
Appendix

A Probabilistic Specifications: Examples

Below we provide further examples of specifications that can be captured by our framework.

Uncertainty calibration. Another desirable specification towards ensuring reliable uncertainty
calibration for NNs is that the expected uncertainty in the predictions increases monotonically
with an increase in the variance of the input-noise distribution. Formally, consider a set of zero-
mean distributions Pnoise with diagonal covariance matrices. For any two such noise distributions
pω1

, pω2
∈ Pnoise such that Var(pω1

) < Var(pω2
) (where < is the element-wise inequality and Var

denotes the diagonal of the covariance matrix) and a given image x from the training distribution, we
wish to guarantee that the expected entropy of the resulting predictions corresponding to pω1

is greater
than that of pω2

, i.e., Ex1∼x+pω1
[H(softmax(φ(x1)] ≥ Ex2∼x+pω2

[H(softmax(φ(x2)], where H

is the entropy functional: H(p) = −
|Y|∑
i=1

pi log pi. Intuitively, this captures the desired behaviour that

as the strength of the noise grows, the expected uncertainty in the network predictions increases. We
can capture this specification within the formulation described by equation 1, by letting:

1. P0 = Pnoise × Pnoise,
2. For a given NN φ and an input x, we define another network φ̄ : X × X → P(Y)×P(Y),

where φ̄ is such that: φ̄(a, b) = (φ(x+ a), φ(x+ b)).

We can then define the verification problem as certifying that the following holds :

ψ
(
φ̄(p̄0, ¯̄p0)

)
:= −

(
E

(y1,y2)∼φ̄(p̄0, ¯̄p0)
[H (softmax (y1))−H (softmax (y2))]

)
≤ 0,

∀ (p̄0, ¯̄p0) ∈ P0 such that Var(p̄0) < Var(¯̄p0).

Robust VAE In Dathathri et al. [2020], the authors consider a specification that corresponds to
certifying low reconstruction losses for a VAE decoder over a set of inputs in the neighborhood of
the latent-variable mean predicted by the encoder for a given image. A natural generalization of this
specification is one where low reconstruction error is guaranteed in expectation, since in practice the
latent-representations that are fed into the decoder are drawn from a normal distribution whose mean
and variance are predicted by the encoder. A more general specification is one where we wish to
verify that for a set of norm-bounded points around a given input, the expected reconstruction error
from the VAE is small. Formally, for a VAE φ (note that a VAE directly fits within our framework,
where the distribution for the latent-variable can be obtained as the output of a stochastic layer), a
given threshold τ ∈ R+ and for a set of inputs S, we wish to certify that the following holds:

∀p0 ∈ P0, ψ(φ(p0)) := E
µs

′
φ ∼φ(p0)

[
‖ E
s∼p0

[s]− µs
′

φ ‖22
]
− τ ≤ 0; (8)

where P0 = {δs : s ∈ S}.

B Proof of Functional Lagrangian Theorem

Proof of Theorem 1

Proof. The optimization problem (2) is equivalent to the following optimization problem:

max
p0,p1,...,pK

ψ (pK) (9a)

Subject to pk+1 (y) =

∫
πk (y|x) pk (x) dx ∀y ∈ Xk+1, ∀k ∈ {0, . . . ,K − 1}

p0 ∈ P0 (9b)

where ψ is a functional of the output distribution pK . We refer to the space of probability measures
on Xk as Pk (not that for k = 0, this may not be the whole space of probability measures but a

13

constrained set of measures depending on the specification we would like to verify). The dual of this
optimization problem can be written as follows:

max
p0∈P0,p1∈P1,...

ψ (pK)−
K−1∑
k=0

∫
λk+1 (z) pk+1 (z) dz

+

K−1∑
k=0

∫
Xk+1,Xk

λk+1 (z)πk (z|x) pk (x) dxdz,

where we assigned Lagrange multipliers λk+1 (y) for every y ∈ Xk+1. The above optimization
problem can be decomposed as follows:

ψ (pK)−
∫
XK

λK (x) pK (x) dx

+

K−1∑
k=0

∫
Xk

(∫
Xk+1

λk+1 (y)πk (y|x) dy − λk (x)

)
pk (x) dx.

