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A Definitions and Proofs

Definition A.1. For some K Ø 0, the set of K-Lipschitz functions denotes the set of functions f that verify:

Îf(x) ≠ f(xÕ)Î Æ KÎx ≠ xÕÎ, ’x, xÕ œ X

In the coming proofs, we assume that the hypothesis class H is a subset of ⁄H -Lipschitz functions, where
⁄H is a positive constant, and we assume that the true labeling functions are ⁄-Lipschitz for some positive
real number ⁄.
Definition A.2. For a distribution D, we define the discrepancy between two functions f and g as:

“D(f, g) = Ex≥D [|f(x) ≠ g(x)|]

We use gT and gS to represent the true labeling functions of the target and source domains, respectively.
We use “S(f) .= “PS

(f, gS) and “T (f) .= “PT
(f, gT ) to respectively denote the discrepancies of a hypothesis

f to the true labeling function for the source and target domains.
Definition A.3. For a distribution D that can be represented as mixture of K sub-distribution, we define
the discrepancy between two functions f and g as:

“k

D
(f, g) = Ex≥Dk [|f(x) ≠ g(x)|]

where we use Dk to represent the distribution of the k-th sub-distribution.

We use P k

S
/P k

T
to represent the distribution of the k-th subdomain of the source domain/target domain

respectively. Thus we can use “k

S
(f) .= “

P
k

S

(f, gS) and “k

T
(f) .= “

P
k

T

(f, gT ) to respectively denote the
discrepancies of a hypothesis f to the true labeling function of the k-th subdomain of the source domain and
that of the target domain.
Theorem A.4 (Full Domain Generalization Bound). For a hypothesis f : X æ [0, 1],

“T (f) Æ “S(f) + (⁄ + ⁄H)W1(PS , PT ) + “ı (20)

where “ı = min
fœH

“S(f) + “T (f), H is a hypothesis class included in the set of ⁄H-Lipschitz functions, and the

true functions gT and gS are both ⁄-Lipschitz functions (as defined in Definition A.1).

Proof. For a hypothesis f : X æ [0, 1] with f œ H, we have that

“PT
(f, gT ) = “PT

(f, gT ) + “PS
(f, gS) ≠ “PS

(f, gS) + “PS
(f, gT ) ≠ “PS

(f, gT ) (21)

And then bound the RHS by taking the absolute value of di�erences:

“PT
(f, gT ) Æ “PS

(f, gS) + |“PS
(f, gT ) ≠ “PS

(f, gS)| + |“PT
(f, gT ) ≠ “PS

(f, gT )|
Æ “PS

(f, gS) + Ex≥PS [|gS(x) ≠ gT (x)|] + |“PT
(f, gT ) ≠ “PS

(f, gT )|
(22)

As stated in Li et al. (2018), the first two terms proceed exactly as in Ben-David et al. (2010); further
derivations are not provided here. We next provide an upper bound for the last term. Let PS and PT be
the densities of XS and XT , respectively.

|“PT
(f, gT ) ≠ “PS

(f, gT )| Æ
----
⁄

(PT (x) ≠ PS(x))|f(x) ≠ gT (x)|dx

---- (23)

Since our hypothesis class H is assumed to be ⁄H -Lipschitz and the true labeling functions are ⁄-Lipschitz,
we have that for every function f œ H, h : x ‘æ |f(x) ≠ gT (x)| is ⁄ + ⁄H -Lipschitz and it takes its values in
[0, 1]. Therefore,

|“PT
(f, gT ) ≠ “PS

(f, gT )| Æ sup
h:X æ[0,1],||h||Æ⁄+⁄H

----
⁄

(PT (x) ≠ PS(x))h(x)dx

----

= sup
h:X æ[0,1],||h||Æ⁄+⁄H

|Ex≥PT
[h(x)] ≠ Ex≥PS

[h(x)]|
(24)
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Note that due to the symmetric nature of the function space, i.e., if h is K-Lipschitz then ≠h is K-Lipschitz,
we can just pick either side to lead with and drop the absolute value, yielding

|“PT
(f, gT ) ≠ “PS

(f, gT )| Æ (⁄ + ⁄H)W1(PS , PT ) (25)

Following the Theorem 2 of Ben-David et al. (2010), we can also easily bound the target error “PT
(f, gT ) by:

“PT
(f, gT ) Æ “PS

(f, gS) + (⁄ + ⁄H)W1(PS , PT ) + “ı (26)

where “ı = minfœH “PS
(f, gS) + “PT

(f, gT ).

For succinctness and clarity of the following analysis in this work, as defined in Definition A.2, we express
equation 20 as:

“T (f) Æ “S(f) + (⁄ + ⁄H)W1(PS , PT ) + “ı (27)
where “ı = min

fœH

“S(f) + “T (f)

Lemma A.5 (Decomposition of the Classification Error). For any hypothesis f œ H,

“S(f) =
Kÿ

k=1
wk

S
“k

S
(f)

“T (f) =
Kÿ

k=1
wk

T
“k

T
(f)

(28)

Proof. As stated in Section 3, we assume that both XS and XT are mixtures of K sub-domains. In other
words, we have PS =

q
K

k=1 wk

S
P k

S
and PT =

q
K

k=1 wk

T
P k

T
where we use P k

S
and P k

T
to represent the

distribution of the k-th subdomain of the source domain and that of the target domain respectively and wk

S

and wk

T
correspond to the weights of each sub-domain in the respective domains.

We can write out “S(f) = “PS
(f, gS) as sub-domain specific component.

“S(f) = “PS
(f, gS)

= Ex≥PS [|f(x) ≠ gS(x)|]

=
⁄

PS(x)|f(x) ≠ gS(x)|dx

=
⁄ Kÿ

k=1
wk

S
P k

S
|f(x) ≠ gS(x)|dx

=
Kÿ

k=1
wk

S

⁄
P k

S
|f(x) ≠ gS(x)|dx

=
Kÿ

k=1
wk

S
E

x≥P
k

S

[|f(x) ≠ gS(x)|]

=
Kÿ

k=1
wk

S
“

P
k

S

(f, gS)

Def.A.3=
Kÿ

k=1
wk

S
“k

S
(f)

(29)

With similar proof, we have:

“T (f) = “PT
(f, gT ) =

Kÿ

k=1
wk

T
“

P
k

T

(f, gT ) =
Kÿ

k=1
wk

T
“k

T
(f) (30)
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Theorem A.6 (Sub-domain-based Generalization Bound).

