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A BROADER IMPACT

Designing a reward function is not a trivial challenge for many real-world problems where Rein-
forcement Learning can be useful. Moreover, in domains where interacting with the environment
is limited or costly, sample inefficiency of RL algorithms can become a bottleneck for learning a
policy. While domain experts can hand-engineer intrinsic rewards to aid the RL agent training, it is
unreasonable to expect them to design useful reward shaping functions for each independent task. As
a single step towards relaxing this expectation, we aim to leverage the universality of using Large
Language Models (which can loosely be referred to “Jack of all trades, master of none”) to provide
useful guidance for training the RL agent. Hence, one of the direct impacts of our work is tapping
into the potential of LLMs for obtaining useful guidance across multiple tasks thereby reducing the
cognitive load on domain experts. Moreover, we hope that our work opens up future possibilities of
exploring more domains where LLMs can assist in aiding the downstream learning process.
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B ENVIRONMENTS

B.1 BABYAI

In the BabyAI suite of environments, the agent has to reach the goal location in a fixed number
of steps (environment max steps is set to 100). This platform relies on a gridworld environment
(MiniGrid) to generate a set of complex environments, and includes challenging domains to test
sample efficiency of training RL agents. Each gridworld environment is populated with the agent
and objects such as doors, keys, and lava, which are placed in varying sized grids. Each grid is
procedurally generated, i.e., the object placements can vary at the start of each episode. However,
using a fixed environment seed, the layout stays the same for each episode run. The doors in the
environment can also be locked, and can be opened by first picking up the key first. Objects such
as lava can not be crossed by the agent, and lead to episode termination if the agent steps on one of
these.

Observation Space: By default, the environment offers an observation space of shape (7,7,3) which
is a partial view of the complete environment grid, and has been shown to accelerate the RL agent’s
training (Chevalier-Boisvert et al., 2018). This observation space consists of a hierarchical mapping
for 3 matrices each of size 7x7. The first contains the object-id, the second contains the property
(color) of the object, and the third consists of the state of the object (e.g., if the door is open or
locked).

Action Space: The agent’s action space consists of : turn left, turn right, move forward, pick up an
object, drop an object, toggle/activate an object, and done. For each environment, some of these
actions are unused, and we refer readers to the specific environment’s documentation for the respective
details.

Extrinsic/Environment Rewards: If the agent reaches the goal location in N steps, the total reward
is calculated as R = 1 - 0.9*(N/H) where H is the maximum number of allowed steps (i.e., 100).
Otherwise, the agent get a reward of 0 for that episode.

(a) DoorKey-5x5 (b) EmptyRandom (c) LavaGap (d) DoorKey-6x6

Figure 5: Environment Layouts from the BabyAI environment suite used for experiments.

B.1.1 DOORKEY

Description: The agent has to pick up the key to unlock the door and then reach to the goal location
shown by the green square.

Mission Space: “use the key to open the door and then get to the goal”

Action Space: turn left, turn right, move forward, pick up an object, toggle/activate an object

B.1.2 EMPTY-RANDOM

Description: The agent has to reach the goal location shown by the green square in a completely
empty room. The agent’s starting position can be varied by varying the environment seed.

Mission Space: “get to the green goal square”

Action Space: turn left, turn right, move forward
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B.1.3 LAVAGAP

Description: The agent has to reach to the goal location shown by the green square by avoiding all
lava tiles, where the episode will terminate immediately.

Mission Space: “avoid the lava and get to the green goal square”

Action Space: turn left, turn right, move forward

B.2 HOUSEHOLD

Description: The agent’s goal is to reach the final destination (green block). for that the robot (red
triangle) has to pick up the red key, charge itself at the charging dock (purple block), and open the
red door.

Observation Space: The household environment is an 15x15 grid. The state is represented by a
multi-dimensional vector where each index corresponds to a specific grid location, and each value
represents the type of object at that location. The state vector also includes boolean flags for whether
the agent has picked up the right key, opened the door, and whether the agent is charged.

Action Space: up, down, left, right.

Reward: The reward function is a sparse binary reward, assigning a value of 0 to all states except the
goal state.

B.3 MARIO

Description: The agent’s goal is to open the door upstairs. To do this, it must pick up both keys
located downstairs. One key is hidden under a red rock. The ladder is worn out and will break after
one use, so the agent can only go down through the tube, but not back up.

Observation Space: The Mario environment is an 8x11 grid. The state is represented by a multi-
dimensional vector where each index corresponds to a specific grid location, and each value represents
the type of object at that location. The state vector also includes boolean flags for whether the agent
has visited the bottom, picked up the key, picked up the hidden key, and returned to the upper level.

Action Space: up, down, left, right.

Reward: The reward function is a sparse binary reward, assigning a value of 0 to all states except the
goal state.