This is a separable problem in each pk and since pk is constrained to be a probability measure, the
optimal choice of pk (for k = 1, . . . ,K − 1) is a δ measure with probability 1 assigned to the the
x ∈ Xk that maximizes: ∫

Xk+1

λk+1 (y)πk (y|x) dy − λk (x) .

The optimization over p0 can be rewritten as follows:

max
p0∈P0

∫
X0

(∫
X1

λ1 (y)π0 (y|x) dy

)
p0 (x) dx.

The optimization over pK can be rewritten as follows:

ψ? (λK) = max
pK∈PK

ψ (pK)−
∫
λK (x) pK (x) dx.

The overall dual problem can be rewritten as:

ψ? (λK) +

K−1∑
k=1

max
x∈Xk

(∫
Xk+1

λk+1 (y)πk (y|x) dy − λk (x)

)

+ max
p0∈P0

∫
X0

(∫
X1

λ1 (y)π0 (y|x) dy

)
p0 (x) dx.

Writing this in terms of expected values, we obtain g (λ). Plugging in λ? into g (λ), all the terms
cancel except the first term which evaluates to:

max
p0∈P0

E
x∼p0

[
E

y∈π0(x)
[λ?1 (x)]

]
= max
p0∈P0

E
x∼p0

[
E

y∈π0(x)

[
E

z∼π1(x)
[λ?2 (z)]

]]
. . . = max

p0∈P0

ψ (p0)

C Additional Theoretical Results

C.1 Computation of Expected Values

Since πk (x) is typically a distribution that one can sample from easily (as it is required to perform
forward inference through the neural network), estimating this expectation via sampling is a viable
option. However, in order to turn this into verified bounds on the specification, one needs to appeal to
concentration inequalities and the final guarantees would only be probabilistically valid. We leave
this direction for future work.

14

Instead, we focus on situations where the expectations can be computed in closed form. In particular,
we consider layers of the form πk (x) = ws (x) + b, (w, b) ∼ pwk , where s is an element-wise
function like ReLU, sigmoid or tanh and (w, b) represents a fully connected or convolutional layer.
We consider a general form of Lagrange multipliers as a sum of quadratic and exponential terms as
follows:

λ (x) = qTx+
1

2
xTQx+ κ exp

(
γTx

)
.

Let:

s̃ (x) =

(
1

s (x)

)
, Q̃ =

(
0 qT

q Q

)
, w̃ = (b w) .

Then:
λ (Ws (x) + b) =

1

2
(s̃ (x))

T
w̃T Q̃w̃s̃ (x) + κ exp

(
γT w̃s̃ (x)

)
.

Taking expected values with respect to W̃ ∼ pwk , we obtain:

E [λ (ws (x) + b)] =
1

2
(s̃ (x))

T E
s̃(x)

[
w̃T Q̃w̃

]
+ κ

∏
i,j

E [exp (γiw̃ij s̃ (xj))] , (10)

where we have assumed that each element of W̃ij is independently distributed. The first term in (10)
evaluates to:

1

2
Trace

(
Cov (w̃s̃ (x)) Q̃

)
+

1

2

(
E [w̃s̃ (x)]

)>
Q̃
(
E [w̃s̃ (x)]

)
,

and the second one to:
κ
∏
i,j

mgfij (γis̃j (x)) ,

where Cov (X) refers to the covariance matrix of the random vector, and mgfij refers to the moment
generating function of the random variable w̃ij :

mgfij (θ) = E [exp (w̃ijθ)] .

The details of this computation for various distributions on w̃ (Gaussian posterior, MC-dropout) are
worked out below.

Diagonal Gaussian posterior. Consider a BNN with a Gaussian posterior, w̃ ∼ N
(
µ,diag

(
σ2
))

,
where µ, σ ∈ Rmn, let Mat (µ) ∈ Rm×n denote a reshaped version of µ. Then, we have:

E [λ (ws (x) + b)] =
1

2
Trace

(
diag

(
Mat

(
σ2
)
s̃ (x)

)
Q̃
)

+
1

2
(Mat (µ) s̃ (x))

T
Q̃ (Mat (µ) s̃ (x))

+ κ
∏
i,j

exp

(
Mat (µ)ij s̃ (xj) γi +

1

2
Mat

(
σ2
)
ij

(s̃ (xj) γi)
2

)
.