“T (f) Æ
Kÿ

k=1
wk

T
“k

S
(f) +

Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) +

Kÿ

k=1
wk

T
(“k)ı (31)

Proof.

“T (f)LemmaA.5=
Kÿ

k=1
wk

T
“k

T
(f)

Proposition4.3
Æ

Kÿ

k=1
wk

T
{“k

S
(f, gS) + W1(P k

S
, P k

T
) + (“k)ı}

(32)

We next show that, under reasonable assumptions, the weighted sum of distances between corresponding
sub-domains of the source and target domains is at most as large as the distance between the marginal
distribution of the source domain and that of the target domain.

First we define a Wasserstein-like distance between Gaussian Mixture Models in Definition A.7, which uses
Wasserstein-1 distance that extends the Proposition 4 of Delon & Desolneux (2020).

Definition A.7. (Wasserstein-like distance between Gaussian Mixture Models) Assume that both XS and
XT are mixtures of K sub-domains. In other words, we have PS =

q
K

k=1 wk

S
P k

S
and PT =

q
K

k=1 wk

T
P k

T
where

we use P k

S
and P k

T
to represent the distribution of the k-th subdomain of the source domain and that of the

target domain respectively and wk

S
and wk

T
correspond to the weights of each sub-domain in the respective

domains. We define:

MW1(PS , PT ) = min
wœ�(wS,wT)

Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

Õ

T
) (33)

where wS
.= [w1

S
, . . . , wK

S
] and wT

.= [w1
T

, . . . , wK

T
] belong to �K (the K ≠1 probability simplex). �(wS , wT )

represents the simplex �K◊K with marginals wS and wT.

To demonstrate that MW1 is less or equal to the sum of W1 and a term that is dependent on the trace
of the covariance matrices of two Gaussian mixtures (extend the proof of Delon & Desolneux (2020)), we
start with a lemma. This lemma makes more explicit the distance MW1 between a Gaussian mixture and a
mixture of Dirac distributions.

Lemma A.8 (Extension to Lemma 4.1 of Delon & Desolneux (2020)). Let µ0 =
q

K0
k=1 fik

0 µk

0 with

µk

0 = N (mk

0 , �k

0) and µ1 =
q

K1
k=1 fik

1 ”
m

k

1
. Let µ̃0 =

q
K0
k=1 fik

0 ”
m

k

0
(µ̃0 only retains the means of µ0). Then,

MW1(µ0, µ1) Æ W1(µ̃0, µ1) +
K0ÿ

k=1
fik

0

Ò
tr (�k

0)

where fi0
.= [fi1

0 , . . . , fik

0 ] and fi1
.= [fi1

1 , . . . , fik

1 ] belong to �K
(the K ≠ 1 probability simplex)
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Proof.

MW1(µ0, µ1) = inf
wœ�(fi0,fi1)

ÿ

k,l

wk,lW1(µk

0 , ”
m

l

1
)

Æ inf
wœ�(fi0,fi1)

ÿ

k,l

wk,lW2(µk

0 , ”
m

l

1
)

= inf
wœ�(fi0,fi1)

ÿ

k,l

wk,l

5Ò
||ml

1 ≠ mk

0 ||2 + tr (�k

0)
6

Æ inf
wœ�(fi0,fi1)

ÿ

k,l

wk,l||ml

1 ≠ mk

0 || +
ÿ

k

fik

0

Ò
tr (�k

0)

Æ W1(µ̃0, µ1) +
K0ÿ

k=1
fik

0

Ò
tr (�k

0)

(34)

Remark A.9. We use µ0, µ1, and µ̃0 to represent a general scenario for measuring the distance between a
Gaussian mixture and a mixture of Diract distributions. In the following proofs, we will utilize the defined
notation. For instance, µ0 can be denoted as PS , while µ̃0 corresponds to P̃S .
Theorem A.10 (Extension to Proposition 6 in (Delon & Desolneux, 2020)). Let PS and PT be two Gaussian

mixtures with PS =
q

K

k=1 wk

S
P k

S
and PT =

q
K

k=1 wk

T
P k

T
. For all k, P k

S
/ P k

T
are Gaussian distributions with

mean mk

S
/ mk

T
and covariance �k

S
/ �k

T
. If for ’ k, kÕ

, we assume there exists a small constant ‘ > 0, such

that maxk(trace(�k

S
)) Æ ‘ and maxkÕ(trace(�k

Õ

T
)) Æ ‘. then:

MW1(PS , PT ) Æ W1(PS , PT ) + 4
Ô

‘ (35)

Proof. Here, we follow the same structure of the proof for Wassertein-2 in Delon & Desolneux (2020). Let
(P n

S
)n and (P n

T
)n be two sequences of mixtures of Dirac masses respectively converging to PS and PT in

P1(Rd). Since MW1 is a distance,

MW1(PS , PT ) Æ MW1(P n

S
, P n

T
) + MW1(PS , P n

S
) + MW1(PT , P n

T
)

= W1(P n

S
, P n

T
) + MW1(PS , P n

S
) + MW1(PT , P n

T
)

We can study the limits of these three terms when n æ +Œ

First, observe that MW1(P n

S
, P n

T
) = W1(P n

S
, P n

T
) æ

næ+Œ

W1(PS , PT ) since W1 is continuous on P1(Rd).

Second, based on Lemma A.8, we have that

MW1(PS , P n

S
) Æ W1(P̃S , P n

S
) +

Kÿ

k=1
wk

S

Ò
tr(�k

S
) æ

næ+Œ

W1(P̃S , PS) +
Kÿ

k=1
wk

S

Ò
tr(�k

S
)

We observe that x ‘æ
Ô

x is a concave function, thus by Jensen’s inequality, we have that

Kÿ

k=1
wk

S

Ò
tr(�k

S
) Æ

ı̂ıÙ
Kÿ

k=1
wk

S
tr(�k

S
)

Also By Jensen’s inequality, we have that,

W1(P̃S , PS) Æ W2(P̃S , PS).

