
Published in Transactions on Machine Learning Research (05/2024)

Appendix
A Applications of the Cascaded Setting

Optimization of composite functions (cascaded functions, or function networks) has wide applications in
optimizing multi-stage processes, where the output of the current stage is the input of the next stage. For
example, a real-world application of grey-box composite function optimization in material science is alloy
heat treatment, which consists of multiple heat treatment steps and the resulting hardness after each step
is available. The objective is to find the starting concentration and heat treatment (temperature and time)
that maximize the hardness of the final product (Nguyen et al., 2016). Note that to find the best heat
treatment for all the steps, the algorithms are expected to support additional input for intermediate layers,
and we will show in Appendix K that our algorithms and theories can be easily adapted to support this.

Similarly, as an application in simulation, solar cell simulators can also utilize the technique of composite
function optimization to maximize the power generation efficiency (Kusakawa et al., 2022). As discussed by
(Astudillo and Frazier, 2021a), composite functions also arise in numerous areas e.g., engineering design, ma-
terial design, system design, reinforcement learning, and Markov decision processes. Many analogous studies
for white-box settings also exist (Drusvyatskiy and Paquette, 2019; Wang et al., 2017) with various roles
highlighted in learning tasks; black-box variants then become indispensable when gradients are unavailable.

B Reproducing Kernel Hilbert Space (RKHS)

B.1 Scalar-Valued Functions

For a given scalar-valued kernel k : X × X → R, consider a function space Sk := {f(·) =
∑n0

i=1 aik(·, xi) :
n0 ∈ N, ai ∈ R, xi ∈ X}. Then, the reproducing kernel Hilbert space (RKHS) corresponding to kernel
k, denoted by Hk, can be obtained by forming the completion of Sk, and the elements in Hk are called
scalar-valued kernelized bandits or GP bandits. Hk is equipped with the inner product

⟨f, f ′⟩k =
n1∑

i=1

n2∑
j=1

aibjk(xi, x′
j) (23)

for f =
∑n1

i=1 aik(·, xi) and f ′ =
∑n2

j=1 bjk(·, x′
j). This inner product satisfies the reproducing property,

such that ⟨f(·), k(·, x)⟩k = f(x),∀x ∈ X ,∀f ∈ Hk. The RKHS norm of f is ∥f∥k =
√
⟨f, f⟩k, and we use

Hk(B) := {f ∈ Hk : ∥f∥k ≤ B} to denote the set of functions whose RKHS norm is upper bounded by some
known constant B > 0. In this work, we mainly focus on the Matérn kernel:

kMatérn(x, x′) = 21−ν

Γ(ν)

(√
2νdx,x′

l

)ν

Bν

(√
2νdx,x′

l

)
,

where dx,x′ = ∥x − x′∥2, l > 0 denotes the length-scale, ν > 0 is a smoothness parameter, Γ is the Gamma
function, and Bν is the modified Bessel function.

B.2 Vector-Valued Functions

An operator-valued kernel Γ : X ×X → Rn×n is called a multi-task kernel on X if Γ(·, ·) is symmetric positive
definite. Moreover, a single-task kernel with n = 1 recovers a scalar-valued kernel. For a given multi-task
kernel Γ, similarly to the scalar-valued kernels, there exists an RKHS of vector-valued functions HΓ, which
is the completion of SΓ := {f(·) =

∑n0
i=1 Γ(·, xi)ai : n0 ∈ N, ai ∈ Rn, xi ∈ X}. The elements in HΓ are called

vector-valued kernelized bandits, and HΓ is equipped with the inner product (Carmeli et al., 2006)

⟨f, f ′⟩Γ =
n1∑

i=1

n2∑
j=1
⟨Γ(xi, x′

j)ai, bj⟩ (24)

15

Published in Transactions on Machine Learning Research (05/2024)

x(1,1) x(2,1)f (1)f (1) x(3,1)f (2)f (2) yf (3)f (3)

x = x(1) x(2) x(3)

d1 = 1 d2 = 1 d3 = 1 d4 = 1

Figure 2: A chain with m = 3, where {f (i)}3
i=1 are scalar-valued functions.

x(1,1)

x(1,2)

x(1,3)

x(1,4)

x(2,1)

x(2,2)

x(2,3)

x(2,4)

x(2,5)

f (1)f (1)

x(3,1)

x(3,2)

x(3,3)

f (2)f (2) yf (3)f (3)

x = x(1)

x(2)

x(3)

d1 = 4

d2 = 5

d3 = 3

d4 = 1

Figure 3: A multi-output chain with m = 3, where {f (i)}3
i=1 are vector-valued functions.