MC dropout. Now assume a neural network with dropout: w̃ = µ � Bernoulli (pdropout), where
µ ∈ Rmn denotes the weight in the absence of dropout and pdropout ∈ Rmn denotes the probability of
dropout. Then, we have:

E [λ (ws (x) + b)] =
1

2
Trace

(
diag (Mat (µ� pdropout � (1− pdropout)) s̃ (x)) Q̃

)
+

1

2
(Mat (µ� pdropout) s̃ (x))

T
Q̃ (Mat (µ� pdropout) s̃ (x))

+ κ
∏
i,j

(
Mat (pdropout)ij exp

(
Mat (µ)ij s̃ (xj) γi

)
+ 1−Mat (pdropout)ij

)
.

C.2 Expected-Softmax Optimization

We describe an algorithm to solve optimization problems of the form

max
`≤x≤u

µT softmax (x)− λTx

Our results will rely on the following lemma:

15

Proposition 3. Consider the function

f (x) =

∑
i µi exp (xi) +D∑
j exp (xj) +B

− λTx

where B ≥ 0 and D = 0 if B = 0. Let r = D
B if B > 0 and 0 otherwise. Define the set

∆ =

κ ∈ R : (κ− r)

(
n∏
i=1

(µi − κ)

)
−

n∑
i=1

µi (1− r)λi

∏
j 6=i

(µj − κ)

 = 0


which is a set with at most n+ 1 elements. Define further

∆f =


{
κ ∈ ∆ : 0 < λ

µ−κ < 1,
∑n
i=1

λi
µi−κ ≤ 1

}
if B > 0{

κ ∈ ∆ : 0 < λ
µ−κ < 1,

∑n
i=1

λi
µi−κ = 1

}
if B = 0

Then, the set of stationary points of f are given by{
log

(
h

(
λ

µ− κ

))
: κ ∈ ∆f

}
where

h (v) =

{
Bv

1−1T v if B > 0

{θv : θ > 0} if B = 0

Proof. Differentiating with respect to xi, we obtain

exp (xi)∑
j exp (xj) +B

(
µi −

(∑
j µj exp (xj) +D∑
j exp (xj) +B

))
− λi = pi

(
µi − µT p− q

)
− λi

where

pi =
exp (xi)∑

j exp (xj) +B
, q =

D∑
j exp (xj) +B

.

If we set the derivative to 0 (to obtain a stationary point) we obtain the following coupled set of
equations in p, q, κ:

pi =
λi

µi − κ
i = 1, . . . , n

q = r

(
1−

∑
i

pi

)
,

κ =
∑
i

µipi + q,

where r = D
B . We can solve this by first solving the scalar equation

κ− r =
∑
i

µi (1− r)λi
µi − κ

for κ (this is derived by adding up the first n equations above weighted by µi and plugging in the
value of q). This equation can be converted into a polynomial equation in κ

(κ− r)

(∏
i

(µi − κ)

)
−
∑
i

µi (1− r)λi

∏
j 6=i

(µj − κ)

 = 0

which we can solve for all possible real solutions, denote this set ∆. Note that this set has at most
n+ 1 elements since it is the set of real solutions to a degree n+ 1 polynomial.

16

In order to recover x from this, we first recall:

pi =
λi

µi − κ

Since pi = exp xi∑
j exp(xj)+B

, we require that pi ∈ (0, 1) and
∑
i pi ≤ 1 (with equality when B = 0 and

strict inequality when B = 1. We thus filter ∆ to the set of κ that lead to p satisfying these properties
to obtain ∆f .

Once we have these, we are guaranteed that for each κ ∈ ∆f , we can define pi as above and solve for
xi by solving the linear system of equations

ui = pi

∑
j

uj +B

 i = 1, 2, . . . , n

which can be solved as:

u = B
(
I − p1T

)−1
p =

Bp

1− 1T p
, x = log (u)

if B > 0 since the matrix I − p1T is strictly diagonally dominant and hence invertible, and we
applied the Woodbury identity to compute the explicit inverse.