And from Proposition 6 in (Delon & Desolneux, 2020), we have

W2(P̃S , PS) Æ
ı̂ıÙ

Kÿ

k=1
wk

S
tr(�k

S
)
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Similarly for MW1(PT , P n

T
) the same argument holds. Therefore we have,

lim
næŒ

MW1(PS , P n

S
) Æ 2

ı̂ıÙ
Kÿ

k=1
wk

S
tr(�k

S
)

And

lim
næŒ

MW1(PT , P n

T
) Æ 2

ı̂ıÙ
Kÿ

k=1
wk

T
tr(�k

T
)

We can conclude that:
MW1(PS , PT ) Æ lim inf

næŒ

(W1(P n

S
, P n

T
) + MW1(PS , P n

S
) + MW1(PT , P n

T
))

Æ W1(PS , PT ) + 2
ı̂ıÙ

Kÿ

k=1
wk

S
tr(�k

S
) + 2

ı̂ıÙ
Kÿ

k=1
wk

T
tr(�k

T
)

Æ W1(PS , PT ) + 4
Ô

‘

This concludes the proof.

Theorem A.11 (Benefits of Sub-domain Alignment). Under the following assumptions:

A1. For all k, P k

S
/ P k

T
are Gaussian distributions with mean mk

S
/ mk

T
and covariance �k

S
/ �k

T
.

A2. Distance between the paired source-target sub-domain is less or equal to distance between the non-paired

source-target sub-domain, i.e., W1(P k

S
, P k

T
) Æ W1(P k

S
, P k

Õ

T
) for k ”= kÕ

.

A3. There exists a small constant ‘ > 0, such that max
1ÆkÆK

(tr(�k

S
)) Æ ‘ and max

1ÆkÆK

(tr(�k
Õ

T
)) Æ ‘. Then the

following inequality holds: q
K

k=1 wk

T
W1(P k

S
, P k

T
) Æ W1(PS , PT ) + ”c, (36)

where ”c is 4
Ô

‘. In particular, when wk

S
= wk

T
for all k,

q
K

k=1 wk

S
W1(P k

S
, P k

T
) Æ W1(PS , PT ) + ”c. (37)

Proof. With w œ �(wS, wT), we can write out wk

T
as

q
K

kÕ=1 wk,kÕ , then based on assumption A.2, we have:
Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) =

Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

T
)

Æ
Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

Õ

T
).

Thus we have,
Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) Æ min

wœ�(wS,wT)

Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

Õ

T
)

= MW1(PS , PT ).

(38)

Also we prove in Theorem A.10 that:

MW1(PS , PT ) Æ W1(PS , PT ) + 4
Ô

‘.

Then we conclude our proof and show that:
Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) Æ MW1(PS , PT ) Æ W1(PS , PT ) + 4

Ô
‘ = W1(PS , PT ) + ”c. (39)
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Theorem A.12. Let H
.= {f |f : X æ [0, 1]} denote a hypothesis space. Under the Assumptions in Theo-

rem 4.7(or Theorem A.11), if the following assumption hold for all f œ H:

q
K

k=1 wk

T
“k

S
(f) Æ

q
K

k=1 wk

S
“k

S
(f), (40)

then we have
q

K

k=1 wk

T
(“k)ı Æ “ı.

Further, let

‘c(f) .=
q

K

k=1 wk

T
“k

S
(f) +

q
K

k=1 wk

T
W1(P k

S
, P k

T
) +

q
K

k=1 wk

T
(“k)ı

denote the sub-domain-based generalization bound and let

‘g(f) .= “S(f) + W1(PS , PT ) + “ı

denote the general generalization bound without any sub-domain information. We have,

‘c(f) Æ ‘g(f) + ”c.

where ”c is 4
Ô

‘.

Proof. We will proove that
q

K

k=1 wk

T
(“k)ı Æ “ı, where “ı = min

fœH

“S(f) + “T (f), H, and (“k)ı =

minfœH “k

S
(f) + “k

T
(f)

We have:

“ı = min
fœH

(“S(f) + “T (f))

= min
fœH

A
Kÿ

k=1
wk

S
“k

S
(f) +

Kÿ

k=1
wk

T
“k

T
(f)

B

= min
fœH

A
Kÿ

k=1
wk

S
“

P
k

S

(f, gS) +
Kÿ

k=1
wk

T
“

P
k

T

(f, gT )
B

= min
fœH

A
Kÿ

k=1
wk

T
“

P
k

S

(f, gS) +
Kÿ

k=1
wk

T
“

P
k

T

(f, gT ) +
Kÿ

k=1
wk

S
“

P
k

S

(f, gS) ≠
Kÿ

k=1
wk

T
“

P
k

S

(f, gS)
B

= min
fœH

A
Kÿ

k=1
wk

T
(“

P
k

S

(f, gS) + “
P

k

T

(f, gT )) +
Kÿ

k=1
(wk

S
≠ wk

T
)“

P
k

S

(f, gS)
B

Ø min
fœH

A
Kÿ

k=1
wk

T
(“

P
k

S

(f, gS) + “
P

k

T

(f, gT ))
B

Ø
Kÿ

k=1
min
fœH

!
“k

S
(f) + “k

T
(f)

"

=
Kÿ

k=1
wk

T
(“k)ı

(41)

where the first inequality (the 6th line in the equation) is based on the assumption that
q

K

k=1 wk

T
“k

S
(f) Æq

K

k=1 wk

S
“k

S
(f). The second inequality (the 7th line in the equation) is based on min{f(x) + g(x)} Ø

min{f(x)} + min{g(x)}
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B Empirical Evidence for Assumptions in Theorem 4.7

B.1 Gaussian Distribution

To a�rm the Gaussian distribution assumption for latent representations of each sub-domain, we include
Figure 4. These plots, derived from the MNIST and MNIST-M datasets for all values of k, reinforce our
theorem’s practical realization.

(a) MNIST (b) MNIST-M

Figure 4: Distributions of the learned representations
.

B.2 Distance Assumption

We further present empirical evidence to support the distance relations between paired and non-paired source-
target sub-domains on the MNIST to MNIST-M task. Our methodology specifically aims to minimize the
distance between paired source-target sub-domains during the training process. Table 5 illustrates that
empirically the distance between the paired source-target sub-domain is consistently less than the average
distance between non-paired source-target sub-domains.

