1

πs+1(a′) · πs(a′)
· (πs(a′))− πs+1(a′)) (360)

≥ 1

π1(a′)
+

t−1∑
s=1

1

πs+1(a′) · πs(a′)
· η · πs(a′)2 · r(a) (by Eq. (356)) (361)

≥ 1

π1(a′)
+ η · r(a) · (t− 1) (πt+1(a′) ≤ πt(a′), by Eq. (356)) (362)

≥ η · r(a) · t,
(

1

π1(a′)
≥ 1 ≥ η · r(a)

)
(363)

which implies, for all large enough t ≥ 1,

t · [1− πt(a)] = t ·
∑
a′ 6=a

πt(a
′) (364)

≤ t ·
∑
a′ 6=a

1

η · r(a) · t
(by Eq. (359)) (365)

=
∑
a′ 6=a

1

η · r(a)
, (366)

which means κ(SAMBA, a) ≥ 1 for all a ∈ [K] according to Definition 2.

Second part. κ(SAMBA, a) ≤ 1.

Let action a be the greedy action and be sampled forever. According to (i) in Update 8, we have, for
all a′ 6= a,

πt+1(a′) = πt(a
′)− η · πt(a′)2 · r(at)

πt(at)
(367)

= πt(a
′)− η · πt(a′)2 · r(a)

πt(a)
(at = a by fixed sampling) (368)

≥ πt(a′)− η ·K · πt(a′)2 · r(a), (πt(a) ≥ 1/K, a is greedy action) (369)
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which is similar to Eq. (33). Therefore, using similar calculations in the proofs for Proposition 2, we
have, for all large enough t ≥ 1, we have,

πt+1(a′)

πt(a′)
≥ 1

2
. (370)

Denote

t0 := min
{
t ≥ 1 :

πt+1(a′)

πt(a′)
≥ 1

2
, for all s ≥ t

}
. (371)

On the other hand, since t0 ∈ O(1), we have, for all t < t0,
πt+1(a′) ≥ c0 > 0. (372)

Next, we have, for all t ≥ t0,

1

πt(a′)
=

1

π1(a′)
+

t0−1∑
s=1

1

πs+1(a′)
·
(

1− πs+1(a′)

πs(a′)

)
+

t−1∑
s=t0

1

πs+1(a′) · πs(a′)
· (πs(a′))− πs+1(a′))

(373)

≤ 1

c0
+

t0−1∑
s=1

1

c0
· 1 +

t−1∑
s=t0

1

πs+1(a′) · πs(a′)
· η ·K · πs(a′)2 · r(a) (by Eqs. (367) and (372))

(374)

≤ t0
c0

+ 2 · η ·K · r(a) · (t− t0), (by Eq. (370)) (375)

which implies, for all large enough t ≥ 1,

t · [1− πt(a)] = t ·
∑
a′ 6=a

πt(a
′) (376)

≥ t ·
∑
a′ 6=a

1

t0/c0 + 2 · η ·K · r(a) · (t− t0)
(by Eq. (373)) (377)

≥
∑
a′ 6=a

1

3 · η ·K · r(a)
, (t0/c0 ≤ η ·K · r(a) · t) (378)

which means κ(SAMBA, a) ≤ 1 for all a ∈ [K] according to Definition 2.

C Proofs for Geometry-Convergence Trade-off (Section 4)

First, we show that the algorithms we study in this paper, i.e., softmax PG, NPG, and GNPG, are
optimality-smart. Recall from the main paper that, a policy optimization method is said to be
optimality-smart if for any t ≥ 1, πθ̃t(a

∗) ≥ πθt(a∗) holds where θ̃t is the parameter vector obtained
when a∗ is chosen in every time step, starting at θ1, while θt is any parameter vector that can be
obtained with t updates (regardless of the action sequence chosen), but also starting from θ1.
Proposition 5. Softmax PG, NPG, and GNPG are optimality-smart.

Proof. We show that for softmax PG, NPG, and GNPG, if at = a∗, then πθt+1
(a∗) ≥ πθt(a

∗); if
at = a 6= a∗, then πθt+1

(a∗) ≤ πθt(a∗). For softmax PG and GNPG the later claim holds when a∗
is the dominating action at tth iteration, i.e., πθt(a

∗) ≥ πθt(a′) for all a′ 6= a∗. From existing results
(Propositions 1 and 3) we know that softmax PG and GNPG converge to π∗ as t→∞ (using true
policy gradients; also holds for using fixed sampling at = a∗ for all t ≥ 1), thus we have for all large
enough t ≥ 1, πθt(a

∗) ≥ πθt(a′) for all a′ 6= a∗.

First part. Softmax PG and GNPG are optimality-smart.

If at = a∗, then we have,

θt+1(a∗) = θt(a
∗) + η ·

dπ>θt r̂t

dθt(a∗)
(379)

= θt(a
∗) + η · (1− πθt(a∗)) · r(a∗) (by Eq. (257)) (380)

≥ θt(a∗).
(
r ∈ (0, 1]K

)
(381)
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And for any a 6= a∗, we have,

θt+1(a) = θt(a) + η ·
dπ>θt r̂t

dθt(a)
(382)

= θt(a)− η · πθt(a) · r(a∗) (by Eq. (260)) (383)

≤ θt(a).
(
r ∈ (0, 1]K

)
(384)

Therefore, we have,

πθt+1
(a∗) =

exp{θt+1(a∗)}
exp{θt+1(a∗)}+

∑
a6=a∗ exp{θt+1(a)}

(385)

≥ exp{θt(a∗)}
exp{θt(a∗)}+

∑
a 6=a∗ exp{θt(a)}

(by Eqs. (379) and (382)) (386)

= πθt(a
∗). (387)

On the other hand, given at = a 6= a∗, we show that if πθt(a
∗) ≥ πθt(a

′) for all a′ 6= a∗, then
πθt+1

(a∗) ≤ πθt(a∗). We have,

θt+1(a) = θt(a) + η · (1− πθt(a)) · r(a) (by Eq. (257)) (388)
≥ θt(a)− η · πθt(a∗) · r(a). (389)

And for any a′ 6= a, we have,

θt+1(a′) = θt(a
′)− η · πθt(a′) · r(a) (by Eq. (260)) (390)

≥ θt(a′)− η · πθt(a∗) · r(a). (πθt(a
∗) ≥ πθt(a′)) (391)

Therefore, we have,

πθt+1
(a∗) =

exp{θt+1(a∗)}
exp{θt+1(a)}+

∑
a′ 6=a exp{θt+1(a′)}

(392)

≤ exp{θt(a∗)− η · πθt(a∗) · r(a)}
exp{θt(a)− η · πθt(a∗) · r(a)}+

∑
a′ 6=a exp{θt(a′)− η · πθt(a∗) · r(a)}

(by Eqs. (388) and (390))

(393)

=
exp{θt(a∗)}

exp{θt(a)}+
∑
a′ 6=a exp{θt(a′)}

(394)

= πθt(a
∗). (395)

Second part. NPG is optimality-smart.

If at = a∗, then we have,

θt+1(a∗) = θt(a
∗) + η · r(a

∗)

πθt(a
∗)

(396)

> θt(a
∗). (397)

while θt+1(a) = θt(a) for all sub-optimal actions a 6= a∗. Then we have,

πθt+1
(a∗) =

exp{θt+1(a∗)}
exp{θt+1(a∗)}+

∑
a 6=a∗ exp{θt+1(a)}

(398)

≥ exp{θt(a∗)}
exp{θt(a∗)}+

∑
a6=a∗ exp{θt(a)}

(399)

= πθt(a
∗). (400)

If at = a 6= a∗, then we have,

θt+1(a) = θt(a) + η · r(a)

πθt(a)
(401)

≥ θt(a), (402)
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while θt+1(a′) = θt(a
′) for all the other actions a′ 6= a. Then we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a)}+
∑
a′ 6=a exp{θt+1(a′)}

(403)

≤ exp{θt(a∗)}
exp{θt(a)}+

∑
a′ 6=a exp{θt(a′)}

(404)

= πθt(a
∗).

Theorem 9. Let A be optimality-smart and pick a bandit instance. If A together with on-policy
sampling leads to {θt}t≥1 such that {πθt}t≥1 converges to a globally optimal policy at a rateO(1/tα)
with positive probability, for α > 0, then κ(A, a∗) ≥ α.

Proof. Fix an instance r ∈ (0, 1]K with a unique optimal action a∗. For any θ ∈ RK , we have,

(π∗ − πθ)> r =
∑
a6=a∗

πθ(a) · (r(a∗)− r(a)) (405)

≥ (1− πθ(a∗)) ·∆, (406)

where ∆ = r(a∗)−maxa 6=a∗ r(a) > 0 is the reward gap. Let {θt}t≥1 be the sequence obtained by
using A together with online sampling on r. For α > 0 let Eα be the event when for all t ≥ 1,

(π∗ − πθt)
>
r ≤ C

tα
, (407)

By our assumption, there exists α > 0 such that Pr(Eα) > 0. On this event, for any t ≥ 1,

tα · (1− πθt(a∗)) ≤
1

∆
· tα · (π∗ − πθt)

>
r (by Eq. (405)) (408)

≤ C

∆
. (by Eq. (407)) (409)

Let
{
θ̃t
}
t≥1

with θ̃1 = θ1 be the sequence obtained by using A with fixed sampling on r, such that
at = a∗ for all t ≥ 1. Since, by the assumption, A is optimality-smart, we have πθ̃t(a

∗) ≥ πθt(a∗).
Then, on Eα, for any t ≥ 1

tα ·
(
1− πθ̃t(a

∗)
)
≤ tα · (1− πθt(a∗)) (410)

≤ C

∆
, (by Eq. (408)) . (411)

Since P(Eα) > 0 and tα ·
(
1− πθ̃t(a

∗)
)

is non-random, it follows that for any t ≥ 1,
tα ·

(
1− πθ̃t(a

∗)
)
≤ C/∆, which, by Definition 2, means that κ(A, a∗) ≥ α.

Theorem 10 (Geometry-Convergence trade-off). If an algorithm A is optimality-smart, and
κ(A, a∗) = κ(A, a) for at least one a 6= a∗, then A with on-policy sampling can only exhibit
at most one of the following two behaviors: (i) A converges to a globally optimal policy almost
surely; (ii) A converges to a deterministic policy at a rate faster than O(1/t) with positive probability.

Proof. We prove that A cannot achieve both of the two behaviors at the same time by contradiction.
Suppose an algorithmA can (i) converge to a globally optimal policy almost surely; and (ii) converges
at a rate O(1/tα) with positive probability, where α > 1.

Since (ii) holds, according to Theorem 9, we have κ(A, a∗) ≥ α > 1. By condition, there exists at
least one sub-optimal action a 6= a∗, such that κ(A, a) = κ(A, a∗) > 1. According to Theorem 5,
we have πθt(a)→ 1 as t→∞ with positive probability, which contradicts (i). Therefore, (i) and (ii)
cannot hold simultaneously.
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D Proofs for Ensemble Methods (Section 5)

Theorem 11. With probability 1− δ, the best single run among O(log (1/δ)) independent runs of
NPG (GNPG) converges to a globally optimal policy at an O(e−c·t) rate.

