
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BROADER IMPACT

Designing a reward function is not a trivial challenge for many real-world problems where Rein-
forcement Learning can be useful. Moreover, in domains where interacting with the environment
is limited or costly, sample inefficiency of RL algorithms can become a bottleneck for learning a
policy. While domain experts can hand-engineer intrinsic rewards to aid the RL agent training, it is
unreasonable to expect them to design useful reward shaping functions for each independent task. As
a single step towards relaxing this expectation, we aim to leverage the universality of using Large
Language Models (which can loosely be referred to “Jack of all trades, master of none”) to provide
useful guidance for training the RL agent. Hence, one of the direct impacts of our work is tapping
into the potential of LLMs for obtaining useful guidance across multiple tasks thereby reducing the
cognitive load on domain experts. Moreover, we hope that our work opens up future possibilities of
exploring more domains where LLMs can assist in aiding the downstream learning process.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ENVIRONMENTS

B.1 BABYAI

In the BabyAI suite of environments, the agent has to reach the goal location in a fixed number
of steps (environment max steps is set to 100). This platform relies on a gridworld environment
(MiniGrid) to generate a set of complex environments, and includes challenging domains to test
sample efficiency of training RL agents. Each gridworld environment is populated with the agent
and objects such as doors, keys, and lava, which are placed in varying sized grids. Each grid is
procedurally generated, i.e., the object placements can vary at the start of each episode. However,
using a fixed environment seed, the layout stays the same for each episode run. The doors in the
environment can also be locked, and can be opened by first picking up the key first. Objects such
as lava can not be crossed by the agent, and lead to episode termination if the agent steps on one of
these.

Observation Space: By default, the environment offers an observation space of shape (7,7,3) which
is a partial view of the complete environment grid, and has been shown to accelerate the RL agent’s
training (Chevalier-Boisvert et al., 2018). This observation space consists of a hierarchical mapping
for 3 matrices each of size 7x7. The first contains the object-id, the second contains the property
(color) of the object, and the third consists of the state of the object (e.g., if the door is open or
locked).

Action Space: The agent’s action space consists of : turn left, turn right, move forward, pick up an
object, drop an object, toggle/activate an object, and done. For each environment, some of these
actions are unused, and we refer readers to the specific environment’s documentation for the respective
details.

Extrinsic/Environment Rewards: If the agent reaches the goal location in N steps, the total reward
is calculated as R = 1 - 0.9*(N/H) where H is the maximum number of allowed steps (i.e., 100).
Otherwise, the agent get a reward of 0 for that episode.

(a) DoorKey-5x5 (b) EmptyRandom (c) LavaGap (d) DoorKey-6x6

Figure 5: Environment Layouts from the BabyAI environment suite used for experiments.

B.1.1 DOORKEY

Description: The agent has to pick up the key to unlock the door and then reach to the goal location
shown by the green square.

Mission Space: “use the key to open the door and then get to the goal”

Action Space: turn left, turn right, move forward, pick up an object, toggle/activate an object

B.1.2 EMPTY-RANDOM

Description: The agent has to reach the goal location shown by the green square in a completely
empty room. The agent’s starting position can be varied by varying the environment seed.

Mission Space: “get to the green goal square”

Action Space: turn left, turn right, move forward

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.1.3 LAVAGAP

Description: The agent has to reach to the goal location shown by the green square by avoiding all
lava tiles, where the episode will terminate immediately.

Mission Space: “avoid the lava and get to the green goal square”

Action Space: turn left, turn right, move forward

B.2 HOUSEHOLD

Description: The agent’s goal is to reach the final destination (green block). for that the robot (red
triangle) has to pick up the red key, charge itself at the charging dock (purple block), and open the
red door.

Observation Space: The household environment is an 15x15 grid. The state is represented by a
multi-dimensional vector where each index corresponds to a specific grid location, and each value
represents the type of object at that location. The state vector also includes boolean flags for whether
the agent has picked up the right key, opened the door, and whether the agent is charged.