x(1,1)

x(1,2)

x(1,3)

x(1,4)

x(2,1)

x(2,2)

x(2,3)

x(2,4)

x(2,5)

f (1,1)f (1,1)

f (1,2)f (1,2)

f (1,3)f (1,3)

f (1,4)f (1,4)

f (1,5)f (1,5)

x(3,1)

x(3,2)

x(3,3)

f (2,1)f (2,1)

f (2,2)f (2,2)

f (2,3)f (2,3)

yf (3,1)f (3,1)

x = x(1)

x(2)

x(3)

d1 = 4

d2 = 5

d3 = 3

d4 = 1

Figure 4: A feed-forward network with m = 3, where f (i,j) is a scalar-valued function for each i ∈ [3], j ∈
[di+1].

for f =
∑n1

i=1 Γ(·, xi)ai and f ′ =
∑n2

j=1 Γ(·, x′
j)bi. This inner product satisfies the reproducing property,

such that ⟨f(·), Γ(·, x)v⟩Γ = ⟨f(x), v⟩2,∀x ∈ X ,∀v ∈ Rn,∀f ∈ HΓ. The RKHS norm of f ∈ HΓ is ∥f∥Γ =√
⟨f, f⟩Γ, and we focus on HΓ(B) := {f ∈ HΓ : ∥f∥Γ ≤ B} containing functions with norm at most B > 0.

We will often pay particular attention to the Matérn kernel ΓMatérn(·, ·) = kMatérn(·, ·)I, where kMatérn is the
scalar-valued Matérn kernel and I is the n× n identity matrix.

C Figures Illustrating the Network Structures

We depict the chain structure in Figure 2, the multi-output chain structure in Figure 3, and the feed-forward
network structure in Figure 4.

D Confidence Region for Vector-Valued Functions (Proof of Lemma 2)

In this section, we prove Lemma 2, which is restated as follows.
Lemma 2. For f ∈ HΓ(B), let µt(x) and Γt(x, x) denote the posterior mean and variance based on t points
(x1, . . . , xt) and their noise-free observations (y1, . . . , yt) using (3) and (4). Then, it holds for all x ∈ X
that

∥f(x)− µt(x)∥2 ≤ B∥Γt(x, x)∥1/2
2 .

16

Published in Transactions on Machine Learning Research (05/2024)

Proof. We first review the GP posterior and confidence region for operator-valued kernel Γ : X ×X → Rn×n

in the noisy setting.

Lemma 3. (Chowdhury and Gopalan, 2021, Theorem 1) For f ∈ HΓ(B), given a sequence of points
(x1, . . . , xt) and their noisy observations Y ′

t = (y′
1, . . . , y′

t), where y′
i = f(xi) + ϵi with ϵi being i.i.d. σ-sub-

Gaussian for each i ∈ [t] for some σ > 0, let µ′
t(x) and Γ′

t(x, x) denote the posterior mean and variance
computed using

µ′
t(x) = Gt(x)T (Gt + λInt)−1Y ′

t , (25)
Γ′

t(x, x′) = Γ(x, x′)−Gt(x)T (Gt + λInt)−1Gt(x′), (26)

where Gt(x) = [Γ(x, xi)]ti=1 ∈ Rnt×n, Gt = [Γ(xi, xj)]ti,j=1 ∈ Rnt×nt, Y ′
t = [y′

i]ti=1 ∈ Rnt×1, and λ > 0 is a
regularization parameter. Then, for any λ > 0 and δ ∈ (0, 1], with probability at least 1− δ, it holds for all
x ∈ X that

∥f(x)− µ′
t(x)∥2 ≤ αt∥Γ′

t(x, x)∥1/2
2 (27)

with αt = B + σ√
n

√
2 log(1/δ) + log det(Int + λ−1Gt).

Since zero noise is σ-sub-Gaussian for any σ > 0, by setting σ = λ = 1
a and then taking a → ∞, (25) and

(26) converge to

µt(x) = Gt(x)T G−1
t Yt, (28)

Γt(x, x′) = Γ(x, x′)−Gt(x)T G−1
t Gt(x′), (29)

with Yt = (y1, . . . , yt), thus yielding the posterior mean and variance based on (x1, . . . , xt) and their noise-
free observations Yt.

Then, by setting σ = δ = λ = 1
a for a→∞, with {λi}nt

i=1 being the eigenvalues of Gt, we obtain

lim
a→∞

αt = B + 1√
n
· lim

a→∞

√
2 log a

a2 +
∑nt

i=1 log(aλi + 1)
a2 = B. (30)

Hence, we obtain Lemma 2 for the deterministic confidence region based on noise-free observations.