Proof. According to Theorem 3, stochastic NPG of Update 5 will sample the optimal action a∗
forever (thus converge to the optimal policy) with probability at least

p(NPG, a∗) := exp

{
− exp{η · r(a∗)}

η · r(a∗)
·
∑
a6=a∗ exp{θ1(a)}
exp{θ1(a∗)}

}
(by Eq. (242)) (412)

∈ Ω(1). (413)

Moreover, with probability at least p(NPG, a∗), the convergence rate is,

(π∗ − πθt)
>
r =

∑
a 6=a∗

πθt(a) · (r(a∗)− r(a)) (414)

≤ 1− πθt(a∗)
(
r ∈ (0, 1]K

)
(415)

≤
∑
a 6=a∗ exp{θ1(a)}

exp{θ1(a∗) + η · r(a∗) · (t− 1)}+
∑
a6=a∗ exp{θ1(a)}

(by Eq. (308)) (416)

∈ O(e−c·t). (417)

Consider n(NPG) ∈ O(log (1/δ)) independent runs of NPG, where

n(NPG) :=
1

log
(

1
1−p(NPG,a∗)

) · log (1/δ). (418)

The probability that all the n(NPG) runs do not converge to global optimal policy is at most

[1− p(NPG, a∗)]n(NPG)
=
[
exp

{
log
(
1− p(NPG, a∗)

)}]n(NPG)

(419)

= exp

{
− log

(
1

1− p(NPG, a∗)

)
· 1

log
(

1
1−p(NPG,a∗)

) · log (1/δ)

}
(by Eq. (418))

(420)

= e− log (1/δ) = δ, (421)

which means with probability at least 1− δ, the best single run converges to a globally optimal policy
at an O(e−c·t) rate.

For stochastic GNPG of Update 6, similar calculations show that with probability at least 1− δ, the
best single run among n(GNPG) ∈ O(log (1/δ)) independent runs of GNPG converges to a globally
optimal policy at an O(e−c·t) rate, where

n(GNPG) :=
1

log
(

1
1−p(GNPG,a∗)

) · log (1/δ), (422)

and

p(GNPG, a∗) := exp

{
−
∑
a 6=a∗ exp{θ1(a)}
exp{θ1(a∗)}

·

√
2 · exp

{
η√
2

}
η

}
(by Eq. (277)) (423)

∈ Ω(1), (424)

thus finishing the proof.

E General MDPs

This section is devoted to results of general MDPs. (i) For convergence rate results in true gradient
settings, we review relevant results in literature [2, 8, 9] without detailed proofs (except for the NPG
method, for which we have a new analysis using the natural NŁ inequality), since the conclusions are
similar to one-state MDPs in Section 2. (ii) For results in on-policy stochastic settings, we discuss
the main ideas for the similar conclusions as in Section 2. (iii) For results of the committal rate and
the trade-off, we provide some calculations.
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E.1 RL Settings and Notations

Given a finite set X , we denote ∆(X ) as the set of all probability distributions on X . A finite MDP
M := (S,A,P, r, γ) is determined by the finite state space S, action space A, transition function
P : S ×A → ∆(S), reward function r : S ×A → R, and discount factor γ ∈ [0, 1).

An agent maintains a policy π : S → ∆(A). At time t, the agent is given a state st, and it takes an
action at ∼ π(·|st), receives a scalar reward r(st, at) and a next-state st+1 ∼ P(·|st, at). The value
function of π under s is defined as

V π(s) := E
s0=s,at∼π(·|st),
st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at)

]
. (425)

The state-action value of π at (s, a) ∈ S ×A is defined as

Qπ(s, a) := r(s, a) + γ ·
∑
s′

P(s′|s, a) · V π(s′). (426)

The advantage function of π is defined as

Aπ(s, a) := Qπ(s, a)− V π(s). (427)

The state distribution of π is defined as,

dπs0(s) := (1− γ) ·
∞∑
t=0

γt · Pr(st = s|s0, π,P). (428)

We also denote V π(ρ) := Es∼ρ(·) [V π(s)] and dπρ (s) := Es0∼ρ(·)
[
dπs0(s)

]
, where ρ ∈ ∆(S) is

an initial state distribution. The optimal policy π∗ satisfies V π
∗
(ρ) = supπ:S→∆(A) V

π(ρ). For
conciseness, we denote V ∗ := V π

∗
. Given tabular parameters θ(s, a) ∈ R for all (s, a), the policy

πθ can be parameterized by θ as πθ(·|s) = softmax(θ(s, ·)):

πθ(a|s) =
exp{θ(s, a)}∑

a′∈A exp{θ(s, a′)}
, for all (s, a) ∈ S ×A. (429)

Without loss of generality, we assume r(s, a) ∈ (0, 1) for all (s, a) ∈ S ×A. Generalizing expected
reward maximization of Eq. (1), the problem here is then to maximize the value function, i.e.,

sup
θ:S×A→R

V πθ (ρ). (430)

Now we consider the above three algorithms and their results in general MDPs.

E.2 True Gradient Settings

E.2.1 Softmax PG

First, softmax PG has Θ(1/t) global convergence rates with the following assumption.

Assumption 2 (Sufficient exploration). The initial state distribution satisfies mins µ(s) > 0.

Algorithm 1 Softmax PG, true gradient
Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do
θt+1 ← θt + η · ∂V

πθt (µ)
∂θt

.
end while

As shown in Mei et al. [2], the following non-uniform Łojasiewicz (NŁ) inequality holds for value
function, generalizing Lemma 1.
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Lemma 9 (NŁ, [2]). Let a∗(s) be the action that π∗ selects in state s. We have, for all θ ∈ RS×A,∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

≥
∥∥∥∥dπ∗ρdπθµ

∥∥∥∥−1

∞
·min

s
πθ(a

∗(s)|s) · 1√
S
· (V ∗(ρ)− V πθ (ρ)) . (431)

The proof for Lemma 9 can be found in [2, Lemma 8].
Proposition 6 (PG upper bound [2]). Let Assumption 2 hold and let {θt}t≥1 be generated using
Algorithm 1 with η = (1− γ)3/8. Then, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ 16 · S
c2 · (1− γ)6 · t

·
∥∥∥∥dπ∗µµ

∥∥∥∥2

∞
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (432)

where c := infs∈S,t≥1 πθt(a
∗(s)|s) > 0.

The proof for Proposition 6 can be found in [2, Theorem 4].
Proposition 7 (PG lower bound [2]). For large enough t ≥ 1, using Algorithm 1 with ηt ∈ (0, 1],

V ∗(µ)− V πθt (µ) ≥ (1− γ)5 · (∆∗)2

12 · t
, (433)

where ∆∗ := mins∈S,a 6=a∗(s){Q∗(s, a∗(s))−Q∗(s, a)} > 0 is the optimal value gap of the MDP.

The proof for Proposition 7 can be found in [2, Theorem 10].

E.2.2 NPG

The following NPG algorithm enjoys O(e−c·t) global convergence rate in general MDPs.

Algorithm 2 Natural PG (NPG), true gradient
Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do
θt+1 ← θt + η ·Qπθt .

end while

Proposition 8 (NPG upper bound [8]). Let Assumption 2 hold and let {θt}t≥1 be generated using
Algorithm 2 with η > 0, and πθ1(a|s) = 1/A for all (s, a). We have, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ 1

(1− γ)2
· e−(t−κ)·(1−1/λ)·η·∆∗ , (434)

where κ = λ
∆∗ ·

[
logA
η + 1

(1−γ)2

]
and λ > 1.

The proof for Proposition 8 can be found in [8, Theorem 3.1].

We provide a different analysis using the natural non-uniform Łojasiewciz (NŁ) inequality. The
following Lemma 10 generalizes the natural NŁ inequality of Lemma 3. Lemma 10 and Theorem 12
are consistent with existing work of using adaptive / large learning rates and line search in NPG
[8, 29]. As shown later in Eq. (436), since the c(θt) quantity could be very small, it is necessary to
use a large learning rate η > 0 to get constant progresses.
Lemma 10 (Natural NŁ inequality, discrete). Using Algorithm 2, we have, for all t ≥ 1,

V πθt+1 (ρ)− V πθt (ρ) ≥ c(θt) · (1− γ) ·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞
·
[
V π
∗
(ρ)− V πθt (ρ)

]
, (435)

where c(θt) > 0 depends on θt is given by

c(θt) := min
s∈S

[
1− 1

πθt(āt(s)|s) ·
(
eη·∆t(s) − 1

)
+ 1

]
∈ (0, 1), (436)
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and āt(s) is the greedy action under state s, i.e.,

āt(s) := arg max
a∈A

Qπθt (s, a), (437)

and ∆t(s) is the gap w.r.t. the greedy action āt(s) under state s, i.e.,

∆t(s) := Qπθt (s, āt(s))− max
a6=āt(s)

{Qπθt (s, a)} > 0. (438)

Proof. According to the performance difference Lemma 19, we have

V πθt+1 (ρ)− V πθt (ρ) =
1

1− γ
·
∑
s

d
πθt+1
ρ (s) ·

∑
a

(
πθt+1(a|s)− πθt(a|s)

)
·Qπθt (s, a) (439)

≥
∑
s

d
πθt+1
ρ (s)

1− γ
·

[
1− 1

πθt(āt(s)|s) ·
(
eη·∆t(s) − 1

)
+ 1

]
·
∑
a

(π̄t(a|s)− πθt(a|s)) ·Qπθt (s, a) (Lemma 3)

(440)

≥
∑
s

d
πθt+1
ρ (s)

1− γ
·

[
1− 1

πθt(āt(s)|s) ·
(
eη·∆t(s) − 1

)
+ 1

]
·
∑
a

(π∗(a|s)− πθt(a|s)) ·Qπθt (s, a),

(441)

where in the second last inequality π̄t(·|s) is the greedy policy under state s, i.e.,∑
a∈A

π̄t(a|s) ·Qπθt (s, a) = max
π:S→∆(A)

∑
a∈A

π(a|s) ·Qπθt (s, a). (442)

Next we have,

V πθt+1 (ρ)− V πθt (ρ) ≥ c(θt)

1− γ
·
∑
s

d
πθt+1
ρ (s) ·

∑
a

(π∗(a|s)− πθt(a|s)) ·Qπθt (s, a) (443)

=
c(θt)

1− γ
·
∑
s

dπ
∗

ρ (s) · d
πθt+1
ρ (s)

dπ∗ρ (s)
·
∑
a

(π∗(a|s)− πθt(a|s)) ·Qπθt (s, a) (444)

≥ c(θt) ·
∥∥∥∥ dπ

∗

ρ

d
πθt+1
ρ

∥∥∥∥−1

∞
· 1

1− γ
·
∑
s

dπ
∗

ρ (s) ·
∑
a

(π∗(a|s)− πθt(a|s)) ·Qπθt (s, a) (445)

= c(θt) ·
∥∥∥∥ dπ

∗

ρ

d
πθt+1
ρ

∥∥∥∥−1

∞
·
[
V π
∗
(ρ)− V πθt (ρ)

]
(by Lemma 19) (446)

≥ c(θt) · (1− γ) ·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞
·
[
V π
∗
(ρ)− V πθt (ρ)

]
. (by Eq. (523))

Theorem 12 (NPG upper bound). Using Algorithm 2 with the following learning rate, for all t ≥ 1,

ηt =
1

mins∈S{πθt(āt(s)|s) ·∆t(s)}
, (447)

where āt(s) and ∆t(s) are defined in Eqs. (437) and (438), we have, for all t ≥ 1,

V π
∗
(ρ)− V πθt (ρ) ≤ exp

{
−1− γ

2
·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞
· (t− 1)

}
·
[
V π
∗
(ρ)− V πθ1 (ρ)

]
. (448)

Proof. We have, for all state s ∈ S and t ≥ 1,

πθt(āt(s)|s) ·
(
eηt·∆t(s) − 1

)
≥ πθt(āt(s)|s) · ηt ·∆t(s) (ex ≥ 1 + x) (449)

=
πθt(āt(s)|s) ·∆t(s)

mins∈S{πθt(āt(s)|s) ·∆t(s)}
(by Eq. (447)) (450)

≥ 1, (451)
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which implies that,

c(θt) = min
s∈S

[
1− 1

πθt(āt(s)|s) ·
(
eη·∆t(s) − 1

)
+ 1

]
(by Eq. (436)) (452)

≥ 1− 1/2 = 1/2. (453)

According to Lemma 10, we have, for all t ≥ 1,

V πθt+1 (ρ)− V πθt (ρ) ≥ c(θt) · (1− γ) ·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞
·
[
V π
∗
(ρ)− V πθt (ρ)

]
(454)

≥ 1− γ
2
·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞
·
[
V π
∗
(ρ)− V πθt (ρ)

]
, (455)

which leads to the final result,

V π
∗
(ρ)− V πθt (ρ) = V π

∗
(ρ)− V πθt−1 (ρ)− [V πθt (ρ)− V πθt−1 (ρ)] (456)

≤

(
1− 1− γ

2
·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞

)
·
[
V π
∗
(ρ)− V πθt−1 (ρ)

]
(457)

≤ exp

{
−1− γ

2
·
∥∥∥∥dπ∗ρρ

∥∥∥∥−1

∞
· (t− 1)

}
·
[
V π
∗
(ρ)− V πθ1 (ρ)

]
.