Action Space: up, down, left, right.

Reward: The reward function is a sparse binary reward, assigning a value of 0 to all states except the
goal state.

B.3 MARIO

Description: The agent’s goal is to open the door upstairs. To do this, it must pick up both keys
located downstairs. One key is hidden under a red rock. The ladder is worn out and will break after
one use, so the agent can only go down through the tube, but not back up.

Observation Space: The Mario environment is an 8x11 grid. The state is represented by a multi-
dimensional vector where each index corresponds to a specific grid location, and each value represents
the type of object at that location. The state vector also includes boolean flags for whether the agent
has visited the bottom, picked up the key, picked up the hidden key, and returned to the upper level.

Action Space: up, down, left, right.

Reward: The reward function is a sparse binary reward, assigning a value of 0 to all states except the
goal state.

B.4 MINECRAFT

Description: The agent’s goal is to build a ladder using a plank and a stick. To do this, it needs
to collect raw wood, take it to the processing unit to get processed wood, then make a plank at
workshop1 and a stick at workshop2. Finally, both are used to build the ladder at workshop3.

Observation Space: This environment is an 10x15 grid. The state is represented by a multi-
dimensional vector where each index corresponds to a specific grid location, and each value represents
the type of object at that location. The state vector also includes boolean flags for whether a stick,
plank, or ladder has been made, along with the number of processed wood pieces.

Action Space: up, down, left, right.

Reward: The reward function is a sparse binary reward, assigning a value of 0 to all states except the
goal state.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ALGORITHM AND EXPERIMENT DETAILS

All the experiments were run on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with GeForce GTX
1080 GPU.

C.1 ALGORITHM

We present the algorithm for our framework below:

Algorithm 1 Training an RL policy ωω using ωLLM

Require: Input ωLLM

Ensure: Output ωω

1: Initialize parameters ε, dataset D
2: // EXPLORATION PHASE
3: for each iteration do
4: Store transitions D → (s, a, s→, r) ↑ ωω

5: Relabel dataset with shaped rewards D→
→ D,ωLLM

6: end for
7: // REINFORCEMENT LEARNING PHASE
8: for each gradient step do
9: Sample transitions {ϑj}D

→

j=1 ↑ D
→

10: train ωω using {ϑj}
11: end for
12: return ωω

C.2 HYPERPARAMETERS

C.2.1 RQ1 EXPERIMENTS

For RQ1 results, we set the temperature to 0.5 for directly prompting LLMs to generate the abstract
plan. Since the LLM+verifier framework generates the plan step-by-step, we bound the maximum
number of steps the LLM can take to reach the goal to 20 for Household and MineCraft and 30 for
BabyAI and Mario environment. We also limit the maximum number of back-prompts allowed at any
step to 5 for Household and MineCraft and 10 for BabyAI and Mario environment.

C.2.2 RQ2 EXPERIMENTS

For the Household, Mario, and Minecraft environments, we used the standard Q-learning algorithm
with an ϖ-greedy policy. Initially, ϖ is set to 1 and annealed to 0.05 over the course of training. When
the agent achieves a subgoal (as determined by the LLM plan), ϖ decays by a factor of 0.995, and it
decays by a factor of 0.95 when the main goal is reached. The other hyperparameters are as follows:
maximum training steps = 5e6, discount factor (ϱ) = 0.99, buffer size = 5e5, and batch size = 64.

The hyperparameters used for all PPO and A2C training experiments are listed in Table 3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters for all RL training experiments.

Hyperparameter Value
of training steps 1e6
of epochs 4
batch size 256
discount 0.99
learning rate 0.001
gae lambda 0.95
entropy coefficient 0.01
value loss coefficient 0.5
max gradient norm 0.5
optimizer epsilon 1e-08
optimizer alpha 0.99
clip epsilon 0.2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D PROMPTS

D.1 RQ1: DIRECT LLM PROMPTS

Here, we present the exact prompt for querying the entire policy at once for the DoorKey 5x5
environment, the Mario environment, the Household environment, and the Mine-craft environment.