Table 5: Distance relations between paired and non-paired source-target sub-domains on the MNIST to
MNIST-M task. We use Wasserstein-1 (W1) distance as distance metric.

Sub-domain Paired source-target sub-domain Non-paired source-target sub-domains
0 5.9 79.4
1 9.5 85.5
2 7.5 85.4
3 11.4 82.6
4 7.7 80.5
5 11.4 84.8
6 7.0 89.5
7 11.9 89.6
8 8.1 72.8
9 9.6 81.2

C Analysis of Feature Space

We visualize the feature spaces learned by DANN (Ganin et al., 2016), CAT (Deng et al., 2019) and our
method, DARSA, using UMAP (Sainburg et al., 2021). As shown in Figure 5, features learned with DARSA
form stronger clusters when the labels are the same, and clusters with di�erent labels are more separated
from one another. In contrast, both DANN and CAT fail to learn a good source-target domain alignment in
the feature space (shown in Figure 5 (b)(c)) in the presence of label distribution shifts. This confirms that
our method, DARSA, can learn a label-conditional feature space that is discriminative and domain-invariant,
which improves performance in target domain prediction.
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(a) DARSA

(b) DANN

(c) CAT

Figure 5: For MNIST to MNIST-M UDA task with label shifting (a) feature space learned by our method,
DARSA. (b) feature space learned by DANN. (c) feature space learned by CAT. Left panel: colored by
source/target; Right panel: colored by true label (digits). The features are projected to 2-D using UMAP.
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Figure 6: Evolution of the absolute di�erence between the estimated target weight ŵT and the actual ground
truth wT across epochs.

D Algorithm

Our framework is outlined in pseudo-code in Algorithm 1.

Algorithm 1 Domain Adaptation via Rebalanced Sub-domain Alignment(DARSA)
Input: Source data XS ; Source label yS , Target data XT ; coe�cient ⁄Y , ⁄D, ⁄c, ⁄a; learning rate –;
Pretrain feature extractor and classifier with XS and yS , initialize ◊S

E
, ◊T

E
, and ◊Y with pretrained weights.

Initialize wk

T
and wk

T
with 1/K for k = 1,2 ..., K

repeat

Sample minibatch from XS and XT

◊Y Ω ◊Y ≠ –Ò◊Y
(⁄Y LY + ⁄DLD + ⁄cLintra + ⁄aLinter)

◊S

E
Ω ◊S

E
≠ –Ò◊

S

E

(⁄Y LY + ⁄DLD + ⁄cLintra + ⁄aLinter)
◊T

E
Ω ◊T

E
≠ –Ò◊

T

E

(⁄DLD + ⁄cLintra + ⁄aLinter)
until ◊S

E
, ◊T

E
, and ◊Y converge

E Analysis of Weights

In order to assess the accuracy of our target weight estimation in the DARSA algorithm, we conducted an
additional analysis. This analysis focused on the MNIST to MNIST-M experiment under conditions of weak
imbalance. Specifically, we compared the di�erence between the actual ground truth target weight (denoted
as wT ) and our estimated target weight (denoted as ŵT ) across epochs.

As illustrated in the figure 6, our estimation aligns closely with the ground truth towards the end of the
training process. This proximity indicates the e�ectiveness of our weight estimation approach within the
DARSA algorithm.

F Details of Experimental Setup: Digits Datasets with label shifting

In our Digits datasets experiments, we evaluate our performance across four datasets: MNIST (LeCun
et al., 1998), MNIST-M (Ganin et al., 2016), USPS, and SVHN, all modified to induce label distribution
shifts. Here, the parameter – denotes the class imbalance rate, representing a ratio such as 1:– and –:1
for the odd:even distribution in the source and target datasets, respectively. Weak and strong imbalance
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correspond to – = 3 and – = 8. A small subset of the target domain is used for hyperparameter search,
serving as an upper performance bound for UDA methods. Results shown in Table 2 demonstrates DARSA’s
competitiveness in handling label shifting. It is worth noting that many state-of-the-art comparisons are not
specifically tailored for shifted label distribution scenarios, potentially a�ecting their performance. To ensure
a fair comparison, we use the Ax platform (Bakshy et al.; Letham et al., 2019) for automated hyperparameter
tuning to maximize domain-shifting performance (More details in F.8). Additionally, DARSA performs well
with varying imbalance rates (Table 6) and competes favorably in scenarios without label distribution shifts
(Table 7).

F.1 Details of the Digits Datasets with Label Distribution Shifts

F.1.1 Weak Imbalance: – = 3

MNIST æ MNIST-M: For source dataset, we randomly sample 36000 images from MNIST training set
with odd digits three times the even digits. For target dataset, we randomly sample 6000 images from
MNIST-M constructed from MNIST testing set, with even digits three times the odd digits. To create
MNIST-M dataset, we follow the procedure outlined in Ganin et al. (2016) to blend digits from the MNIST
over patches randomly extracted from color photos in the BSDS500 dataset (Arbelaez et al., 2010).

MNIST-M æ MNIST: For source dataset, we randomly sample 36000 images from MNIST-M constructed
from MNIST training set, with even digits three times the odd digits. For target dataset, we randomly sample
5800 images from MNIST testing set, with odd digits three times the even digits.

USPS æ MNIST: For source dataset, we randomly sample 3600 images from USPS training set, with even
digits three times the odd digits. For target dataset, we randomly sample 5800 images from MNIST testing
set, with odd digits three times the even digits.

SVHN æ MNIST: For source dataset, we randomly sample 30000 images from SVHN training set, with
even digits three times the odd digits. For target dataset, we randomly sample 5800 images from MNIST
testing set, with odd digits three times the even digits.

F.1.2 Strong Imbalance: – = 8

MNIST æ MNIST-M: For source dataset, we randomly sample 27000 images from MNIST training set
with odd digits eight times the even digits. For target dataset, we randomly sample 4500 images from
MNIST-M constructed from MNIST testing set, with even digits eight times the odd digits. To create
MNIST-M dataset, we follow the procedure outlined in Ganin et al. (2016) to blend digits from the MNIST
over patches randomly extracted from color photos in the BSDS500 dataset (Arbelaez et al., 2010).