If B = 0, we have p = softmax (x) and can recover x as

x = log (pθ)

for any θ > 0.

The above lemma allows us to characterize all stationary points of the function

µT softmax (x)− λTx

when a subset of entries of x are fixed to their upper or lower bounds, and we search for stationary
points wrt the remaining free variables. Given this ability, we can develop an algorithm to globally
optimize µT softmax (x) − λTx subject to bound constraints by iterating over all possible 3n

configurations of binding constraints (each variable could be at its lower bound, upper bound or
strictly between them). In this way, we are guaranteed to loop over all local optima, and by picking the
one achieving the best objective value, we can guarantee that we have obtained the global optimum.
The overall algorithm is presented in Algorithm 2.
Proposition 4. Algorithm 2 finds the global optimum of the optimization problem

min
x:`≤x≤u

µT softmax (x)− λTx

and runs in time O(n3n) where n is the dimension of x.

17

Algorithm 2 Solving softmax layer problem via exhaustive enumeration

Inputs: λ, µ, `, u ∈ Rn
x? ← `
fopt (x)← µT softmax (x)− λTx, f? ← fopt (x?)
for v ∈ [Lower,Upper, Interior]n do

nonbinding[i]← (v[i] == Interior), xi ←
{
l[i] if v[i] = Lower
u[i] if v[i] = Upper

for i = 1, . . . , n

B ←
∑

i such that nonbinding[i]==False

exp (x[i])

D ←
∑

i such that nonbinding[i]==False

µ[i] exp (x[i])

Use proposition 3 to find the set of stationary points Sf of the function

f (x) =

∑
i such that nonbinding[i]

µi exp (xi) +D

∑
j such that nonbinding[j]

exp (xj) +B
−

∑
j such that nonbinding[j]

λ[j]xj

for xs ∈ Sf do
if xsi ∈ [`[i], u[i]] ∀i s.t nonbinding[i] then
xi ← xsi ∀i s.t nonbinding[i].
if fopt (x) > f? then
x? ← x
f? ← fopt (x?)

end if
end if

end for
end for
Return x?, f?

C.3 Input Layer with Linear-Exponential Multipliers

We recall the setting from Proposition 1. Let λ1 (x) = αTx + exp
(
γTx+ κ

)
, λ2 (x) = βTx,

g?0 = maxp0∈P0
g0 (p0, λ1), and g?1 = maxx∈X1

g0 (x, λ1, λ2).

Proposition 5. In the setting described above, and with s as the element-wise activation function:

g?0 ≤ αT (wµ+ b) + exp

(∥∥wT γ∥∥2
σ2

2
+ γT b+ κ

)
,

g?1 ≤ max
x∈X2

z=s(x)

βT (w2z + b2)− αTx− exp
(
γTx+ κ

)
.

The maximization in the second equation can be bounded by solving the following convex optimization
problem:

min
η∈Rn,ζ∈R+

ζ (log (ζ)− 1− κ) + 1T max
((
η + wT2 β

)
� s (l2) ,

(
η + wT2 β

)
� s (u2)

)
+
∑
i

s? (αi + ζγi, ηi, l2i, u2i) ,

where s? (a, b, c, d) = maxz∈[c,d]−az − bs (z).

18

Proof.

max
x∈X2

z=s(x)

βT (w2z + b2)− αTx− exp
(
αTx+ κ

)
,

≤ min
η

max
x∈X2,z∈s(X2)

ηT (z − s (x)) + βT (w2z + b2)− αTx− exp
(
γTx+ κ

)
,

≤ min
η,ζ

max
x∈X2,t

1T max
((
η + wT2 β

)
� s (l2) ,

(
η + wT2 β

)
� s (u2)

)
+ βT b2 − αTx

− ηT s (x)− exp (t) + ζ
(
t− γTx− κ

)
,

≤ min
η,ζ

ζ (log (ζ)− 1− κ) + 1T max
((
η + wT2 β

)
� s (l2) ,

(
η + wT2 β

)
� s (u2)

)
+ max
l2≤x≤u2

− (α+ ζγ)
T
x− ηT s (x) ,

≤ min
η,ζ

ζ (log (ζ)− 1− κ) + 1T max
((
η + wT2 β

)
� s (l2) ,

(
η + wT2 β

)
� s (u2)

)
+
∑
i

max
l2i≤xi≤u2i

− (αi + ζγi)xi − ηis (xi) .