Direct Prompt for DoorKey 5x5 environment

[PROMPT] You are tasked with solving a 3x3 maze where you will encounter objects like
a key and a door along with walls. Your task is ‘use the key to open the door and then get to
the goal’. You can be facing in any of the four directions. To move in any direction, to pick
up the key, and to open the door, you need to face in the correct direction. The available
actions at each step are ‘turn left’, ‘turn right’, ‘move forward’, ‘pickup key’, ‘open door’.
The current maze looks like this:

unseen door unseen
key wall unseen
agent wall goal

You (agent) are currently facing left.
What is the sequence of actions you will take to reach the goal? Output as a comma
separated list. Do not include anything else in your response.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Direct Prompt for Mario environment

[PROMPT]

Here is a pddl domain, a planning problem. Provide the sequence of actions you will
take to reach the goal. Provide only the pddl syntax for the plan where the action is
represented as (ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain Mario)

(:requirements :strips :typing)
(:types key - object)
(:predicates (has-key)

(has-hidden-key)
(at-upper-platform)
(at-bottom)
(at-upper-platform-with-key)
(at-upper-platform-with-hidden-key)
(door-open))

(:action go_down_the_tube
:parameters ()
:precondition (and (at-upper-platform))
:effect (and (at-bottom)))

(:action pickup_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-key)))

(:action pickup_hidden_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-hidden-key)))

(:action go_up_the_ladder
:parameters ()
:precondition (and (has-key) (has-hidden-key)

(at-bottom))
:effect (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key)))
(:action unlock_door

:parameters ()
:precondition (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key))
:effect (and (door-open)))

)

problem pddl
(define (problem prob)

(:domain Mario)
(:objects
)
(:init

(at-upper-platform))
(:goal

(and (door-open))
)

)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Direct Prompt for Household environment

[PROMPT]

Here is a pddl domain, a planning problem. Provide the sequence of actions you will
take to reach the goal. Provide only the pddl syntax for the plan where the action is
represented as (ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain household)

(:requirements :strips :typing :negative-preconditions)
(:types key door - object)
(:predicates (key-picked)

(holding-key)
(door-opened)
(at-starting-location)
(charged)
(at-destination))

(:action get_key
:parameters ()
:precondition (and (not(holding-key)))
:effect (and (key-picked) (holding-key)))

(:action open_door
:parameters ()
:precondition (and (not (door-opened))

(holding-key) (key-picked))
:effect (and (door-opened) (not(holding-key))

(not (key-picked))))
(:action is_charged

:parameters ()
:precondition (and (door-opened))
:effect (and (charged)))

(:action goal
:parameters ()
:precondition (and (charged))
:effect (and (at-destination)))

)

problem pddl
(define (problem prob)

(:domain household)
(:objects
)
(:init

(at-starting-location))
(:goal

(and (at-destination))
))

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Direct Prompt for Mine-Craft environment

[PROMPT]

Here is a pddl domain, a planning problem. Provide the sequence of actions you will
take to reach the goal. Provide only the pddl syntax for the plan where the action is
represented as (ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain minecraft)

(:requirements :strips :typing :negative-preconditions)
(:types wood - object)
(:predicates

(wood-picked ?w - wood)
(wood-processed ?w - wood)
(at-starting-location)
(plank_made)
(stick_made)
(ladder_made)
(processed-to-plank ?w - wood)
(processed-to-stick ?w - wood))

(:action get_wood
:parameters (?w - wood)
:precondition (not (wood-picked ?w))
:effect (and (wood-picked ?w)))

(:action get_processed_wood
:parameters (?w - wood)
:precondition (and (wood-picked ?w)

(not (wood-processed ?w)))
:effect (and (wood-processed ?w)))