E Posterior Variance for Vector-Valued Functions

In this section, we state and prove Lemma 4.
Lemma 4. For a scalar-valued kernel k, define Γ(x, x′) = k(x, x′)In with In being the n×n identity matrix.
For f1 ∈ Hk(B) and f2 ∈ HΓ(B) with domain X and constant B > 0, let σt(x)2 and Γt(x, x) denote the
posterior variance (matrix) for f1 and f2 based on t points (x1, . . . , xt) in the noise-free setting computed
using (2) and (4). Then, it holds for all x ∈ X that

Γt(x, x) = σt(x)2In. (31)

Proof. Let σ′
t(x)2 and Γ′

t(x, x) denote the posterior variance (matrix) for f1 and f2 based on t points
(x1, . . . , xt) in the noisy setting. For any λ > 0, we have

σ′
t(x)2 = k(x, x)− kt(x)T (Kt + λIt)−1kt(x), (32)

Γ′
t(x, x) = Γ(x, x)−Gt(x)T (Gt + λInt)−1Gt(x′), (33)

where kt(x) = [k(x, xi)]ti=1 ∈ Rt×1, Kt = [k(xi, xj)]ti,j=1 ∈ Rt×t, Gt(x) = [Γ(x, xi)]ti=1 ∈ Rnt×n, and
Gt = [Γ(xi, xj)]ti,j=1 ∈ Rnt×nt. With ⊗ denoting the Kronecker product, we have Gt(x) = kt(x) ⊗ In and

17

Published in Transactions on Machine Learning Research (05/2024)

Gt = Kt ⊗ In. Then, it follows from (33) that

Γ′
t(x, x) = Γ(x, x)−Gt(x)T (Gt + λInt)−1Gt(x) (34)

= k(x, x)In −
(
kt(x)T ⊗ In

)
(Kt ⊗ In + λInt)−1(kt(x)⊗ In

)
(35)

= k(x, x)In −
(
kt(x)T ⊗ In

)(
(Kt + λIt)⊗ In

)−1(kt(x)⊗ In

)
(36)

= k(x, x)In −
(
kt(x)T ⊗ In

)(
(Kt + λIt)−1 ⊗ In

)(
kt(x)⊗ In

)
(37)

= k(x, x)In −
(
kt(x)T (Kt + λIt)−1kt(x)

)
⊗ In (38)

= k(x, x)In −
(
kt(x)T (Kt + λIt)−1kt(x)

)
In (39)

=
(
k(x, x)− (kt(x)T (Kt + λIt)−1kt(x)

)
In (40)

= σ′
t(x)2In (41)

Taking λ→ 0, we obtain in the noise-free setting that

Γt(x, x) = σt(x)2In. (42)

F Analysis of GPN-UCB (Algorithm 1)

F.1 Proof of Theorem 1 (Chains)

In this section, we prove Theorem 1, which is restated as follows.
Theorem 1 (GPN-UCB for chains). Under the setup of Section 2, given B > 0 and L > 1, a scalar-valued
kernel k, and a chain g = f (m) ◦ f (m−1) ◦ · · · ◦ f (1) with f (i) ∈ Hk(B) ∩ F(L) for each i ∈ [m], Algorithm 1
achieves

RT ≤ 2m+1BLm−1ΣT ,

where ΣT = max
i∈[m]

max
z1,...,zT ∈X (i)

∑T
t=1 σ

(i)
t−1(zt). 5

Proof. With x(i)
t = arg maxz∈∆(i)

t−1(xt) UCB(i)(z) and x̃(i)
t = arg minz∈∆(i)

t−1(xt) LCB(i)(z), the simple regret is
upper bounded as follows:

rt = g(x∗)− g(xt) (43)

≤ UCBt−1(xt)− LCB(m)
t−1(x̃(m)

t) (44)

= UCB(m)
t−1(x(m)

t)− LCB(m)
t−1(x̃(m)

t) (45)

≤ UCB(m)
t−1(x(m)

t) + L∥x(m)
t − x(m)

t ∥2 − LCB(m)
t−1(x(m)

t) + L∥x(m)
t − x̃(m)

t ∥2 (46)

≤ 2Bσ
(m)
t−1(x(m)

t) + 2L · diam
(
∆(m)

t−1(xt)
)

(47)

≤ 2B
(

σ
(m)
t−1(x(m)

t) + (2L)σ(m−1)
t−1 (x(m−1)

t) + · · ·+ (2L)m−1σ
(1)
t−1(x(1)

t)
)

(48)

= 2B

m∑
i=1

(2L)m−iσ
(i)
t−1(x(i)

t), (49)

where:

• (44) follows since g(x∗) ≤ UCBt−1(x∗) ≤ UCBt−1(xt) (due to the algorithm maximizing the UCB
score) and g(xt) ≥ LCB(m)

t−1(x(m)
t) ≥ LCB(m)

t−1(x̃(m)
t);

5In this definition and analogous definitions below, σ
(i)
t−1 is defined according to the hypothetical sampled points x(i)

τ = zτ

for τ = 1, . . . , t − 1.