E.2.3 GNPG

Finally, GNPG also enjoys O(e−c·t) global convergence rate in general MDPs.

Algorithm 3 Geometry-award normalized PG (GNPG), true gradient
Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do
θt+1 ← θt + η · ∂V

πθt (µ)
∂θt

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2
.

end while

Proposition 9 (GNPG upper bound [9]). Let Assumption 2 hold and let {θt}t≥1 be generated

using Algorithm 3 with η = (1−γ)·γ
6·(1−γ)·γ+4·(C∞−(1−γ)) ·

1√
S

, where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞. Denote

C ′∞ := maxπ

∥∥∥dπρµ ∥∥∥∞. We have, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

· e−C·(t−1), (458)

where C = (1−γ)2·γ·c
12·(1−γ)·γ+8·(C∞−(1−γ)) ·

1
S ·
∥∥∥dπ∗µµ ∥∥∥−1

∞
and c := infs∈S,t≥1 πθt(a

∗(s)|s) > 0.

The proof for Proposition 9 can be found in [9, Theorem 3].

E.3 On-policy Stochastic Gradient Settings

For general MDPs with multiple states, we define the following on-policy parallel importance
sampling (IS) estimator, using one sampled action under each state to estimate the policy gradient.
Definition 3 (On-policy parallel IS). At iteration t, under each state s, sample one action at(s) ∼
πθt(·|s). The IS state-action value estimator Q̂πθt is constructed as

Q̂πθt (s, a) =
I {at(s) = a}
πθt(a|s)

·Qπθt (s, a), (459)

for all (s, a) ∈ S ×A.
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Definition 3 is a generalized version of Definition 1 to general MDPs, which does not specify how
to estimate Qπθt (s, a). With Definition 3, the on-policy stochastic softmax PG, NPG, and GNPG
methods can be generalized to general MDPs, replacing the true action value Qπθt (s, ·) ∈ R|A| in
the policy gradient with Q̂πθt (s, ·), which uses one sampled action under each state s. In practice,
Q̂πθt (s, ·) can be calculated using realistic PG estimators from on-policy roll-outs [30, Algorithm 1].
Here we use Definition 3 to show the main ideas of this work.

E.3.1 Softmax PG

We show that Theorem 2 can be generalized to general MDPs, using unbiased and bounded softmax
PG properties.

According to the policy gradient theorem [1], the softmax PG used in Algorithm 1 is, for all s ∈ S,

∂V πθ (µ)

∂θ(s, ·)
=

1

1− γ
·
∑
s′

dπθµ (s′) ·

[∑
a

∂πθ(a|s′)
∂θ(s, ·)

·Qπθ (s′, a)

]
(460)

=
1

1− γ
· dπθµ (s) ·

[∑
a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ (s, a)

]
.

(
∂πθ(a|s′)
∂θ(s, ·)

= 0, ∀s′ 6= s

)
(461)

Calculating ∂πθ(a|s)
∂θ(s,·) for πθ(·|s) = softmax(θ(s, ·)), we have [7, 2], for all (s, a) ∈ S ×A ,

∂V πθ (µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) ·Aπθ (s, a). (462)

Replacing Qπθ (s, a) with Q̂πθ (s, a) in Definition 3, we have Algorithm 4.

Algorithm 4 Softmax PG, on-policy stochastic gradient
Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do

Sample at(s) ∼ πθt(·|s) for all s ∈ S.
Q̂πθt (s, a)← I{at(s)=a}

πθt (a|s)
·Qπθt (s, a). (by Definition 3)

ĝt(s, ·)← 1
1−γ · d

πθt
µ (s) ·

[∑
a
∂πθt (a|s)
∂θt(s,·) · Q̂

πθt (s, a)
]
.

θt+1 ← θt + η · ĝt.
end while

Similarly, we have, for all (s, a) ∈ S ×A,

θt+1(s, a)← θt(s, a) +
η

1− γ
· dπθtµ (s) · πθt(a|s) ·

[
Q̂πθt (s, a)− πθt(·|s)>Q̂πθt (s, ·)

]
. (463)

We show that the PG estimator in Algorithm 4 is unbiased and bounded, generalizing Lemma 5.

Lemma 11. Let Q̂πθ (s, ·) be the IS parallel estimator using on-policy sampling a(s) ∼ πθ(·|s), for
all s. The stochastic softmax PG estimator is unbiased and bounded, i.e.,

E
a(s)∼πθ(·|s)

[
1

1− γ
· dπθµ (s) · πθ(a|s) ·

(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)]
=
∂V πθ (µ)

∂θ(s, a)
, (464)

E
a(s)∼πθ(·|s)

∑
(s,a)

dπθµ (s)2 · πθ(a|s)2

(1− γ)2
·
(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)2

 ≤ 2

(1− γ)
4 . (465)

Proof. First part. Unbiased.
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According to Definition 3, we have,

πθ(a|s) ·
(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)
(466)

= πθ(a|s) ·

(
I {a(s) = a}
πθ(a|s)

·Qπθ (s, a)−
∑
a′∈A

I {a(s) = a′} ·Qπθ (s, a′)

)
(467)

= I {a(s) = a} ·Qπθ (s, a)− πθ(a|s) ·Qπθ (s, a(s)). (468)
Taking expectation, we have,

E
a(s)∼πθ(·|s)

[
πθ(a|s) ·

(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)]
(469)

=
∑

a(s)∈A

πθ(a(s)|s) · [I {a(s) = a} ·Qπθ (s, a)− πθ(a|s) ·Qπθ (s, a(s))] (470)

= πθ(a|s) ·Qπθ (s, a)− πθ(a|s) · V πθ (s) (471)
= πθ(a|s) ·Aπθ (s, a). (472)

Second part. Bounded.

First, using similar calculations in the second part of Lemma 5, we have, for all s ∈ S,∑
a∈A

πθ(a|s)2 ·
(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)2

(473)

=
∑
a∈A

πθ(a|s)2 ·
[
I {a(s) = a}
πθ(a|s)2

·Qπθ (s, a)2 (474)

− 2 · I {a(s) = a}
πθ(a|s)

·Qπθ (s, a) · πθ(·|s)>Q̂πθ (s, ·) +
(
πθ(·|s)>Q̂πθ (s, ·)

)2
]

(475)

= Qπθ (s, a(s))2 − 2 · πθ(a(s)|s) ·Qπθ (s, a(s))2 +
∑
a∈A

πθ(a|s)2 ·Qπθ (s, a(s))2 (476)

= [1− πθ(a(s)|s)]2 ·Qπθ (s, a(s))2 +
∑
a 6=a(s)

πθ(a|s)2 ·Qπθ (s, a(s))2 (477)

≤ 2 · [1− πθ(a(s)|s)]2 ·Qπθ (s, a(s))2 (‖x‖2 ≤ ‖x‖1) (478)

≤ 2

(1− γ)
2 . (πθ(a(s)|s) ∈ (0, 1), and Qπθ (s, a(s)) ∈ (0, 1/(1− γ)]) (479)

Therefore we have,

E
a(s)∼πθ(·|s)

∑
(s,a)

dπθµ (s)2 · πθ(a|s)2

(1− γ)2
·
(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)2

 (480)

≤
∑
s∈S

dπθµ (s)2

(1− γ)2
· 2

(1− γ)
2 (by Eq. (473)) (481)

≤ 2

(1− γ)
4 ·

[∑
s∈S

dπθµ (s)

]2

(‖x‖2 ≤ ‖x‖1) (482)

=
2

(1− γ)
4 .

The following lemma generalizes Lemma 7.
Lemma 12 (Non-uniform Smoothness (NS) between two iterations). Using stochastic softmax PG
update, i.e.,

θ′ = θ + η · ĝ (483)

:= θ + η · 1

1− γ
· E
s′∼dπθµ

[∑
a

∂πθ(a|s′)
∂θ

· Q̂πθ (s′, a)

]
, (484)

50



and using the true softmax PG norm in learning rate, i.e.,

η =
(1− γ)

4

4 · C
·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

, (485)

where

C :=

[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S, (486)

and C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ ≤ 1
mins µ(s) <∞ given Assumption 2 hold, we have,∣∣∣∣V πθ′ (µ)− V πθ (µ)−

〈∂V πθ (µ)

∂θ
, θ′ − θ

〉∣∣∣∣ ≤ C · ∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

· ‖θ′ − θ‖22. (487)

Proof. According to the non-uniform smoothness of value function [9, Lemma 6], we have, for all
y ∈ RSA and θ, ∣∣∣∣y> ∂2V πθ (µ)

∂θ2
y

∣∣∣∣ ≤ C · ∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

· ‖y‖22. (488)

The proof is then similar to Lemma 7. Denote θζ := θ+ ζ · (θ′ − θ) with some ζ ∈ [0, 1]. According
to Taylor’s theorem, ∀θ, θ′,∣∣∣∣V πθ′ (µ)− V πθ (µ)−

〈∂V πθ (µ)

∂θ
, θ′ − θ

〉∣∣∣∣ =
1

2
·
∣∣∣∣(θ′ − θ)> ∂2V πθζ (µ)

∂θζ
2 (θ′ − θ)

∣∣∣∣ (489)

≤ C

2
·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

· ‖θ′ − θ‖22, (by Eq. (488)) (490)

where for conciseness we denote,

Denote ζ1 := ζ. Also denote θζ2 := θ + ζ2 · (θζ1 − θ) with some ζ2 ∈ [0, 1]. We have,∥∥∥∥∂V πθζ1 (µ)

∂θζ1
− ∂V πθ (µ)

∂θ

∥∥∥∥
2

=

∥∥∥∥∫ 1

0

〈
∂2V

πθζ2 (µ)

∂θζ2
2 , θζ1 − θ

〉
dζ2

∥∥∥∥
2

(491)

≤
∫ 1

0

∥∥∥∥∂2V
πθζ2 (µ)

∂θζ2
2

∥∥∥∥
2

· ‖θζ1 − θ‖2 dζ2 (by Cauchy–Schwarz) (492)

