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ABSTRACT

Recovering the underlying Directed Acyclic Graph (DAG) structures from ob-
servational data presents a formidable challenge, partly due to the combinatorial
nature of the DAG-constrained optimization problem. Recently, researchers have
identified gradient vanishing as one of the primary obstacles in differentiable DAG
learning and have proposed several DAG constraints to mitigate this issue. By
developing the necessary theory to establish a connection between analytic func-
tions and DAG constraints, we demonstrate that analytic functions from the set
{f(x) = c0 +

∑∞
i=1 cix

i|∀i > 0, ci > 0; r = limi→∞ ci/ci+1 > 0} can be
employed to formulate effective DAG constraints. Furthermore, we establish that
this set of functions is closed under several functional operators, including differen-
tiation, summation, and multiplication. Consequently, these operators can be lever-
aged to create novel DAG constraints based on existing ones. Using these properties,
we design a series of DAG constraints and develop an efficient algorithm to evalu-
ate them. Experiments in various settings demonstrate that our DAG constraints
outperform previous state-of-the-art comparators. Our implementation is available
at https://github.com/zzhang1987/AnalyticDAGLearning.

1 INTRODUCTION

DAG learning aims to recover Directed Acyclic Graphs (DAGs) from observational data, which is
a core problem in many fields, including bioinformatics (Sachs et al., 2005; Zhang et al., 2013),
machine learning (Koller and Friedman, 2009), and causal inference (Spirtes et al., 2000). Under
certain assumptions (Pearl, 2000; Spirtes et al., 2000), the recovered DAGs could be interpreted
causally (Koller and Friedman, 2009).

There are two main categories of DAG learning approaches: constraint-based, and score-based
methods. Most constraint-based approaches, e.g., PC (Spirtes and Glymour, 1991), FCI (Spirtes et al.,
1995; Colombo et al., 2012), rely on conditional independence tests, which typically necessitate a
large sample size (Shah and Peters, 2020; Vowels et al., 2021). The score-based approaches, including
exact methods based on dynamic programming (Koivisto and Sood, 2004; Singh and Moore, 2005;
Silander and Myllymäki, 2006), A* search (Yuan et al., 2011; Yuan and Malone, 2013), and integer
programming (Cussens, 2011), and greedy methods like GES (Chickering, 2002), model the validity
of a graph according to some score function and are often formulated as discrete optimization
problems. A key challenge for score-based methods is the super-exponential combinatorial search
space of DAGs w.r.t number of nodes (Chickering, 1996; Chickering et al., 2004).

Recently, Zheng et al. (2018) developed a continuous DAG learning approach using Langrange
Multiplier methods and a differentiable DAG constraint based on the trace of the matrix exponential
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of the weighted adjacency matrix. The resulting method, named NOTEARS, demonstrated superior
performance in estimating linear DAGs with equal noise variances. Very recently, Zhang et al. (2022)
and Bello et al. (2022) suggest that one main issue for NOTEARS and its derivatives, such as Yu et al.
(2019), is gradient vanishing for linear DAG models with equal variance. They have thus proposed
new continuous DAG constraints by based on geometric series of matrices as well as log-determinant
of matrices.

In fact, many of the proposed Directed Acyclic Graph (DAG) constraints can be unified, as demon-
strated in Wei et al. (2020). Wei et al. (2020) reveals that, for a d× d adjacency matrix, an order-d
polynomial of matrices is necessary and sufficient to enforce the DAG property. However, from a
computational standpoint, computing general matrix polynomials can be challenging. Considering
the fact that infinite-order polynomials that converge, i.e., power series, can give rise to analytic
functions that are often simpler to evaluate than general polynomials, it prompts the question of
whether analytic functions could be utilized in constructing DAG constraints. Furthermore, it raises
the possibility of employing techniques commonly used for analyzing analytic functions in the
investigation of continuous DAG constraints.

The answer is yes. We demonstrate that any analytic function within the class of functions denoted
as F = {f |f(x) = c0 +

∑∞
i=0 cix

i; ci > 0,∀i > 0; limi→∞ ci/ci+1 > 0} can be utilized to
formulate Directed Acyclic Graph (DAG) constraints. In fact, the DAG constraints introduced in
Zheng et al. (2018), Zhang et al. (2022), and Bello et al. (2022) can all be interpreted as being
based on analytic functions from F . Furthermore, we establish that the function class F remains
closed under various function operators, including differentiation, function addition, and function
multiplication. Leveraging this insight, we can construct novel DAG constraints based on pre-
existing ones. Additionally, we can analyze the performance of these derived DAG constraints using
techniques rooted in analytic functions.

2 PRELIMINARIES

DAG and Linear SEM Given a directed acyclic graph (DAG) G defined over a random vector x =
[x1, x2, . . . , xd]

⊤, the corresponding distribution P (x) is assumed to satisfy the Markov assumption
(Spirtes et al., 2000; Pearl, 2000). We consider x to follow a linear Structural Equation Model (SEM):

x = B⊤ x+ e . (1)

Here, B ∈ Rd×d represents the weighted adjacency matrix that characterizes the DAG G, and
e = [e1, e2, . . . , ed]

⊤ represents the exogenous noise vector, comprising d independent random
variables. To simplify notation, we use G(B) to denote the graph induced by the weighted adjacency
matrix B, and we interchangeably use the terms ‘random variables’ and ‘vertices’ or ‘nodes’.

We aim to estimate the DAG G from n i.i.d. observational examples of x, denoted by X ∈ Rn×d.
Generally, the DAG G can be identified only up to its Markov equivalence class under the faithfulness
(Spirtes et al., 2000) or the sparsest Markov representation assumption (Raskutti and Uhler, 2018). It
has been demonstrated that for linear SEMs with homoscedastic errors, where the noise terms are
specified up to a constant (Loh and Bühlmann, 2013), and for linear non-Gaussian SEMs, where
no more than one of the noise terms is Gaussian (Shimizu et al., 2006), the true DAG can be fully
identified. In our study, we specifically focus on linear SEMs with equal noise variances (Peters and
Bühlmann, 2013), where the scale of the data may be either known or unknown. When the scale is
known, it is possible to fully recover the DAG. However, in the case of an unknown scale, the DAG
may only be identified up to its Markov equivalence class.

Continuous DAG learning In recent years, a series of continuous Directed Acyclic Graph (DAG)
learning algorithms Bello et al. (2022); Ng et al. (2020); Zhang et al. (2022); Yu et al. (2021; 2019);
Zheng et al. (2018) have been introduced, demonstrating superior performance when applied to
linear Structural Equation Models (SEMs) with equal noise variances and known data scales. These
methods can be expressed as follows:

argmin
B

S(B,X), s.t. h(B) = 0. (2)

Here, S is a scoring function, which can take the form of mean squared error (Zheng et al., 2018) or
negative log-likelihood (Ng et al., 2020). The function h is continuous and equals to 0 if and only if
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the weighted adjacency matrix B defines a valid DAG. Previous approaches have employed various
techniques, such as matrix exponential (Zheng et al., 2018), log-determinants (Bello et al., 2022), and
polynomials (Zhang et al., 2022), to construct the function h. However, these methods are known to
perform poorly, when applied to normalized data since they rely on scale information across variables
for complete DAG recovery (Reisach et al., 2021).

3 ANALYTIC DAG CONSTRAINTS

In this section, we demonstrate that the diverse set of continuous DAG constraints proposed in
previous work can be unified through the use of analytic functions. We begin by providing a
brief introduction to analytic functions and then illustrate how they can be used to establish DAG
constraints.

3.1 ANALYTIC FUNCTIONS AS DAG CONSTRAINTS

In mathematics, a power series

f(x) = c0 +

∞∑
i=1

cix
i, (3)

which converges for |x| < r = lim
i→∞

|ci/ci+1|, defines an analytic function f on the open interval

(−r, r), and r is known as the radius of convergence. When we replace x with a square matrix A, we
obtain an analytic function f of a matrix as follows:

f(A) = c0I+

∞∑
i=1

ci A
i, (4)

where I is the identity matrix. Equation (4) would converge if the largest absolute value of the
eigenvalues of A, known as the spectral radius and denoted by ρ(A), is smaller than r.

We are particularly interested in the following specific class of analytic functions

F ={f |f(x) = c0 +

∞∑
i=1

cix
i; ∀i > 0, ci > 0; lim

i→∞
ci/ci+1 > 0}, (5)

as any analytic function belonging to F can be applied to construct a continuous DAG constraint.

Proposition 1. Let B̃ ∈ Rd×d
≥0 with ρ(B̃) < r be the weighted adjacency matrix of a directed graph

G, and let f be an analytic function in the form of equation 4, where we further assume ∀i > 0 we
have ci > 0, then G is acyclic if and only if

tr
î
f(B̃)

ó
= c0d. (6)

An interesting property the DAG constraint equation 6 is that its gradients can also be represented as
transpose of an analytic function as follows, which allows us to use analytic functions as the gradients
of DAG constraints.
Proposition 2. There exists some real number r, where for all {B̃ ∈ Rd×d

⩾0 |ρ(B̃) < r}, the derivative

of tr
î
f(B̃)

ó
w.r.t. B̃ is

∇B̃tr
î
f(B̃)

ó
= [∇xf(x)|x=B̃]

⊤
. (7)

It is notable that for a d× d weighted adjacency matrix B̃, an order-d polynomial of B̃ is sufficient
and necessary to enforce DAGness (Wei et al., 2020; Ng et al., 2022). Meanwhile, evaluating matrix
polynomials efficiently is highly nontrivial (Higham, 2008). For matrix analytic functions such as
exponentials or logarithms, however, efficient algorithms exist (Higham, 2008).

The connection between matrix analytic functions and real analytic functions means that various
properties of the matrix function can be obtained from a simple real-valued function. To pursue DAG
constraints with better computational efficiency, we seek an analytic function whose derivative can
be represented by itself to reduce the computation of different analytic functions. If a function has
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such property, various intermediate results can be saved for future computation of gradients. The
exponential function exp(x) with ∂ exp(x)/∂x = exp(x), is a natural contender, and this leads to
the well-known exponential-based DAG constraints (Zheng et al., 2018)

Constraints: tr
[
exp(B̃)

]
=

∞∑
i=0

B̃
i
/i! = d, Gradient: ∇B̃ exp(B̃) = exp(B̃)⊤, (8)

which will converge for any B̃.

Recently Bello et al. (2022) and Zhang et al. (2022) have suggested that exponential-based DAG
constraints suffer from gradient vanishing. One cause of gradient vanishing arises from the
small coefficients of high-order terms. The convergence radius for the exponential is ∞, that
is lim

i→∞
|ci/ci+1| = lim

i→∞
|(i+ 1)!/i!| = ∞, which suggests that, compared to the lower order terms,

the higher order terms contribute almost nothing in the DAG constraints, which indicates that it would
not be efficient to prohibit possible long loops in candidate adjacency matrices.

Due to the fact that the adjacency matrix of a DAG must form a nilpotent matrix, whose spectural
radius are acutally 0, naturally the spectral radius of candidate adjacency matrices would be close to
0. As a result, we do not need a function with infinite convergence radius. Instead, we can use an
analytic function with finite convergence radius r = lim

i→∞
|ci/ci+1| < ∞. Thus by using a sequence

ci with geometric progression ci = 1/si−1 or harmonic-geometric progression ci = 1/(isi−1) we
can obtain two analytic functions,

fs
inv(x) = (s− x)−1 =

∞∑
i=0

xi/si−1, fs
log(x) = −s log(s− x) =

∞∑
i=1

xi

isi−1
− s log s. (9)

Then by our Proposition 1 and Proposition 2, two dag constraints can be obtained as follows:

Constraints: trfs
inv(B̃) = d, Gradient: ∇B̃trf

s
inv(B̃) = [fs

inv(B̃)2]⊤, (10a)

Constraints:trfs
log(B̃) = 0, Gradient: ∇B̃trf

s
log(B̃) = [fs

inv(B̃)]⊤, (10b)
where a truncated version of fs

inv is applied in Zhang et al. (2022), and the fs
log based constraints are

equivalent to those in Bello et al. (2022). One key difference between Zhang et al. (2022); Bello et al.
(2022) and the exponential-based DAG constraints (Zheng et al., 2018) is their finite convergence
radius, which requires an additional constraints ρ(B̃) < s. Meanwhile, the adjancency matrix of a
DAG must be nilpotent, and thus its spectral radius must be 0. In this case, such additional constraints
would not affect the feasible set.

3.2 CONSTRUCTING DAG CONSTRAINTS BY FUNCTIONAL OPERATOR

One can easily observe a coincidence between flog and finv as follows,

∂fs
log(x)

∂x
∝ fs

inv(x), f
s
log(x) ∝

∫ x

−∞
fs
inv(t)dt+ C, (11)

which suggests that it may be possible to derive a group of DAG constraints from an analytic function
by applying integration or differentiation. This is because derivatives of any order of an analytic
function is also analytic. More formally, if a function is analytic at some point x0, then its nth

derivative for any integer n exists and is also analytic at x0. Thus we can derive DAG constraints
from any f ∈ F as follows.
Proposition 3. Let f(x) = c0+

∑∞
i=1 cix

i ∈ F be analytic on (−r, r), and let n be arbitary integer
larger than 1, then B̃ ∈ Rd×d

⩾0 with spectral radius ρ(B̂) ⩽ r forms a DAG if and only if

tr

ï
∂nf(x)

∂xn

∣∣∣∣
x=B̃

ò
= n!cn. (12)

The above proposition suggests that the differential operator can be applied to an analytic function to
form a new DAG constraints. Besides the differential operator, the addition and multiplication of
analytic functions can also be applied to generate new DAG constraints. That is
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Proposition 4. Let f1(x) = c10+
∑∞

i=1 c
1
ix

i ∈ F , and f2(x) = c20+
∑∞

i=1 c
2
ix

i ∈ F . Then for an ad-
jancency matrix B̃ ∈ Rd×d

⩾0 with spectral radius ρ(B̃) ⩽ min(limi→∞ c1i /c
1
i+1, limi→∞ c2i /c

2
i+1)},

the following three statements are equivalent: 1) B̃ forms a DAG; 2) tr[f1(B̃)+f2(B̃)] = (c10+c20)d;
3) tr[f1(B̃)f2(B̃)] = c10c

2
0d.

Particularly for fs
log(x) and fs

inv(x), due to the specific property of fs
inv(x), we have

∂n+1fs
log(x)

∂xn+1
=

∂nfs
inv(x)

∂xn
∝ (s− x)−(n+1) = [fs

inv(x)]
n+1, (13)

which implies that the nth derivative of function 1/(s− x) is propositional to the the order-(n+ 1)

power of 1/(s − x). Using this property, the value of (I − B̃/s)−1 can be cached and then used
to generate a series of DAG constraints as well as their gradients. Similarly, the value of matrix
exponential exp((̃B)/s) can also be cached during the evaluation of DAG constraints to accelerate
the computation. Furthermore, the gradients of the DAG constraints will also increase as n increases.