MNIST-M æ MNIST: For source dataset, we randomly sample 13500 images from MNIST-M constructed
from MNIST training set, with even digits eight times the odd digits. For target dataset, we randomly sample
13500 images from MNIST testing set, with odd digits eight times the even digits.

USPS æ MNIST: For source dataset, we randomly sample 2700 images from USPS training set, with even
digits eight times the odd digits. For target dataset, we randomly sample 13500 images from MNIST testing
set, with odd digits eight times the even digits.

SVHN æ MNIST: For source dataset, we randomly sample 27000 images from SVHN training set, with
even digits eight times the odd digits. For target dataset, we randomly sample 18000 images from MNIST
testing set, with odd digits eight times the even digits.

F.2 Additional Empirical Analysis of our Proposed Generalization Bound

Here we empirically evaluate the proposed generalization bound with weak imbalance (– = 3) and strong
imbalance (– = 8). As shown in Figure 7 and Figure 8, our empirical results demonstrate that the sub-
domain-based generalization bound in Theorem 4.5 is empirically much stronger than the non-sub-domain-
based bound in Theorem 4.1.
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(a) Domain Discrepancy (b) Source Clf Loss (c) Domain Discrepancy (d) Source Clf Loss

(e) Domain Discrepancy (f) Source Clf Loss (g) Domain Discrepancy (h) Source Clf Loss

Figure 7: For experiments with weak imbalance (– = 3), we compare the domain discrepancy term (LD) and
source classification term (LY ) in our proposed bound to that in Theorem 4.1, respectively. Empirical results
for each experiment are demonstrated in the subfigures: (a)(b) MNIST to MNIST-M (c)(d) MNIST-M to
MNIST, (e)(f) USPS to MNIST, (g)(h) SVHN to MNIST.

F.3 Evaluate DARSA On Varying Imbalance Rates

We have conducted a study on the USPS to MNIST adaptation to explore the e�ects of varying imbalance
rates. As can be seen from Table 6, the performance of our algorithm is stable across a wide range of
imbalance rates.

Source: USPS - even : odd digit = 1:–
Target: MNIST - odd : even digit = –:1

Table 6: Summary of UDA results on USPS to MNIST adaptation with varying imbalance rates

– 1 2 3 4 5 6 7 8 9 10
Accuracy (%) 97.1 92.8 92.6 92.1 85.8 93.3 88.1 87.9 77.4 71.3

F.4 The rationale for competing algorithms choices

For benchmark methods, we have chosen methods that not only have theoretical underpinnings, but also
exhibit impressive performance in transfer learning on digit benchmarks as per the listings on the public
competition Papers with Code (2023). Furthermore, our selection includes methods that contemplate sub-
domain alignment to facilitate a direct comparison with our approach. It’s important to note that our
selection of benchmark methods may include some older models. However, these models were chosen not
just for their performance but for their theoretical relevance and their ability to provide valuable insights
into the e�ectiveness of our proposed method. Thus, while our experiments primarily serve to validate our
theory, the benchmarks also o�er meaningful evaluation of our theory’s practical impact.
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(a) Domain Discrepancy (b) Source Clf Loss (c) Domain Discrepancy (d) Source Clf Loss

(e) Domain Discrepancy (f) Source Clf Loss (g) Domain Discrepancy (h) Source Clf Loss

Figure 8: For tasks with strong imbalance (– = 8), we compare the domain discrepancy term (LD) and
source classification term (LY ) in our proposed bound to that in Theorem 4.1, respectively. Empirical
results for each experiment are demonstrated in the subfigures: (a)(b) MNIST to MNIST-M (c)(d) MNIST-
M to MNIST, (e)(f) USPS to MNIST, (g)(h) SVHN to MNIST.

F.5 Model Structures

For feature extractor, we employ a network structure similar to LeNet-5 ((LeCun et al., 1998)), but with
minor modifications: the first convolutional layer produces 10 feature maps, the second convolutional layer
produces 20 feature maps, and we use ReLU as an activation function for the hidden layer. Our feature space
has 128 dimensions. For benchmarks, we utilize the network structures provided in the benchmark source
code. In cases where experiments are not included in the source code, we use the same network architecture
as our model to ensure fair comparisons. For classifier, we use a network structure with three fully connected
layers with ReLU activation and a dropout layer with a rate of 0.5. See the included code link for further
details of each experiment.

F.6 Ablation study

To gain insight into the individual impact of each component within our objective function (Section 5),
we performed an ablation study under conditions of weak imbalance. The outcomes of this investigation
are detailed in Table 4. The ablation analysis confirms that each component in our objective function
contributes to its overall performance. Therefore, we recommend the use of all components for optimal
results. In addition, we have included ablation study with feature space visualization in Figure 9. As can
be seen in Figure 9, the learned representation of DARSA has improved separation when using all the
components, supporting the e�ectiveness of the proposed objective function.

F.7 Evaluate DARSA On Benchmarks Without Additional Label distribution shifts

We conduct additional experiments to evaluate how DARSA performs in scenarios without label distribution
shifts. Results in Table 7 show DARSA’s performance is comparable with the most competitive methods.
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(a) No LY (b) No LD

(c) No Lintra (d) No Linter

Figure 9: For MNIST to MNIST-M UDA task with shifted label distribution with representations learnt by
ablation study. Colored by 1) source/target; 2) predicted label (digit). The features are projected to 2-D
using UMAP.

.Table 7: Summary of UDA results on the Digits datasets without shifted label distribution, measured in
terms of prediction accuracy (%) on the target domain.