≤
∫ 1

0

C ·
∥∥∥∥∂V πθζ2 (µ)

∂θζ2

∥∥∥∥
2

· ζ1 · ‖θ′ − θ‖2 dζ2 (by Eq. (488)) (493)

≤
∫ 1

0

C ·
∥∥∥∥∂V πθζ2 (µ)

∂θζ2

∥∥∥∥
2

· η · ‖ĝ‖2 dζ2, (ζ1 ∈ [0, 1], using Eq. (483)) (494)

where the second inequality is because of the Hessian is symmetric, and its operator norm is equal to
its spectral radius. Therefore we have,∥∥∥∥∂V πθζ1 (µ)

∂θζ1

∥∥∥∥
2

≤
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

+

∥∥∥∥∂V πθζ1 (µ)

∂θζ1
− ∂V πθ (µ)

∂θ

∥∥∥∥
2

(by triangle inequality)

(495)

≤
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

+ C · η · ‖ĝ‖2 ·
∫ 1

0

∥∥∥∥∂V πθζ2 (µ)

∂θζ2

∥∥∥∥
2

dζ2. (by Eq. (491))

(496)

Denote θζ3 := θ + ζ3 · (θζ2 − θ) with ζ3 ∈ [0, 1]. Using similar calculation in Eq. (491), we have,∥∥∥∥∂V πθζ2 (µ)

∂θζ2

∥∥∥∥
2

≤
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

+

∥∥∥∥∂V πθζ2 (µ)

∂θζ2
− ∂V πθ (µ)

∂θ

∥∥∥∥
2

(497)

≤
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

+ C · η · ‖ĝ‖2 ·
∫ 1

0

∥∥∥∥∂V πθζ3 (µ)

∂θζ3

∥∥∥∥
2

dζ3. (498)
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Combining Eqs. (495) and (497), we have,∥∥∥∥∂V πθζ1 (µ)

∂θζ1

∥∥∥∥
2

≤ (1 + C · η · ‖ĝ‖2) ·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

(499)

+ (C · η · ‖ĝ‖2)
2 ·
∫ 1

0

∫ 1

0

∥∥∥∥∂V πθζ3 (µ)

∂θζ3

∥∥∥∥
2

dζ3dζ2, (500)

which implies,∥∥∥∥∂V πθζ1 (µ)

∂θζ1

∥∥∥∥
2

≤
∞∑
i=0

(C · η · ‖ĝ‖2)
i ·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

(501)

=
1

1− C · η · ‖ĝ‖2
·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

(C · η · ‖ĝ‖2 ∈ (0, 1), see below) (502)

=
1

1− (1−γ)4

4 · ‖ĝ‖2 ·
∥∥∥∂V πθ (µ)

∂θ

∥∥∥
2

·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

(
η =

(1− γ)
4

4 · C
·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

)
(503)

≤ 1

1− (1−γ)2

4 · ‖ĝ‖2
·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

(∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

≤ 1

(1− γ)
2 , see below

)
(504)

≤ 1

1− 1
2

·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

(
‖ĝ‖2 ≤

2

(1− γ)
2 , see below

)
(505)

= 2 ·
∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

, (506)

where the last inequality is from,

‖ĝ‖22 =
∑

(s,a)∈S×A

ĝ(s, a)2 (507)

=
∑
(s,a)

dπθµ (s)2 · πθ(a|s)2

(1− γ)2
·
(
Q̂πθ (s, a)− πθ(·|s)>Q̂πθ (s, ·)

)2

(by Eq. (463)) (508)

≤ 2

(1− γ)
4 , (by Lemma 11) (509)

which implies that,

‖ĝ‖2 ≤
√

2

(1− γ)
2 ≤

2

(1− γ)
2 , (510)

and the second last inequality is from,∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥2

2

=
∑
s∈S

dπθµ (s)2

(1− γ)
2 ·
∑
a∈A

πθ(a|s)2 ·Aπθ (s, a)2 (by Eq. (462)) (511)

≤ 1

(1− γ)
4 ·
∑
s∈S

dπθµ (s)2 ·
∑
a∈A

πθ(a|s)2

(
|Aπθ (s, a)| ≤ 1

1− γ

)
(512)

≤ 1

(1− γ)
4 ·
∑
s∈S

dπθµ (s)2 ·

[∑
a∈A

πθ(a|s)

]2

(‖x‖2 ≤ ‖x‖1) (513)

≤ 1

(1− γ)
4 ·

[∑
s∈S

dπθµ (s)

]2

(‖x‖2 ≤ ‖x‖1) (514)

=
1

(1− γ)
4 , (515)

(516)
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which implies that, ∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

≤ 1

(1− γ)
2 . (517)

Combining Eqs. (489) and (501) finishes the proof.

The following result generalizes Theorem 2.
Theorem 13. Let {θt}t≥1 be generated by using Algorithm 4, i.e., for all t ≥ 1,

θt+1 = θt + η · ĝt (518)

:= θt + η · 1

1− γ
· E
s′∼d

πθt
µ

[∑
a

∂πθt(a|s′)
∂θt

· Q̂πθt (s′, a)

]
, (519)

with learning rate

η =
(1− γ)

4

4 · C
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(520)

for all t ≥ 1, and

C :=

[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S (521)

as defined in Eq. (486), where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ ≤ 1
mins µ(s) < ∞. Denote C ′∞ :=

maxπ

∥∥∥dπρµ ∥∥∥∞. We have, V ∗(ρ)− V πθt (ρ)→ 0 as t→∞ in probability, and for all t ≥ 1,

E [V ∗(ρ)− V πθt (ρ)] ≤ 2 · S√
c
·
√

3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ)
5 · √γ

·
∥∥∥∥dπ∗ρµ

∥∥∥∥3/2

∞
· C
′
∞√
t
, (522)

where c > 0 is independent with t.

Proof. First note that for any θ and µ,
dπθµ (s) = E

s0∼µ

[
dπθµ (s)

]
(523)

= E
s0∼µ

[
(1− γ) ·

∞∑
t=0

γt Pr(st = s|s0, πθ,P)

]
(524)

≥ E
s0∼µ

[(1− γ) · Pr(s0 = s|s0)] (525)

= (1− γ) · µ(s). (526)
Next, according to Lemma 20, we have,

V ∗(ρ)− V πθ (ρ) =
1

1− γ
∑
s

dπθρ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (527)

=
1

1− γ
∑
s

dπθρ (s)

dπθµ (s)
· dπθµ (s)

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (528)

≤ 1

1− γ
·
∥∥∥∥dπθρdπθµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)

(∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) ≥ 0

)
(529)

≤ 1

(1− γ)2
·
∥∥∥∥dπθρµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)
(

by Eq. (523) and min
s
µ(s) > 0

)
(530)

≤ 1

(1− γ)2
· C ′∞ ·

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (531)

=
1

1− γ
· C ′∞ · [V ∗(µ)− V πθ (µ)] . (by Lemma 20) (532)
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Denote δ(θt) := V ∗(µ)− V πθt (µ). Let We have, for all t ≥ 1,

δ(θt+1)− δ(θt) (533)

= −V πθt+1 (µ) + V πθt (µ) +
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
−
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
(534)

≤ C ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· ‖θt+1 − θt‖22 −
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
(by Lemma 12) (535)

= C · η2 ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· ‖ĝt‖22 − η ·
〈∂V πθt (µ)

∂θt
, ĝt

〉
. (using Eq. (518)) (536)

Next, taking expectation over the random sampling on Eq. (533), we have,

E [δ(θt+1)]− E [δ(θt)] ≤ C · η2 ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· E
[
‖ĝt‖22

]
− η ·

〈∂V πθt (µ)

∂θt
,E [ĝt]

〉
(537)

= C · η2 ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· E
[
‖ĝt‖22

]
− η ·

∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥2

2

(unbiased PG, by Lemma 11)

(538)

≤ 2 · C
(1− γ)

4 · η
2 ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

− η ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥2

2

(
E
[
‖ĝt‖22

]
≤ 2

(1− γ)
4 , by Lemma 11

)
(539)

= − (1− γ)
4

8 · C
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥3

2

(by Eq. (520)) (540)

≤ − (1− γ)
4

8 · C
· E
[
min
s
πθt(a

∗(s)|s)3
]
· E
[
δ(θt)

3
]
·
∥∥∥∥ dπ∗ρdπθtµ

∥∥∥∥−3

∞
· 1

S ·
√
S

(by Lemma 9)

(541)

≤ − (1− γ)
4

8 · C
· (E [δ(θt)])

3 ·
∥∥∥∥ dπ∗ρdπθtµ

∥∥∥∥−3

∞
· c

S ·
√
S
, (by Jensen’s inequality) (542)

where

c := inf
t≥1

E
[
min
s
πθt(a

∗(s)|s)3
]

(543)

≥ inf
t≥1

(
E
[
min
s
πθt(a

∗(s)|s)
])3

(by Jensen’s inequality) (544)

> 0, (545)

and the last inequality is from [2, Lemma 9], since the expected iteration equals the true gradient
update, which converges to global optimal policy. According to Eq. (523), we have,

E [δ(θt+1)]− E [δ(θt)] ≤ −
(1− γ)

7

8 · C
· (E [δ(θt)])

3 ·
∥∥∥∥dπ∗ρµ

∥∥∥∥−3

∞
· c

S ·
√
S
. (546)
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Denote δ̃(θt) := E [δ(θt)]. Using similar calculations in Eq. (183), we have, for all t ≥ 1,

1

δ̃(θt)2
≥ 1

δ̃(θ1)2
+ 2 ·

t−1∑
s=1

1

δ̃(θs)3
·
(
δ̃(θs)− δ̃(θs+1)

)
(547)

≥ 1

δ̃(θ1)2
+ 2 ·

t−1∑
s=1

1
HHHδ̃(θs)

3
· (1− γ)

7

8 · C
·
∥∥∥∥dπ∗ρµ

∥∥∥∥−3

∞
· c

S ·
√
S
·HHHδ̃(θs)

3 (by Eq. (546))

(548)

=
1

δ̃(θ1)2
+

(1− γ)
7

4 · C
·
∥∥∥∥dπ∗ρµ

∥∥∥∥−3

∞
· c

S ·
√
S
· (t− 1) (549)

≥ (1− γ)
7

4 · C
·
∥∥∥∥dπ∗ρµ

∥∥∥∥−3

∞
· c

S ·
√
S
· t

(
δ̃(θ1)2 ≤ 1

(1− γ)
2 <

4 · C
(1− γ)

7 ·
∥∥∥∥dπ∗ρµ

∥∥∥∥3

∞
· S ·

√
S

c

)
(550)

=
(1− γ)

7

4
·
∥∥∥∥dπ∗ρµ

∥∥∥∥−3

∞
· c
S2
· (1− γ) · γ

3 · (1− γ) · γ + 2 · (C∞ − (1− γ))
· t (by Eq. (521))

(551)

=
(1− γ)

8

4
·
∥∥∥∥dπ∗ρµ

∥∥∥∥−3

∞
· c
S2
· γ

3 · (1− γ) · γ + 2 · (C∞ − (1− γ))
· t, (552)

which implies that,

E [V ∗(µ)− V πθt (µ)] ≤ 2 · S√
c
·
√

3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ)
4 · √γ

·
∥∥∥∥dπ∗ρµ

∥∥∥∥3/2

∞
· 1√

t
, (553)

where c is from Eq. (543). This leads to the final result,

E [V ∗(ρ)− V πθt (ρ)] ≤ 1

1− γ
· C ′∞ · E [V ∗(µ)− V πθt (µ)] (554)

≤ 2 · S√
c
·
√

3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ)
5 · √γ

·
∥∥∥∥dπ∗ρµ

∥∥∥∥3/2

∞
· C
′
∞√
t
, (555)

which implies that V ∗(ρ)− V πθt (ρ)→ 0 as t→∞ in probability, i.e.,

lim
t→∞

Pr (V ∗(ρ)− V πθt (ρ) > ε) = 0, (556)

for all ε > 0.