18

Published in Transactions on Machine Learning Research (05/2024)

• (45) follows from (11) and the definition of x(m)
t ;

• (46) follows from (9) and (10);

• (47) follows by defining diam
(
∆(i)

t−1(xt)
)

as the diameter of confidence region ∆(i)
t−1(xt);

• (48) follows from the following recursion:

diam
(
∆(i+1)

t−1 (xt)
)

= UCB(i)
t−1(x(i)

t)− LCB(i)
t−1(x̃(i)

t) (50)

≤ 2Bσ
(i)
t−1(x(i)

t) + 2L · diam
(
∆(i)

t−1(xt)
)
, (51)

where the inequality is obtained by following (45)-(47) with m replaced by i.

Then, the cumulative regret is

RT =
T∑

t=1
rt (52)

≤ 2B

T∑
t=1

m∑
i=1

(2L)m−iσ
(i)
t−1(x(i)

t) (53)

= 2B
(2L)m − 1

2L− 1 ΣT (54)

≤ 2m+1BLm−1ΣT , (55)

where ΣT = max
i∈[m]

max
z1,...,zT ∈X (i)

∑T
t=1 σ

(i)
t−1(zt).

F.2 Proof of Theorem 2 (Multi-Output Chains)

In this section, we prove Theorem 2, which is restated as follows.
Theorem 2 (GPN-UCB for multi-output chains). Under the setup of Section 2, given B > 0 and L > 1, an
operator-valued kernel Γ, and a multi-output chain g = f (m) ◦ f (m−1) ◦ · · · ◦ f (1) with f (i) ∈ HΓ(B) ∩ F(L)
for each i ∈ [m], Algorithm 1 achieves

RT ≤ 5mBLm−1ΣΓ
T ,

where ΣΓ
T = max

i∈[m]
max

z1,...,zT ∈X (i)

∑T
t=1 ∥Γ

(i)
t−1(zt, zt)∥1/2

2 .

Proof. For each i ∈ [m − 1], there must exist x(i)
t , x̃(i)

t ∈ ∆(i)
t−1(xt) such that the following upper bound on

diam
(
∆(i+1)

t−1 (xt)
)

in terms of diam
(
∆(i)

t−1(xt)
)

holds:

diam
(
∆(i+1)

t−1 (xt)
)
≤ ∥f (i)(x(i)

t)− f (i)(x̃(i)
t)∥2 + diam

(
C(i)

t−1(x(i)
t)
)

+ diam
(
C(i)

t−1(x̃(i)
t)
)

(56)

≤ L · diam
(
∆(i)

t−1(xt)
)

+ diam
(
C(i)

t−1(x(i)
t , x(i)

t)
)

+ diam
(
C(i)

t−1(x̃(i)
t , x(i)

t)
)

(57)

≤ L · diam
(
∆(i)

t−1(xt)
)

+ 2 · diam
(
C(i)

t−1(x(i)
t)
)

+ 2L∥x(i)
t − x(i)

t ∥2 + 2L∥x̃(i)
t − x(i)

t ∥2 (58)

≤ 4B∥Γ(i)
t−1(x(i)

t , x(i)
t)∥1/2

2 + 5L · diam
(
∆(i)

t−1(xt)
)
, (59)

where:

• (56) holds since there must exist x(i)
t , x̃(i)

t ∈ ∆(i)
t−1(xt) such that diam

(
∆(i+1)

t−1 (xt)
)

= ∥z − z̃∥2 for
some z ∈ C(i)

t−1(x(i)
t) and some z̃ ∈ C(i)

t−1(x̃(i)
t) (see (16)), and the right hand side follows from the

triangle inequality along with f (i)(x(i)
t) ∈ C(i)

t−1(x(i)
t) and f (i)(x̃(i)

t) ∈ C(i)
t−1(x̃(i)

t) (by Lemma 2). Here
diam

(
C(i)

t−1(·)
)

denotes the diameter of C(i)
t−1(·) (i.e., the Euclidean distance between the most distant

pair of points in C(i)
t−1(·));

19

Published in Transactions on Machine Learning Research (05/2024)

• (57) holds since f (i) has Lipschitz constant L, and since x(i)
t , x̃(i)

t ∈ ∆(i)
t−1(xt) and C(i)

t−1(z) ⊆
C(i)

t−1(z, x(i)
t) for all z ∈ ∆(i)

t−1(xt) by the definition in (12);

• (58) holds since diam
(
C(i)

t−1(z, x(i)
t)
)
≤ diam

(
C(i)

t−1(x(i)
t)
)

+ 2L∥z− x(i)
t ∥2 by the definition in (14);

• (59) holds since diam
(
C(i)

t−1(x(i)
t)
)

= 2B∥Γ(i)
t−1(x(i)

t , x(i)
t)∥1/2

2 (see (13)) and x(i)
t , x(i)

t , x̃(i)
t ∈ ∆(i)

t−1(xt).