Proposition 5. Let n be any positive integer, the adjancency matrix B̃ ∈ {B̂ ∈ Rd×d
⩾0 |ρ(B̂) < s}

forms a DAG if and only if
tr
î
(I− B̃/s)−n

ó
= d.

Furthermore, the gradients of the DAG constraints satisfies that ∀B̃ ∈ {B̂ ∈ Rd×d
⩾0 |ρ(B̂) < s}

∥∇B̃tr(I− B̃/s)−n∥ ⩽ ∥∇B̃tr(I− B̃/s)−n−k∥,
where k is an arbitrary positive integer, and ∥ · ∥ denote an arbitrary matrix norm induced by vector
p-norm.

Gradient Vanishing and Numeric Stability For the series of DAG constraints constructed from
Equation (13), as gradient vanishing is one of the main challenges for differentiable DAG learn-
ing, according to Proposition 5 we may prefer larger n to achieve better performance in practice.
Furthermore, choosing a smaller s may also help to amplify the gradient of DAG constraints. There-
fore, Bello et al. (2022) applied an annealing strategy on s to improve performance, while Zhang
et al. (2022) used a fixed s = 1.0 in their implementation. However, in practice, especially when
incorporating the DAG constraints with first-order optimizers, the spectral radius of the candidate
B̃ can often be larger than s. Bello et al. (2022) applied a simple heuristics to search for the proper
s, while Zhang et al. (2022) truncated the power series to avoid numerical issues in higher-order
terms. However, in practice, we observed that Zhang et al. (2022) encountered some numerical issues
for large graphs, and the simple heuristics used by Bello et al. (2022) may result in a sacrifice in
performance. Based on our analysis, if B̃ goes out, it can be verified by checking if the power series∑∞

i=0(B̃/s)i converges to (I− B̃/s)−1, and s can be chosen based on the spectral radius of B̃.

Efficiently Computation The specific structure of the power series
∑∞

i=0(B̃/s)i allows for fast
evaluation. Let

Lt =

t∑
i=0

(B̃/s)i, (14)

then it is evident that
L2t = Lt + (B̃/s)tLt, (15)

which indicates that the term Lt can be obtained with O(log t) time complexity. Furthermore, using
Equation (13), the gradient of tr(I−B̃/s)−n can also be easily derived from L∞. Along with the
strategy for searching s, we can use Algorithm 1 to efficiently compute the DAG constraints.

3.3 OVERALL OPTIMIZATION FRAMEWORK

The DAG constraints above are applicable only to positive adjancency matrices, so we use the
Hadamard product to map a real adjancency matrix to a positive one. Thus Equation (2) becomes:

argmin
B

S(B,X), s.t. trf(B⊙B) = c0d, ρ(B⊙B) < r, (16)
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where the analytic function f(x) = c0 +
∑∞

i=1 x
i ∈ F , and ⊙ denotes the Hadamard product.

Algorithm 1 Efficient Evaluation of Gradients
Input: B̃, s, d, ϵ > 0, ξ > 0

Output: ∇B̃trf
s
log(B̃)or∇B̃tr

î
fs
inv(B̃)

ón
1: D← I+ B̃/s , W← B̃/s
2: k = 1
3: while ∥D(I− B̃)− I∥ > ϵ and k < 2d do
4: W←W ×W
5: D← D× (W + I)
6: k ← 2k
7: end while
8: if ∥D(I− B̃)− I∥ > ϵ then
9: s← ρ(B̃) + ξ, goto line 1

10: else
11: For fs

log return D⊤/s

12: For [fs
inv(B̃)]n return n[D⊤/s]n+1

13: end if

Algorithm 2 Path following algorithm
Input: X ∈ Rn×d; S; f ∈ F ; λ1 ; µ0; α ∈ (0, 1);
Touter; Tinner; γ > 0
Output: Estimated B

1: i← 0, µ← µ0, B0 = 0
2: for i = 0; i < Touter; i++ do
3: Bi+1 ← Bi ▷ Optimize over

µ[S(B,X) + λ1∥B ∥1] + 1/2f(B⊙B)
4: for j = 0; j < Tinner; j ++ do
5: B̃← Bi+1⊙Bi+1

6: Bi+1 ← Bi+1−γµ[∇BS(B,X) +

λ1sign(B)]− γ∇B̃f(B̃)⊙Bi+1

7: end for
8: µ← µ× α

9: B̂← Bi+1

10: end for
11: Return B̂

In our work, we choose to use the path-following approach with an ℓ1 regularizer, as in Bello et al.
(2022). This is because in the Lagrange approaches applied in Zhang et al. (2022); Yu et al. (2021);
Zheng et al. (2018); Yu et al. (2019), the Lagrangian multiplier must be set to very large value
to enforce DAGness, which may result in numerical instability. In the path-following approach,
instead of using large Lagrangian multipliers, a small coefficients are added to the score function S
as follows1

argmin
B

µ[S(B,X) + λ1∥B ∥1] + trf(B⊙B), s.t. ρ(B⊙B) < r, (17)

where λ1 is the user-specified weight for the ℓ1 regularizer. For the additional constraints ρ(B⊙B) <
r, with properly chosen initial value and step-length, it can usually be satisfied. Also it is notable that
∥B ∥1 < r is a sufficient condition for ρ(B⊙B) < r, and thus the sparsity constraints also encourage
this condition to be satisfied. Based on Bello et al. (2022), we implemented a path-following shown
in Algorithm 2.

The optimization model equation 17 is observed to perform well for linear Gaussian SEMs with equal
variance as well as other equal variance SEMs. Meanwhile, for unequal variance, or normalized
data from linear Gaussian SEMs with equal variance where the scale information are missing, MSE
score function is not consistent and often provides misleading information about the underlying DAG.
Additionally, as observed by Ng et al. (2023), the initialization of adjacency matrices in cases of
unequal variance can significantly affect performance, suggesting that non-convexity may pose a
serious challenge in such scenarios.

4 NON-CONVEXITY ANALYSIS OF ANALYTIC DAG CONSTRAINTS

The non-convexity of a function can be analyzed through the analysis of its Hessian. Particularly for
our analytic DAG constraints, its Hessian can be obtained using the following proposition and then
the non-convexity can be analyzed by analysis the spectral radius of the Hessian.
Proposition 6. The Hessian of DAG constraints equation 6 can be obtained as follows:

∇2
B̃
trf(B̃) = Kdd

∞∑
i=2

ici

i−2∑
j=0

[
B̃

j
]⊤

⊗
[
B̃

i−2−j
]
, (18)

where ⊗ denotes the Kronecker product, and Kdd ∈ {0, 1}d2×d2

is the commutation matrix satisfies
that for any d× d matrix A

Kd,dvec(A) = vec(A⊤).
1the constant c0d can be dropped because trf(B⊙B) is bounded below by c0d, detailed derivation is

provided in the supplementary file.
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Obviously, the Hessian Equation (18) is symmetric and not positive semi-definite. One widely used
way to convexify Hessian is to find a positive scalar η such that

∆ = ∇2
B̃
trf(B̃) + ηI, (19)

becomes positive semi-definite. It require η to be no less than the absolute value of the most negative
eigenvalue of ∇2

B̃
trf(B̃). Here the Hessian are symmetric matrix with all non-negative entries.

For this kind of matrices the absolute value of the most negative eigenvalue of ∇2
B̃
trf(B̃) is upper

bounded by the spectral radius of the Hessian, and the bound is tight under certain conditions
(Spielman, 2012). Thus it would be nature to use the spectral radius of the Hessian to measure the
level of non-convexity of the analytic DAG constraints.

The Hessian ∇2
B̃
trf(B̃) can be viewed as linear combinations of a series of symmetric matrices

iKdd

∑i−2
j=0

[
B̃

j
]⊤

⊗
[
B̃

i−2−j
]

with all non-negative entries. The commutation matrix Kdd (Magnus
and Neudecker, 1979) would not have any effects on the spectral radius as it is orthonormal. Thus

larger ci would result the spectral radius of a single term iciKdd

∑i−2
j=0

[
B̃

j
]⊤

⊗
[
B̃

i−2−j
]

to
increase, and finally lead the spectral radius of the Hessian to increase as the following proposition.
Proposition 7. For two analytic function f1(x) = c0,1+

∑∞
i=1 ci,1x

i and f2(x) = c0,2+
∑∞

i=1 ci,2x
i,

if ∀i ⩾ 1 we have ci,1 ⩾ ci,2 > 0, then

ρ(∇2
B̃
trf1(B̃)) ⩾ ρ(∇2

B̃
trf2(B̃)), (20)

where ρ(·) denotes the spectral radius of a matrix.

Proposition 7 suggests that the spectral radius of the Hessian would increase if the coefficients ci in
the analytic function increase. This implies that DAG constraints with larger ci may gain benefits
from gradient vanishing, but suffer from non-convexity. In fact, using Proposition 7 it would be
straightforward to get the following corollary, which provides the level of non-convexity comparison
for several DAG constraints.
Corollary 8.

ρ(∇2
B̃
tr exp(B̃)) ⩽ ρ(∇2

B̃
trfs

log(B̃)) ⩽ ρ(∇2
B̃
trfs

inv(B̃)). (21)

The optimization problem equation 17 can be viewed as a convex objective plus one non-convex
constraint, and the convex mean square error (MSE) loss may play different roles in different scenarios.
For data with known scale, the MSE loss is consistent and thus it provides enough information to
identify the underlying model and thus the non-convexity may not be a serious issue. This is
because in the path-following optimization framework (provided in Algorithm 2), at the beginning
the optimization direction are dominated by the MSE loss so that it will push the candidates to a point
that is not far from global optimal. Thus DAG constraints with finite convergence radius is preferred
to escape from gradient vanishing. Meanwhile, for DAG learning problem with unknown scale, the
MSE loss may not be very informative to the underlying graph structure. In this case, the highly
non-convex DAG constraints may lead to the optimizer to get trapped into a local minimum easily,
and thus we may need additional constraints to reduce the search space, which may possibly make
the objective flatter. In our experiments, we find that by allowing only edges to exist between nodes
with strong correlation can significantly improve the performance.

5 EXPERIMENTS

In the experiment, we compared the performance of different analytic DAG constraints in the same
path-following optimization framework. We implemented the path-following algorithm (provided in
Algorithm 2) using cupy and numpy based on the path-following optimizer in Bello et al. (2022). For
analytic DAG constraints with infinite convergence radius, we consider the exponential-based DAG
constraints. For analytic DAG constraints with finite convergence radius, we consider the following 4
different DAG constraints generated by the differentiation operator or multiply operator:

• Order-1: trfs
log(B⊙B) = 0;
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Graphs #Nodes DAGMA Order 1 Order 2 Order 3 Order 4

ER2-Gaussian
500 44.90 ± 32.95 33.40 ± 23.46 31.70 ± 19.47 30.60 ± 19.07 29.80 ± 20.97
1000 94.80 ± 35.80 69.60 ± 27.64 55.60 ± 19.13 52.40 ± 19.86 57.30 ± 21.39
2000 235.40 ± 62.76 176.00 ± 47.77 153.30 ± 35.92 135.60 ± 38.91 131.00 ± 28.65

ER3-Gaussian
500 125.30 ± 44.55 101.10 ± 39.03 90.30 ± 39.56 93.90 ± 31.26 92.90 ± 45.56
1000 339.60 ± 67.80 242.80 ± 72.21 210.30 ± 60.98 184.90 ± 47.44 165.80 ± 35.95
2000 669.50 ± 140.61 610.70 ± 136.84 555.30 ± 106.01 479.50 ± 88.72 424.90 ± 64.39

ER4-Gaussian
500 307.60 ± 116.53 261.40 ± 102.81 263.00 ± 122.34 246.70 ± 110.28 223.80 ± 97.46
1000 878.50 ± 174.96 689.20 ± 165.62 695.50 ± 134.41 619.80 ± 150.43 626.30 ± 157.59
2000 1922.30 ± 187.69 1785.40 ± 184.47 1779.30 ± 211.23 1655.40 ± 181.75 1574.10 ± 152.23

ER2-Exp 500 58.20 ± 31.58 40.50 ± 26.93 28.90 ± 16.60 31.00 ± 25.67 35.20 ± 34.32
1000 93.90 ± 33.96 68.70 ± 23.20 54.00 ± 16.26 50.90 ± 17.29 57.90 ± 24.93

ER3-Exp 500 142.70 ± 50.13 106.00 ± 39.15 95.10 ± 32.68 99.60 ± 37.94 100.30 ± 47.52
1000 321.10 ± 83.82 242.80 ± 68.51 212.40 ± 67.87 187.60 ± 61.87 173.10 ± 49.03

ER4-Exp 500 336.00 ± 124.19 292.70 ± 123.41 294.90 ± 130.66 254.40 ± 133.05 214.70 ± 84.29
1000 879.40 ± 162.98 718.20 ± 127.12 710.60 ± 151.41 640.50 ± 148.24 619.70 ± 133.44

ER2-Gumbel 500 45.10 ± 33.28 22.60 ± 20.04 21.30 ± 18.41 19.80 ± 16.39 16.20 ± 11.91
1000 80.50 ± 42.65 49.90 ± 24.54 39.90 ± 14.04 36.80 ± 15.18 45.90 ± 23.18

ER3-Gumbel 500 147.10 ± 54.19 94.10 ± 40.87 76.60 ± 60.77 60.60 ± 31.34 85.30 ± 50.75
1000 297.90 ± 72.40 215.40 ± 52.35 185.00 ± 71.98 173.90 ± 57.09 147.70 ± 40.51

ER4-Gumbel 500 338.80 ± 127.56 273.70 ± 131.13 257.50 ± 111.06 232.40 ± 121.98 234.70 ± 149.59
1000 919.90 ± 182.38 722.80 ± 177.86 734.80 ± 177.78 620.70 ± 187.56 564.10 ± 170.46

Table 1: DAG learning performance (measured in structural hamming distance, the lower the better, best results
in bold) of different algorithms on ER{2,3,4} graphs with different noise distributions. All our algorithms
performs better than the previous state-of-the-arts DAGMA (Bello et al., 2022), and as higher order DAG
constraints suffers less to gradient vanishing, it tends to have better performance.