E.3.2 NPG

We show that results similar to Theorem 3 hold in general MDPs, given the following positive reward
assumption, which generalizes Assumption 1.
Assumption 3 (Positive reward). r(s, a) ∈ (0, 1], for all (s, a) ∈ S ×A.

Given Assumption 3, we have, for all policy πθ,

Qπθ (s, a) ∈ (0, 1/ (1− γ)] . (557)

Replacing Qπθt in Algorithm 2 with Q̂πθt in Definition 3, we have Algorithm 5.

First, the following result shows that the on-policy stochastic natural PG is unbiased but unbounded,
generalizing Lemma 6.

Lemma 13. Let Q̂πθ (s, ·) be the IS parallel estimator using on-policy sampling a(s) ∼ πθ(·|s), for
all s. For NPG, we have,

E
a(s)∼πθ(·|s)

[
Q̂πθ

]
= Qπθ , (558)

E
a(s)∼πθ(·|s)

∑
(s,a)

Q̂πθ (s, a)2

 =
∑
(s,a)

Qπθ (s, a)2

πθ(a|s)
. (559)
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Algorithm 5 Natural PG (NPG), on-policy stochastic gradient
Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do

Sample at(s) ∼ πθt(·|s) for all s ∈ S.
Q̂πθt (s, a)← I{at(s)=a}

πθt (a|s)
·Qπθt (s, a). (by Definition 3)

θt+1 ← θt + η · Q̂πθt .
end while

Proof. First part. Unbiased.

According to Definition 3, we have, for all (s, a) ∈ S ×A,

E
a(s)∼πθ(·|s)

[
Q̂πθ (s, a)

]
=

∑
a(s)∈A

πθ(a(s)|s) · I {a(s) = a}
πθ(a|s)

·Qπθ (s, a) (560)

= Qπθ (s, a). (561)

Second part. Unbounded.

We have, for all s ∈ S, ∑
a∈A

Q̂πθ (s, a)2 =
∑
a∈A

I {a(s) = a}
πθ(a|s)2

·Qπθ (s, a)2. (562)

Then we have,

E
a(s)∼πθ(·|s)

∑
(s,a)

Q̂πθ (s, a)2

 =
∑
s∈S

∑
a(s)∈A

πθ(a(s)|s) ·
∑
a∈A

I {a(s) = a}
πθ(a|s)2

·Qπθ (s, a)2 (563)

=
∑
s∈S

∑
a(s)∈A

πθ(a(s)|s) · 1

πθ(a(s)|s)2
·Qπθ (s, a(s))2 (564)

=
∑
(s,a)

Qπθ (s, a)2

πθ(a|s)
.

The following results generalize Theorem 3 to general MDPs.
Theorem 14. Let a∗(s) be the action that π∗ selects in state s. Using Algorithm 5, we have: (i)
for any state s ∈ S, with positive probability,

∑
a 6=a∗(s) πθt(a|s) → 1 as t → ∞; (ii) for all

(s, a) ∈ S ×A, with positive probability, πθt(a|s)→ 1, as t→∞.

Proof. First part. For any state s ∈ S , with positive probability,
∑
a 6=a∗(s) πθt(a|s)→ 1 as t→∞.

The proof is a generalization of the first part of Theorem 3.

Let Pr denote the probability measure that over the probability space (Ω,F) that holds all of our
random variables. Let B = {a ∈ A : a 6= a∗(s)}. By abusing notation, for any π(·|s) : A → [0, 1]
map we let πθt(B|s) to stand for

∑
a∈B πθt(a|s). Define for t ≥ 1 the event Bt = {at(s) 6=

a∗(s)}(= {at(s) ∈ B}) and let Et = B1 ∩ · · · ∩ Bt. Thus, Et is the event that a∗ was not chosen in
the first t time steps. Note that {Et}t≥1 is a nested sequence and thus, by the monotone convergence
theorem,

lim
t→∞

Pr (Et) = Pr (E) , (565)

where E = ∩t≥1Bt. We start with a lower bound on the probability of Et. The lower bound is stated
in a generic form: In particular, let (bt)t≥1 be a deterministic sequence which satisfies that for any
t ≥ 1,

IEt−1
· πθt(B|s) ≥ IEt−1

· bt holds Pr-almost surely, (566)
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where we let E0 = Ω and for an event E , IE stands for the characteristic function of E (i.e., IE(ω) = 1
if ω ∈ E and IE(ω) = 0, otherwise). We make the following claim:

Claim 1: Under the above assumption, for any t ≥ 1 it holds that

Pr(Et) ≥
t∏

s=1

bs . (567)

For the proof of this claim letHt denote the sequence formed of the first t actions:

Ht := (a1(s), a2(s), · · · , at(s)) . (568)

By definition,

θt(s, ·) = A (θ1(s, ·), a1(s), Qπθ1 (s, a1(s)), · · · , θt−1(s, ·), at−1(s), Qπθt−1 (s, at−1(s))) . (569)

By our assumption that the tth action at(s) is chosen from πθt(·|s), it follows that Pr satisfies that
for all a and t ≥ 1,

Pr (at(s) = a | Ht−1) = πθt(a|s) Pr-almost surely. (570)

We prove the claim by induction on t. For t = 1, from Eqs. (566) and (570), using that E0 = Ω and
H0 = (), we have that Pr-almost surely,

Pr (E1) = πθ1(B|s). (571)

Suppose the claim holds up to t− 1. We have,

Pr (Et) = E [Pr (Et | Ht−1)] (by the tower rule) (572)

= E
[
IEt−1

· Pr (Bt | Ht−1)
]

(Et−1 isHt−1-measurable) (573)

= E
[
IEt−1 · πθt(B|s)

]
(by Eq. (570)) (574)

≥ E
[
IEt−1

· bt
]

(by Eq. (566)) (575)

= bt · Pr (Et−1) (bt is deterministic) (576)

=

t∏
s=1

bs . (induction hypothesis) (577)

Now, we claim the following:

Claim 2: A suitable choice for bt is

bt = exp

 − exp {θ1(s, a∗(s))}

(A− 1) · exp
{∑

a6=a∗(s) θ1(s,a)+η·Qmin·(t−1)

A−1

}
 . (578)

Proof of Claim 2: Clearly, it suffices to show that for any sequence (a1(s), . . . , at−1(s)) such that
ak(s) 6= a∗(s), θt(s, ·) := A(θ1(s, ·), a1(s), Qπθ1 (s, a1(s)), . . . , at−1(s), Qπθt−1 (s, at−1(s))) is
such that πθt(B|s) ≥ bt with bt as defined in Eq. (578).

We have, for each sub-optimal action a 6= a∗(s),

θt(s, a) = θ1(s, a) + η ·
t−1∑
k=1

Q̂πθk (s, a) (by Algorithm 5) (579)

= θ1(s, a) + η ·
t−1∑
k=1

I {ak(s) = a}
πθk(a|s)

·Qπθk (s, a) (by Definition 3) (580)

≥ θ1(s, a) + η ·
t−1∑
k=1

I {ak(s) = a} ·Qπθk (s, a) (πθk(a|s) ∈ (0, 1), and Eq. (557))

(581)

≥ θ1(s, a) + η ·Qmin ·
t−1∑
k=1

I {ak(s) = a},
(
Qmin := min

π
min
(s,a)

Qπ(s, a)

)
(582)
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where Qmin ∈ (0, 1/(1− γ)] according to Eq. (557). Then we have,∑
a 6=a∗(s)

exp {θt(s, a)} ≥ (A− 1) · exp

{∑
a 6=a∗ θt(s, a)

A− 1

}
(by Jensen’s inequality) (583)

≥ (A− 1) · exp

{∑
a6=a∗(s) θ1(s, a) + η ·Qmin ·

∑
a6=a∗(s)

∑t−1
k=1 I {ak(s) = a}

A− 1

}
(by Eq. (579))

(584)

= (A− 1) · exp

{∑
a6=a∗(s) θ1(s, a) + η ·Qmin · (t− 1)

A− 1

}
. (ak(s) 6= a∗(s), for all k ∈ {1, 2, . . . , t− 1})

(585)

On the other hand, we have,

θt(s, a
∗(s)) = θ1(s, a∗(s)) + η ·

t−1∑
k=1

I {ak(s) = a∗(s)}
πθk(a∗(s)|s)

·Qπθk (s, a∗(s)) (by Algorithm 5 and Definition 3)

(586)
= θ1(s, a∗(s)). (ak(s) 6= a∗(s) for all k ∈ {1, 2, . . . , t− 1}) (587)

Next, we have,∑
a 6=a∗(s)

πθt(a|s) = 1− πθt(a∗(s)|s) (588)

= 1− exp {θt(s, a∗(s))}∑
a 6=a∗(s) exp {θt(s, a)}+ exp {θt(s, a∗(s))}

(589)

≥ 1− exp {θ1(s, a∗(s))}

(A− 1) · exp
{∑

a6=a∗(s) θ1(s,a)+η·Qmin·(t−1)

A−1

}
+ exp {θ1(s, a∗(s))}

(by Eqs. (583) and (586))

(590)

≥ exp

 −1

(A−1)·exp
{∑

a 6=a∗(s) θ1(s,a)+η·Qmin·(t−1)

A−1

}
+exp{θ1(s,a∗(s))}

exp{θ1(s,a∗(s))} − 1

 (by Lemma 14)

(591)

= exp

 − exp {θ1(s, a∗(s))}

(A− 1) · exp
{∑

a6=a∗(s) θ1(s,a)+η·Qmin·(t−1)

A−1

}
 = bt, (592)

Combining Eq. (565) with the conclusions of Claim 1 and 2 together, we get

Pr (E) ≥
∞∏
t=1

exp

 − exp {θ1(s, a∗(s))}

(A− 1) · exp
{∑

a 6=a∗(s) θ1(s,a)+η·Qmin·(t−1)

A−1

}
 (by Eq. (588)) (593)

≥ exp

− exp {θ1(s, a∗(s))}

exp
{∑

a 6=a∗(s) θ1(s,a)

A−1

} · exp
{
η·Qmin

A−1

}
A− 1

·
∫ ∞
t=0

1

exp
{
η·Qmin·t
A−1

}dt
 (594)

= exp

− exp {θ1(s, a∗(s))}

exp
{∑

a 6=a∗(s) θ1(s,a)

A−1

} · exp
{
η·Qmin

A−1

}
A− 1

· A− 1

η ·Qmin

 (595)

= exp

− exp {θ1(s, a∗(s))}

exp
{∑

a 6=a∗(s) θ1(s,a)

A−1

} · exp
{
η·Qmin

A−1

}
η ·Qmin

. (596)
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Note that Qmin ∈ Θ(1), exp {θ1(s, a∗(s))} ∈ Θ(1), η ∈ Θ(1), exp
{
η·Qmin

A−1

}
∈ Θ(1) and,

exp

{∑
a 6=a∗(s) θ1(s, a)

A− 1

}
∈ Θ(1). (597)

Therefore, we have under state s ∈ S , “ the probability of sampling sub-optimal actions forever using
on-policy sampling at(s) ∼ πθt(·|s)” is lower bounded by a constant of 1

exp{Θ(1)} ∈ Θ(1), which
implies that with positive probability Θ(1), we have

∑
a6=a∗(s) πθt(a|s)→ 1 as t→∞.