C.4 Inner Problem with Linear Multipliers

In its general form, the objective function of the inner maximization problem can be expressed as:

gk(xk, λk, λk+1) = E
y∼πk(xk)

[λk+1 (y)]− λk (xk) . (11)

We assume that the layer is in the form y = Ws (x) + b, where W and b are random variables and s
is an element-wise activation function. Then we can rewrite gk(xk, λk, λk+1) as:

gk(xk, λk, λk+1) = E
W,b

[λk+1 (W max{xk, 0}+ b)]− λk (xk) . (12)

We now use the assumption that λk+1 is linear: λk+1 : y 7→ θ>k+1y. Then the problem can
equivalently be written as:

gk(xk, λk, λk+1) = E
W,b

[
θ>k+1 (Ws (xk) + b)

]
− θTk xk,

=
(
E [W]

>
θk+1

)>
s (xk) + θ>k+1 E [b]− θTk xk,

= θTk+1 E [b] +
∑
i

(
E [W]

>
θk+1

)
i
s (xi)− (θk)i xi.

(13)

Maximizing the RHS subject to l ≤ x ≤ u, we obtain:

θTk+1 E [b] +
∑
i

max
z∈[li,ui]

(
E [W]

>
θk+1

)
i
s (z)− (θk)i z.

where the maximization over z can be solved in closed form for most common activation functions s
as shown in Dvijotham et al. [2018b].

So we can simply apply the deterministic algorithm to compute the closed-form solution of this
problem.

D Relationship to Prior work

We establish connections between the functional Lagrangian framework and prior work on
deterministic verification techniques based on Lagrangian relaxations and SDP relaxations.

19

D.1 Lagrangian Dual Approach

We assume that the network layers are deterministic layers of the form:

∀ k, k is odd πk (x) = wkx+ bk,

∀ k, k is even πk (x) = s (x) ,
(14)

where s is an element-wise activation function and that the specification can be written as:

ψ (xK) = cTxK . (15)

Proposition 6 (Linear Multipliers). For a verification problem described by equations (14, 15), the
functional Lagrangian framework with linear functional multipliers λk (x) = θTk x is equivalent to
the Lagrangian dual approach from Dvijotham et al. [2018b].

Proof. The final layer problem is

max
xK

cTxK − θTKxK = 1T max ((c− θK)� lK , (c− θK)� uK)

For even layers with k < K, the optimization problem is

max
x∈[lk,uk]

θTk+1 (wkx+ bk)− θTk x = θTk+1bk +
(
wTk θk+1 − θk

)T
x

= 1T max
((
wTk θk+1 − θk

)
� lk,

(
wTk θk+1 − θk

)
� uk

)
+ θTk+1bk

For odd layers with k < K, the optimization problem is

max
x∈[lk,uk]

θTk+1s (x)− θTk x =
∑
i

max
z∈[lki,uki]

(θk+1)i s (z)− (θk)i z

All these computations precisely match those from Dvijotham et al. [2018b], demonstrating the
equivalence.

D.2 SDP-cert

We assume that the network layers are deterministic layers of the form:

∀ k πk (x) = ReLU (wkx+ bk) (16)

where s is an element-wise activation function and that the specification can be written as:

ψ (xK) = cTxK . (17)

Proposition 7 (Quadratic Multipliers). For a verification problem described by equations (16, 17),
the optimal value of the Functional Lagrangian Dual with

λk (x) = qTk x+
1

2
xTQkx k = 1, . . . ,K − 1

λK (x) = qTKx

and when an SDP relaxation is used to upper bound the inner maximization problems over gk, is
equal to the dual of the SDP relaxation from Raghunathan et al. [2018].