Analogous to the UCB, we define LCBt(x) = minz∈∆(m)
t (x) C

(m)
t (z). Moreover, we define x(m)

t =
arg maxz∈∆(m)

t−1(xt)

(
max C(m)

t−1(z)
)
, and x̃(m)

t = arg minz∈∆(m)
t−1(xt)

(
min C(m)

t−1(z)
)
. Then, we have

rt = g(x∗)− g(xt) (60)
≤ UCBt−1(x∗)− LCBt−1(xt) (61)
≤ UCBt−1(xt)− LCBt−1(xt) (62)

= max C(m)
t−1(x(m)

t)−min C(m)
t−1(x̃(m)

t) (63)

≤
(

µ
(m)
t−1(x(m)

t) + B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 + L∥x(m)
t − x(m)

t ∥2

)
−
(

µ
(m)
t−1(x(m)

t)−B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 − L∥x̃(m)
t − x(m)

t ∥2

)
(64)

≤ 2B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 + 2L · diam
(
∆(m)

t−1(xt)
)

(65)

≤ 2B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 + 2L
(

4B∥Γ(m−1)
t−1 (x(m−1)

t , x(m−1)
t)∥1/2

2 + 5L · diam
(
∆(m−1)

t−1 (xt)
))

(66)

≤ 2B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 +
m−1∑
i=1

2L · (5L)m−1−i · 4B∥Γ(i)
t−1(x(i)

t , x(i)
t)∥1/2

2 , (67)

where:

• (64) holds since

max C(m)
t−1(x(m)

t) ≤ max C(m)
t−1 (x(m)

t , x(m)
t) (by (12)) (68)

≤ max C(m)
t−1 (x(m)

t) + L∥x(m)
t − x(m)

t ∥2 (by (14)) (69)

= µ
(m)
t−1(x(m)

t) + B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 + L∥x(m)
t − x(m)

t ∥2 (by (13)). (70)

Similarly, we have

min C(m)
t−1(x̃(m)

t) ≥ min C(m)
t−1 (x̃(m)

t , x(m)
t) (71)

≥ min C(m)
t−1 (x(m)

t)− L∥x̃(m)
t − x(m)

t ∥2 (72)

= µ
(m)
t−1(x(m)

t)−B∥Γ(m)
t−1(x(m)

t , x(m)
t)∥1/2

2 − L∥x̃(m)
t − x(m)

t ∥2. (73)

• (65) holds since all of the x vectors in (65) lie in ∆(m)
t−1(xt);

• (66) and (67) follow from the recursive relation in (59).

20

Published in Transactions on Machine Learning Research (05/2024)

Then, the cumulative regret is

RT =
T∑

t=1
rt (74)

≤ 2B

T∑
t=1
∥Γ(m)

t−1(x(m)
t , x(m)

t)∥1/2
2 + 2L · 4B

T∑
t=1
∥Γ(m−1)

t−1 (x(m−1)
t , x(m−1)

t)∥1/2
2

+
m−2∑
i=1

2L · (5L)m−1−i · 4B

T∑
t=1
∥Γ(i)

t−1(x(i)
t , x(i)

t)∥1/2
2 (75)

≤ 4B
(5L)m − 1

5L− 1 ΣΓ
T (76)

≤ 5mBLm−1ΣΓ
T , (77)

where ΣΓ
T = max

i∈[m]
max

z1,...,zT ∈X (i)

∑T
t=1 ∥Γ

(i)
t−1(zt, zt)∥1/2

2 .

F.3 Proof of Theorem 3 (Feed-Forward Networks)

In this section, we prove Theorem 3, which is restated as follows.
Theorem 3 (GPN-UCB for feed-forward networks). Under the setup of Section 2, given B > 0 and L > 1,
a scalar-valued kernel k, and a feed-forward network g = f (m) ◦f (m−1) ◦ · · ·◦f (1) with f (i)(z) = [f (i,j)(z)]di+1

j=1
and f (i,j) ∈ Hk(B) ∩ F(L) for each i ∈ [m], j ∈ [di+1], Algorithm 1 achieves

RT ≤ 2m+1√D2,mBLm−1ΣT ,

where D2,m =
∏m

i=2 di and ΣT = max
i∈[m]

max
z1,...,zT ∈X (i)

∑T
t=1 σ

(i,1)
t−1 (zt).