Second part. For all (s, a) ∈ S ×A, with positive probability, πθt(a|s)→ 1, as t→∞.

The proof is similar to the second part of Theorem 3. Let B = {a}. For any π(·|s) : A → [0, 1] map
we let πθt(B|s) to stand for πθt(a|s). Define for t ≥ 1 the event Bt = {at(s) = a}(= {at(s) ∈ B})
and let Et = B1 ∩ · · · ∩ Bt. Thus, Et is the event that a was chosen in the first t time steps. Note that
{Et}t≥1 is a nested sequence and thus, by the monotone convergence theorem, limt→∞ Pr (Et) =
Pr (E), where E = ∩t≥1Bt. We show that by letting

bt = exp

{ −
∑
a′ 6=a exp{θ1(s, a′)}

exp{θ1(s, a) + η ·Qmin · (t− 1)}

}
, (598)

we have Eqs. (566) and (567) hold using the arguments in the first part.

It suffices to show that for any sequence (a1(s), . . . , at−1(s)) such that ak(s) = a for all k ∈
{1, 2, . . . , t− 1}, θt(s, ·) := A(θ1(s, ·), a1(s), Qπθ1 (s, a1(s)), . . . , at−1(s), Qπθt−1 (s, at−1(s))) is
such that πθt(B|s) ≥ bt with bt as defined in Eq. (598). Now suppose a1(s) = a, a2(s) =
a, · · · , at−1(s) = a. We have,

θt(s, a) = θ1(s, a) + η ·
t−1∑
k=1

Q̂πθk (s, a) (by Algorithm 5) (599)

= θ1(s, a) + η ·
t−1∑
k=1

I {ak(s) = a}
πθk(a|s)

·Qπθk (s, a) (by Definition 3) (600)

= θ1(s, a) + η ·
t−1∑
k=1

Qπθk (s, a)

πθk(a|s)
(ak(s) = a for all k ∈ {1, 2, . . . , t− 1}) (601)

≥ θ1(s, a) + η ·
t−1∑
k=1

Qπθk (s, a) (πθk(a|s) ∈ (0, 1)) (602)

≥ θ1(s, a) + η ·Qmin · (t− 1) .

(
Qmin := min

π
min
(s,a)

Qπ(s, a)

)
(603)

On the other hand, we have, for any other action a′ 6= a,

θt(s, a
′) = θ1(s, a′) + η ·

t−1∑
k=1

I {ak(s) = a′}
πθk(a′|s)

·Qπθk (s, a′) (by Algorithm 5 and Definition 3)

(604)

= θ1(s, a′). (ak(s) 6= a′ for all k ∈ {1, 2, . . . , t− 1}) (605)
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Therefore, we have,

πθt(a|s) = 1−
∑
a′ 6=a

πθt(a
′|s) (606)

= 1−
∑
a′ 6=a exp{θt(s, a′)}

exp{θt(s, a)}+
∑
a′ 6=a exp{θt(s, a′)}

(607)

≥ 1−
∑
a′ 6=a exp{θ1(s, a′)}

exp{θ1(s, a) + η ·Qmin · (t− 1)}+
∑
a′ 6=a exp{θ1(s, a′)}

. (by Eqs. (599) and (604))

(608)

≥ exp

 −1
exp{θ1(s,a)+η·Qmin·(t−1)}+

∑
a′ 6=a exp{θ1(s,a′)}∑

a′ 6=a exp{θ1(s,a′)} − 1

 (by Lemma 14) (609)

= exp

{ −
∑
a′ 6=a exp{θ1(s, a′)}

exp{θ1(s, a) + η ·Qmin · (t− 1)}

}
(610)

= bt. (611)

Therefore we have,
∞∏
t=1

πθt(a|s) ≥
∞∏
t=1

exp

{ −
∑
a′ 6=a exp{θ1(s, a′)}

exp{θ1(s, a) + η ·Qmin · (t− 1)}

}
(by Eq. (606)) (612)

= exp

{
−
∑
a′ 6=a

exp{θ1(s, a′)} · exp{η ·Qmin}
exp{θ1(s, a)}

·
∞∑
t=1

1

exp{η ·Qmin · t}

}
(613)

≥ exp

{
−
∑
a′ 6=a

exp{θ1(s, a′)} · exp{η ·Qmin}
exp{θ1(s, a)}

·
∫ ∞
t=0

1

exp{η ·Qmin · t}
dt

}
(614)

= exp

{
− exp{η ·Qmin}

η ·Qmin
·
∑
a′ 6=a exp{θ1(s, a′)}

exp{θ1(s, a)}

}
(615)

∈ Ω(1), (616)

where the last line is due to Qmin ∈ Θ(1), exp {θ1(s, a)} ∈ Θ(1) for all (s, a) ∈ S × A, and
η ∈ Θ(1). With Eq. (612), we have under state s ∈ S, “the probability of sampling action a forever
using on-policy sampling at(s) ∼ πθt(·|s)” is lower bounded by a constant of Ω(1). Therefore, for
all (s, a) ∈ S ×A, with positive probability Ω(1), πθt(a|s)→ 1, as t→∞.

E.3.3 GNPG

Replacing Qπθt in Algorithm 3 with Q̂πθt in Definition 3, we have Algorithm 6.

Algorithm 6 Geometry-award normalized PG (GNPG), on-policy stochastic gradient
Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do

Sample at(s) ∼ πθt(·|s) for all s ∈ S.
Q̂πθt (s, a)← I{at(s)=a}

πθt (a|s)
·Qπθt (s, a). (by Definition 3)

ĝt(s, ·)← 1
1−γ · d

πθt
µ (s) ·

[∑
a
∂πθt (a|s)
∂θt(s,·) · Q̂

πθt (s, a)
]
.

θt+1 ← θt + η · ĝt/ ‖ĝt‖2.
end while

The following result generalizes Theorem 4. The complication of the proofs is from the difference
between NPG of Algorithm 5 and GNPG of Algorithm 6. In NPG, only Qπθt (s, ·) appears in the
update of θt(s, ·). While in GNPG, other states also contribute to the update of θt(s, ·) through the
normalization factor ‖ĝt‖2.
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Theorem 15. Using Algorithm 6, for all (s, a) ∈ S × A, with positive probability, we have,
πθt(a|s)→ 1 as t→∞.

Proof. Consider any deterministic policy π̄ : s 7→ π̄(s), i.e.,

π̄(a|s) =

{
1, if a = π̄(s),

0. otherwise
(617)

We then make the following three claims.

(i) Using any fixed deterministic policy π̄ to sample, i.e., at(s) = π̄(s), for all s ∈ S and for all
t ≥ 1, and using GNPG update to generate a deterministic sequence {θ̃t}t≥1, we have
πθ̃t(a|s)→ π̄(a|s) as t→∞ for all (s, a) ∈ S ×A.

(ii) The speed of πθ̃t approaches π̄ is exponential, i.e., 1− πθ̃t(π̄(s)|s) ∈ O(e−c·t) for some c > 0,
for all t ≥ 1 and all s ∈ S.

(iii) Using on-policy GNPG of Algorithm 6, i.e., at(s) ∼ πθt(·|s), for all (s, a) ∈ S × A, with
positive probability, πθt(a|s)→ 1 as t→∞ (i.e., the main claim).

First part. (i). We show that with the fixed sampling at(s) = π̄(s), the following holds,

θ̃t+1(s, π̄(s)) > θ̃t(s, π̄(s)), and (618)

θ̃t+1(s, a′) < θ̃t(s, a
′), for all a′ 6= π̄(s) (619)

which according to πθ̃(·|s) = softmax(θ̃(s, ·)) implies that, for all t ≥ 1,

πθ̃t+1
(π̄(s)|s) > πθ̃t(π̄(s)|s). (620)

Since πθ̃t(π̄(s)|s) ≤ 1, according to the monotone convergence, πθ̃t(π̄(s)|s) → c > 0 as t → ∞.
And c has to be 1, otherwise due to Eq. (618) the probability of action π̄(s) can be further improved,
which is a contradiction with convergence. Next, we show that Eq. (618) holds.

By the assumption of using fixed sampling, we have, at iteration t ≥ 1, at(s) = π̄(s). Then we have,

ĝt(s, π̄(s)) =
1

1− γ
· d
πθ̃t
µ (s) · πθ̃t(π̄(s)|s) ·

[
I {at(s) = π̄(s)}
πθ̃t(at(s)|s)

·Qπθ̃t (s, at(s))−
∑
a′∈A

I {at(s) = a′} ·Qπθ̃t (s, a′)

]
(621)

=
1

1− γ
· d
πθ̃t
µ (s) ·

(
1− πθ̃t(π̄(s)|s)

)
·Qπθ̃t (s, π̄(s)) (at(s) = π̄(s)) (622)

> 0,
(
d
πθ̃t
µ (s) > 0, πθ̃t(π̄(s)|s) ∈ (0, 1), Qπθ̃t (s, π̄(s)) ∈ (0, 1/(1− γ)]

)
(623)

where the last inequality is from Eq. (523), Assumption 2, and Eq. (557). On the other hand, for any
other action a′ 6= π̄(s), we have,

ĝt(s, a
′) = − 1

1− γ
· d
πθ̃t
µ (s) · πθ̃t(a

′|s) ·Qπθ̃t (s, π̄(s)) < 0. (624)

Therefore, according to the GNPG update, i.e.,

θ̃t+1(s, ·)← θ̃t(s, ·) + η · ĝt(s, ·)/‖ĝt‖2, (625)

we have Eq. (618) holds.

Second part. (ii). We calculate the progress θ̃t(s, π̄(s)) can get. We have,

‖ĝt(s, ·)‖22 = ĝt(s, π̄(s))2 +
∑

a′ 6=π̄(s)

ĝt(s, a
′)2 (626)

≤ 1

(1− γ)2
· d
πθ̃t
µ (s)2 ·Qπθ̃t (s, π̄(s))2 · 2 ·

(
1− πθ̃t(π̄(s)|s)

)2
. (‖x‖2 ≤ ‖x‖1) (627)
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At iteration t ≥ 1, we define s̄t as follows,

s̄t = arg max
s′∈S

(
1− πθ̃t(π̄(s′)|s′)

)
·Qπθ̃t (s′, π̄(s′)). (628)

According to Eq. (626), we have,

‖ĝt‖22 = ‖ĝt(s̄t, ·)‖22 +
∑
s′ 6=s̄t

‖ĝt(s′, ·)‖
2
2 (629)

≤ 1

(1− γ)2
· d
πθ̃t
µ (s̄t)

2 ·Qπθ̃t (s̄t, π̄(s̄t))
2 · 2 ·

(
1− πθ̃t(π̄(s̄t)|s̄t)

)2
(630)

+
∑
s′ 6=s̄t

1

(1− γ)2
· d
πθ̃t
µ (s′)2 ·Qπθ̃t (s′, π̄(s′))2 · 2 ·

(
1− πθ̃t(π̄(s′)|s′)

)2
(‖x‖2 ≤ ‖x‖1)

(631)

≤ 1

(1− γ)2
·Qπθ̃t (s̄t, π̄(s̄t))

2 · 2 ·
(
1− πθ̃t(π̄(s̄t)|s̄t)

)2 ·∑
s′∈S

d
πθ̃t
µ (s′)2 (by Eq. (628))

(632)