Proof. With quadratic multipliers of the form λk (x) = qTk x + 1
2x

TQkx k = 1, . . . ,K − 2 and
λK (x) = qTKx, the inner maximization problems for the intermediate layers are of the form:

max
x∈[l,u]

y=ReLU(wx+b)

q̃T y +
1

2
yT Q̃y − qTx− 1

2
xTQx,

where l = lk, u = uk, q̃ = qk+1, Q̃ = Qk+1, q = qk, Q = Qk, w = wk, b = bk. Let x ∈ Rn, y ∈
Rm (n dimensional input, m dimensional output of the layer). Further, let l̃ = lk+1, ũ = uk+1.

We can relax the above optimization problem to the following Semidefinite Program (SDP) (following
Raghunathan et al. [2018]):

20

max
P
q̃TP [y] +

1

2
Trace

(
Q̃P [yyT]

)
− qTP [x]− 1

2
Trace

(
QP [xxT]

)
(18a)

Subject to P =

 1 (P [y])
T

(P [x])
T

P [y] P [yyT] P [xyT]

P [x]
(
P [xyT]

)T
P [xxT]

 ∈ Sn+m+1, (18b)

P � 0, (18c)

diag
(
P [xxT]− l (P [x])

T − P [x]uT + luT
)
≤ 0, (18d)

diag
(
P [yyT]− l̃ (P [y])

T − P [y]ũT + l̃ũT
)
≤ 0, (18e)

P [y] ≥ 0, P [w] ≥ wP [x], (18f)

diag
(
wP [xyT]

)
+ P [y]� b = diag

(
P [yyT]

)
. (18g)

where the final constraint follows from the observation that y � (y − wx− b) = 0.

The above optimization problem resembles the formulation of Raghunathan et al. [2018] except that
it only involves two adjacent layers rather than all the layers at once. Let ∆k denote the feasible set
given the constraints in the above optimization problem. Then, the formulation of Raghunathan et al.
[2018] can be written as:

max cT yK (19a)
subject to Pk ∈ ∆k k = 0, . . . ,K − 1, lK ≤ yK ≤ uK , (19b)

Pk+1[xxT] = Pk[yyT] k = 0, . . . ,K − 2, (19c)
Pk+1[x] = Pk[y] k = 0, . . . ,K − 2, (19d)
yK = PK−1[y]. (19e)

Note that in Raghunathan et al. [2018], a single large P matrix is used whose block-diagonal sub-
blocks are Pk and the constraint P � 0 is enforced. Due to the matrix completion theorem for SDPs
[Grone et al., 1984, Vandenberghe and Andersen, 2015], it suffices to ensure postitive semidefiniteness
of the sub-blocks rather than the full P matrix.

Dualizing the last three sets of constraints above with Lagrangian multipliers Θk ∈ Snk+nk+1+1, θk ∈
Rnk and θK ∈ RnK , we obtain the following optimization problem:

max cT yK + θTK (−PK−1[y] + yK) +

K−2∑
k=0

Trace
(
Θk

(
Pk+1[xxT]− Pk[yyT]

))
+

K−2∑
k=0

θTk (Pk+1[x]− Pk[y])

subject to Pk ∈ ∆k k = 0, . . . ,K − 1,

lK ≤ yK ≤ uK .

The objective decomposes over Pk and can be rewritten as:

max
lK≤yK≤uK

(c+ θK)
T
yK +

K−1∑
k=0

max
Pk∈∆k

Trace
(
Θk−1Pk[xxT]

)
+ θTk−1Pk[x]− θTk Pk[y]

− Trace
(
ΘkPk[yyT]

)
,

(20)

with the convention that ΘK−1 = 0,Θ−1 = 0, θ−1 = 0. If we set Qk = −Θk−1, qk = −θk−1 for
k = 1, . . . ,K, then the optimization over Pk precisely matches the optimization in (18). Further,
since λK is linear, the final layer optimization simply reduces to:

max
lK≤xK≤uK

cTxK − qTKxK ,

which matches the first term in (20).

21

Thus, the functional Lagrangian framework with quadratic multipliers λk for k = 1, . . . ,K − 2 and
a linear multiplier for λK precisely matches the Lagrangian dual of (19) and since (19) is a convex
optimization problem, strong duality guarantees that the optimal values must coincide.

E Additional Experimental Details

E.1 Robust OOD Detection on Stochastic Neural Networks

Inner Optimization. All inner problems have a closed-form as shown in section C.4, except for
the last one, which is handled as follows.