B.4 MINECRAFT

Description: The agent’s goal is to build a ladder using a plank and a stick. To do this, it needs
to collect raw wood, take it to the processing unit to get processed wood, then make a plank at
workshop1 and a stick at workshop2. Finally, both are used to build the ladder at workshop3.

Observation Space: This environment is an 10x15 grid. The state is represented by a multi-
dimensional vector where each index corresponds to a specific grid location, and each value represents
the type of object at that location. The state vector also includes boolean flags for whether a stick,
plank, or ladder has been made, along with the number of processed wood pieces.

Action Space: up, down, left, right.

Reward: The reward function is a sparse binary reward, assigning a value of 0 to all states except the
goal state.
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C ALGORITHM AND EXPERIMENT DETAILS

All the experiments were run on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with GeForce GTX
1080 GPU.

C.1 ALGORITHM

We present the algorithm for our framework below:

Algorithm 1 Training an RL policy ωω using ωLLM

Require: Input ωLLM

Ensure: Output ωω

1: Initialize parameters ε, dataset D
2: // EXPLORATION PHASE
3: for each iteration do
4: Store transitions D → (s, a, s→, r) ↑ ωω

5: Relabel dataset with shaped rewards D→
→ D,ωLLM

6: end for
7: // REINFORCEMENT LEARNING PHASE
8: for each gradient step do
9: Sample transitions {ϑj}D

→

j=1 ↑ D
→

10: train ωω using {ϑj}
11: end for
12: return ωω

C.2 HYPERPARAMETERS

C.2.1 RQ1 EXPERIMENTS

For RQ1 results, we set the temperature to 0.5 for directly prompting LLMs to generate the abstract
plan. Since the LLM+verifier framework generates the plan step-by-step, we bound the maximum
number of steps the LLM can take to reach the goal to 20 for Household and MineCraft and 30 for
BabyAI and Mario environment. We also limit the maximum number of back-prompts allowed at any
step to 5 for Household and MineCraft and 10 for BabyAI and Mario environment.

C.2.2 RQ2 EXPERIMENTS

For the Household, Mario, and Minecraft environments, we used the standard Q-learning algorithm
with an ϖ-greedy policy. Initially, ϖ is set to 1 and annealed to 0.05 over the course of training. When
the agent achieves a subgoal (as determined by the LLM plan), ϖ decays by a factor of 0.995, and it
decays by a factor of 0.95 when the main goal is reached. The other hyperparameters are as follows:
maximum training steps = 5e6, discount factor (ϱ) = 0.99, buffer size = 5e5, and batch size = 64.

The hyperparameters used for all PPO and A2C training experiments are listed in Table 3.
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Table 3: Hyperparameters for all RL training experiments.

Hyperparameter Value
# of training steps 1e6
# of epochs 4
batch size 256
discount 0.99
learning rate 0.001
gae lambda 0.95
entropy coefficient 0.01
value loss coefficient 0.5
max gradient norm 0.5
optimizer epsilon 1e-08
optimizer alpha 0.99
clip epsilon 0.2
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D PROMPTS

D.1 RQ1: DIRECT LLM PROMPTS

Here, we present the exact prompt for querying the entire policy at once for the DoorKey 5x5
environment, the Mario environment, the Household environment, and the Mine-craft environment.

Direct Prompt for DoorKey 5x5 environment

[PROMPT] You are tasked with solving a 3x3 maze where you will encounter objects like
a key and a door along with walls. Your task is ‘use the key to open the door and then get to
the goal’. You can be facing in any of the four directions. To move in any direction, to pick
up the key, and to open the door, you need to face in the correct direction. The available
actions at each step are ‘turn left’, ‘turn right’, ‘move forward’, ‘pickup key’, ‘open door’.
The current maze looks like this:

unseen door unseen
key wall unseen
agent wall goal

You (agent) are currently facing left.
What is the sequence of actions you will take to reach the goal? Output as a comma
separated list. Do not include anything else in your response.
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Direct Prompt for Mario environment

[PROMPT]

Here is a pddl domain, a planning problem. Provide the sequence of actions you will
take to reach the goal. Provide only the pddl syntax for the plan where the action is
represented as (ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain Mario)

(:requirements :strips :typing)
(:types key - object)
(:predicates (has-key)

(has-hidden-key)
(at-upper-platform)
(at-bottom)
(at-upper-platform-with-key)
(at-upper-platform-with-hidden-key)
(door-open))

(:action go_down_the_tube
:parameters ()
:precondition (and (at-upper-platform))
:effect (and (at-bottom) ))

(:action pickup_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-key) ))

(:action pickup_hidden_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-hidden-key) ))

(:action go_up_the_ladder
:parameters ()
:precondition (and (has-key) (has-hidden-key)