DANN WDGRL DSN ADDA CAT CDAN pixelDA DRANet DARSA

U æ M 74.5 84.8 91.0 90.1 80.9 98.0 87.6 97.8 97.4
S æ M 73.9 59.3 82.7 76.0 98.1 89.2 71.6 59.7 98.6

F.8 Model hyperparameters

We use Adaptive Experimentation (Ax) platform (Bakshy et al.; Letham et al., 2019), an automatic tuning
approaches to select hyperparameters to maximize the performance of our method. We use Bayesian opti-
mization supported by Ax with 20 iterations to decide the hyperparameter choice. We note that most of
the SOTA comparisons are not specifically designed for shifted label distribution scenarios, and this setting
caused issues in several competing methods. We used Ax to maximize their performance in label shifting
scenarios. Details on the model hyperparameters used for the Digits datasets with shifted label distribution
are provided in Table 8 and Table 9 (If not explicitly stated, we resort to the default hyperparameters from
the respective implementations of the benchmark.).
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Table 8: Model hyperparameters used for Digits datasets with weak imbalance – = 3

MNIST to
MNIST-M

MNIST-M to
MNIST

USPS to
MNIST

SVHN to
MNIST

DARSA

batch size = 512,
– = 0.01, ⁄Y = 0.4,
⁄D = 0.35, ⁄c = 1,

⁄a = 0.9,
m = 30

SGD, momentum = 0.5

batch size = 512,
– = 0.01, ⁄Y = 1,
⁄D = 0.5, ⁄c = 1,

⁄a = 1,
m = 30

SGD, momentum = 0.4

batch size = 256,
, – = 0.01, ⁄Y = 1,
⁄D = 0.5, ⁄c = 1,

⁄a = 1,
m = 30

SGD, momentum = 0.4

batch size = 256,
– = 0.05, ⁄Y = 0.95,
⁄D = 0.11, ⁄c = 0.3,

⁄a = 0.11,
m = 50

SGD, momentum = 0.4

DANN
batch size = 32

Adam,
learning rate = 1e-4

batch size = 32
Adam,

learning rate = 1e-5

batch size = 32
Adam,

learning rate = 1e-4

batch size = 64
Adam,

learning rate = 1e-4

WDGRL

batch size = 32
Adam,

learning rate = 1e-5,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

batch size = 64
Adam,

learning rate = 1e-4,
“ = 10,

critic training step: 5,
feature extractor
and discriminator
training step: 10

batch size = 32
Adam,

learning rate = 1e-4,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 2

batch size = 32
Adam,

learning rate = 1e-5,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

DSN

batch size = 32
SGD, momentum = 0.8,

learning rate = 1e-2,
– = 0.01,

— = 0.075, “ = 0.25

batch size = 32
SGD, momentum = 0.8,

learning rate = 0.01,
– = 0.01,

— = 0.075, “ = 0.25

batch size = 32
SGD, momentum = 0.8,

learning rate = 0.01,
– = 0.01,

— = 0.075, “ = 0.4

batch size = 512
SGD, momentum = 0.5,

learning rate = 1e-5,
– = 0.046,

— = 0.61, “ = 0.92

ADDA

batch size = 64
Adam,

learning rate = 1e-3,
critic training step: 1,

target model
training step: 10

batch size =64
Adam,

learning rate = 1e-5,
critic training step: 1,

target model
training step: 1

batch size = 64
Adam,

learning rate = 1e-3,
critic training step: 1,

target model
training step: 1

batch size = 64
Adam,

learning rate = 1e-3,
critic training step: 3,

target model
training step: 2

CAT

batch size = 512
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 256
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

CDAN
batch size = 64

SGD, momentum = 0.9,
learning rate =0.01

batch size = 64
SGD, momentum = 0.9,

learning rate =0.01

batch size = 64
SGD, momentum = 0.9,

learning rate =0.01

batch size = 64
SGD, momentum = 0.9,

learning rate =0.1

pixelDA

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 10

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 10

batch size = 32
Adam,

learning rate =0.0001,
dim of the

noise input: 20

batch size = 32
Adam,

learning rate =0.0001,
dim of the

noise input: 20

DRANet batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

MCD batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

MDD batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01
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Table 9: Model hyperparameters used for Digits datasets with strong imbalance – = 8

MNIST to
MNIST-M

MNIST-M to
MNIST

USPS to
MNIST

SVHN to
MNIST

DARSA

batch size = 1024,
– = 0.01, ⁄Y = 0.8,
⁄D = 0.4, ⁄c = 0.9,

⁄a = 0.9,
m = 30

SGD, momentum = 0.5

batch size = 1024,
– = 0.01, ⁄Y = 1,
⁄D = 0.5, ⁄c = 1,

⁄a = 0.5,
m = 30

SGD, momentum = 0.4

batch size = 1024,
, – = 0.01, ⁄Y = 1,
⁄D = 0.1, ⁄c = 1,

⁄a = 1,
m = 30

SGD, momentum = 0.4

batch size = 1024,
– = 0.01, ⁄Y = 0.95,
⁄D = 0.11, ⁄c = 1,

⁄a = 1,
m = 50

SGD, momentum = 0.4

DANN
batch size = 64

Adam,
learning rate = 1e-3

batch size = 256
Adam,

learning rate = 1e-6

batch size = 64
Adam,

learning rate = 1e-4

batch size = 128
Adam,

learning rate = 1e-3

WDGRL

batch size = 64
Adam,

learning rate = 1e-4,
“ = 10,

critic training step: 5,
feature extractor
and discriminator
training step: 10

batch size = 128
Adam,

learning rate = 1e-5,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 5

batch size = 64
Adam,

learning rate = 1e-4,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 4

batch size = 64
Adam,

learning rate = 1e-6,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

DSN

batch size = 32
SGD, momentum = 0.8,

learning rate = 1e-2,
– = 0.01,

— = 0.075, “ = 0.25

batch size = 32
SGD, momentum = 0.8,

learning rate = 1e-2,
– = 0.01,

— = 0.075, “ = 0.25

batch size = 64
SGD, momentum = 0.8,

learning rate = 1e-2,
– = 0.01,

— = 0.075, “ = 0.4

batch size = 256
SGD, momentum = 0.1,

learning rate = 1e-4,
– = 0.046,

— = 0.075, “ = 0.25

ADDA

batch size = 128
Adam,

learning rate = 1e-5,
critic training step: 1,

target model
training step: 1

batch size =256
Adam,

learning rate = 1e-6,
critic training step: 2,

target model
training step: 1

batch size = 128
Adam,

learning rate = 1e-5,
critic training step: 1,

target model
training step: 1

batch size = 128
Adam,

learning rate = 1e-6,
critic training step: 4,

target model
training step: 1

CAT

batch size = 512
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 256
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