The last inner problem can be formulated as:

max
xK∈XK

µ>softmax(xK) + ν>xK , (21)

where µ is a one-hot encoded vector and ν is a real-valued vector.

• Projected Gradient Ascent (Training):

– Hyper-parameters: we use the Adam optimizer Kingma and Ba [2015], with a learning-
rate of 1.0 and a maximum of 1000 iterations.

– Stopping criterion: when all coordinates have either zero gradient, or are at a boundary
with the gradient pointing outwards of the feasible set.

– In order to help the gradient method find the global maximum, we use a heuristic
for initialization, which consists of using the following two starting points for the
maximization (and then to take the best of the corresponding two solutions found):
1. Ignore affine part (ν = 0), which gives a solution in closed form: set xK at its

upper bound at the coordinate where µ is 1, and at its lower bound elsewhere.
2. Ignore softmax part (µ = 0), which also gives a solution in closed form: set xK at

its upper bound at the coordinates where ν ≥ 0, and at its lower bound elsewhere.

• Evaluation: we use Algorithm 2 at evaluation time, which solves the maximization exactly.

Outer Optimization. We use the Adam optimizer, with a learning-rate that is initialized at 0.001
and divided by 10 every 250 steps. We run the optimization for a total of 1000 steps.

Gaussian-MLP. We use the ReLU MLP from [Wicker et al., 2020] that consists of 2 hidden
layers of 128 units each. The models are available at https://github.com/matthewwicker/
ProbabilisticSafetyforBNNs.

LeNet. We use the LeNet5 architecture with dropout applied to the last fully connected layer with
a probability of 0.5. To make the bound-propagation simpler, we do not use max-pooling layers and
instead increase the stride of convolutions.

VGG-X. For VGG-X (where X ∈ {2, 4, 8, 16, 32, 64}), the architecture can be described as:

• Conv 3x3, X filters, stride 1

• ReLU

• Conv 3x3, X filters, stride 2

• ReLU

• Conv 3x3, 2X filters, stride 2

• ReLU

• Conv 3x3, 2X filters, stride 2

• ReLU

• Flatten

22

https://github.com/matthewwicker/ProbabilisticSafetyforBNNs
https://github.com/matthewwicker/ProbabilisticSafetyforBNNs

• Linear with 128 output neurons
• Dropout with rate 0.2
• Linear with 10 output neurons

Hardware The verification of each sample is run on a CPU with 1-2 cores (and on each instance,
BP and FL are timed on the same exact hardware configuration).

E.2 Adversarial Robustness for Stochastic Neural Networks

Inner Optimization. We use a similar approach as in Appendix E.1. For the final inner problem
(corresponding to the objective which is a linear function of the softmax and the layer inputs), we
run projected gradient ascent during the optimization phase and then use Algorithm 2 to solve the
maximization exactly. For projected gradient ascent, because of the non-convexity of the problem,
we use the following heuristics to try and find the global maximum:

• Black-box attack (1st phase): we use the Square adversarial attack Andriushchenko et al.
[2020], with 600 iterations, 300 random restarts and learning-rate of 0.1.

• Fine-tuning (2nd phase): We then choose the best attack from the restarts, and employ
projected gradient ascent, with a learning-rate of 0.1 and 100 iterations to fine-tune further.

Model Parameters. We use the 1 and 2 layer ReLU MLPs from [Wicker et al., 2020]. The models
are available at https://github.com/matthewwicker/ProbabilisticSafetyforBNNs.

Outer Optimization. We use the Adam optimizer, with a learning-rate that is initialized at 0.001
and divided by 10 every 1000 steps. We run the optimization for a total of 3000 steps.

Hardware All experiments were run on a P100 GPU.

E.3 Distributionally Robust OOD Detection

Model. We train networks on MNIST using the code from https://gitlab.com/Bitterwolf/
GOOD with the CEDA method, and with the default hyperparameters. We train a CNN with ReLU
activations the following layers:

• Conv 4x4, 16 filters, stride 2, padding 2 on both sides
• ReLU
• Conv 4x4, 32 filters, stride 1, padding 1 on both sides
• Relu
• Flatten
• Linear with 100 output neurons
• Relu
• Linear with 10 output neurons

Outer Optimization. For the outer loop of the verification procedure, we use Adam for 100k steps.
The learning-rate is initially set to 0.0001 and then divided by 10 after 60k and 80k steps.

