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1 APPENDIX

1.1 EXPERIMENTAL SETTINGS

Datasets We conduct experiments on the two standard benchmark settings, namely, “GTAV Richter
et al. (2016) to Cityscapes Cordts et al. (2016)” and “SYNTHIA Ros et al. (2016) to Cityscapes
Cordts et al. (2016)”, where GTAV Richter et al. (2016) and SYNTHIA Ros et al. (2016) are adopted
as labeled source domain, and Cityscapes Cordts et al. (2016) is taken as unlabeled target domain
to evaluate the adaptation performance. GTAV Richter et al. (2016) is generated from a game en-
vironment and contains 24,966 synthetic images with resolution 1914×1052. Cityscapes-style an-
notation are adopted with 19 common classes. Synthia Ros et al. (2016) consists of 9,400 synthetic
images with resolution 1280×760, labeled with Cityscapes-style annotation (16 common classes).
Cityscapes Cordts et al. (2016) is a driving dataset for semantic segmentation containing 2975 train-
ing and 500 validation images with resolution 2048×1024. All three datasets were downloaded from
the official website and used with the permission of the authors. There is no personally identifiable
information or offensive content in three datasets.

Implementation Details We employ the Mix Transformer Xie et al. (2021) as the encoder network
pre-trained on the Imagenet-1K dataset. The decoder network is borrowed from the DAFormer,
since the context information of multi-scales features are considered. Adam optimizer with learning
rate 6e-5 are used for training student model in propose STCT framework. The framework is trained
with 40,000 iterations. We utilize the Cosine-Annealing learning rate scheduler with warm up to
stabilize the training. Coordination weight 𝛼 = 2𝑒 − 4 is set as default. Images are resized to (1280,
720) and randomly cropped by (640, 640) as inputs. To solve the class imbalance, we introduce the
rare-semantic-grouping and thing-class ImageNet feature distance proposed in DAFormer. Image
resizing, horizontal flipping, color jitter, and gaussian blur is used as augmentation. We do not use
DACS Tranheden et al. (2021) augmentations like DAFormer. Hoyer et al. (2022). All experiments
are conducted on one NVIDIA Tesla V100. Codes will be released before Sep. 1st on https:
//anonymous.4open.science/r/STCT-C0E0

1.2 PROPORTION OF FOUR TYPES OF ATTENTION WEIGHTS

Besides, we also conduct experiments to investigate the effect of the proportion of features in the
MHA module. The MHA module with semantic grouping strategy is formulated as follows:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑖 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑖 · [𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], where 𝑖 ∈ {𝑠, 𝑡}. (1)

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑐
𝑖 , 𝐾

𝑐
𝑠 , 𝐾

𝑐
𝑡 , 𝑉

𝑐
𝑠 , 𝑉

𝑐
𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(

𝑄𝑐
𝑖
· [𝐾𝑐

𝑠 ;𝐾𝑐
𝑡 ]⊤√

𝑑
) [𝑉𝑐

𝑠 ;𝑉𝑐
𝑡 ], where 𝑖 ∈ {𝑠, 𝑡}. (2)

We take the features 𝑄𝑖 , 𝐾𝑖 , and 𝑉𝑖 in semantic group (Eq. 1) as an example. Features 𝑄𝑐
𝑖
, 𝐾𝑐

𝑖
, and

𝑉𝑐
𝑖

in complementary group (Eq. 2) follows the same way. There are four types of attention weights
in the MHA module, i.e., source domain attention weight (𝑄𝑠𝐾

⊤
𝑠 and𝑄𝑡𝐾

⊤
𝑠 ), target domain attention

weight (𝑄𝑡𝐾
⊤
𝑡 and𝑄𝑠𝐾

⊤
𝑡 ) , intra-domain attention weight (𝑄𝑠𝐾

⊤
𝑠 and𝑄𝑡𝐾

⊤
𝑡 ), inter-domain attention

weight (𝑄𝑠𝐾
⊤
𝑡 and 𝑄𝑡𝐾

⊤
𝑠 ). The source domain attention weights adopt the source feature to rebuild

the source feature (𝑄𝑠𝐾
⊤
𝑠 ) or target feature (𝑄𝑡𝐾

⊤
𝑠 ). The target domain attention weights adopt the

target feature to rebuild the target feature (𝑄𝑡𝐾
⊤
𝑡 ) or source feature (𝑄𝑠𝐾

⊤
𝑡 ). The inter-domain atten-

tion weights construct the interaction between different domains, while the intra-domain attention
weights construct the interaction between the same domain.
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Figure 1: Effects of the proportions of four types of attention weights. From left to right, we eval-
uate the proportions of the source domain, target domain, intra-domain, and inter-domain attention
weight, respectively. The 𝛽 = 1 means no artificial proportion is imposed.