Graphs #Nodes DAGMA(Bello et al., 2022) Order 1 Order 2 Order 3 Order 4

SF2
500 31.40 ± 43.51 24.30 ± 43.90 32.40 ± 49.38 34.20 ± 45.56 41.50 ± 48.45
1000 44.90 ± 34.38 41.20 ± 36.02 22.50 ± 13.21 29.20 ± 20.07 58.10 ± 27.58
2000 189.80 ± 99.47 162.90 ± 73.30 172.10 ± 74.35 152.20 ± 90.29 172.60 ± 124.12

SF3
500 58.10 ± 33.90 51.10 ± 32.10 41.10 ± 17.91 49.80 ± 24.58 71.00 ± 23.46
1000 169.40 ± 60.82 158.10 ± 46.70 161.20 ± 55.25 162.50 ± 57.54 195.40 ± 75.60
2000 928.70 ± 148.70 896.00 ± 101.85 897.10 ± 146.78 891.50 ± 143.40 999.70 ± 206.36

SF4
500 131.20 ± 42.63 136.80 ± 41.71 134.40 ± 39.34 128.90 ± 36.68 151.60 ± 37.05
1000 431.70 ± 119.22 404.00 ± 88.89 400.30 ± 76.49 386.90 ± 93.16 394.50 ± 111.57
2000 1525.10 ± 299.02 1500.50 ± 297.88 1444.70 ± 291.45 1395.60 ± 264.90 1418.90 ± 228.86

SF2 500 25.90 ± 44.45 23.40 ± 44.41 32.10 ± 49.08 35.00 ± 48.84 37.20 ± 45.21
1000 43.70 ± 34.48 41.20 ± 36.02 32.00 ± 34.13 29.10 ± 19.68 59.10 ± 30.34

SF3 500 57.70 ± 33.68 57.70 ± 33.64 41.80 ± 20.37 43.20 ± 15.75 66.70 ± 24.36
1000 177.10 ± 67.53 165.40 ± 57.70 171.60 ± 66.80 175.10 ± 69.09 195.90 ± 80.37

SF4 500 127.50 ± 40.84 132.80 ± 40.39 129.90 ± 42.07 135.50 ± 44.21 152.40 ± 39.94
1000 408.80 ± 119.71 419.70 ± 108.01 388.50 ± 53.01 394.30 ± 88.95 395.30 ± 109.37

SF2 500 23.10 ± 44.78 17.70 ± 44.51 16.70 ± 44.15 20.00 ± 45.75 33.40 ± 49.30
1000 29.20 ± 24.77 24.70 ± 24.85 12.50 ± 11.40 16.20 ± 13.96 47.90 ± 25.69

SF3 500 33.50 ± 32.98 25.20 ± 27.85 19.40 ± 12.37 19.00 ± 7.44 50.00 ± 22.41
1000 107.50 ± 50.50 114.50 ± 59.80 106.60 ± 64.77 103.70 ± 58.15 133.60 ± 88.43

SF4 500 77.70 ± 41.43 76.20 ± 41.86 67.90 ± 26.47 79.20 ± 23.87 101.40 ± 22.37
1000 333.10 ± 118.06 348.80 ± 110.93 309.20 ± 51.86 321.50 ± 83.13 339.70 ± 111.17

Table 2: DAG learning performance (measured in structural hamming distance, the lower the better, best results
in bold) of different algorithms on SF{2,3,4} graphs with different noise distributions. Our algorithms usually
performs better than the previous state-of-the-arts DAGMA(Bello et al., 2022).

• Order-2: trfs
inv(B⊙B /s) = d;

• Order-3: tr[fs
inv(B⊙B /s)]2 = d;

• Order-4: tr[fs
inv(B⊙B /s)]3 = d.

In our experiments, we use the same annealing strategy for s as Bello et al. (2022). During the
optimization, the spectral radius of B⊙B may be larger than s, which make the DAG constraints
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PC GES DAGMA Exponential Order 1 Order 2 Order 3 Order 4

SHD 563.9 ± 23.84 4490.2 ± 62.52 588.8 ± 18.33 488.6± 24.29 429.6 ± 24.73 410.6 ± 15.25 401.0 ± 16.64 389.4 ± 16.70

Table 3: DAG learning performance (measured in structural hamming distance, the lower the better, best results
in bold) of different algorithms on 1000-node ER1 graphs with Gaussian noise with observation data normalized.
Our algorithms performs better than the previous approaches, and as higher order DAG constraints suffers less to
gradient vanishing, it tends to have better performance. We compare differential DAG learning approaches with
conditional independent test based PC (Spirtes and Glymour, 1991) algorithm and score based GES (Chickering,
2002) algorithm. The result is reported in the format of average± standard derivation gathered from 10 different
simulations.

invalid. In this case, we use the strategy provided in Algorithm 1 to reset s. We also tried the DAG
constraints (Zhang et al., 2022) with their code provided in their appendix, but it do have some
numeric issues for large scale graphs.

We compare the performance of these DAG constraints using two different settings: linear SEM with
known ground truth scale and with unknown ground truth scale. We also compare these methods with
constraint based PC (Spirtes and Glymour, 1991) algorithm and score based combinatorial search
algorithm GES (Chickering, 2002) implemented by Kalainathan et al. (2020).

5.1 LINEAR SEM WITH KNOWN GROUND TRUTH SCALE

For linear SEM with a known ground truth scale, our experimental setting is similar to Bello et al.
(2022); Zhang et al. (2022); Zheng et al. (2018). We generated two different types of random graphs:
ER (Erdős-Rényi) and SF (Scale-Free) graphs with different numbers of expected edges. We use ERn
(SFn) to denote graphs with d nodes and nd expected edges. Edge weights generated from a uniform
distribution over the union of two intervals [−2,−0.5] ∪ [0.5, 2.0] are assigned to each edge to form
a weighted adjacency matrix B. Then, n samples are generated from the linear SEM x = Bx+ e
to form an n × d data matrix X, where the noise e is iid sampled from Gaussian, Exponential, or
Gumbel distribution. As Bello et al. (2022); Zhang et al. (2022); Zheng et al. (2018) achieved nearly
perfect results on small and sparse graphs, we considered more challenging large and denser graphs
in our experiments. We set the sample size n = 1000 and consider 3 different numbers of nodes
d = 500, 1000, 2000. For each setting, we conducted 10 random simulations to obtain an average
performance. All these experiments were performed using an A100 GPU, and all computations were
done in double precision. Our algorithms were compared with the previous state-of-the-art approach
DAGMA Bello et al. (2022). The original version of DAGMA Bello et al. (2022) used numpy and
ran on CPU; we replaced numpy with cupy to get a GPU version of DAGMA, which performed
identically to the CPU version.

The results on ER2, ER3, and ER4 graphs are shown in Table 1. In all cases, our algorithms outper-
formed the previous state-of-the-art DAGMA. Our Order-1 algorithm is very similar to DAGMA,
except for our annealing strategy of s derived from our theory, which indicates the efficiency of
our theory. Furthermore, our theory shows that higher-order constraints suffer less from gradient
vanishing, and in the experimental results, we observed that the performance of higher-order DAG
constraints outperformed lower-order ones in most cases. The results of SF2, SF3, and SF4 graphs
are shown in Table 2. On scale-free graphs, our algorithms usually performed better than DAGMA,
and the higher-order constraints, Order-2 and Order-3, often outperformed Order-1. The performance
of Order-4 constraints was not good, possibly due to stronger non-convexity.

The DAGMA algorithm actually employed the same DAG constraints as our Order-1 method, but with
a different strategy to search for s. Our search strategy, derived from properties of analytic functions,
provides a tight bound for s, allowing a smaller s to be used than DAGMA without sacrificing the
numeric stability. As a result, our algorithm suffers less from gradient vanishing and achieves better
performance.

In terms of running time, all algorithms had similar running times, typically about 5 minutes for a
500-node graph, 10-20 minutes for a 1000-node graph, and around 2 hours for a 2000-node graph.
Due to limited time and resources, we only considered d = 2000 for Gaussian noises, and for other
cases, we only considered d = 500, 1000.
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Original GRAN Order 1 Order 2 Order 3 Order 4

SHD 15 13 13 13 13
SHD-CPDAG 10 9 9 9 9

SHD 13 13 13 13 13
SHD-CPDAG 10 9 9 9 9

Table 4: Nonlinear DAG learning performance (measured in structural hamming distance on DAG ad CPDAG,
the lower the better) of different DAG constraints on Sachs et al. (2005)’s dataset . Different DAG constraints
was plugged into the GRAN (Lachapelle et al., 2020) framework. Top two rows: results obtained from single-
precision mode. Bottom two rows: results obtained from double-precision mode.

5.2 LINEAR SEM WITH UNKNOWN GROUND TRUTH SCALE

For linear SEM with an unknown ground truth scale, we applied the same data generation process as
for the linear SEM with a known ground truth scale and Gaussian noise, but normalized the generated
data X to have zero mean and unit variance. In this normalization procedure, the scale information of
the variables is removed from the data. Particularly for Gaussian noise, in this case, the true DAG is
not identifiable, and we may only identify it to a Markov Equivalent Class. Previously, it has been
observed that direct optimization over equation 17 may result in poor performance, mainly due to the
non-convex nature. In our experiments, we added an additional constraint to only allow edges to exist
between highly correlated nodes. We first computed the Pearson correlation coefficients between
every pair of nodes, and if the absolute value of the coefficient between two nodes is larger than 0.1,
then we allow the edge to exist. During optimization, at every gradient descent step, we removed the
disallowed edges from the candidate graph. We generated 10 instances of 1000-node ER1 graphs
with Gaussian noise, and 1000 observational samples were generated for each instance.

The results are shown in Table 3. Our algorithm outperforms PC (Spirtes and Glymour, 1991) and
GES (Chickering, 2002) in terms of SHD. Although higher-order DAG constraints may suffer more
from non-convexity, by adding proper constraints on the candidate graphs, we can still achieve
satisfactory results. In the results, we can see that the performance of higher-order constraints is
better than that of lower-order ones, and also better than the exponential-based DAG constraints,
which suggests that gradient vanishing may still be one important reason for poor performance.

5.3 EXPERIMENTAL RESULTS ON NONLINEAR CASES

Our DAG constraints can also be extended to continuous nonlinear DAG learning approaches by
replacing their original DAG constraints. We incorporated our DAG constraints into Lachapelle et al.
(2020) to model nonlinear Structural Equation Models (SEMs) and conducted experiments using
Sachs et al. (2005)’s dataset pre-processed by Lachapelle et al. (2020)2. The GraN-DAG algorithm
can operate in both single-precision and double-precision modes. The experimental results are shown
in Table 4. The results suggest that DAG constraints with a finite spectral radius suffer less from
gradient vanishing and, consequently, from numerical truncation errors. In contrast, the original
GraN-DAG algorithm experiences gradient vanishing, particularly when running in single-precision
mode, as higher-order constraints that prevent long loops are truncated due to limited machine
precision.

6 CONCLUSION

The continuous differentiable DAG constraints play an important role in the continuous DAG
learning algorithms. We show that many of these DAG constraints can be formulated using analytic
functions. Several functional operators, including differentiation, summation, and multiplication,
can be leveraged to create novel DAG constraints based on existing ones. Using these properties,
we designed a series of DAG constraints and designed an efficient algorithm to evaluate these DAG
constraints. Experiments on various settings show that our DAG constraints outperform previous
state-of-the-arts approaches.

2Available at https://github.com/kurowasan/GraN-DAG.
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Appendices

A PROOF OF CONVERGENCE OF MATRIX ANALYTIC FUNCTION

To prove that f(A) converges for any matrix A with spectral radius ρ(A) < r, we begin by
considering the power series representation of the analytic function f(x). Since f(x) converges for
|x| < r, it can be expressed as:

f(x) =

∞∑
k=0

ckx
k,

where the coefficients ck are such that the series converges absolutely for |x| < r. Now, let A be an
n× n matrix with spectral radius ρ(A) < r. By the definition of the spectral radius, all eigenvalues
λ of A satisfy |λ| < r.

We define the matrix function f(A) by substituting A into the power series:

f(A) =

∞∑
k=0

ckA
k.

To show that this series converges, we use the fact that the spectral radius ρ(A) is the infimum of all
sub-multiplicative matrix norms of A. Specifically, for any ϵ > 0, there exists a sub-multiplicative
matrix norm ∥ · ∥ such that ∥A∥ ≤ ρ(A) + ϵ. Since ρ(A) < r, we can choose ϵ small enough so that
∥A∥ < r.

To justify this claim, we provide a proof that the spectral radius ρ(A) is indeed the infimum of all
sub-multiplicative norms of A. Let ∥ · ∥ be any sub-multiplicative matrix norm. For any eigenvalue λ
of A with corresponding eigenvector v, we have:

|λ|∥v∥ = ∥λv∥ = ∥Av∥ ≤ ∥A∥∥v∥.
Since ∥v∥ ≠ 0, it follows that |λ| ≤ ∥A∥. Taking the supremum over all eigenvalues λ, we obtain
ρ(A) ≤ ∥A∥. This shows that ρ(A) is a lower bound for all sub-multiplicative norms of A.

To show that ρ(A) is the infimum, we use the fact that for any ϵ > 0, there exists a sub-multiplicative
norm ∥ · ∥ϵ such that ∥A∥ϵ ≤ ρ(A) + ϵ. This can be achieved, for example, by using the Jordan
canonical form of A and constructing an appropriate norm. Thus, ρ(A) is the infimum of all
sub-multiplicative norms of A.

Now, consider the norm of the series:∥∥∥∥∥
∞∑
k=0

ckA
k

∥∥∥∥∥ ≤
∞∑
k=0

|ck|∥A∥k.

Since ∥A∥ < r and the original series
∑∞

k=0 ckx
k converges absolutely for |x| < r, the series∑∞

k=0 |ck|∥A∥k also converges. Therefore, the matrix series
∑∞

k=0 ckA
k converges absolutely, and

f(A) is well-defined.

This completes the proof that f(A) converges for any matrix A with spectral radius ρ(A) < r.

B PROOF OF PROPOSITIONS

Our proof are also based on the well-known properties of analytic functions listed as follows:

1. Let f1(x), f2(x) be analytic functions on (−r1, r1) and (−r2, r2), then f1(x) + f2(x) and
f1(x)f2(x) are analytic functions on (−min(r1, r2),min(r1, r2));

2. Let f(x) be analytic function on (−r, r), then ∂f(x)/∂x is an analytic function on (−r, r).

B.1 LEMMAS REQUIRED FOR PROOFS

Lemma 9. Let B̃ ∈ Rd×d
⩾0 be the weighted adjacency matrix of a graph G with d vertices, G is a

DAG if and only if B̃
d
= 0.
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Proof. See Proposition 3.1 of Zhang et al. (2022).

Lemma 10. Let B̃ ∈ Rd×d
⩾0 be the weighted adjacency matrix of a graph G with d vertices, G is a

DAG if and only

tr(

d∑
i=1

ciB̃
i
) = 0,

where ci > 0∀i.