Proof. Recall the UCB and LCB definitions in (17)–(18). For a fixed input x ∈ X , defining x(i,j) =
arg maxz∈∆(i)

t (x) UCB(i,j)
t (z) and x̃(i,j) = arg minz∈∆(i)

t (x) LCB(i,j)
t (z), the diameter of the confidence region

of x(i+1,j) is

diam
(
∆(i+1,j)

t (x)
)

= max
z∈∆(i)

t (x)
UCB(i,j)

t (z)− min
z∈∆(i)

t (x)
LCB(i,j)

t (z) (78)

= UCB(i,j)
t (x(i,j))− LCB(i,j)

t (x̃(i,j)) (79)

≤ UCB(i,j)
t (x(i)) + L∥x(i,j) − x(i)∥2 − LCB(i,j)

t (x(i)) + L∥x(i) − x̃(i,j)∥2 (80)

≤ 2Bσ
(i,j)
t (x(i)) + 2L · diam

(
∆(i)

t (x)
)
, (81)

and therefore, the squared diameter of the confidence region of x(i+1) = [x(i+1,1), . . . , x(i+1,di+1)]T is

diam
(
∆(i+1)

t (x)
)2 =

di+1∑
j=1

diam
(
∆(i+1,j)

t (x)
)2 (82)

≤
di+1∑
j=1

(
2Bσ

(i,j)
t (x(i)) + 2L · diam

(
∆(i)

t (x)
))2

(83)

= di+1

(
2Bσ

(i,1)
t (x(i)) + 2L · diam

(
∆(i)

t (x)
))2

, (84)

where the last step follows since σ
(i,j)
t (·) = σ

(i,1)
t (·) for each j ∈ [di+1] by the symmetry of our setup (each

function is associated with the same kernel).

21

Published in Transactions on Machine Learning Research (05/2024)

Then, by recursion, the diameter of the confidence region of x(m) is

diam
(
∆(m)

t (x)
)
≤ 2
√

dmBσ
(m−1,1)
t (x(m−1)) + 2

√
dmL · diam

(
∆(m−1)

t (x)
)

(85)

≤ 2
√

dmBσ
(m−1,1)
t (x(m−1)) + (2

√
dmL)(2

√
dm−1B)σ(m−2,1)

t (x(m−2))

+ (2
√

dmL)(2
√

dm−1L)diam
(
∆(m−2)

t (x)
)

(86)

≤
m−1∑
i=1

(m∏
s=i+2

(2
√

dsL)
)

(2
√

di+1B)σ(i,1)
t (x(i)), (87)

where we set
∏m

s=m+1(2
√

dsL) = 1.

Similarly to (43)–(49) for the case of chains, with x(m)
t = arg maxz∈∆(m)

t−1(xt) UCB(m,1)
t−1 (z) and x̃(m)

t =

arg minz∈∆(m)
t−1(xt) LCB(m,1)

t−1 (z), the simple regret is upper bounded as follows:

rt = g(x∗)− g(xt) (88)

≤ UCBt−1(xt)− LCB(m,1)
t−1 (x̃(m)

t) (89)

= UCB(m,1)
t−1 (x(m)

t)− LCB(m,1)
t−1 (x̃(m)

t) (90)

≤ UCB(m,1)
t−1 (x(m)

t) + L∥x(m)
t − x(m)

t ∥2 − LCB(m,1)
t−1 (x(m)

t) + L∥x(m)
t − x̃(m)

t ∥2 (91)

≤ 2Bσ
(m,1)
t−1 (x(m)

t) + 2L · diam
(
∆(m)

t−1(xt)
)

(92)

≤ 2Bσ
(m,1)
t−1 (x(m)

t) + 2L

m−1∑
i=1

(m∏
s=i+2

(2
√

dsL)
)

(2
√

di+1B)σ(i,1)
t−1 (x(i)

t) (93)

≤
m∑

i=1
2m−i+1BLm−i

(m∏
s=i+1

√
ds

)
σ

(i,1)
t−1 (x(i)

t), (94)

where we use the convention
∏m

s=m+1
√

ds = 1.

Hence, the cumulative regret is

RT =
T∑

t=1
rt (95)

≤
m∑

i=1
2m−i+1BLm−i

(m∏
s=i+1

(
√

ds)
) T∑

t=1
σ

(i,1)
t−1 (x(i)

t) (96)

≤ 2B
(2L)m − 1

2L− 1
√

D2,mΣT (97)

≤ 2m+1BLm−1√D2,mΣT , (98)

where D2,m =
∏m

i=2 di and ΣT = max
i∈[m]

max
z1,...,zT ∈X (i)

∑T
t=1 σ

(i,1)
t−1 (zt).

G Analysis of Non-Adaptive Sampling (Algorithm 2)

As mentioned in the main body, the analysis in this appendix is restricted to the case that all domains in
the network are hyperrectangular. This is a somewhat restrictive assumption, but we note that the primary
reason for assuming this is to be able to apply Lemma 5 below. Hence, if Lemma 5 can be generalized, then
our results also generalize in the same way.