≤ 1

(1− γ)2
·Qπθ̃t (s̄t, π̄(s̄t))

2 · 2 ·
(
1− πθ̃t(π̄(s̄t)|s̄t)

)2
, (‖x‖2 ≤ ‖x‖1) (633)

which implies that,

‖ĝt‖2 ≤
√

2

1− γ
·
(
1− πθ̃t(π̄(s̄t)|s̄t)

)
·Qπθ̃t (s̄t, π̄(s̄t)). (634)

According to Eqs. (523), (621) and (629), we have,

θ̃t+1(s, π̄(s̄t))← θ̃t(s, π̄(s̄t)) + η · ĝt(s̄t, π̄(s̄t))

‖ĝt‖2
(635)

≥ θ̃t(s, π̄(s̄t)) + η · 1− γ√
2
, (636)

which implies that,

1− πθ̃t+1
(π̄(s̄t)|s̄t) =

∑
a′ 6=π̄(s̄t)

exp{θ̃t+1(s̄t, a
′)}

exp{θ̃t+1(s̄t, π̄(s̄t))}+
∑
a′ 6=π̄(s̄t)

exp{θ̃t+1(s̄t, a′)}
(637)

≤
∑
a′ 6=π̄(s̄t)

exp{θ̃t(s̄t, a′)}
exp{θ̃t+1(s̄t, π̄(s̄t))}+

∑
a′ 6=π̄(s̄t)

exp{θ̃t(s̄t, a′)}
(by Eq. (624)) (638)

≤
∑
a′ 6=π̄(s̄t)

exp{θ̃t(s̄t, a′)}

exp
{η·(1−γ)√

2

}
· exp{θ̃t+1(s̄t, π̄(s̄t))}+

∑
a′ 6=π̄(s̄t)

exp{θ̃t(s̄t, a′)}
(639)

=

∑
a′ 6=π̄(s̄t)

πθ̃t(a
′|s̄t)(

exp
{η·(1−γ)√

2

}
− 1
)
· πθ̃t(π̄(s̄t)|s̄t) + 1

(640)

=
1(

exp
{η·(1−γ)√

2

}
− 1
)
· πθ̃t(π̄(s̄t)|s̄t) + 1

·
(
1− πθ̃t(π̄(s̄t)|s̄t)

)
(641)

≤ 1(
exp

{η·(1−γ)√
2

}
− 1
)
· πθ̃1(π̄(s̄t)|s̄t) + 1

·
(
1− πθ̃t(π̄(s̄t)|s̄t)

)
, (by Eq. (620))

(642)

which means that after one update, 1 minus the probability of the sampled action π̄(s̄t) under s̄t (by
Eq. (628), there must be at least one such state) is reduced by a constant. As a consequence, if a state
s is the arg max in Eq. (628) for O(t) times, then we have,

1− πθ̃t(π̄(s)|s) ∈ O(e−c·t), (643)
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where c > 0. Now we argue by contradiction that Eq. (643) holds for all state s ∈ S. Suppose there
is at least one state s′ which has been selected as the arg max in Eq. (628) for only o(t) times during
the first t iterations. Then for s′, the term 1 − πθ̃t(π̄(s′)|s′) in the r.h.s. of Eq. (628) is at order
of ω(e−c·t), dominating the corresponding terms of other actions, which are at order of O(e−c·t)
according to Eq. (643). This makes the other actions cannot be selected as the arg max in Eq. (628)
for O(t) times.

Therefore, there does not exist such an state s′ which has been selected as the arg max in Eq. (628)
for only o(t) times. And for all state s ∈ S, we have Eq. (643).

Third part. (iii). Using similar arguments in first part of Theorem 4, the probability of π̄(s) is
sampled forever if we run GNPG with on-policy sampling at(s) ∼ πθt(·|s) is lower bounded by∏∞
t=1 πθ̃t(π̄(s)|s), where {θ̃t}t≥1 is the deterministic sequence generated by fixed sampling with

the deterministic policy π̄. Using similar arguments in the second part of Theorem 4 and according
to Eq. (643), we have

∏∞
t=1 πθ̃t(π̄(s)|s) > 0, which means that with positive probability, π̄(s) will

be sampled for all t ≥ 1 using on-policy sampling. This implies that for all (s, a) ∈ S × A, with
positive probability, πθt(a|s)→ 1 as t→∞.

E.4 Committal Rates

The following Definition 4 generalizes Definition 2. The difference is we now fix the sampling to be
using one fixed deterministic policy to sample forever, and then define the committal rate for all the
deterministic state action pairs, generalizing the proof idea of Theorem 15.

Definition 4 (Committal Rate). Fix a reward function r ∈ (0, 1]S×A and an initial parameter
vector θ1 ∈ RS×A. Consider a policy optimization algorithm A. Consider any deterministic policy
π̄ : s 7→ π̄(s). Under state s, let action π̄(s) be the sampled action forever after initialization and let
θt be the resulting parameter vector obtained by using A on the first t observations. The committal
rate of algorithm A on the deterministic policy π̄ (given r and θ1) is then defined as

κ(A, π̄) = min
s∈S

sup

{
α ≥ 0 : lim sup

t→∞
tα · [1− πθt(π̄(s)|s)] <∞

}
. (644)

The following Theorem 16 generalizes Theorem 5.

Theorem 16. Consider a policy optimization method A, together with r ∈ (0, 1]S×A and an initial
parameter vector θ1 ∈ RS×A. Then,

max
π̄: sub-optimal deterministic, πθ1 (a|s)>0

κ(A, π̄) ≤ 1 (645)

is a necessary condition for ensuring the almost sure convergence of the policies obtained using
A and online sampling to the global optimum starting from θ1, where π̄ under the max is for all
sub-optimal deterministic policies, i.e., π̄(s) 6= a∗(s) for at least one s ∈ S.

Proof. The proof is a extension of Theorems 5 and 15.

Let {θ̃t}t≥1 be generated by using a sub-optimal deterministic policy π̄ : s 7→ π̄(s) to sample,
and using the algorithm A to update with the sampled actions. And let {θt}t≥1 be generated using
on-policy sampling and updating with the algorithm A.

Using similar arguments in the first part of Theorem 5, the probability of π̄(s) is sampled forever
under state s using on-policy sampling is lower bounded by

∏∞
t=1 πθ̃t(π̄(s)|s).

Suppose the committal rate of one sub-optimal deterministic policy is strictly larger than 1, i.e.,
κ(A, π̄) > 1, where π̄(s) 6= a∗(s) for at least one state s ∈ S . According to similar arguments in the
first and second parts of Theorem 15, we have

∏∞
t=1 πθ̃t(π̄(s)|s) > 0.

Combining the two arguments, we have the the probability of π̄(s) is sampled forever under state
s using on-policy sampling is positive, which implies that for at least one state s ∈ S, πθt(·|s) will
converge to some sub-optimal deterministic policies.
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E.5 Geometry-Convergence Trade-off

First, we generalize the definition of optimality-smart from the main paper. A policy optimization
method is said to be optimality-smart if for any t ≥ 1, πθ̃t(a

∗(s)|s) ≥ πθt(a∗(s)|s) holds where θ̃t
is the parameter vector obtained when a∗(s) is chosen in every time step, starting at θ1, while θt is
any parameter vector that can be obtained with t updates (regardless of the action sequence chosen),
but also starting from θ1.

With this definition, results similar to Proposition 5 hold by using similar arguments, i.e., if
at(s) = a∗(s), we have πθt+1

(a∗(s)|s) ≥ πθt(a
∗(s)|s), and otherwise if at(s) 6= a∗(s), we have

πθt+1
(a∗(s)|s) ≤ πθt(a∗(s)|s).

Next, the following result generalizes Theorem 9.
Theorem 17. Let A be optimality-smart and pick a MDP instance. If A together with on-policy
sampling leads to {θt}t≥1 such that {V πθt (ρ)}t≥1 (where mins∈S ρ(s) > 0) converges to a globally
optimal policy at a rate O(1/tα) with positive probability, for α > 0, then we have κ(A, π∗) ≥ α,
where π∗ is the global optimal deterministic policy.

Proof. Denote ∆∗(s, a) = Q∗(s, a∗(s)) − Q∗(s, a), ∆∗(s) = mina6=a∗(s) ∆∗(s, a), and ∆∗ =
mins∈S ∆∗(s) > 0 as the optimal value gap of the MDP. According to Lemma 20, we have,

V ∗(ρ)− V πθt (ρ) =
1

1− γ
·
∑
s

d
πθt
ρ (s) ·

∑
a

(π∗(a|s)− πθt(a|s)) ·Q∗(s, a) (646)

=
1

1− γ
·
∑
s

d
πθt
ρ (s) ·

[∑
a

πθt(a|s) ·Q∗(s, a∗(s))−
∑
a

πθt(a|s) ·Q∗(s, a)

]
(647)

=
1

1− γ
·
∑
s

d
πθt
ρ (s) ·

 ∑
a 6=a∗(s)

πθt(a|s) ·Q∗(s, a∗(s))−
∑

a6=a∗(s)

πθt(a|s) ·Q∗(s, a)


(648)

=
1

1− γ
·
∑
s

d
πθt
ρ (s) ·

 ∑
a 6=a∗(s)

πθt(a|s) ·∆∗(s, a)

 (649)

≥ 1

1− γ
·
∑
s

d
πθt
ρ (s) ·

 ∑
a 6=a∗(s)

πθt(a|s)

 ·∆∗(s) (650)

≥ 1

1− γ
·
∑
s

d
πθt
ρ (s) ·

 ∑
a 6=a∗(s)

πθt(a|s)

 ·∆∗. (∆∗ ≤ ∆∗(s)) (651)

Therefore we have,

V ∗(ρ)− V πθt (ρ) ≥
∑
s

ρ(s) ·

 ∑
a6=a∗(s)

πθt(a|s)

 ·∆∗ (by Eqs. (523) and (646)) (652)

=
∑
s

ρ(s) · (1− πθt(a∗(s)|s)) ·∆∗ (653)

≥ min
s∈S

ρ(s) · (1− πθt(a∗(s)|s)) ·∆∗. (654)

For α > 0 let Eα be the event when for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ C

tα
. (655)

By our assumption, there exists α > 0 such that Pr(Eα) > 0. On this event, for any t ≥ 1, we have,

tα · (1− πθt(a∗(s)|s)) ≤
1

mins∈S ρ(s)
· t

α

∆∗
· (V ∗(ρ)− V πθt (ρ)) (by Eq. (652)) (656)

≤ 1

mins∈S ρ(s)
· C

∆∗
. (by Eq. (655)) (657)
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Let
{
θ̃t
}
t≥1

with θ̃1 = θ1 be the sequence obtained by using A with fixed sampling on r, such
that at(s) = a∗(s) for all t ≥ 1. Since, by the assumption, A is optimality-smart, we have
πθ̃t(a

∗(s)|s) ≥ πθt(a∗(s)|s). Then, on Eα, for any t ≥ 1

tα ·
(
1− πθ̃t(a

∗(s)|s)
)
≤ tα · (1− πθt(a∗(s)|s)) (658)

≤ 1

mins∈S ρ(s)
· C

∆
, (by Eq. (656)) . (659)

Since P(Eα) > 0 and tα ·
(
1− πθ̃t(a

∗(s)|s)
)

is non-random, it follows that for any t ≥ 1, tα ·(
1− πθ̃t(a

∗(s)|s)
)
≤ C/∆, which, by Definition 4, means that κ(A, π∗) ≥ α, where π∗ is the

global optimal deterministic policy.