Proof. See Wei et al. (2020).

B.2 PROOF OF PROPOSITION 1

Proposition 1. Let B̃ ∈ Rd×d
≥0 with ρ(B̃) ⩽ r be the weighted adjacency matrix of a directed graph

G, and let f be an analytic function in the form of equation 3, where we further assume ∀i > 0 we
have ci > 0, then G is acyclic if and only if

tr
î
f(B̃)

ó
= c0d.

Proof. Without loss of generality, assume that f can be formulated as:

f(x) = c0 +

∞∑
i=1

cix
i;∀i, ci > 0; lim

i→∞
ci/ci+1 > 0. (22)

First if G is acyclic, by Lemma 9 we must have

B̃
k
= 0∀k ⩾ d, (23)

which also indicates that ρ(B̃) = 0. Thus we have

tr
î
f(B̃)

ó
=tr

c0I+
d∑

i=1

ciB̃
i
+

∞∑
i=d+1

ciB̃
i

︸ ︷︷ ︸
Equals 0, By Lemma 9


=tr[c0I] + tr

[
d∑

i=1

ciB̃
i

]
︸ ︷︷ ︸

Equals 0, By Lemma 10

=c0d.

(24)

On the other hand, if tr
î
f(B̃)

ó
= c0d, we must have that

tr

[ ∞∑
i=1

ciB̃
i

]
= 0.

By the fact all entries of B̃ are positive, we have that

0 ⩽ tr

[
d∑

i=1

ciB̃
i

]
⩽

[ ∞∑
i=1

ciB̃
i

]
= 0. (25)

Then we must have

tr

[
d∑

i=1

ciB̃
i

]
= 0.

Finally by Lemma 10 we have that G is a DAG.
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B.3 PROOF OF PROPOSITION 2

In all the paper, we consider analytic functions f from the functional class F defined in equation 5.

Proposition 2. There exists some real number r, where for all {B̃ ∈ Rd×d
⩾0 |ρ(B̃) < r}, the derivative

of tr
î
f(B̃)

ó
w.r.t. B̃ is

∇B̃tr
î
f(B̃)

ó
= [∇xf(x)|x=B̃]

⊤
.

Proof. Without loss of generality, assume that f can be formulated as:

f(x) = c0 +

∞∑
i=1

cix
i;∀i, ci > 0; lim

i→∞
ci/ci+1 > 0. (26)

For some i by basic matrix differentiation we have

∂trB̃
i

∂B̃
= (iBi−1)⊤, (27)

and then by the properties of power series we have

∇B̃tr
î
f(B̃)

ó
=∇B̃tr

[
c0I+

∞∑
i=1

ciB̃
i

]

=

∞∑
i=1

∇B̃trciB̃
i

=

[ ∞∑
i=1

ciiB̃
i−1

]⊤

=

[ ∞∑
i=1

ciix
i−1

∣∣∣∣∣
x=B̃

]⊤

= [∇xf(x)|x=B̃]
⊤
,

(28)

where we can exchange ∇ and
∑∞

i=1 because after the exchanging the new power series will still
converge (by properties of analytic functions).

B.4 PROOF OF PROPOSITION 3

Proposition 3. Let f(x) = c0 +
∑∞

i=1 cix
i ∈ F be a analytic function on (−r, r), and let n be

arbitary integer larger than 1, then B̃ ∈ Rd×d
⩾0 | with spectral radius ρ(B̂) ⩽ r forms a DAG if and

only if

tr

ï
∂nf(x)

∂xn

∣∣∣∣
x=B̃

ò
= n!cn.

Proof. By properties of analytic functions, the nth order derivative of an analytic function f(x) on
(−r, r) is still an analytic function on (−r, r). Particularly for f(x) = c0 +

∑∞
i=1 cix

i ∈ F , we have

∂nf(x)

∂xn
=

∞∑
i=1

∂ncix
i

∂xn

=

∞∑
i=n

∂ncix
i

∂xn

=

∞∑
i=n

[
cix

i−n
n∏

k=i−n+1

k

]

=n!cn +

∞∑
i=1

[
ci+nx

i
n+i∏
k=i

k

]
,

(29)
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where by the fact ci > 0,∀i > 1, we have that ∂nf(x)
∂xn ∈ F . Then by Proposition 1 we immediately

proved the proposition.

B.5 PROOF OF PROPOSITION 4

Proposition 4. Let f1(x) = c10+
∑∞

i=1 c
1
ix

i ∈ F , and f2(x) = c20+
∑∞

i=1 c
2
ix

i ∈ F . Then for an ad-
jancency matrix B̃ ∈ Rd×d

⩾0 with spectral radius ρ(B̃) ⩽ min(limi→∞ c1i /c
1
i+1, limi→∞ c2i /c

2
i+1)},

the following three statements are equivalent:

1. B̃ forms a DAG;

2. tr[f1(B̃) + f2(B̃)] = (c10 + c20)d;

3. tr[f1(B̃)f2(B̃)] = c10c
2
0d.

Proof. By properties of analytic functions, we have

f1(x) + f2(x) = c10 + c20 +

∞∑
i=1

(c1i + c2i )x
i (30)

is an analytic function, and its convergence radius is given by
lim
i→∞

(c1i + c2i )/(c
1
i+1 + c2i+1) = min( lim

i→∞
c1i /c

1
i+1, lim

i→∞
c2i /c

2
i+1), (31)

and thus by Proposition 1 the statement 1 and 2 are equivalent. Similarly by properties of analytic
functions statement 1 and 3 are equivalent. Thus the 3 statements are equivalent.

B.6 PROOF OF PROPOSITION 5

Proposition 5. Let n be any positive integer, the adjancency matrix B̃ ∈ {B̂ ∈ Rd×d
⩾0 |ρ(B̂) ⩽ s} if

and only if
tr(I− B̃/s)−n = d,

and the gradients of the DAG constraints satisfies that ∀B̃ ∈ {B̂ ∈ Rd×d
⩾0 |ρ(B̂) ⩽ s}

∥∇B̃tr(I− B̃/s)−n∥ ⩽ ∥∇B̃tr(I− B̃/s)−n−k∥,
where k is an arbitrary positive integer, and ∥ · ∥ denote an arbitrary matrix norm induced by vector
p-norm.

Proof. By Proposition 4 or Proposition 3, it would be straightforward that tr(I − B̃)−n = d is a
necessary and sufficient condition for an adjacency matrix B̃ ∈ {B̂ ∈ Rd×d

⩾0 |ρ(B̂) ⩽ s} to form a
DAG.

For the norm of gradients, it is straightforward that
∂(1− x)−n

∂x
= n(1− x)−n−1. (32)

For arbitrary n we have

(1− x)−n = 1 +

∞∑
i=1

n+i−1∏
j=n

j

xi, (33)

and obviously the coefficients is monotonic increasing w.r.t. n. Thus by the fact ∀B̃ ∈ {B̂ ∈
Rd×d

⩾0 |ρ(B̂) ⩽ s} we have for any j > 0, k > 0

∥(I− B̃)−j∥ ⩽ ∥(I− B̃)−j−k∥. (34)
As a result, we have

∥∇B̃tr(I− B̃)−n∥ =n∥(I− B̃)−n−1∥ ⩽ (n+ k)∥(I− B̃)−n−1∥
⩽(n+ k)∥(I− B̃)−n−k−1∥ = ∥∇B̃tr(I− B̃)−n−k∥.

(35)
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B.7 PROOF OF PROPOSITION 6

Proposition 6. Thus the Hessian of the DAG constraints equation 6 can be obtained as follows:

∇2
B̃
trf(B̃) = Kdd

∞∑
i=2

ici

i−2∑
j=0

[
B̃

j
]⊤

⊗
[
B̃

i−2−j
]
,

where ⊗ denotes the Kronecker product.

Proof. Firstly, the derivative of matrix power can be obtained using the following equation (Magnus
and Neudecker, 2019),

∇2
B̃
trB̃

k
= kKdd

i−2∑
j=0

[
B̃

j
]⊤

⊗
[
B̃

i−2−j
]
, (36)

where ⊗ denotes the Kronecker product. Thus the Hessian of analytic DAG constraints can be
obtained as follows:

∇2
B̃
trf(B̃) =

∞∑
i=0

citr∇2
B̃
B̃

i

= Kdd

∞∑
i=2

ici

i−2∑
j=0

[
B̃

j
]⊤

⊗
[
B̃

i−2−j
]
. (37)

B.8 PROOF OF PROPOSITION 7

Proposition 7. For two analytic function f1(x) = c0,1 +
∑∞

i=1 ci,1x
i ∈ F and f2(x) = c0,2 +∑∞

i=1 ci,2x
i ∈ F , if ∀i ⩾ 1 we have ci,1 ⩾ ci,2, then

ρ(∇2
B̃
trf1(B̃)) ⩾ ρ(∇2

B̃
trf2(B̃)),

where ρ(·) denotes the spectral radius of a matrix.

Proof. Obviously, each entries in the Hessian of trf1(B̃)) is larger than the corresponding ones in
trf2(B̃)). Thus for any unit length vector u with all positive entries we would have

u⊤ ∇2
B̃
trf1(B̃))u ⩾ u⊤ ∇2

B̃
trf2(B̃))u,

and then it would be straightforward that

ρ(∇2
B̃
trf1(B̃)) = max

u:u⩾0,∥u ∥2=1
u⊤ ∇2

B̃
trf1(B̃))u

⩾ max
u:u⩾0,∥u ∥2=1

u⊤ ∇2
B̃
trf2(B̃))u = ρ(∇2

B̃
trf2(B̃)).

C ERROR ANALYSIS OF THE ANALYTIC FUNCTION BASED DAG
CONSTRAINTS

Without loss of generalization, we analyze the truncated error for a DAG constraints

f(B̃) = c0I+

∞∑
i=1

ciB̃
i

which converges for ρ(B̃) < 1, and the results can be easily generalized to normal analytic function
based DAG constraints.
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it would be obvious for a truncated approximation

fk(B̃) = c0I+
k∑

i=1

ciB̃
i

the error between the truncated approximation and the original analytic function can be obtained by

∥f(B̃)− fk(B̃)∥2 =∥
∞∑

i=k+1

ciB̃
i∥2

= ∥B̃k+1
∞∑
i=0

ĉiB̃i∥2︸ ︷︷ ︸
Let ĉi=ck+1+i

⩽∥B̃k+1∥2 sup
B̃:ρ(B)<1

∥
∞∑
i=0

ĉiB̃i∥2

=∥B̃k+1∥2C(f, k)

where we define C(f, k) = supB̃:ρ(B)<1 ∥
∑∞

i=0 ĉiB̃
i∥2. It is notable that ∥B̃k+1∥2 converges to 0

exponentially w.r.t. the increase of k due to the fact ρ(B̃) < 1. Meanwhile, it is obvious that C(f, k)

increases at most in polynomial rate due to that fact
∑∞

i=0 ĉiB̃
i∥2 converges for ρ(B̃) < 1. Finally,

the residual of Algorithm 2 converges to 0 in a rate of a polynomial of k divided by the exponential
of k.

D HYPER PARAMETERS

In terms of hyper-parameters, our selection involves α = 0.1, λ1 = 0.1, and T = 5. For s we use the
same annealing approach as Bello et al. (2022), but with our strategy to reset s when candidate graph
goes out of the desired region.

In all experiments in this paper, for continuous based approaches we use exactly the same hyper
parameter as Bello et al. (2022), for conditional independent test and score based approaches we use
the default parameter in Causal Discovery Toolbox3.

E EXTRA EXPERIMENTAL RESULTS

In this section, we provide additional experimental results, including true positive rate, false detection
rate and running time for large scale graphs, as well as experimental results on small scale graphs.

3https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.
html

18

https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html
https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html


Published as a conference paper at ICLR 2025

Table 5: DAG learning performance (measured in true positive rate, the higher the better, best
results in bold) of different algorithms on large scale (500-2000 nodes) graphs with different noise
distributions. Our algorithm performs better than previous approaches.

Graphs Nodes DAGMA Order-1 Order-2 Order-3 Order-4

ER2-gauss 500 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
ER2-gauss 1000 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
ER2-gauss 2000 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
ER3-gauss 500 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
ER3-gauss 1000 0.94 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
ER3-gauss 2000 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.00
ER4-gauss 500 0.92 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.02
ER4-gauss 1000 0.89 ± 0.02 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
ER4-gauss 2000 0.89 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
ER2-exp 500 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
ER2-exp 1000 0.97 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
ER2-exp 2000 0.00 ± 0.00 0.58 ± 0.48 0.10 ± 0.29 0.10 ± 0.29 0.10 ± 0.29
ER3-exp 500 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
ER3-exp 1000 0.94 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
ER3-exp 2000 0.00 ± 0.00 0.09 ± 0.28 0.09 ± 0.28 0.10 ± 0.29 0.00 ± 0.00
ER4-exp 500 0.91 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.94 ± 0.02 0.95 ± 0.01
ER4-exp 1000 0.89 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.94 ± 0.01
ER4-exp 2000 0.00 ± 0.00 0.09 ± 0.27 0.09 ± 0.27 0.09 ± 0.27 0.00 ± 0.00
ER2-gumbel 500 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00
ER2-gumbel 1000 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
ER2-gumbel 2000 0.00 ± 0.00 0.59 ± 0.48 0.10 ± 0.29 0.10 ± 0.30 0.10 ± 0.30
ER3-gumbel 500 0.95 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
ER3-gumbel 1000 0.95 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.98 ± 0.01
ER3-gumbel 2000 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.29
ER4-gumbel 500 0.93 ± 0.02 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.02
ER4-gumbel 1000 0.90 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ER4-gumbel 2000 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.09 ± 0.28

SF2-gauss 500 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF2-gauss 1000 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
SF2-gauss 2000 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
SF3-gauss 500 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
SF3-gauss 1000 0.94 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
SF3-gauss 2000 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.00
SF4-gauss 500 0.92 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.02
SF4-gauss 1000 0.89 ± 0.02 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
SF4-gauss 2000 0.89 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
SF2-exp 500 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF2-exp 1000 0.97 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
SF3-exp 500 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
SF3-exp 1000 0.94 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
SF4-exp 500 0.91 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.94 ± 0.02 0.95 ± 0.01
SF4-exp 1000 0.89 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.94 ± 0.01
SF2-gumbel 500 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00
SF2-gumbel 1000 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
SF3-gumbel 500 0.95 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF3-gumbel 1000 0.95 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.98 ± 0.01
SF4-gumbel 500 0.93 ± 0.02 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.02
SF4-gumbel 1000 0.90 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
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Table 6: DAG learning performance (measured in false detection rate, the lower the better, best
results in bold) of different algorithms on large scale (500-2000 nodes) graphs with different noise
distributions. Our algorithm performs better than previous approaches.