(at-bottom))
:effect (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key) ))
(:action unlock_door

:parameters ()
:precondition (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key) )
:effect (and (door-open)))

)

problem pddl
(define (problem prob)

(:domain Mario)
(:objects
)
(:init

(at-upper-platform))
(:goal

(and (door-open))
)

)
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Direct Prompt for Household environment

[PROMPT]

Here is a pddl domain, a planning problem. Provide the sequence of actions you will
take to reach the goal. Provide only the pddl syntax for the plan where the action is
represented as (ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain household)

(:requirements :strips :typing :negative-preconditions)
(:types key door - object)
(:predicates (key-picked)

(holding-key)
(door-opened)
(at-starting-location)
(charged)
(at-destination))

(:action get_key
:parameters ()
:precondition (and (not(holding-key)))
:effect (and (key-picked) (holding-key)))

(:action open_door
:parameters ()
:precondition (and (not (door-opened))

(holding-key) (key-picked))
:effect (and (door-opened) (not(holding-key))

(not (key-picked))))
(:action is_charged

:parameters ()
:precondition (and (door-opened))
:effect (and (charged)))

(:action goal
:parameters ()
:precondition (and (charged) )
:effect (and (at-destination)))

)

problem pddl
(define (problem prob)

(:domain household)
(:objects
)
(:init

(at-starting-location))
(:goal

(and (at-destination))
))
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Direct Prompt for Mine-Craft environment

[PROMPT]

Here is a pddl domain, a planning problem. Provide the sequence of actions you will
take to reach the goal. Provide only the pddl syntax for the plan where the action is
represented as (ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain minecraft)

(:requirements :strips :typing :negative-preconditions)
(:types wood - object)
(:predicates

(wood-picked ?w - wood)
(wood-processed ?w - wood)
(at-starting-location)
(plank_made)
(stick_made)
(ladder_made)
(processed-to-plank ?w - wood)
(processed-to-stick ?w - wood))

(:action get_wood
:parameters (?w - wood)
:precondition (not (wood-picked ?w))
:effect (and (wood-picked ?w)))

(:action get_processed_wood
:parameters (?w - wood)
:precondition (and (wood-picked ?w)

(not (wood-processed ?w)))
:effect (and (wood-processed ?w)))

(:action make_plank
:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-plank ?w))
(not (processed-to-stick ?w)))

:effect (and (processed-to-plank ?w)(plank_made)))
(:action make_stick

:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-stick ?w))
(not (processed-to-plank ?w)))

:effect (and (processed-to-stick ?w)(stick_made)))
(:action make_ladder

:parameters ()
:precondition (and (stick_made) (plank_made))
:effect (and (ladder_made)))

)

problem pddl
(define (problem prob)

(:domain minecraft)
(:objects

wood0 wood1 - wood)
(:init

(at-starting-location))
(:goal

(and (ladder_made))
))
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D.2 RQ1: VERIFIER-AUGMENTED LLM PROMPTS

Here we show representative step-prompts and corresponding back prompts for DoorKey 5x5
environment, Mario environment, Household environment and Mine-Craft environment.

Step-prompt and Back-Prompt for DoorKey 5x5 environment

[STEP PROMPTING]
You are tasked with solving a 3x3 maze where you will encounter objects like a key and a
door along with walls. Your task is ‘use the key to open the door and then get to the goal’.
You can be facing in any of the four directions. To move in any direction, to pick up the
key, and to open the door, you need to face in the correct direction. You will be given a
description of the maze at every step and you need to choose the next action to take. The
available actions are ‘turn left’, ‘turn right’, ‘move forward’, ‘pickup key’, ‘open door’.
The current maze looks like this:

unseen door unseen
key wall unseen
agent wall goal

You (agent) are currently facing left.
What is the next action that the agent should take? Only choose from the list of available
actions. Do not include anything else in your response. For example, if you choose ‘move
forward’, then only write ‘move forward’ in your response.
LLM Response: pickup key

[BACK PROMPTING]
Information: You cannot ‘pickup key’ in this state as you are not facing the key. Please
choose another action.The following actions are feasible in this state: [‘turn right’, ‘turn
left’].
The current maze looks like this:

unseen door unseen
key wall unseen
agent wall goal

You (agent) are currently facing left.
What is the next action that the agent should take? Only choose from the list of available
actions. Do not include anything else in your response. For example, if you choose ‘move
forward’, then only write ‘move forward’ in your response. You have already tried the
following actions: pickup key. Please choose another action.
LLM Response: turn right
...
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Step-prompt and Back-Prompt for Mario environment

[STEP PROMPTING]
Here is a pddl domain, a planning problem. Provide only the next action for the query
problem. Provide only the pddl syntax for the plan where the action is represented as
(ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain Mario)