(:action make_plank
:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-plank ?w))
(not (processed-to-stick ?w)))

:effect (and (processed-to-plank ?w)(plank_made)))
(:action make_stick

:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-stick ?w))
(not (processed-to-plank ?w)))

:effect (and (processed-to-stick ?w)(stick_made)))
(:action make_ladder

:parameters ()
:precondition (and (stick_made) (plank_made))
:effect (and (ladder_made)))

)

problem pddl
(define (problem prob)

(:domain minecraft)
(:objects

wood0 wood1 - wood)
(:init

(at-starting-location))
(:goal

(and (ladder_made))
))

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 RQ1: VERIFIER-AUGMENTED LLM PROMPTS

Here we show representative step-prompts and corresponding back prompts for DoorKey 5x5
environment, Mario environment, Household environment and Mine-Craft environment.

Step-prompt and Back-Prompt for DoorKey 5x5 environment

[STEP PROMPTING]
You are tasked with solving a 3x3 maze where you will encounter objects like a key and a
door along with walls. Your task is ‘use the key to open the door and then get to the goal’.
You can be facing in any of the four directions. To move in any direction, to pick up the
key, and to open the door, you need to face in the correct direction. You will be given a
description of the maze at every step and you need to choose the next action to take. The
available actions are ‘turn left’, ‘turn right’, ‘move forward’, ‘pickup key’, ‘open door’.
The current maze looks like this:

unseen door unseen
key wall unseen
agent wall goal

You (agent) are currently facing left.
What is the next action that the agent should take? Only choose from the list of available
actions. Do not include anything else in your response. For example, if you choose ‘move
forward’, then only write ‘move forward’ in your response.
LLM Response: pickup key

[BACK PROMPTING]
Information: You cannot ‘pickup key’ in this state as you are not facing the key. Please
choose another action.The following actions are feasible in this state: [‘turn right’, ‘turn
left’].
The current maze looks like this:

unseen door unseen
key wall unseen
agent wall goal

You (agent) are currently facing left.
What is the next action that the agent should take? Only choose from the list of available
actions. Do not include anything else in your response. For example, if you choose ‘move
forward’, then only write ‘move forward’ in your response. You have already tried the
following actions: pickup key. Please choose another action.
LLM Response: turn right
...

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Step-prompt and Back-Prompt for Mario environment

[STEP PROMPTING]
Here is a pddl domain, a planning problem. Provide only the next action for the query
problem. Provide only the pddl syntax for the plan where the action is represented as
(ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain Mario)

(:requirements :strips :typing)
(:types key - object)
(:predicates (has-key)

(has-hidden-key)
(at-upper-platform)
(at-bottom)
(at-upper-platform-with-key)
(at-upper-platform-with-hidden-key)
(door-open))

(:action go_down_the_tube
:parameters ()
:precondition (and (at-upper-platform))
:effect (and (at-bottom)))

(:action pickup_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-key)))

(:action pickup_hidden_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-hidden-key)))

(:action go_up_the_ladder
:parameters ()
:precondition (and (has-key) (has-hidden-key)

(at-bottom))
:effect (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key)))
(:action unlock_door

:parameters ()
:precondition (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key))
:effect (and (door-open)))

)

problem pddl
(define (problem prob)

(:domain Mario)
(:objects
)
(:init

(at-upper-platform))
(:goal

(and (door-open))
)

)

LLM Response: pickup_key
[BACK PROMPTING]
Information: Your plan so far - []. Your response - pickup_key. The action provided
is not feasible because you are still at upstairs. Choose a valid action from the list
[’(pickup_hidden_key), (go_down_the_tube), (unlock_door), (pickup_key),
(go_up_the_ladder)].
...