Graphs Nodes DAGMA Order-1 Order-2 Order-3 Order-4

ER2-gauss 500 0.02 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
ER2-gauss 1000 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
ER2-gauss 2000 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.00
ER3-gauss 500 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.01 0.04 ± 0.02
ER3-gauss 1000 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
ER3-gauss 2000 0.06 ± 0.01 0.06 ± 0.02 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
ER4-gauss 500 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.04 0.07 ± 0.04 0.07 ± 0.03
ER4-gauss 1000 0.12 ± 0.03 0.11 ± 0.03 0.10 ± 0.02 0.09 ± 0.03 0.10 ± 0.03
ER4-gauss 2000 0.14 ± 0.01 0.13 ± 0.01 0.13 ± 0.02 0.12 ± 0.02 0.12 ± 0.01
ER2-exp 500 0.03 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02
ER2-exp 1000 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
ER3-exp 500 0.05 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 0.04 ± 0.02 0.04 ± 0.02
ER3-exp 1000 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
ER4-exp 500 0.09 ± 0.04 0.09 ± 0.04 0.09 ± 0.05 0.07 ± 0.04 0.06 ± 0.03
ER4-exp 1000 0.12 ± 0.03 0.11 ± 0.02 0.11 ± 0.02 0.09 ± 0.03 0.10 ± 0.02
ER2-gumbel 500 0.03 ± 0.02 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
ER2-gumbel 1000 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01
ER3-gumbel 500 0.06 ± 0.02 0.04 ± 0.02 0.03 ± 0.03 0.03 ± 0.01 0.04 ± 0.02
ER3-gumbel 1000 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.02 0.04 ± 0.01 0.03 ± 0.01
ER4-gumbel 500 0.10 ± 0.04 0.09 ± 0.05 0.09 ± 0.04 0.08 ± 0.04 0.08 ± 0.05
ER4-gumbel 1000 0.14 ± 0.03 0.12 ± 0.03 0.12 ± 0.03 0.11 ± 0.03 0.10 ± 0.03

SF2-gauss 500 0.02 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
SF2-gauss 1000 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
SF2-gauss 2000 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.00
SF3-gauss 500 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.01 0.04 ± 0.02
SF3-gauss 1000 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
SF3-gauss 2000 0.06 ± 0.01 0.06 ± 0.02 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
SF4-gauss 500 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.04 0.07 ± 0.04 0.07 ± 0.03
SF4-gauss 1000 0.12 ± 0.03 0.11 ± 0.03 0.10 ± 0.02 0.09 ± 0.03 0.10 ± 0.03
SF4-gauss 2000 0.14 ± 0.01 0.13 ± 0.01 0.13 ± 0.02 0.12 ± 0.02 0.12 ± 0.01
SF2-exp 500 0.03 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02
SF2-exp 1000 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
SF3-exp 500 0.05 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 0.04 ± 0.02 0.04 ± 0.02
SF3-exp 1000 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
SF4-exp 500 0.09 ± 0.04 0.09 ± 0.04 0.09 ± 0.05 0.07 ± 0.04 0.06 ± 0.03
SF4-exp 1000 0.12 ± 0.03 0.11 ± 0.02 0.11 ± 0.02 0.09 ± 0.03 0.10 ± 0.02
SF2-gumbel 500 0.03 ± 0.02 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
SF2-gumbel 1000 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01
SF3-gumbel 500 0.06 ± 0.02 0.04 ± 0.02 0.03 ± 0.03 0.03 ± 0.01 0.04 ± 0.02
SF3-gumbel 1000 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.02 0.04 ± 0.01 0.03 ± 0.01
SF4-gumbel 500 0.10 ± 0.04 0.09 ± 0.05 0.09 ± 0.04 0.08 ± 0.04 0.08 ± 0.05
SF4-gumbel 1000 0.14 ± 0.03 0.12 ± 0.03 0.12 ± 0.03 0.11 ± 0.03 0.10 ± 0.03
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Table 7: DAG learning performance (measured in running time (seconds), the lower the better, best
results in bold) of different algorithms on large scale (500-2000 nodes) graphs with different noise
distributions. Our algorithm performs better than previous approaches.

Graphs Nodes DAGMA Order-1 Order-2 Order-3 Order-4

ER2-gauss 500 171.79 ± 18.30 294.19 ± 62.47 493.73 ± 28.79 482.01 ± 17.59 512.86 ± 33.87
ER2-gauss 1000 364.95 ± 38.47 687.38 ± 69.45 1261.33 ± 47.66 1256.89 ± 33.76 1329.92 ± 315.91
ER2-gauss 2000 1187.17 ± 108.06 3515.56 ± 310.54 6063.65 ± 554.57 6300.09 ± 197.69 6360.65 ± 321.65
ER3-gauss 500 238.54 ± 58.34 394.95 ± 110.87 516.49 ± 14.45 524.93 ± 48.79 528.08 ± 49.59
ER3-gauss 1000 501.24 ± 59.30 1004.85 ± 162.25 1365.24 ± 21.10 1355.23 ± 139.98 1349.25 ± 84.01
ER3-gauss 2000 1636.23 ± 101.64 4903.56 ± 782.06 6037.67 ± 765.47 7072.04 ± 2168.01 6969.54 ± 724.52
ER4-gauss 500 347.06 ± 55.40 519.77 ± 56.88 532.34 ± 10.16 517.46 ± 12.95 534.98 ± 52.22
ER4-gauss 1000 798.01 ± 27.84 1328.32 ± 48.32 1318.45 ± 62.71 1348.08 ± 15.79 1312.53 ± 138.14
ER4-gauss 2000 2461.67 ± 1.49 6520.96 ± 311.23 6560.10 ± 13.55 7666.47 ± 2151.48 7067.87 ± 1011.11
ER2-exp 500 167.08 ± 25.75 291.87 ± 63.66 492.14 ± 30.49 496.83 ± 20.55 504.17 ± 22.59
ER2-exp 1000 359.97 ± 28.62 708.23 ± 61.00 1245.71 ± 71.43 1279.88 ± 41.63 1277.89 ± 45.39
ER3-exp 500 235.71 ± 56.44 440.70 ± 189.91 564.88 ± 145.09 559.54 ± 144.42 550.44 ± 129.03
ER3-exp 1000 515.88 ± 83.18 1100.18 ± 226.98 1371.65 ± 136.38 1401.29 ± 283.39 1503.85 ± 321.35
ER4-exp 500 358.94 ± 46.65 510.53 ± 46.91 513.70 ± 49.38 522.16 ± 15.09 508.01 ± 34.87
ER4-exp 1000 778.40 ± 51.69 1344.07 ± 26.71 1324.00 ± 111.40 1347.33 ± 21.06 1298.91 ± 100.30
ER2-gumbel 500 161.36 ± 24.90 255.86 ± 33.56 501.55 ± 85.14 490.99 ± 11.06 501.44 ± 23.26
ER2-gumbel 1000 330.53 ± 39.10 656.98 ± 62.61 1245.11 ± 47.50 1276.58 ± 15.41 1266.35 ± 38.53
ER3-gumbel 500 232.45 ± 50.71 381.03 ± 85.67 521.98 ± 8.54 514.79 ± 12.92 506.95 ± 18.01
ER3-gumbel 1000 525.92 ± 93.20 1013.67 ± 168.84 1331.88 ± 99.25 1302.93 ± 101.85 1369.44 ± 39.47
ER4-gumbel 500 366.06 ± 33.40 514.95 ± 57.57 540.93 ± 17.35 530.18 ± 20.49 519.87 ± 13.98
ER4-gumbel 1000 805.91 ± 31.96 1367.02 ± 36.36 1260.93 ± 137.27 1434.41 ± 154.30 1335.20 ± 61.78

SF2-gauss 500 171.79 ± 18.30 294.19 ± 62.47 493.73 ± 28.79 482.01 ± 17.59 512.86 ± 33.87
SF2-gauss 1000 364.95 ± 38.47 687.38 ± 69.45 1261.33 ± 47.66 1256.89 ± 33.76 1329.92 ± 315.91
SF2-gauss 2000 1187.17 ± 108.06 3515.56 ± 310.54 6063.65 ± 554.57 6300.09 ± 197.69 6360.65 ± 321.65
SF3-gauss 500 238.54 ± 58.34 394.95 ± 110.87 516.49 ± 14.45 524.93 ± 48.79 528.08 ± 49.59
SF3-gauss 1000 501.24 ± 59.30 1004.85 ± 162.25 1365.24 ± 21.10 1355.23 ± 139.98 1349.25 ± 84.01
SF3-gauss 2000 1636.23 ± 101.64 4903.56 ± 782.06 6037.67 ± 765.47 7072.04 ± 2168.01 6969.54 ± 724.52
SF4-gauss 500 347.06 ± 55.40 519.77 ± 56.88 532.34 ± 10.16 517.46 ± 12.95 534.98 ± 52.22
SF4-gauss 1000 798.01 ± 27.84 1328.32 ± 48.32 1318.45 ± 62.71 1348.08 ± 15.79 1312.53 ± 138.14
SF4-gauss 2000 2461.67 ± 1.49 6520.96 ± 311.23 6560.10 ± 13.55 7666.47 ± 2151.48 7067.87 ± 1011.11
SF2-exp 500 167.08 ± 25.75 291.87 ± 63.66 492.14 ± 30.49 496.83 ± 20.55 504.17 ± 22.59
SF2-exp 1000 359.97 ± 28.62 708.23 ± 61.00 1245.71 ± 71.43 1279.88 ± 41.63 1277.89 ± 45.39
SF3-exp 500 235.71 ± 56.44 440.70 ± 189.91 564.88 ± 145.09 559.54 ± 144.42 550.44 ± 129.03
SF3-exp 1000 515.88 ± 83.18 1100.18 ± 226.98 1371.65 ± 136.38 1401.29 ± 283.39 1503.85 ± 321.35
SF4-exp 500 358.94 ± 46.65 510.53 ± 46.91 513.70 ± 49.38 522.16 ± 15.09 508.01 ± 34.87
SF4-exp 1000 778.40 ± 51.69 1344.07 ± 26.71 1324.00 ± 111.40 1347.33 ± 21.06 1298.91 ± 100.30
SF2-gumbel 500 161.36 ± 24.90 255.86 ± 33.56 501.55 ± 85.14 490.99 ± 11.06 501.44 ± 23.26
SF2-gumbel 1000 330.53 ± 39.10 656.98 ± 62.61 1245.11 ± 47.50 1276.58 ± 15.41 1266.35 ± 38.53
SF3-gumbel 500 232.45 ± 50.71 381.03 ± 85.67 521.98 ± 8.54 514.79 ± 12.92 506.95 ± 18.01
SF3-gumbel 1000 525.92 ± 93.20 1013.67 ± 168.84 1331.88 ± 99.25 1302.93 ± 101.85 1369.44 ± 39.47
SF4-gumbel 500 366.06 ± 33.40 514.95 ± 57.57 540.93 ± 17.35 530.18 ± 20.49 519.87 ± 13.98
SF4-gumbel 1000 805.91 ± 31.96 1367.02 ± 36.36 1260.93 ± 137.27 1434.41 ± 154.30 1335.20 ± 61.78
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Table 8: DAG learning performance (measured in structural hamming distance, the lower the better,
best results in bold) of different algorithms on small scale (10-100 nodes) ER{2,3,4} graphs with
different noise distributions. Our algorithm performs better than previous approaches.