The lemma, stated as follows, provides an upper bound on the posterior standard deviation on a hyper-
rectangular domain for the Matérn kernel in terms of the fill distance of the sampled points and the kernel
parameter.

22

Published in Transactions on Machine Learning Research (05/2024)

Lemma 5. (Kanagawa et al., 2018, Theorem 5.4) For the Matérn kernel with smoothness ν, a hyperrect-
angular domain X , and any set of T points XT ⊂ X with fill distance δT , define

σT := max
x∈X

σT (x), (99)

where σT (·) is the posterior standard deviation computed based on XT using (2). There exists a constant δ0
depending only on the kernel parameters such that if δT ≤ δ0 then

σT = O
(
(δT)ν

)
. (100)

Recalling that {x(i)
s }T

s=1 denote the intermediate outputs of {xs}T
s=1 right after f (i−1), we define the fill

distance of the X (i) with respect to {x(i)
s }T

s=1 as

δ
(i)
T = max

z∈X (i)
min
s∈[T]

∥z− x(i)
s ∥2. (101)

We also provide corollaries on the posterior standard deviation of a single layer for each network structure.
Corollary 1 (Chains). With k being the Matérn kernel with smoothness ν, consider a chain g = f (m) ◦
f (m−1) ◦ · · · ◦ f (1) with f (i) ∈ Hk(B) ∩ F(L) for each i ∈ [m]. For any set of T points XT = {xs}T

s=1 ⊂ X
with fill distance δT , let X (i)

T = {x(i)
s }T

s=1 be the noise-free observations of f (i−1) ◦ · · · ◦ f (1). Define

σ
(i)
T := max

z∈X (i)
σ

(i)
T (z), (102)

where σ
(i)
T (·) is the posterior standard deviation computed based on X (i)

T using (2). Then, for any i ∈ [m],
there exists a constant δ0 depending only on the kernel parameters such that if δT ≤ δ0 then

σ
(i)
T = O

(
(Li−1δT)ν

)
. (103)

Proof. First, it is straightforward that f (i−1)◦· · ·◦f (1) has Lipschitz constant Li−1. For any input x, xs ∈ X ,
f (i−1) ◦ · · · ◦ f (1) outputs x(i), x(i)

s such that

|x(i) − x(i)
s | = |f (i−1) ◦ · · · ◦ f (1)(x)− f (i−1) ◦ · · · ◦ f (1)(xs)| ≤ Li−1∥x− xs∥2. (104)

If {xs}T
s=1 has fill distance δT , then the fill distance of {x(i)

s }T
s=1 is

δ
(i)
T = max

z∈X (i)
min
s∈[T]

|z− x(i)
s | = max

x∈X
min
s∈[T]

|x(i) − x(i)
s | ≤ max

x∈X
min
s∈[T]

Li−1∥x− xs∥2 = Li−1δT . (105)

Then, by Lemma 5 we have

σ
(i)
T = max

z∈X (i)
σ

(i)
T (z) = O

(
(δ(i)

T)ν
)

= O
(
(Li−1δT)ν

)
. (106)

Corollary 2 (Multi-output chains). For Γ(·, ·) = k(·, ·)In, with k being the Matérn kernel with smoothness
ν and In being the identity matrix of size n, consider a chain g = f (m) ◦ f (m−1) ◦ · · · ◦ f (1) with f (i) ∈
HΓ(B) ∩ F(L) and X (i) being a hyperrectangle for each i ∈ [m] and n = di+1. For any set of T points
XT = {xs}T

s=1 ⊂ X with fill distance δT , let X (i)
T = {x(i)

s }T
s=1 be the noise-free observations of f (i−1)◦· · ·◦f (1).

Define

Γ(i)
T := max

z∈X (i)
∥Γ(i)

T (z, z)∥1/2
2 , (107)

where Γ(i)
T (z, z) is the posterior variance matrix computed based on X (i)

T using (4), and ∥·∥2 denotes the matrix
spectral norm. Then, for any i ∈ [m], there exists a constant δ0 depending only on the kernel parameters
such that if δT ≤ δ0 then

Γ(i)
T = O

(
(Li−1δT)ν

)
. (108)

23

Published in Transactions on Machine Learning Research (05/2024)

Proof. Recalling that ∥ · ∥2 with a matrix argument denotes the spectral norm, we have

Γ(i)
T = max

z∈X (i)
∥Γ(i)

T (z, z)∥1/2
2 (109)

= max
z∈X (i)

∥
(
σ

(i)
T (z)

)2In∥1/2
2 (by Lemma 4) (110)

= max
z∈X (i)

σ
(i)
T (z) (by ∥In∥2 = 1) (111)

= O
(
(δ(i)

T)ν
)

(by Lemma 5) (112)
= O

(
(Li−1δT)ν

)
. (by (105)) (113)