(:requirements :strips :typing)
(:types key - object)
(:predicates (has-key)

(has-hidden-key)
(at-upper-platform)
(at-bottom)
(at-upper-platform-with-key)
(at-upper-platform-with-hidden-key)
(door-open))

(:action go_down_the_tube
:parameters ()
:precondition (and (at-upper-platform))
:effect (and (at-bottom) ))

(:action pickup_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-key) ))

(:action pickup_hidden_key
:parameters ()
:precondition (and (at-bottom))
:effect (and (has-hidden-key) ))

(:action go_up_the_ladder
:parameters ()
:precondition (and (has-key) (has-hidden-key)

(at-bottom))
:effect (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key) ))
(:action unlock_door

:parameters ()
:precondition (and (at-upper-platform-with-key)

(at-upper-platform-with-hidden-key) )
:effect (and (door-open)))

)

problem pddl
(define (problem prob)

(:domain Mario)
(:objects
)
(:init

(at-upper-platform))
(:goal

(and (door-open))
)

)

LLM Response: pickup_key
[BACK PROMPTING]
Information: Your plan so far - []. Your response - pickup_key. The action provided
is not feasible because you are still at upstairs. Choose a valid action from the list
[’(pickup_hidden_key), (go_down_the_tube), (unlock_door), (pickup_key),
(go_up_the_ladder)].
...
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Step-prompt and Back-Prompt for Household environment

[STEP PROMPTING]
Here is a pddl domain, a planning problem. Provide only the next action for the query
problem. Provide only the pddl syntax for the plan where the action is represented as
(ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain household)

(:requirements :strips :typing :negative-preconditions)
(:types key door - object)
(:predicates (key-picked)

(holding-key)
(door-opened)
(at-starting-location)
(charged)
(at-destination))

(:action get_key
:parameters ()
:precondition (and (not(holding-key)))
:effect (and (key-picked) (holding-key)))

(:action open_door
:parameters ()
:precondition (and (not (door-opened))

(holding-key) (key-picked))
:effect (and (door-opened) (not(holding-key))

(not (key-picked))))
(:action is_charged

:parameters ()
:precondition (and (door-opened))
:effect (and (charged)))

(:action goal
:parameters ()
:precondition (and (charged) )
:effect (and (at-destination)))

)

problem pddl
(define (problem prob)

(:domain household)
(:objects
)
(:init

(at-starting-location))
(:goal

(and (at-destination))
))

LLM Response: open_door

[BACK PROMPTING]

Information: Your plan so far - []. Your response - open_door. The action provided is
not feasible because you do not have key with you. Choose a valid action from the list
[’(is_charged), (get_key), (open_door), (goal)].
...
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Step-prompt and Back-Prompt for Mine-Craft environment

[STEP PROMPTING]

Here is a pddl domain, a planning problem. Provide only the next action for the query
problem. Provide only the pddl syntax for the plan where the action is represented as
(ACTION-NAME OBJECTS). Do not provide anything else in your response.

domain pddl
(define (domain minecraft)

(:requirements :strips :typing :negative-preconditions)
(:types wood - object)
(:predicates

(wood-picked ?w - wood)
(wood-processed ?w - wood)
(at-starting-location)
(plank_made)
(stick_made)
(ladder_made)
(processed-to-plank ?w - wood)
(processed-to-stick ?w - wood))

(:action get_wood
:parameters (?w - wood)
:precondition (not (wood-picked ?w))
:effect (and (wood-picked ?w)))

(:action get_processed_wood
:parameters (?w - wood)
:precondition (and (wood-picked ?w)

(not (wood-processed ?w)))
:effect (and (wood-processed ?w)))

(:action make_plank
:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-plank ?w))
(not (processed-to-stick ?w)))

:effect (and (processed-to-plank ?w)(plank_made)))
(:action make_stick

:parameters (?w - wood)
:precondition (and (wood-processed ?w)

(not (processed-to-stick ?w))
(not (processed-to-plank ?w)))

:effect (and (processed-to-stick ?w)(stick_made)))
(:action make_ladder

:parameters ()
:precondition (and (stick_made) (plank_made))
:effect (and (ladder_made)))

)

problem pddl
(define (problem prob)

(:domain minecraft)
(:objects

wood0 wood1 - wood)
(:init

(at-starting-location))
(:goal

(and (ladder_made))
))
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Step-prompt and Back-Prompt for Mine-Craft environment (..continued)

LLM Response: make_ladder

[BACK PROMPTING]

Information: Your plan so far - [get_wood, get_processed_wood,make_stick].
Your response - make_ladder. The action provided is not feasible be-
cause you do not have plank. Choose a valid action from the list
[(get_wood), (make_ladder), (make_stick), (make_plank), (get_processed_wood)].
...
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