Graphs Nodes MMPC GES NOTEARS DAGMA Order-1 Order-2 Order-3 Order-4

ER2-gauss 10 21.01 ± 3.77 14.66 ± 9.25 3.01 ± 2.67 2.01 ± 1.91 0.74 ± 1.22 0.93 ± 1.49 0.97 ± 1.65 1.27 ± 2.11
ER2-gauss 30 65.23 ± 9.26 57.95 ± 44.65 6.09 ± 6.31 3.76 ± 3.70 1.88 ± 2.97 1.57 ± 2.29 1.49 ± 2.32 1.87 ± 2.89
ER2-gauss 50 106.74 ± 11.35 90.49 ± 58.75 11.59 ± 10.25 4.21 ± 3.66 2.28 ± 3.06 2.05 ± 2.96 2.21 ± 2.98 2.43 ± 3.69
ER2-gauss 100 215.36 ± 14.83 155.61 ± 76.87 22.58 ± 17.69 7.45 ± 6.70 3.49 ± 3.97 3.64 ± 4.48 4.09 ± 4.40 4.01 ± 4.54
ER3-gauss 10 32.04 ± 3.39 26.39 ± 6.85 8.91 ± 4.33 6.96 ± 3.69 3.36 ± 2.91 3.35 ± 2.97 3.21 ± 2.83 3.51 ± 2.83
ER3-gauss 30 97.56 ± 9.71 158.57 ± 49.92 17.69 ± 12.29 9.22 ± 6.24 4.83 ± 4.56 5.33 ± 5.52 5.54 ± 5.71 4.96 ± 5.94
ER3-gauss 50 160.21 ± 12.67 285.88 ± 96.26 30.70 ± 18.48 13.05 ± 8.68 6.60 ± 6.56 6.43 ± 5.72 6.55 ± 6.09 6.44 ± 5.54
ER3-gauss 100 321.30 ± 18.01 506.91 ± 202.63 64.27 ± 33.28 21.66 ± 15.48 11.59 ± 9.90 10.69 ± 9.92 10.86 ± 9.02 11.28 ± 9.99
ER4-gauss 10 40.37 ± 2.24 29.07 ± 5.77 13.71 ± 3.93 11.57 ± 3.27 6.89 ± 3.39 6.75 ± 3.15 7.08 ± 3.40 7.04 ± 3.31
ER4-gauss 30 126.27 ± 10.70 222.49 ± 38.99 39.18 ± 21.79 20.67 ± 9.26 11.12 ± 7.76 10.54 ± 7.35 12.58 ± 8.81 12.81 ± 10.74
ER4-gauss 50 210.43 ± 13.13 495.14 ± 81.60 60.61 ± 25.25 24.96 ± 12.48 14.39 ± 9.72 12.89 ± 9.52 15.15 ± 10.31 16.22 ± 10.17
ER4-gauss 100 424.49 ± 20.13 1047.05 ± 250.05 118.16 ± 51.53 42.81 ± 23.74 28.31 ± 25.58 24.47 ± 24.31 23.22 ± 23.60 23.03 ± 21.51
ER2-exp 10 20.88 ± 3.70 15.23 ± 9.49 3.05 ± 2.64 2.19 ± 1.87 0.80 ± 1.34 0.90 ± 1.57 1.03 ± 1.74 1.35 ± 2.30
ER2-exp 30 64.98 ± 9.21 59.37 ± 46.71 6.59 ± 7.08 3.83 ± 4.10 2.22 ± 3.63 1.85 ± 2.91 1.40 ± 2.37 2.09 ± 3.28
ER2-exp 50 106.77 ± 10.85 95.43 ± 56.48 11.51 ± 9.70 4.21 ± 3.43 2.12 ± 2.75 1.97 ± 2.47 2.62 ± 3.01 2.80 ± 3.53
ER2-exp 100 215.70 ± 14.80 159.55 ± 77.19 21.87 ± 17.48 7.31 ± 6.17 3.71 ± 4.77 4.11 ± 4.58 4.54 ± 4.72 4.82 ± 5.15
ER3-exp 10 31.90 ± 3.41 26.29 ± 6.80 9.32 ± 4.42 6.98 ± 3.43 3.57 ± 2.91 3.43 ± 2.96 3.10 ± 2.89 3.68 ± 2.82
ER3-exp 30 97.74 ± 9.81 154.20 ± 48.45 17.54 ± 11.51 9.11 ± 5.51 5.07 ± 4.47 5.51 ± 5.51 5.60 ± 5.73 4.81 ± 5.76
ER3-exp 50 160.16 ± 12.49 288.43 ± 99.00 31.32 ± 19.96 14.16 ± 9.73 7.92 ± 7.38 6.73 ± 5.94 7.15 ± 6.32 7.18 ± 5.69
ER3-exp 100 321.66 ± 17.89 494.33 ± 188.84 66.39 ± 30.84 22.02 ± 15.03 12.26 ± 9.06 12.44 ± 11.03 11.52 ± 9.37 11.14 ± 8.36
ER4-exp 10 40.44 ± 2.15 28.79 ± 5.56 13.92 ± 3.89 11.85 ± 3.42 7.01 ± 3.44 6.93 ± 3.36 7.07 ± 3.55 7.10 ± 3.32
ER4-exp 30 125.98 ± 10.62 221.86 ± 39.40 36.55 ± 18.74 21.00 ± 10.26 10.73 ± 7.83 11.55 ± 7.70 13.19 ± 9.95 12.87 ± 11.09
ER4-exp 50 210.42 ± 13.43 494.91 ± 77.20 60.90 ± 25.93 27.10 ± 12.94 14.76 ± 9.50 13.83 ± 9.46 14.92 ± 10.98 16.44 ± 12.95
ER4-exp 100 424.65 ± 19.82 1043.47 ± 239.69 116.91 ± 48.63 42.64 ± 23.78 27.02 ± 24.07 24.32 ± 22.06 23.39 ± 22.89 24.12 ± 22.40
ER2-gumbel 10 20.89 ± 3.72 16.07 ± 8.92 1.69 ± 2.04 1.11 ± 1.52 0.67 ± 1.36 0.82 ± 1.60 0.79 ± 1.65 1.00 ± 2.24
ER2-gumbel 30 64.88 ± 9.55 61.33 ± 43.70 5.65 ± 7.35 2.10 ± 2.92 1.76 ± 2.79 1.69 ± 2.90 2.13 ± 3.06 2.28 ± 3.74
ER2-gumbel 50 106.77 ± 10.76 92.35 ± 57.81 10.24 ± 10.44 2.81 ± 3.30 2.43 ± 3.03 2.64 ± 3.81 3.41 ± 4.63 3.77 ± 4.56
ER2-gumbel 100 215.52 ± 15.57 161.75 ± 89.91 22.39 ± 19.17 4.89 ± 5.94 4.21 ± 5.17 4.78 ± 5.64 5.59 ± 5.42 6.63 ± 6.00
ER3-gumbel 10 31.95 ± 3.37 26.29 ± 6.69 5.93 ± 3.95 4.05 ± 2.96 1.90 ± 2.39 2.44 ± 2.71 2.09 ± 2.31 1.75 ± 2.23
ER3-gumbel 30 97.72 ± 9.72 158.60 ± 49.62 13.44 ± 11.65 4.97 ± 4.07 3.72 ± 4.11 4.13 ± 4.29 5.99 ± 6.27 5.96 ± 6.92
ER3-gumbel 50 160.35 ± 12.66 281.98 ± 102.11 27.28 ± 20.76 9.43 ± 7.56 7.29 ± 7.07 5.79 ± 5.76 7.89 ± 6.40 8.17 ± 8.16
ER3-gumbel 100 321.87 ± 18.02 496.90 ± 193.46 60.12 ± 29.08 15.06 ± 13.15 12.62 ± 12.83 12.46 ± 12.84 12.45 ± 9.95 13.87 ± 10.60
ER4-gumbel 10 40.48 ± 2.13 28.69 ± 5.93 10.24 ± 4.08 7.75 ± 2.94 3.96 ± 3.11 4.55 ± 3.54 4.92 ± 3.38 4.90 ± 3.46
ER4-gumbel 30 126.04 ± 10.54 219.39 ± 43.15 29.45 ± 19.08 12.35 ± 7.64 8.37 ± 6.70 8.14 ± 7.53 11.29 ± 9.49 11.84 ± 9.91
ER4-gumbel 50 210.16 ± 13.34 499.02 ± 78.43 55.57 ± 28.67 18.03 ± 15.20 12.07 ± 9.36 10.92 ± 9.04 13.44 ± 10.94 15.06 ± 11.37
ER4-gumbel 100 424.19 ± 20.06 1031.32 ± 243.38 114.40 ± 52.86 29.94 ± 22.69 27.00 ± 28.51 22.36 ± 24.07 21.24 ± 23.58 25.37 ± 25.67

SF2-gauss 10 14.82 ± 1.99 5.01 ± 6.58 3.01 ± 2.67 2.01 ± 1.91 0.74 ± 1.22 0.93 ± 1.49 0.97 ± 1.65 1.27 ± 2.11
SF2-gauss 30 54.01 ± 3.54 19.59 ± 19.48 6.09 ± 6.31 3.76 ± 3.70 1.88 ± 2.97 1.57 ± 2.29 1.49 ± 2.32 1.87 ± 2.89
SF2-gauss 50 97.30 ± 5.13 43.39 ± 40.68 11.59 ± 10.25 4.21 ± 3.66 2.28 ± 3.06 2.05 ± 2.96 2.21 ± 2.98 2.43 ± 3.69
SF2-gauss 100 215.89 ± 8.24 106.51 ± 62.29 22.58 ± 17.69 7.45 ± 6.70 3.49 ± 3.97 3.64 ± 4.48 4.09 ± 4.40 4.01 ± 4.54
SF3-gauss 10 16.61 ± 2.77 7.78 ± 8.34 8.91 ± 4.33 6.96 ± 3.69 3.36 ± 2.91 3.35 ± 2.97 3.21 ± 2.83 3.51 ± 2.83
SF3-gauss 30 65.90 ± 7.29 31.51 ± 32.61 17.69 ± 12.29 9.22 ± 6.24 4.83 ± 4.56 5.33 ± 5.52 5.54 ± 5.71 4.96 ± 5.94
SF3-gauss 50 119.92 ± 10.81 69.43 ± 58.72 30.70 ± 18.48 13.05 ± 8.68 6.60 ± 6.56 6.43 ± 5.72 6.55 ± 6.09 6.44 ± 5.54
SF3-gauss 100 271.55 ± 16.84 157.11 ± 99.22 64.27 ± 33.28 21.66 ± 15.48 11.59 ± 9.90 10.69 ± 9.92 10.86 ± 9.02 11.28 ± 9.99
SF4-gauss 10 17.53 ± 3.20 6.54 ± 6.84 13.71 ± 3.93 11.57 ± 3.27 6.89 ± 3.39 6.75 ± 3.15 7.08 ± 3.40 7.04 ± 3.31
SF4-gauss 30 73.81 ± 9.41 46.72 ± 41.14 39.18 ± 21.79 20.67 ± 9.26 11.12 ± 7.76 10.54 ± 7.35 12.58 ± 8.81 12.81 ± 10.74
SF4-gauss 50 137.43 ± 13.92 90.76 ± 69.01 60.61 ± 25.25 24.96 ± 12.48 14.39 ± 9.72 12.89 ± 9.52 15.15 ± 10.31 16.22 ± 10.17
SF4-gauss 100 315.31 ± 24.17 174.28 ± 109.72 118.16 ± 51.53 42.81 ± 23.74 28.31 ± 25.58 24.47 ± 24.31 23.22 ± 23.60 23.03 ± 21.51
SF2-exp 10 14.72 ± 1.88 5.18 ± 6.51 3.05 ± 2.64 2.19 ± 1.87 0.80 ± 1.34 0.90 ± 1.57 1.03 ± 1.74 1.35 ± 2.30
SF2-exp 30 54.19 ± 3.69 23.86 ± 24.42 6.59 ± 7.08 3.83 ± 4.10 2.22 ± 3.63 1.85 ± 2.91 1.40 ± 2.37 2.09 ± 3.28
SF2-exp 50 97.15 ± 5.42 47.29 ± 42.59 11.51 ± 9.70 4.21 ± 3.43 2.12 ± 2.75 1.97 ± 2.47 2.62 ± 3.01 2.80 ± 3.53
SF2-exp 100 216.20 ± 7.98 113.30 ± 63.41 21.87 ± 17.48 7.31 ± 6.17 3.71 ± 4.77 4.11 ± 4.58 4.54 ± 4.72 4.82 ± 5.15
SF3-exp 10 16.56 ± 2.77 6.54 ± 7.60 9.32 ± 4.42 6.98 ± 3.43 3.57 ± 2.91 3.43 ± 2.96 3.10 ± 2.89 3.68 ± 2.82
SF3-exp 30 65.72 ± 7.38 32.67 ± 36.15 17.54 ± 11.51 9.11 ± 5.51 5.07 ± 4.47 5.51 ± 5.51 5.60 ± 5.73 4.81 ± 5.76
SF3-exp 50 119.86 ± 10.63 64.53 ± 55.26 31.32 ± 19.96 14.16 ± 9.73 7.92 ± 7.38 6.73 ± 5.94 7.15 ± 6.32 7.18 ± 5.69
SF3-exp 100 272.14 ± 16.44 157.53 ± 109.02 66.39 ± 30.84 22.02 ± 15.03 12.26 ± 9.06 12.44 ± 11.03 11.52 ± 9.37 11.14 ± 8.36
SF4-exp 10 17.46 ± 3.13 6.86 ± 6.76 13.92 ± 3.89 11.85 ± 3.42 7.01 ± 3.44 6.93 ± 3.36 7.07 ± 3.55 7.10 ± 3.32
SF4-exp 30 73.49 ± 8.97 47.03 ± 40.43 36.55 ± 18.74 21.00 ± 10.26 10.73 ± 7.83 11.55 ± 7.70 13.19 ± 9.95 12.87 ± 11.09
SF4-exp 50 137.96 ± 14.04 84.43 ± 63.15 60.90 ± 25.93 27.10 ± 12.94 14.76 ± 9.50 13.83 ± 9.46 14.92 ± 10.98 16.44 ± 12.95
SF4-exp 100 314.36 ± 24.83 176.43 ± 114.42 116.91 ± 48.63 42.64 ± 23.78 27.02 ± 24.07 24.32 ± 22.06 23.39 ± 22.89 24.12 ± 22.40
SF2-gumbel 10 14.72 ± 1.91 5.28 ± 6.51 1.69 ± 2.04 1.11 ± 1.52 0.67 ± 1.36 0.82 ± 1.60 0.79 ± 1.65 1.00 ± 2.24
SF2-gumbel 30 54.01 ± 3.73 23.38 ± 23.10 5.65 ± 7.35 2.10 ± 2.92 1.76 ± 2.79 1.69 ± 2.90 2.13 ± 3.06 2.28 ± 3.74
SF2-gumbel 50 97.21 ± 5.45 43.98 ± 37.99 10.24 ± 10.44 2.81 ± 3.30 2.43 ± 3.03 2.64 ± 3.81 3.41 ± 4.63 3.77 ± 4.56
SF2-gumbel 100 217.44 ± 8.29 112.49 ± 66.23 22.39 ± 19.17 4.89 ± 5.94 4.21 ± 5.17 4.78 ± 5.64 5.59 ± 5.42 6.63 ± 6.00
SF3-gumbel 10 16.51 ± 2.72 6.94 ± 7.96 5.93 ± 3.95 4.05 ± 2.96 1.90 ± 2.39 2.44 ± 2.71 2.09 ± 2.31 1.75 ± 2.23
SF3-gumbel 30 65.91 ± 7.36 33.87 ± 35.72 13.44 ± 11.65 4.97 ± 4.07 3.72 ± 4.11 4.13 ± 4.29 5.99 ± 6.27 5.96 ± 6.92
SF3-gumbel 50 120.11 ± 11.19 65.40 ± 55.66 27.28 ± 20.76 9.43 ± 7.56 7.29 ± 7.07 5.79 ± 5.76 7.89 ± 6.40 8.17 ± 8.16
SF3-gumbel 100 272.00 ± 16.44 149.45 ± 100.23 60.12 ± 29.08 15.06 ± 13.15 12.62 ± 12.83 12.46 ± 12.84 12.45 ± 9.95 13.87 ± 10.60
SF4-gumbel 10 17.47 ± 3.17 7.27 ± 7.12 10.24 ± 4.08 7.75 ± 2.94 3.96 ± 3.11 4.55 ± 3.54 4.92 ± 3.38 4.90 ± 3.46
SF4-gumbel 30 73.54 ± 9.23 45.15 ± 41.75 29.45 ± 19.08 12.35 ± 7.64 8.37 ± 6.70 8.14 ± 7.53 11.29 ± 9.49 11.84 ± 9.91
SF4-gumbel 50 137.73 ± 13.67 81.88 ± 67.58 55.57 ± 28.67 18.03 ± 15.20 12.07 ± 9.36 10.92 ± 9.04 13.44 ± 10.94 15.06 ± 11.37
SF4-gumbel 100 315.13 ± 23.64 185.00 ± 111.88 114.40 ± 52.86 29.94 ± 22.69 27.00 ± 28.51 22.36 ± 24.07 21.24 ± 23.58 25.37 ± 25.67
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Table 9: DAG learning performance (measured in true positive rate, the higher the better, best results
in bold) of different algorithms on small scale (10-100 nodes) ER{2,3,4} graphs with different noise
distributions. Our algorithm performs better than previous approaches.