F Miscellaneous Extra Supporting Results

Lemma 14. We have, for all x ∈ (0, 1),

1− x ≥ e−1/(1/x−1). (660)

Proof. See the proof in [12, Proposition 1]. We include a proof for completeness.

We have, for all x ∈ (0, 1),

1− x = exp {log (1− x)} (661)

≥ exp
{

1− e− log (1−x)
} (

y ≥ 1− e−y
)

(662)

= exp
{ −1

1/x− 1

}
.

Lemma 15. Let α > 0. We have,

(i) if α ∈ (1,∞), then for all C > 0,
∞∑
t=1

C

tα
<∞, (663)

which means the series
∑∞
t=1

C
tα converges to a finite value.

(ii) if α ∈ (0, 1], then for all C > 0,
∞∑
t=1

C

tα
=∞, (664)

which means the series
∑∞
t=1

C
tα diverges to positive infinity.

(iii) for all C > 0, C ′ > 0,
∞∑
t=1

C

exp{C ′ · t}
<∞, (665)

which means the series
∑∞
t=1

C
exp{C′·t} converges to a finite value.

Proof. It is easy to verify the results by calculating integrals. We include a proof for completeness.

First part. We have, for all α ∈ (1,∞) and C > 0,
∞∑
t=1

C

tα
≤ C ·

(
1 +

∫ ∞
t=1

1

tα
dt

)
(666)

=
C · α
α− 1

. (667)
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Second part. We have, for all α ∈ (0, 1), C > 0, and T ≥ 1,

T∑
t=1

C

tα
≥
∫ T+1

t=1

C

tα
dt (668)

=
C ·
(
(T + 1)1−α − 1

)
1− α

. (669)

Similarly, for α = 1,

T∑
t=1

C

t
≥
∫ T+1

t=1

C

t
dt (670)

= C · log (T + 1). (671)

Therefore, the partial sum approaches to positive infinity as T →∞.

Third part. We have, for all C > 0 and C ′ > 0,

∞∑
t=1

C

exp{C ′ · t}
≤
∫ ∞
t=0

C

exp{C ′ · t}
(672)

=
C

C ′
.

Lemma 16. Let ut ∈ (0, 1) for all t ≥ 1. The infinite product
∏∞
t=1 (1− ut) converges to a positive

value if and only if the series
∑∞
t=1 ut converges to a finite value.

Proof. See Knopp [31, p. 220]. We include a proof for completeness.

Define the following partial products and partial sums,

pT :=

T∏
t=1

(1− ut), (673)

sT :=

T∑
t=1

ut. (674)

Since pT is monotonically decreasing and non-negative, the infinite product converges to positive
values, i.e.,

∞∏
t=1

(1− ut) = lim
T→∞

T∏
t=1

(1− ut) = lim
T→∞

pT > 0, (675)

if and only if pT is lower bounded away from zero (boundedness convergence criterion for monotone
sequence) [31, p. 80].

Similarly, since sT is monotonically increasing, the series converges to finite values, i.e.,

∞∑
t=1

ut = lim
T→∞

T∑
t=1

ut = lim
T→∞

sT <∞, (676)

if and only if sT is upper bounded.

First part.
∏∞
t=1 (1− ut) converges to a positive value only if

∑∞
t=1 ut converges to a finite value.

Suppose
∏∞
t=1 (1− ut) converges to a positive value. We have, for all T ≥ 1,

qT ≥ q > 0. (677)
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Then we have,

q ≤ qT (678)

= exp

{
log

( T∏
t=1

(1− ut)
)}

(679)

= exp

{ T∑
t=1

log (1− ut)
}

(680)

≤ exp

{
−

T∑
t=1

ut

}
(log (1− x) < −x) (681)

= exp{−sT }, (682)

which implies that,

sT ≤ − log q <∞. (683)

Therefore, we have
∑∞
t=1 ut converges to a finite value.

Second part.
∏∞
t=1 (1− ut) converges to a positive value if

∑∞
t=1 ut converges to a finite value.

Suppose
∑∞
t=1 ut converges to a finite value. Then we have, ut → 0 as t→∞. There exists a finite

number t0 ≥ 1, such that for all t ≥ t0, we have ut ≤ 1/2. Also, we have, for all T ≥ 1,

sT ≤ s <∞. (684)

Then we have,

T∏
t=t0

(1− ut) = exp

{ T∑
t=t0

log (1− ut)
}

(685)

≥ exp

{
−

T∑
t=t0

2 · ut
}

(−2 · x ≤ log (1− x) for all x ∈ [0, 1/2]) (686)

= exp{−2 · sT }, (687)

which implies that, for all large enough T ≥ 1,

qT =

(
t0−1∏
t=1

(1− ut)

)
·

(
T∏
t=t0

(1− ut)

)
(688)

≥

(
t0−1∏
t=1

(1− ut)

)
· exp{−2 · sT } (689)

≥

(
t0−1∏
t=1

(1− ut)

)
· exp{−2 · s} (690)

> 0. (691)

Therefore, we have
∏∞
t=1 (1− ut) converges to a positive value.

Lemma 17. Let ut ∈ (0, 1) for all t ≥ 1. We have
∏∞
t=1 (1− ut) = limT→∞

∏T
t=1 (1− ut) = 0

if and only if the series
∑∞
t=1 ut diverges to positive infinity.

Proof. First part.
∏∞
t=1 (1− ut) diverges to 0 only if

∑∞
t=1 ut diverges to positive infinity.

Suppose
∏∞
t=1 (1− ut) diverges to 0. According to Lemma 16,

∑∞
t=1 ut diverges. And since the

partial sum sT :=
∑T
t=1 ut is monotonically increasing, we have

∑∞
t=1 ut diverges to positive

infinity.

Second part.
∏∞
t=1 (1− ut) diverges to 0 if

∑∞
t=1 ut diverges to a positive infinity.
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Suppose
∑∞
t=1 ut diverges to positive infinity. According to Lemma 16,

∏∞
t=1 (1− ut) diverges.

And since the partial product qT :=
∏T
t=1 (1− ut) is non-negative and monotonically decreasing,

we have
∏∞
t=1 (1− ut) diverges to 0.

The following Lemma 18 indicates that if πθt(a) approaches 1 slowly, i.e., no faster than O(1/t),
then the probability of sampling a forever using on-policy sampling at ∼ πθt(·) is zero, i.e., the
other actions a′ 6= a always have a chance to be sampled.

Lemma 18. Let πθt(a) ∈ (0, 1) be the probability of sampling action a using online sampling
at ∼ πθt(·), for all t ≥ 1. If 1− πθt(a) ∈ Θ(1/tα) with α ∈ [0, 1], then

∏∞
t=1 πθt(a) = 0.

Proof. Suppose 1− πθt(a) ∈ Θ(1/tα) and α ∈ (0, 1]. Let ut := 1− πθt(a) ∈ (0, 1) for all t ≥ 1.
According to Lemma 15, we have,

∞∑
t=1

ut =

∞∑
t=1

(1− πθt(a)) =∞, (692)

i.e., the series diverges to positive infinity. According to Lemma 17, we have,

∞∏
t=1

πθt(a) =

∞∏
t=1

(1− ut) = 0, (693)

which means it is impossible to sample a forever using on-policy sampling at ∼ πθt(·).

Lemma 19 (Performance difference lemma [32]). For any policies π and π′,

V π
′
(ρ)− V π(ρ) =

1

1− γ
·
∑
s

dπ
′

ρ (s) ·
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (694)

=
1

1− γ
·
∑
s

dπ
′

ρ (s) ·
∑
a

π′(a|s) ·Aπ(s, a). (695)

Proof. According to the definition of value function,

V π
′
(s)− V π(s) =

∑
a

π′(a|s) ·Qπ
′
(s, a)−

∑
a

π(a|s) ·Qπ(s, a) (696)

=
∑
a

π′(a|s) ·
(
Qπ
′
(s, a)−Qπ(s, a)

)
+
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (697)

=
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) + γ ·
∑
a

π′(a|s) ·
∑
s′

P(s′|s, a) ·
[
V π
′
(s′)− V π(s′)

]
(698)

=
1

1− γ
·
∑
s′

dπ
′

s (s′) ·
∑
a′

(π′(a′|s′)− π(a′|s′)) ·Qπ(s′, a′) (699)

=
1

1− γ
·
∑
s′

dπ
′

s (s′) ·
∑
a′

π′(a′|s′) · (Qπ(s′, a′)− V π(s′)) (700)

=
1

1− γ
·
∑
s′

dπ
′

s (s′) ·
∑
a′

π′(a′|s′) ·Aπ(s′, a′).

Lemma 20 (Value sub-optimality lemma). For any policy π,

V ∗(ρ)− V π(ρ) =
1

1− γ
·
∑
s

dπρ (s) ·
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a). (701)

Proof. See the proof in [2, Lemma 21]. We include a proof for completeness.
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We denote V ∗(s) := V π
∗
(s) and Q∗(s, a) := Qπ

∗
(s, a) for conciseness. We have, for any policy π,

V ∗(s)− V π(s) =
∑
a

π∗(a|s) ·Q∗(s, a)−
∑
a

π(a|s) ·Qπ(s, a) (702)

=
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a) +
∑
a

π(a|s) · (Q∗(s, a)−Qπ(s, a)) (703)

=
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a) + γ ·
∑
a

π(a|s) ·
∑
s′

P(s′|s, a) ·
[
V π
∗
(s′)− V π(s′)

]
(704)

=
1

1− γ
·
∑
s′

dπs (s′) ·
∑
a′

(π∗(a′|s′)− π(a′|s′)) ·Q∗(s′, a′).

G The Intuition of Committal Rate Definition

The following Figure 2 illustrates the intuition of the committal rate definition. Using fixed sampling,
we decouple the coupling between sampling and updating, and then focus on only characterizing the
aggressiveness of different update rules.

Figure 2: An illustration for the intuition of the committal rate definition.

69


	Introduction
	Understanding Algorithm Preferability in On-line Policy Optimization
	Exact Gradient Setting
	Softmax PG
	Natural PG (NPG)
	Geometry-aware Normalized PG (GNPG)

	The Anomalous Behaviour of Some On-policy Stochastic Gradient Updates
	Softmax PG
	NPG
	GNPG

	Why Consider the On-policy Stochastic Setting?

	Committal Rate of Stochastic Policy Optimization Algorithms
	The Geometry-Convergence Trade-off in Stochastic Policy Optimization
	Iteration Behaviours
	Geometry-Convergence Trade-off
	Exploiting External Information

	Initialization Sensitivity and Ensemble Methods
	Initialization Sensitivity
	Ensemble Methods

	Discussions
	Sufficient and Necessary Conditions for Almost Sure Global Convergence
	Lower Bounds in Bandit Literature
	General MDPs

	Conclusion and Future Work
	Proofs for Algorithm Preferability (Lg) 
	True Gradient Setting
	Softmax PG
	NPG
	GNPG

	On-policy Stochastic Gradient Setting
	Softmax PG
	NPG
	GNPG


	Proofs for Committal Rate (Lg) 
	Proofs for Geometry-Convergence Trade-off (Lg) 
	Proofs for Ensemble Methods (Lg) 
	General MDPs
	RL Settings and Notations
	True Gradient Settings
	Softmax PG
	NPG
	GNPG

	On-policy Stochastic Gradient Settings
	Softmax PG
	NPG
	GNPG

	Committal Rates
	Geometry-Convergence Trade-off

	Miscellaneous Extra Supporting Results
	The Intuition of Committal Rate Definition