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Step-prompt and Back-Prompt for Household environment

[STEP PROMPTING]
Here is a pddl domain, a planning problem. Provide only the next action for the query
problem. Provide only the pddl syntax for the plan where the action is represented as
(ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain household)

(:requirements :strips :typing :negative-preconditions)
(:types key door - object)
(:predicates (key-picked)

(holding-key)
(door-opened)
(at-starting-location)
(charged)
(at-destination))

(:action get_key
:parameters ()
:precondition (and (not(holding-key)))
:effect (and (key-picked) (holding-key)))

(:action open_door
:parameters ()
:precondition (and (not (door-opened))

(holding-key) (key-picked))
:effect (and (door-opened) (not(holding-key))

(not (key-picked))))
(:action is_charged

:parameters ()
:precondition (and (door-opened))
:effect (and (charged)))

(:action goal
:parameters ()
:precondition (and (charged))
:effect (and (at-destination)))

)

problem pddl
(define (problem prob)

(:domain household)
(:objects
)
(:init

(at-starting-location))
(:goal

(and (at-destination))
))

LLM Response: open_door

[BACK PROMPTING]

Information: Your plan so far - []. Your response - open_door. The action provided is
not feasible because you do not have key with you. Choose a valid action from the list
[’(is_charged), (get_key), (open_door), (goal)].
...

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Step-prompt and Back-Prompt for Mine-Craft environment

[STEP PROMPTING]

Here is a pddl domain, a planning problem. Provide only the next action for the query
problem. Provide only the pddl syntax for the plan where the action is represented as
(ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain minecraft)

(:requirements :strips :typing :negative-preconditions)
(:types wood - object)
(:predicates

(wood-picked ?w - wood)
(wood-processed ?w - wood)
(at-starting-location)
(plank_made)
(stick_made)
(ladder_made)
(processed-to-plank ?w - wood)
(processed-to-stick ?w - wood))

(:action get_wood
:parameters (?w - wood)
:precondition (not (wood-picked ?w))
:effect (and (wood-picked ?w)))

(:action get_processed_wood
:parameters (?w - wood)
:precondition (and (wood-picked ?w)

(not (wood-processed ?w)))
:effect (and (wood-processed ?w)))

(:action make_plank
:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-plank ?w))
(not (processed-to-stick ?w)))

:effect (and (processed-to-plank ?w)(plank_made)))
(:action make_stick

:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-stick ?w))
(not (processed-to-plank ?w)))

:effect (and (processed-to-stick ?w)(stick_made)))
(:action make_ladder

:parameters ()
:precondition (and (stick_made) (plank_made))
:effect (and (ladder_made)))

)

problem pddl
(define (problem prob)

(:domain minecraft)
(:objects

wood0 wood1 - wood)
(:init

(at-starting-location))
(:goal

(and (ladder_made))
))

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Step-prompt and Back-Prompt for Mine-Craft environment (..continued)

LLM Response: make_ladder

[BACK PROMPTING]

Information: Your plan so far - [get_wood, get_processed_wood,make_stick].
Your response - make_ladder. The action provided is not feasible be-
cause you do not have plank. Choose a valid action from the list
[(get_wood), (make_ladder), (make_stick), (make_plank), (get_processed_wood)].
...

28

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Investigating LLM-generated Heuristics for Reward Shaping
	Directly prompting LLMs Without Verification
	Prompt Construction

	Augmenting LLMs with a Verifier
	Verifier Construction
	Prompt Construction

	Reward Shaping using g

	Experiments & Results
	Evaluation Domains
	Comparing the LLM-generated Heuristics (RQ1)
	Evaluating the Sample Efficiency boost in RL training (RQ2)
	Discussion

	Conclusion & Future Work
	Broader Impact
	Environments
	BabyAI
	DoorKey
	Empty-Random
	LavaGap

	Household
	Mario
	MineCraft

	Algorithm and Experiment Details
	Algorithm
	Hyperparameters
	RQ1 experiments
	RQ2 experiments

	Prompts
	RQ1: Direct LLM prompts
	RQ1: Verifier-augmented LLM prompts