Graphs Nodes MMPC GES NOTEARS DAGMA Order-1 Order-2 Order-3 Order-4

ER2-gauss 10 0.59 ± 0.14 0.70 ± 0.23 0.88 ± 0.09 0.91 ± 0.07 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.04 0.96 ± 0.05
ER2-gauss 30 0.53 ± 0.11 0.80 ± 0.14 0.93 ± 0.05 0.95 ± 0.04 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.02
ER2-gauss 50 0.55 ± 0.09 0.83 ± 0.10 0.93 ± 0.05 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER2-gauss 100 0.58 ± 0.07 0.87 ± 0.06 0.94 ± 0.04 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER3-gauss 10 0.34 ± 0.07 0.48 ± 0.15 0.75 ± 0.11 0.80 ± 0.10 0.91 ± 0.08 0.91 ± 0.08 0.91 ± 0.07 0.91 ± 0.07
ER3-gauss 30 0.29 ± 0.07 0.63 ± 0.13 0.88 ± 0.06 0.92 ± 0.04 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
ER3-gauss 50 0.30 ± 0.06 0.69 ± 0.10 0.89 ± 0.06 0.93 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02
ER3-gauss 100 0.33 ± 0.04 0.78 ± 0.07 0.89 ± 0.04 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
ER4-gauss 10 0.28 ± 0.05 0.43 ± 0.14 0.68 ± 0.09 0.73 ± 0.07 0.84 ± 0.07 0.85 ± 0.07 0.84 ± 0.07 0.84 ± 0.07
ER4-gauss 30 0.18 ± 0.04 0.54 ± 0.10 0.80 ± 0.08 0.87 ± 0.04 0.94 ± 0.03 0.95 ± 0.03 0.94 ± 0.03 0.94 ± 0.03
ER4-gauss 50 0.18 ± 0.03 0.57 ± 0.09 0.83 ± 0.05 0.91 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
ER4-gauss 100 0.20 ± 0.03 0.68 ± 0.07 0.85 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
ER2-exp 10 0.58 ± 0.14 0.67 ± 0.24 0.87 ± 0.09 0.91 ± 0.07 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.04 0.96 ± 0.05
ER2-exp 30 0.54 ± 0.11 0.80 ± 0.14 0.93 ± 0.05 0.95 ± 0.04 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.02 0.98 ± 0.02
ER2-exp 50 0.56 ± 0.10 0.82 ± 0.09 0.93 ± 0.05 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER2-exp 100 0.59 ± 0.07 0.87 ± 0.06 0.94 ± 0.04 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER3-exp 10 0.34 ± 0.08 0.48 ± 0.16 0.75 ± 0.11 0.81 ± 0.09 0.90 ± 0.07 0.91 ± 0.08 0.92 ± 0.07 0.90 ± 0.07
ER3-exp 30 0.29 ± 0.07 0.64 ± 0.13 0.88 ± 0.06 0.92 ± 0.04 0.97 ± 0.02 0.96 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
ER3-exp 50 0.31 ± 0.06 0.69 ± 0.10 0.88 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
ER3-exp 100 0.33 ± 0.04 0.78 ± 0.07 0.89 ± 0.04 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
ER4-exp 10 0.28 ± 0.05 0.44 ± 0.13 0.68 ± 0.09 0.72 ± 0.07 0.84 ± 0.08 0.84 ± 0.07 0.84 ± 0.08 0.84 ± 0.07
ER4-exp 30 0.17 ± 0.04 0.54 ± 0.11 0.81 ± 0.07 0.87 ± 0.05 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.04
ER4-exp 50 0.18 ± 0.03 0.58 ± 0.09 0.83 ± 0.05 0.90 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
ER4-exp 100 0.20 ± 0.03 0.68 ± 0.07 0.85 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
ER2-gumbel 10 0.57 ± 0.15 0.64 ± 0.24 0.93 ± 0.08 0.96 ± 0.05 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04
ER2-gumbel 30 0.54 ± 0.11 0.78 ± 0.13 0.95 ± 0.05 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
ER2-gumbel 50 0.56 ± 0.10 0.83 ± 0.09 0.95 ± 0.04 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER2-gumbel 100 0.58 ± 0.07 0.87 ± 0.06 0.95 ± 0.03 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER3-gumbel 10 0.35 ± 0.08 0.49 ± 0.16 0.84 ± 0.10 0.89 ± 0.07 0.95 ± 0.06 0.94 ± 0.06 0.95 ± 0.06 0.95 ± 0.06
ER3-gumbel 30 0.28 ± 0.07 0.63 ± 0.13 0.92 ± 0.06 0.96 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.97 ± 0.02
ER3-gumbel 50 0.30 ± 0.06 0.69 ± 0.10 0.92 ± 0.05 0.96 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02
ER3-gumbel 100 0.33 ± 0.04 0.78 ± 0.08 0.92 ± 0.03 0.97 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
ER4-gumbel 10 0.28 ± 0.05 0.44 ± 0.13 0.77 ± 0.09 0.82 ± 0.07 0.91 ± 0.07 0.90 ± 0.07 0.89 ± 0.07 0.89 ± 0.08
ER4-gumbel 30 0.17 ± 0.04 0.54 ± 0.11 0.87 ± 0.07 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.03 0.96 ± 0.03
ER4-gumbel 50 0.18 ± 0.03 0.57 ± 0.09 0.87 ± 0.05 0.95 ± 0.03 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.02 0.97 ± 0.02
ER4-gumbel 100 0.20 ± 0.03 0.69 ± 0.07 0.88 ± 0.06 0.96 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.01

SF2-gauss 10 0.78 ± 0.11 0.91 ± 0.19 0.88 ± 0.09 0.91 ± 0.07 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.04 0.96 ± 0.05
SF2-gauss 30 0.62 ± 0.09 0.95 ± 0.08 0.93 ± 0.05 0.95 ± 0.04 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.02
SF2-gauss 50 0.57 ± 0.08 0.92 ± 0.11 0.93 ± 0.05 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF2-gauss 100 0.54 ± 0.06 0.92 ± 0.08 0.94 ± 0.04 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF3-gauss 10 0.73 ± 0.13 0.86 ± 0.19 0.75 ± 0.11 0.80 ± 0.10 0.91 ± 0.08 0.91 ± 0.08 0.91 ± 0.07 0.91 ± 0.07
SF3-gauss 30 0.53 ± 0.10 0.92 ± 0.09 0.88 ± 0.06 0.92 ± 0.04 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
SF3-gauss 50 0.47 ± 0.07 0.90 ± 0.10 0.89 ± 0.06 0.93 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02
SF3-gauss 100 0.43 ± 0.05 0.90 ± 0.09 0.89 ± 0.04 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF4-gauss 10 0.71 ± 0.13 0.89 ± 0.15 0.68 ± 0.09 0.73 ± 0.07 0.84 ± 0.07 0.85 ± 0.07 0.84 ± 0.07 0.84 ± 0.07
SF4-gauss 30 0.49 ± 0.08 0.87 ± 0.12 0.80 ± 0.08 0.87 ± 0.04 0.94 ± 0.03 0.95 ± 0.03 0.94 ± 0.03 0.94 ± 0.03
SF4-gauss 50 0.42 ± 0.07 0.88 ± 0.10 0.83 ± 0.05 0.91 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
SF4-gauss 100 0.39 ± 0.05 0.90 ± 0.09 0.85 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
SF2-exp 10 0.79 ± 0.11 0.91 ± 0.18 0.87 ± 0.09 0.91 ± 0.07 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.04 0.96 ± 0.05
SF2-exp 30 0.62 ± 0.09 0.93 ± 0.11 0.93 ± 0.05 0.95 ± 0.04 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.02 0.98 ± 0.02
SF2-exp 50 0.57 ± 0.08 0.92 ± 0.11 0.93 ± 0.05 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF2-exp 100 0.54 ± 0.06 0.91 ± 0.08 0.94 ± 0.04 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF3-exp 10 0.74 ± 0.13 0.90 ± 0.17 0.75 ± 0.11 0.81 ± 0.09 0.90 ± 0.07 0.91 ± 0.08 0.92 ± 0.07 0.90 ± 0.07
SF3-exp 30 0.53 ± 0.10 0.92 ± 0.10 0.88 ± 0.06 0.92 ± 0.04 0.97 ± 0.02 0.96 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
SF3-exp 50 0.47 ± 0.07 0.91 ± 0.09 0.88 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
SF3-exp 100 0.43 ± 0.05 0.89 ± 0.10 0.89 ± 0.04 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF4-exp 10 0.71 ± 0.13 0.88 ± 0.16 0.68 ± 0.09 0.72 ± 0.07 0.84 ± 0.08 0.84 ± 0.07 0.84 ± 0.08 0.84 ± 0.07
SF4-exp 30 0.49 ± 0.08 0.88 ± 0.12 0.81 ± 0.07 0.87 ± 0.05 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.04
SF4-exp 50 0.42 ± 0.07 0.89 ± 0.10 0.83 ± 0.05 0.90 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
SF4-exp 100 0.39 ± 0.05 0.90 ± 0.10 0.85 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
SF2-gumbel 10 0.78 ± 0.11 0.91 ± 0.18 0.93 ± 0.08 0.96 ± 0.05 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04
SF2-gumbel 30 0.62 ± 0.09 0.94 ± 0.08 0.95 ± 0.05 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
SF2-gumbel 50 0.57 ± 0.08 0.92 ± 0.10 0.95 ± 0.04 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF2-gumbel 100 0.53 ± 0.06 0.92 ± 0.08 0.95 ± 0.03 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF3-gumbel 10 0.73 ± 0.13 0.89 ± 0.17 0.84 ± 0.10 0.89 ± 0.07 0.95 ± 0.06 0.94 ± 0.06 0.95 ± 0.06 0.95 ± 0.06
SF3-gumbel 30 0.54 ± 0.10 0.92 ± 0.10 0.92 ± 0.06 0.96 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.97 ± 0.02
SF3-gumbel 50 0.48 ± 0.07 0.91 ± 0.09 0.92 ± 0.05 0.96 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02
SF3-gumbel 100 0.44 ± 0.05 0.90 ± 0.09 0.92 ± 0.03 0.97 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF4-gumbel 10 0.71 ± 0.13 0.87 ± 0.16 0.77 ± 0.09 0.82 ± 0.07 0.91 ± 0.07 0.90 ± 0.07 0.89 ± 0.07 0.89 ± 0.08
SF4-gumbel 30 0.48 ± 0.08 0.88 ± 0.13 0.87 ± 0.07 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.03 0.96 ± 0.03
SF4-gumbel 50 0.42 ± 0.07 0.89 ± 0.11 0.87 ± 0.05 0.95 ± 0.03 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.02 0.97 ± 0.02
SF4-gumbel 100 0.39 ± 0.05 0.89 ± 0.10 0.88 ± 0.06 0.96 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.01
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Table 10: DAG learning performance (measured in true positive rate, the higher the better, best results
in bold) of different algorithms on small scale (10-100 nodes) ER{2,3,4} graphs with different noise
distributions. Our algorithm performs better than previous approaches.

Graphs Nodes MMPC GES NOTEARS DAGMA Order-1 Order-2 Order-3 Order-4

ER2-gauss 10 0.55 ± 0.05 0.46 ± 0.23 0.05 ± 0.07 0.02 ± 0.05 0.02 ± 0.04 0.02 ± 0.05 0.02 ± 0.06 0.03 ± 0.08
ER2-gauss 30 0.56 ± 0.03 0.46 ± 0.21 0.04 ± 0.06 0.02 ± 0.04 0.02 ± 0.04 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.04
ER2-gauss 50 0.56 ± 0.03 0.47 ± 0.16 0.05 ± 0.06 0.01 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.03
ER2-gauss 100 0.55 ± 0.02 0.44 ± 0.11 0.05 ± 0.05 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.02 ± 0.02
ER3-gauss 10 0.57 ± 0.05 0.60 ± 0.14 0.10 ± 0.08 0.06 ± 0.06 0.04 ± 0.05 0.04 ± 0.05 0.03 ± 0.05 0.04 ± 0.05
ER3-gauss 30 0.60 ± 0.04 0.70 ± 0.13 0.08 ± 0.08 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.04
ER3-gauss 50 0.59 ± 0.03 0.71 ± 0.10 0.10 ± 0.07 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03
ER3-gauss 100 0.58 ± 0.02 0.64 ± 0.12 0.11 ± 0.06 0.03 ± 0.03 0.03 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.03
ER4-gauss 10 0.53 ± 0.04 0.57 ± 0.13 0.09 ± 0.06 0.06 ± 0.05 0.05 ± 0.04 0.05 ± 0.04 0.04 ± 0.04 0.05 ± 0.04
ER4-gauss 30 0.61 ± 0.04 0.76 ± 0.07 0.14 ± 0.10 0.06 ± 0.05 0.05 ± 0.04 0.04 ± 0.04 0.05 ± 0.05 0.05 ± 0.06
ER4-gauss 50 0.62 ± 0.03 0.80 ± 0.05 0.15 ± 0.07 0.04 ± 0.04 0.04 ± 0.03 0.04 ± 0.03 0.04 ± 0.04 0.05 ± 0.04
ER4-gauss 100 0.61 ± 0.03 0.77 ± 0.06 0.15 ± 0.07 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04
ER2-exp 10 0.55 ± 0.05 0.48 ± 0.24 0.05 ± 0.07 0.03 ± 0.05 0.02 ± 0.04 0.02 ± 0.05 0.03 ± 0.06 0.04 ± 0.08
ER2-exp 30 0.56 ± 0.03 0.47 ± 0.21 0.05 ± 0.07 0.02 ± 0.04 0.02 ± 0.04 0.02 ± 0.04 0.01 ± 0.03 0.02 ± 0.04
ER2-exp 50 0.56 ± 0.03 0.49 ± 0.15 0.05 ± 0.06 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.03
ER2-exp 100 0.55 ± 0.02 0.44 ± 0.12 0.05 ± 0.05 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.02
ER3-exp 10 0.57 ± 0.06 0.60 ± 0.14 0.11 ± 0.08 0.06 ± 0.06 0.04 ± 0.05 0.04 ± 0.05 0.03 ± 0.04 0.04 ± 0.05
ER3-exp 30 0.60 ± 0.04 0.69 ± 0.13 0.08 ± 0.07 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.04
ER3-exp 50 0.59 ± 0.03 0.70 ± 0.12 0.10 ± 0.08 0.03 ± 0.04 0.03 ± 0.04 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03
ER3-exp 100 0.58 ± 0.02 0.64 ± 0.11 0.11 ± 0.06 0.03 ± 0.03 0.03 ± 0.02 0.03 ± 0.03 0.03 ± 0.02 0.03 ± 0.02
ER4-exp 10 0.53 ± 0.03 0.57 ± 0.12 0.09 ± 0.06 0.07 ± 0.05 0.05 ± 0.04 0.05 ± 0.04 0.04 ± 0.04 0.05 ± 0.04
ER4-exp 30 0.61 ± 0.04 0.76 ± 0.07 0.13 ± 0.09 0.06 ± 0.05 0.04 ± 0.04 0.05 ± 0.04 0.06 ± 0.05 0.05 ± 0.06
ER4-exp 50 0.62 ± 0.03 0.80 ± 0.05 0.15 ± 0.08 0.05 ± 0.04 0.04 ± 0.03 0.04 ± 0.03 0.04 ± 0.04 0.05 ± 0.04
ER4-exp 100 0.61 ± 0.03 0.77 ± 0.06 0.15 ± 0.07 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04
ER2-gumbel 10 0.55 ± 0.04 0.51 ± 0.23 0.03 ± 0.06 0.02 ± 0.05 0.02 ± 0.06 0.03 ± 0.06 0.03 ± 0.06 0.03 ± 0.08
ER2-gumbel 30 0.56 ± 0.03 0.49 ± 0.19 0.05 ± 0.07 0.02 ± 0.03 0.02 ± 0.04 0.02 ± 0.04 0.03 ± 0.04 0.03 ± 0.05
ER2-gumbel 50 0.56 ± 0.03 0.48 ± 0.16 0.06 ± 0.06 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 0.03 ± 0.04 0.03 ± 0.04
ER2-gumbel 100 0.55 ± 0.02 0.44 ± 0.12 0.07 ± 0.06 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.03
ER3-gumbel 10 0.57 ± 0.05 0.60 ± 0.15 0.07 ± 0.07 0.04 ± 0.05 0.03 ± 0.05 0.04 ± 0.06 0.03 ± 0.05 0.02 ± 0.04
ER3-gumbel 30 0.60 ± 0.04 0.70 ± 0.13 0.08 ± 0.08 0.02 ± 0.03 0.03 ± 0.04 0.03 ± 0.04 0.05 ± 0.05 0.04 ± 0.05
ER3-gumbel 50 0.59 ± 0.03 0.70 ± 0.12 0.10 ± 0.08 0.03 ± 0.03 0.04 ± 0.03 0.03 ± 0.03 0.04 ± 0.04 0.04 ± 0.04
ER3-gumbel 100 0.58 ± 0.02 0.64 ± 0.12 0.12 ± 0.06 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.04 ± 0.03
ER4-gumbel 10 0.53 ± 0.04 0.56 ± 0.13 0.08 ± 0.06 0.05 ± 0.04 0.03 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04
ER4-gumbel 30 0.61 ± 0.04 0.75 ± 0.08 0.13 ± 0.09 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.06 ± 0.06 0.06 ± 0.06
ER4-gumbel 50 0.61 ± 0.03 0.80 ± 0.05 0.15 ± 0.08 0.05 ± 0.05 0.04 ± 0.04 0.04 ± 0.03 0.05 ± 0.04 0.06 ± 0.04
ER4-gumbel 100 0.61 ± 0.03 0.77 ± 0.06 0.16 ± 0.07 0.04 ± 0.04 0.05 ± 0.05 0.04 ± 0.04 0.04 ± 0.04 0.05 ± 0.04