Hardware We run the experiments for this section on a CPU with 2-4 cores.

F Additional Results with Interval Bound Propagation for Bilinear
Operations

F.1 Robust OOD Detection for Stochastic Neural Networks

We repeat the experiments in Section 5.1 where we use IBP to handle bound-propagation through
the layers where bilinear propagation is required (because of bounds coming from both the layer

23

https://github.com/matthewwicker/ProbabilisticSafetyforBNNs
https://gitlab.com/Bitterwolf/GOOD
https://gitlab.com/Bitterwolf/GOOD

Table 4: Robust OOD Detection: MNIST vs EMNIST (MLP and LeNet) and CIFAR-10 vs CIFAR-
100 (VGG-*). BP: Bound-Propagation (baseline), using IBP instead of Bunel et al. [2020] for bilinear
operations; FL: Functional Lagrangian (ours). The reported times correspond to the median of the
500 samples.

OOD Task Model #neurons #params ε
Time (s) GAUC (%) AAUC (%)

BP FL BP FL

(E)MNIST MLP 256 2k
0.01 1.1 +13.1 55.4 67.5 86.9
0.03 1.2 +13.4 38.7 54.5 88.6
0.05 1.3 +17.7 19.1 36.0 88.8

(E)MNIST LeNet 0.3M 0.1M
0.01 50.1 +13.1 0.0 28.4 71.6
0.03 54.7 +13.7 0.0 11.7 57.6
0.05 79.4 +24.8 0.0 2.3 44.0

CIFAR
VGG-16 3.0M 83k 0.001 426.4 +21.4 0.0 21.7 60.9
VGG-32 5.9M 0.2M 0.001 1035.2 +21.3 0.0 23.8 64.7
VGG-64 11.8M 0.5M 0.001 8549.7 +42.1 0.0 28.6 67.4

Table 5: Adversarial Robustness for different BNN architectures trained on MNIST from Wicker
et al. [2020]. BP: Bound-Propagation (baseline), using IBP instead of LBP for bilinear operations;
FL: Functional Lagrangian (ours). The accuracy reported for FL and BP is the % of samples we
can certify as robust with probability 1. For each model, we report results for the first 500 test-set
samples.

#layers ε #neurons BP Acc. (%) FL Acc. (%) BP Time (s) FL Time (s) Adv Acc (%)

128 43.8 65.2 1.3 +353.3 82.6
1 0.025 256 40.6 64.6 1.4 +431.3 82.6

512 35.0 57.0 1.3 +357.1 82.8
256 29.4 36.9 1.6 +439.6 79.4

2 0.001 512 46.0 63.4 1.7 +433.8 89.2
1024 18.4 19.6 1.6 +440.9 74.8

inputs and the layer parameters due to the stochasticity of the model) instead of Bunel et al. [2020].
Bunel et al. [2020] usually results in significantly tighter bounds compared to IBP but we note
that for MNIST-CNN and CIFAR-CNN, we expect IBP to perform competitively as the bilinear
bound propagation is only applied for a single layer (dropout). The results are presented in Table 4,
and we find that even while using IBP as the bound-propagation method, our framework provides
significantly stronger guarantees.

F.2 Adversarial Robustness for Stochastic Neural Networks

For the verification tasks considered in Section 5.2, we use IBP instead of the tighter LBP as the
bound-propagation method and report results in Table 2. We find that, similar to Section 5.2, our
framework is able to significantly improve on the guarantees the bound-propagation baseline is able
to provide.

24

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Our theoretical framework is explained in Section 3
and our empirical results are detailed in Section 5.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Formal
statements are available in Section 3 and Appendix C.

(b) Did you include complete proofs of all theoretical results? [Yes] Formal proofs are
available in Section B and Appendix C.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes] We
have included the URL at which the code will be released.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide experimental details in Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [No] We follow standard practice in the neural network
verification community, and our evaluation is performed on hundreds of samples to
ensure that the results are statistically significant.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We have included all runtimes and
hardware platforms used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

25