For the proportion of the inter-domain attention weights, we rescale the attention weights𝑄𝑠𝐾
⊤
𝑡 and

𝑄𝑡𝐾
⊤
𝑠 based on a scalar 𝛽 as follows:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑠 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑠 · [𝐾𝑠; 𝛽𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], (3)

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑡 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑡 · [𝛽𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ] . (4)

where 𝛽 indicates the proportion of the inter-domain attention weight. The Eq. 1 is split to Eq. 3
of source domain and Eq. 4 of target domain. The complementary group features in Eq. 2 can be
rescaled as the same manner.

For the proportion of the other three types of attention weights, the source domain attention weight
is rescaled in 𝑄𝑠𝐾

⊤
𝑠 and 𝑄𝑡𝐾

⊤
𝑠 :

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑠 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑠 · [𝛽𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], (5)

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑡 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑡 · [𝛽𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ] . (6)

Similarly, the target domain attention weight is rescaled in 𝑄𝑠𝐾
⊤
𝑡 and 𝑄𝑡𝐾

⊤
𝑡 :

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑠 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑠 · [𝐾𝑠; 𝛽𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], (7)

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑡 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑡 · [𝐾𝑠; 𝛽𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ] . (8)

The intra-domain attention weight is rescaled as follows:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑠 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑠 · [𝛽𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], (9)

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑡 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑡 · [𝐾𝑠; 𝛽𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ] . (10)

We scale the proportion of each weight from 0.7 to 1.3, and the experimental results of four attention
weights are reported in Fig. 1. We find the model is robust to the proportion of the source and target
domain attention weights, as illustrated in the first and second images of Fig. 1. Besides, we iden-
tify that a balanced proportion between the inter-domain and intra-domain attention weights, i.e.,
𝛽 == 1 in the third and fourth images of Fig. 1, is vital for effective feature alignment. This phe-
nomenon verifies that the intra-domain self-attention and inter-domain cross-attention mechanism
are indispensable and complementary in the proposed MHA module.

1.3 COMPARISON OF FEATURE GROUPING STRATEGIES

In the main paper, we introduce six feature grouping strategies: ”non-grouping” strategy, ”random-
grouping” strategy, ”HVH-grouping” strategy, ”HVR-grouping” strategy, ”cutout-grouping”,
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Figure 2: Proportion of three factors in feature grouping strategies. The longer the bar length, the
greater the proportion of the corresponding factor in the strategy. We use weak, medium, and strong
to represent the proportion of the three factors in the strategy. Since all three factors are integrated
with the maximum degree, ”semantic-grouping” strategy is adopted in our method.

”semantic-grouping” strategy. Through designing five grouping strategies from ”random-grouping”
to ”semantic-grouping”, we progressively introduce three factors (randomness, spatial continuity,
and semantic integrity) into the feature grouping strategies to measure the role of three factors in
feature alignment. It is worth noting that the six grouping strategies do not coexist in our method.
Only the semantic-grouping strategy is adopted in our method, since all three factors are considered
with the maximum degree. We illustrate the proportion of three factors in six strategies in Fig. 2.

1.4 QUALITATIVE COMPARISON

To make a fair comparison, we select the first image from the three cities (“frank-
furt 000000 000294 leftImg8bit.png”, “lindau 000000 000019 leftImg8bit.png”, and “mun-
ster 000000 000019 leftImg8bit.png” ) in the Cityscapes Cordts et al. (2016) validation set to
illustrate the prediction. We list the qualitative results of the ablation studies in Fig. 3. For example,
compared to the visualization of the ablation studies, our method can give a more complete
prediction on “sidewalk” classes.

The qualitative results of our method and three state-of-the-art (SOTA) methods, i.e., CorDA Wang
et al. (2021), ProDA Zhang et al. (2021), DAFormer Hoyer et al. (2022), are shown in Fig. 4.
Compared to the three SOTA methods, our method achieves finer predictions on the “rider” class.

1.5 LIMITATIONS

Domain adaptive semantic segmentation aims to transfer knowledge from the source domain to the
target domain. Our approach achieves superior performance on datasets where both the source and
target domains are urban street scenes. However, the performance of our method may degrade if the
scenes in the source and target domains are significantly different. One limitation of this work is
that it cannot be employed for the privacy-preserving source-free DA setting Fleuret et al. (2021);
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OursT2S-MHAw/o Coord. w/o MHAImage Ground Truth

Figure 3: Qualitative results of semantic segmentation on the Cityscapes dataset. From left to right:
image, ground truth, our method without coordination weight, our method without the MHA mod-
ule, our method with unidirectional (target-to-source) cross-attention mechanism, our method.

OursDAFormerCorda ProDAImage Ground Truth

Figure 4: Qualitative comparison between state-of-the-art methods on the Cityscapes dataset.

Kundu et al. (2021) since cross-domain attention requires simultaneous access to both source and
target data. Another limitation is that our method is currently not applicable to multi-source and
multi-target domain adaptive settings, which is left as future work.

1.6 POTENTIAL NEGATIVE SOCIETAL IMPACT

Due to the lack of supervisory signals in the target domain, objects might not be segmented in a way
that we are used to or problematic biases in the data might become apparent. Lack of monitoring,
could have potential negative impacts in areas such as autonomous driving and virtual reality.
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