SF2-gauss 10 0.78 ± 0.11 0.91 ± 0.19 0.88 ± 0.09 0.91 ± 0.07 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.04 0.96 ± 0.05
SF2-gauss 30 0.62 ± 0.09 0.95 ± 0.08 0.93 ± 0.05 0.95 ± 0.04 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.02
SF2-gauss 50 0.57 ± 0.08 0.92 ± 0.11 0.93 ± 0.05 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF2-gauss 100 0.54 ± 0.06 0.92 ± 0.08 0.94 ± 0.04 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF3-gauss 10 0.73 ± 0.13 0.86 ± 0.19 0.75 ± 0.11 0.80 ± 0.10 0.91 ± 0.08 0.91 ± 0.08 0.91 ± 0.07 0.91 ± 0.07
SF3-gauss 30 0.53 ± 0.10 0.92 ± 0.09 0.88 ± 0.06 0.92 ± 0.04 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
SF3-gauss 50 0.47 ± 0.07 0.90 ± 0.10 0.89 ± 0.06 0.93 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02
SF3-gauss 100 0.43 ± 0.05 0.90 ± 0.09 0.89 ± 0.04 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF4-gauss 10 0.71 ± 0.13 0.89 ± 0.15 0.68 ± 0.09 0.73 ± 0.07 0.84 ± 0.07 0.85 ± 0.07 0.84 ± 0.07 0.84 ± 0.07
SF4-gauss 30 0.49 ± 0.08 0.87 ± 0.12 0.80 ± 0.08 0.87 ± 0.04 0.94 ± 0.03 0.95 ± 0.03 0.94 ± 0.03 0.94 ± 0.03
SF4-gauss 50 0.42 ± 0.07 0.88 ± 0.10 0.83 ± 0.05 0.91 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
SF4-gauss 100 0.39 ± 0.05 0.90 ± 0.09 0.85 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
SF2-exp 10 0.79 ± 0.11 0.91 ± 0.18 0.87 ± 0.09 0.91 ± 0.07 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.04 0.96 ± 0.05
SF2-exp 30 0.62 ± 0.09 0.93 ± 0.11 0.93 ± 0.05 0.95 ± 0.04 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.02 0.98 ± 0.02
SF2-exp 50 0.57 ± 0.08 0.92 ± 0.11 0.93 ± 0.05 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF2-exp 100 0.54 ± 0.06 0.91 ± 0.08 0.94 ± 0.04 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF3-exp 10 0.74 ± 0.13 0.90 ± 0.17 0.75 ± 0.11 0.81 ± 0.09 0.90 ± 0.07 0.91 ± 0.08 0.92 ± 0.07 0.90 ± 0.07
SF3-exp 30 0.53 ± 0.10 0.92 ± 0.10 0.88 ± 0.06 0.92 ± 0.04 0.97 ± 0.02 0.96 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
SF3-exp 50 0.47 ± 0.07 0.91 ± 0.09 0.88 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
SF3-exp 100 0.43 ± 0.05 0.89 ± 0.10 0.89 ± 0.04 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
SF4-exp 10 0.71 ± 0.13 0.88 ± 0.16 0.68 ± 0.09 0.72 ± 0.07 0.84 ± 0.08 0.84 ± 0.07 0.84 ± 0.08 0.84 ± 0.07
SF4-exp 30 0.49 ± 0.08 0.88 ± 0.12 0.81 ± 0.07 0.87 ± 0.05 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.04
SF4-exp 50 0.42 ± 0.07 0.89 ± 0.10 0.83 ± 0.05 0.90 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
SF4-exp 100 0.39 ± 0.05 0.90 ± 0.10 0.85 ± 0.06 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.01
SF2-gumbel 10 0.78 ± 0.11 0.91 ± 0.18 0.93 ± 0.08 0.96 ± 0.05 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04
SF2-gumbel 30 0.62 ± 0.09 0.94 ± 0.08 0.95 ± 0.05 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
SF2-gumbel 50 0.57 ± 0.08 0.92 ± 0.10 0.95 ± 0.04 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF2-gumbel 100 0.53 ± 0.06 0.92 ± 0.08 0.95 ± 0.03 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF3-gumbel 10 0.73 ± 0.13 0.89 ± 0.17 0.84 ± 0.10 0.89 ± 0.07 0.95 ± 0.06 0.94 ± 0.06 0.95 ± 0.06 0.95 ± 0.06
SF3-gumbel 30 0.54 ± 0.10 0.92 ± 0.10 0.92 ± 0.06 0.96 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.97 ± 0.02
SF3-gumbel 50 0.48 ± 0.07 0.91 ± 0.09 0.92 ± 0.05 0.96 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02
SF3-gumbel 100 0.44 ± 0.05 0.90 ± 0.09 0.92 ± 0.03 0.97 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SF4-gumbel 10 0.71 ± 0.13 0.87 ± 0.16 0.77 ± 0.09 0.82 ± 0.07 0.91 ± 0.07 0.90 ± 0.07 0.89 ± 0.07 0.89 ± 0.08
SF4-gumbel 30 0.48 ± 0.08 0.88 ± 0.13 0.87 ± 0.07 0.93 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.03 0.96 ± 0.03
SF4-gumbel 50 0.42 ± 0.07 0.89 ± 0.11 0.87 ± 0.05 0.95 ± 0.03 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.02 0.97 ± 0.02
SF4-gumbel 100 0.39 ± 0.05 0.89 ± 0.10 0.88 ± 0.06 0.96 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.01
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PC GES DAGMA Exponential Order 1 Order 2 Order 3 Order 4

SHD 563.9 ± 23.84 4490.2 ± 62.52 588.8 ± 18.33 488.6± 24.29 429.6 ± 24.73 410.6 ± 15.25 401.0 ± 16.64 389.4 ± 16.70

Exp MLE Order 1 MLE Order 2 MLE Order 3 MLE Order 4 MLE

SHD 518.00 ± 23.02 453.70 ± 42.12 447.30 ± 51.85 409.50 ± 31.02 433.00 ± 68.98

PC Exp PC Order-1 PC Order-2 PC Order-3 PC Order-4

SHD 275.40 ± 16.01 274.40 ± 15.44 273.10 ± 15.72 271.80 ± 14.75 276.00 ± 14.66

PC Exp MLE PC Order-1 MLE PC Order-2 MLE PC Order-3 MLE PC Order-4 MLE

SHD 274.30 ± 14.71 284.30 ± 19.43 272.20 ± 14.04 273.00 ± 17.79 270.20 ± 12.58

PC GES DAGMA Exponential Order 1 Order 2 Order 3 Order 4

SHDC 321.30 ± 27.77 4626.20 ± 69.05 674.00 ± 31.09 588.60 ± 59.81 466.50 ± 26.43 458.40 ± 30.85 447.20 ± 30.81 439.90 ± 37.06

Exp MLE Order 1 MLE Order 2 MLE Order 3 MLE Order 4 MLE

SHDC 574.50 ± 42.84 490.80 ± 66.99 486.80 ± 76.47 444.30 ± 42.22 479.50 ± 100.71

PC Exp PC Order-1 PC Order-2 PC Order-3 PC Order-4

SHDC 236.20 ± 15.16 236.20 ± 15.16 236.20 ± 15.16 236.20 ± 15.16 236.20 ± 15.16

PC Exp MLE PC Order-1 MLE PC Order-2 MLE PC Order-3 MLE PC Order-4 MLE

SHDC 231.30 ± 13.64 257.50 ± 26.14 236.10 ± 16.23 236.80 ± 23.77 231.60 ± 13.17

Table 11: DAG learning performance (measured in structural hamming distance, the lower the better, best
results in bold) of different algorithms on 1000-node ER1 graphs with Gaussian noise with observation data
normalized. Our algorithms performs better than the previous approaches, and as higher order DAG constraints
suffers less to gradient vanishing, it tends to have better performance. We compare differential DAG learning
approaches with conditional independent test based PC (Spirtes and Glymour, 1991) algorithm and score based
GES (Chickering, 2002) algorithm. The result is reported in the format of average± standard derivation gathered
from 10 different simulations. The results are reported as averages ± standard deviations, calculated from
10 independent simulations. In addition to the MSE score function, we also applied the MLE score function
described in Ng et al. (2020). Furthermore, rather than only considering edges between variables with correlation
coefficients greater than 0.1, we also evaluated cases where edges are restricted to those in the PC-estimated
CPDAG (algorithms whose names begin with ’PC’).

F IMPLEMENTATION FOR ALGORITHM 1

def _h_grad(self, W, s, eps=1e-20):
M_ = W * W / s
Iw = self.Id - M_ # self.Id is identity matrix
icnt = 1
Inv = self.Id + M_
while icnt < 2 * self.d:

M_ = M_ @ M_
Inv = Inv + Inv @ M_
icnt *= 2
if self.np.max(self.np.abs(M_)) < eps:

break
if self.np.any(self.np.isnan(Inv)):

break

if self.np.any(self.np.isinf(Inv)):
return self.np.zeros_like(Inv)

if self.np.any(self.np.isnan(Inv)):
return self.np.zeros_like(Inv)

return Inv / s

def compute_h_grad(self, W, s):
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Figure 1: Gradient Norm v.s. Optimization Iterations. Top: Frobenius norm of gradients vs. gradient
descent steps for the first two iterations in Algorithm 2. Bottom: Frobenius norm of gradients vs.
gradient descent steps for the last three iterations in Algorithm 2. In most cases, our higher-order
DAG constraints exhibit larger gradient norms compared to DAGMA, enabling our algorithm to often
converge to better solutions than DAGMA.

M = self._h_grad(W, s)
if self.np.any(self.np.isnan(M)) or self.np.linalg.norm(

M @ (s * self.Id - W * W) - self.Id, ord=’fro’) >
1e-6:

if isinstance(W, cupy.ndarray):
_, s, v = cupy.linalg.svd(W * W) # cupy does not

have a eig lib, thus use spectral norm as an
estimation

cs = cupy.max(s) + 0.1 * self.h_order
else:

cs = np.max(np.abs(np.linalg.eigvals(
W * W))) + 0.1 * self.h_order

else:
cs = s

return M, cs

G EMPIRICAL RESULTS ON GRADIENTS VANISHING

In this section, we present empirical results on gradient issues in DAG learning. According to
Proposition 5, the gradients of higher-order DAG constraints should have larger norms than those of
lower-order constraints, given the same candidate adjacency matrix. Additionally, the behavior of our
Order-1 DAG constraints is expected to align closely with that of DAGMA.

In the path-following algorithm described in Algorithm 2, five iterations are used to tune the scale of
the score function. During each iteration, tens of thousands of gradient descent steps are performed.
We recorded the gradient norms for various DAG constraints over the five iterations using a 1000-node
ER3 DAG learning problem with Gaussian noise. The results are shown in Figure 1. In most cases,
our higher-order DAG constraints exhibit larger gradient norms compared to DAGMA, enabling our
algorithm to often converge to better solutions than DAGMA.

26


	Introduction
	Preliminaries
	Analytic DAG constraints
	Analytic functions as DAG constraints
	Constructing DAG constraints by functional operator
	Overall optimization framework

	Non-convexity analysis of analytic DAG constraints
	Experiments
	Linear SEM with known ground truth scale
	Linear SEM with unknown ground truth scale
	Experimental results on nonlinear cases

	Conclusion
	Proof of convergence of matrix analytic function
	Proof of Propositions
	Lemmas required for proofs
	Proof of propos:dagconstraints
	Proof of propos:derivative
	Proof of propos:diffdag
	Proof of propos:sumproddag
	Proof of propos:inverse
	Proof of propos:hessian
	Proof of propos:spectralradius

	Error Analysis of the Analytic Function Based DAG Constraints
	 Hyper Parameters
	Extra Experimental Results
	Implementation for Algorithm 1
	Empirical Results on Gradients Vanishing