CDAN
batch size = 64

SGD, momentum = 0.9,
learning rate =1e-3

batch size = 128
SGD, momentum = 0.5,

learning rate =0.1

batch size = 64
SGD, momentum = 0.9,

learning rate =0.01

batch size = 16
SGD, momentum = 0.1,

learning rate =1e-4

pixelDA

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 10

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 20

batch size = 32
Adam,

learning rate =0.001,
dim of the

noise input: 20

batch size = 32
Adam,

learning rate =0.001,
dim of the

noise input: 20

DRANet batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

MCD batch size = 128
learning rate = 0.1

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

MDD batch size = 128
learning rate = 0.1

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

G Details of Experimental Setup: TST Dataset with Shifted Label Distribution

The Tail Suspension Test (TST) dataset (Gallagher et al., 2017) consists of local field potentials (LFPs)
recorded from the brains of 26 mice. These mice belong to two genetic backgrounds: a genetic model of
bipolar disorder (Clock-�19) and wildtype mice. Each mouse is subjected to 3 behavioral assays which are
designed to vary stress: home cage (HC), open field (OF), and tail-suspension (TS). We conduct experiments
on two domain adaptation tasks using these neural activity data: transferring from wildtype mice to the
bipolar mouse model and vice versa. We aim to predict for each one second window which of the 3 conditions
(HC, OF, or TS) the mouse is currently experiencing. To create label distribution shifts, we subsample
the datasets so that we have 6000 Homecage observations, 3000 Open Field observations, and 6000 Tail
Suspension observations in the bipolar genotype dataset and 3000 Homecage observations, 6000 OpenField
observations, and 3000 Tail Suspension observations in the wildtype genotype dataset.
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Table 10: Summary of UDA results on the TST datasets with shifted label distribution, measured in terms
of prediction accuracy (%) on the target domain. Values represent the mean prediction accuracy, and
parentheses denote standard deviation across 5 runs

DANN WDGRL DSN ADDA CDAN Source only DARSA

Clock-�19 to Wildtype 80.5 (0.91) 80.3 (0.92) 79.7 (0.39) 72.6 (3.29) 74.2 (0.62) 73.6 (0.38) 86.2 (0.31)

Wildtype to Clock-�19 80.6 (0.51) 80.3 (0.55) 80.7 (0.65) 68.6 (4.85) 74.3 (0.23) 70.6 (0.97) 84.8 (0.09)

G.1 Details of the TST Dataset with Shifted Label Distribution

The Tail Suspension Test (TST) dataset (Gallagher et al., 2017) consists of 26 mice recorded from two genetic
backgrounds, Clock-�19 and wildtype. Clock-�19 is a genotype which has been proposed as a model of
bipolar disorder while wildtype is considered as a typical or common genotype. Local field potentials (LFPs)
are recorded from 11 brain regions and segmented into 1 second windows. For each window, power spectral
density, coherence, and granger causality features are derived. Each mouse is placed through 3 behavioral
contexts while collecting LFP recordings: home cage, open field, and tail-suspension. Mice spent 5 minutes
in the home cage which is considered a baseline or low level of distress behavioral context. Mice spent 5
minutes in the open field context which is considered a moderate level of distress. Mice then spent 10 minutes
in the tail suspension test which is a high distress context.

G.2 Model Structures

For feature extractor of the wildtype to bipolar task we use a network structure consisting of: a fully
connected layer that maps our data to a feature space of 256 dimensions, with a LeakyReLU activation
function; a fully connected layer that maps the feature space to 128 dimensions, and a Softplus activation
function. For the bipolar to wildtype task, we use a network structure that includes: a fully connected
layer that maps our data to a feature space of 256 dimensions, with a ReLU activation function; a fully
connected layer that maps the feature space to 128 dimensions, with another ReLU activation function. For
the classifier, we use a network structure that includes: three fully connected layers with ReLU activation
and a dropout layer with a rate of 0.5. For benchmarks, we use the same network structures as our model
to ensure fair comparisons, with the exception of DSN which has two fully connected layers with ReLU
activation. See the included code link for additional details on each experiment.

G.3 Model hyperparameters

Again, we use Adaptive Experimentation (Ax) platform (Bakshy et al.; Letham et al., 2019), an automatic
tuning approaches to select hyperparameters to maximize the performance of our method. We use Bayesian
optimization supported by Ax with 20 iterations to decide the hyperparameter choice. We note that most of
the SOTA comparisons are not specifically designed for shifted label distribution scenarios, and this setting
caused issues in several competing. We used Ax to maximize their performance in label shifting scenarios.
Details on the model hyperparameters are provided in Table 11 (If not specified, the default hyperparameters
from their respective implementations are employed.).

H Details of Experimental Setup: VisDA-2017 Dataset with Shifted Label
Distribution

Here, we further explore performance in a more complex scenario. As such, we have also evaluated DARSA
on VisDA-2017, a challenging benchmark with significant domain shifts and non-trivial data structures.

VisDA-2017 Dataset and Experimental Setup:

The VisDA-2017 dataset (Peng et al., 2017) is a large-scale domain adaptation benchmark designed to
evaluate the performance of algorithms on synthetic-to-real domain transfer. It comprises images from 12
object categories rendered in a virtual environment (source domain) and real-world images (target domain).
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Table 11: Model hyperparameters used for the label distribution shifting TST datasets

Clock-�19 to Wildtype Wildtype to Clock-�19

DARSA

batch size = 128,
–=1e-4, ⁄Y = 1,

⁄D = 0.4, ⁄c = 0.1,
⁄a = 0.9,
m = 50

SGD, momentum = 0.6

batch size = 128,
– = 0.001, ⁄Y = 0.7,
⁄D = 0.1, ⁄c = 0.1,

⁄a = 1,
m = 50

SGD, momentum = 0.3

DANN
batch size = 32

Adam,
learning rate = 1e-4

batch size = 32
Adam,

learning rate = 1e-4

WDGRL

batch size = 32
Adam,

learning rate = 1e-4,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 2

batch size = 32
Adam,

learning rate = 1e-5,
“ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

DSN

batch size = 64
SGD, momentum = 0.5,

learning rate = 0.1,
– = 1,

— = 1, “ = 1

batch size = 32
SGD, momentum = 0.5,

learning rate = 0.1,
– = 1,

— = 1, “ = 1

CAT

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 3

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 3

CDAN
batch size = 64

SGD, momentum = 0.9,
learning rate = 0.1

batch size = 64
SGD, momentum = 0.9,

learning rate = 0.1
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To evaluate DARSA under strong class imbalance, we follow a similar label shifting strategy as in the MNIST
experiments, setting – = 8. This implies an eightfold di�erence in the number of samples per class between
the source and target domains. Specifically, for the source dataset, we sample a total of 32,400 images, and
for the target dataset, we sample 5,400 images, maintaining the class imbalance.

Table 12 summarizes DARSA’s per-class accuracy compared with several strong baselines (all metrics re-
ported with – = 8 for label shifting). Notably, we observed that increasing the batch size for sub-domain
alignment can further improve DARSA’s performance on VisDA-2017, indicating potential benefits from
larger-scale training settings.

Table 12: Per-class and average accuracy on VisDA-2017 under a strong class imbalance with – = 8.

airplane bicycle bus car horse knife motorcycle person plant skateboard train truck Avg. Acc.

Source Only 30.7 87.0 0.0 88.0 61.4 9.1 1.8 25.3 18.1 91.1 8.8 6.0 35.6
CDAN (Long et al., 2018) 39.8 95.0 12.5 72.0 50.4 69.0 25.6 68.0 42.0 75.0 40.9 16.0 50.5
CDAN+ELS (Zhang et al., 2023) 94.6 59.0 66.8 74.0 71.5 41.0 89.3 39.0 64.5 84.0 92.3 21.0 66.4
CDAN+MCC (Jin et al., 2020) 88.5 84.0 40.0 57.0 42.6 19.0 37.9 60.0 72.9 92.0 57.0 31.0 56.8
EUDA (Abedi et al., 2024) 44.9 88.0 24.4 44.0 42.9 72.0 85.3 11.0 10.3 99.0 31.3 48.0 50.1
DARSA 96.3 75.0 67.0 89.0 81.4 69.0 86.6 49.0 58.8 92.0 91.6 11.0 72.2

These findings suggest that DARSA remains robust for more complex, non-Gaussian domains.

I Computational Analysis of DARSA

While our paper primarily focuses on the theoretical analysis of DARSA, we acknowledge the necessity of
more extensive computational studies due to the inherent computational cost associated with the Wasserstein
distance. Specifically, when dealing with probability measures having at most n supports, the computational
complexity of the exact Wasserstein distance is on the order of O(n3 log(n)) (Pele & Werman, 2009). In
high-dimensional settings, such as images with numerous pixels, the size of these supports can become
exceptionally large, significantly exacerbating the computational burden.

I.1 Embedding Network for Dimensionality Reduction

A crucial step in our approach involves utilizing an embedding or representation learning network. By
mapping high-dimensional input data into a lower-dimensional latent space, we can substantially reduce
the size of the supports for the probability measures. This dimensionality reduction directly translates to
a significant decrease in the computational cost associated with calculating the Wasserstein distance or its
approximation.

I.2 Sinkhorn Algorithm for Practicality

To further enhance computational e�ciency, we employ the Sinkhorn algorithm (Altschuler et al., 2017) to
approximate the Wasserstein distance. Directly solving the optimal transport problem can be computation-
ally prohibitive, particularly in high dimensions. The Sinkhorn algorithm o�ers a more tractable alternative
by adding an entropic regularization term to the optimal transport problem. While this introduces an ap-
proximation error, the regularization parameter ‘ provides a mechanism to balance the trade-o� between
accuracy and computational speed. Importantly, the entropic version of the Sinkhorn algorithm can achieve
an approximate Wasserstein distance computation with a complexity of O(n2) (up to polynomial orders of
approximation errors) (Nguyen et al., 2022).

I.3 Empirical Time Analysis

In addition to these theoretical considerations, we conducted an empirical time study for the MNIST æ
MNIST-M domain adaptation task with a strong class imbalance (– = 8). These experiments were performed
on an NVIDIA GeForce RTX 2080 Ti GPU. Table 13 presents a comparison of total training steps, batch
sizes, peak GPU memory usage, and average time per step for our proposed DARSA method against several
established domain adaptation baselines.
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Table 13: Computational analysis of DARSA

Metric DARSA DANN ADDA WDGRL DSN CDAN CAT DRANet
Total Steps 20k 4.23k 2.5k 50k 14.1k 42k 10k 100k
Batch size 1024 64 128 64 32 64 512 32
Peak GPU Memory Usage (MB) 54.5 1.3 3.2 2.9 15.8 118.3 469.0 112.1
Average Time Per Step (s) 1.88 0.21 0.45 0.29 0.22 0.17 2.73 0.34
Accuracy (%) 78.8 61.1 47.9 22.3 57.5 37.1 48.9 63.3

The seemingly higher average time per step for DARSA is primarily attributed to its utilization of a sig-
nificantly larger batch size (1024). While processing these larger batches, even with the e�cient Sinkhorn
approximation for the Wasserstein distance on embedded representations, inherently demands more compu-
tation per step. However, this strategic choice allows DARSA to achieve convergence in a considerably lower
number of total steps (20k) compared to many baselines. Consequently, despite the longer time per step,
DARSA achieves a notably higher accuracy (78.8%), suggesting a more e�cient overall training process than
methods that rely on smaller batch sizes.

These results, when considered in conjunction with the theoretical computational complexities, demonstrate
the practical feasibility of our proposed DARSA approach when employing the embedding network for
dimensionality reduction and the Sinkhorn algorithm for e�cient Wasserstein distance approximation.

J Accessibility of the Datasets and Computing Resources

Accessibility of the Datasets The MNIST, BSDS500, USPS, SVHN, and VisDA-2017 datasets are pub-
licly available with an open-access license. The Tail Suspension Test (TST) dataset (Gallagher et al., 2017)
is available to download at https://research.repository.duke.edu/concern/datasets/zc77sr31x?
locale=en for free under a Creative Commons BY-NC Attribution-NonCommercial 4.0 International li-
cense.

Computing Resources The experiments are conducted on a computer cluster equipped with a NVIDIA
GeForce RTX 2080 Ti that has a memory capacity of 11019MiB.
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