Corollary 3 (Feed-forward networks). With k being the Matérn kernel with smoothness ν, consider a feed-
forward network g = f (m) ◦ f (m−1) ◦ · · · ◦ f (1) with f (s)(·) = [f (s,j)(·)]ds+1

j=1 and f (s,j) ∈ Hk(B) ∩ F(L) and
X (s) being a hyperrectangle for each s ∈ [m], j ∈ [ds+1]. For any set of T points XT = {xs}T

s=1 ⊂ X with fill
distance δT , let X (i)

T = {x(i)
s }t

s=1 be the noise-free observations of f (i−1) ◦ · · · ◦ f (1). Define

σ
(i,j)
T := max

z∈X (i)
σ

(i,j)
T (z), (114)

where σ
(i,j)
T (·) is the posterior standard deviation computed based on X (i)

T using (2). Then, for each i ∈ [m]
and j ∈ [di+1], there exists a constant δ0 depending only on the kernel parameters such that if δT ≤ δ0 then

σ
(i,j)
T = O

(
(
√

D2,iL
i−1δT)ν

)
, (115)

where D2,i =
∏i

s=2 ds.

Proof. Since f (s,j) ∈ F(L) for each s ∈ [m], we have for any z, z′ ∈ X (s) that

∥f (s)(z)− f (s)(z′)∥2 =

√√√√ds+1∑
j=1
∥f (s,j)(z)− f (s,j)(z′)∥2

2 (116)

≤

√√√√ds+1∑
j=1

L2∥z− z′∥2
2 (117)

=
√

ds+1L∥z− z′∥2, (118)

and therefore f (i−1) ◦ · · · ◦ f (1) is Lipschitz continuous with constant
√

D2,iL
i−1, where D2,i =

∏i
s=1 ds. If

{xs}T
s=1 has fill distance δT , then the fill distance of {x(i)

s }T
s=1 is

δ
(i)
T = max

z∈X (i)
min
s∈[T]

∥z− x(i)
s ∥2 (119)

= max
x∈X

min
s∈[T]

∥x(i) − x(i)
s ∥2 (120)

≤ max
x∈X

min
s∈[T]

√
D2,iL

i−1∥x− xs∥2 (121)

≤
√

D2,iL
i−1δT . (122)

Hence, by Lemma 5 we have

σ
(i,j)
T = max

z∈X (i)
σ

(i,j)
T (z) = O

(
(δ(i)

T)ν
)

= O
(
(
√

D2,iL
i−1δT)ν

)
. (123)

Remark 4. Corollary 2 and Corollary 3 require X (i) being a hyperrectangle. This is because they are the
consequences of Lemma 5, which only holds for a hyperrectangular domain. For chains, the requirement of
hyperrectangular domain is trivial, since X = [0, 1]d and X (2), . . . ,X (m) have single dimension.

24

Published in Transactions on Machine Learning Research (05/2024)

G.1 Proof of Theorem 4 (Chains)

In this section, we prove Theorem 4, which is restated as follows.
Theorem 4 (Non-adaptive sampling method for chains). Under the setup of Section 2, given B = Θ(L),
k = kMatérn with smoothness ν, and a chain g = f (m) ◦ f (m−1) ◦ · · · ◦ f (1) with f (i) ∈ Hk(B)∩F(L) for each
i ∈ [m], we have

• When ν ≤ 1, Algorithm 2 achieves

r∗
T = Õ(BLm−1T −νm/d);

• When ν > 1, Algorithm 2 achieves

r∗
T = Õ

(
max

{
BL(m−1)νT −ν/d, B1+ν+ν2+···+νm−2

Lνm−1
T −ν2/d

})
.

Proof. Since f (i) ∈ F(L) implies that f (m) ◦ · · · ◦ f (i) is Lipschitz continuous with constant Lm−i+1, defining

σ̃
(i)
T (x) := (σ(i)

T ◦ µ
(i−1)
T ◦ · · · ◦ µ

(1)
T)(x), (124)

we have for all x ∈ X that

g(x) = (f (m) ◦ f (m−1) ◦ · · · ◦ f (2))
(
f (1)(x)

)
(125)

≤ (f (m) ◦ f (m−1) ◦ · · · ◦ f (2))
(
µ

(1)
T (x)

)
+ Lm−1Bσ

(1)
T (x) (126)

= (f (m) ◦ f (m−1) ◦ · · · ◦ f (3))
(
(f (2) ◦ µ

(1)
T)(x)

)
+ Lm−1Bσ

(1)
T (x) (127)

≤ (f (m) ◦ f (m−1) ◦ · · · ◦ f (3))
(
(µ(2)

T ◦ µ
(1)
T)(x)

)
+ Lm−2Bσ

(2)
T

(
µ

(1)
T (x)

)
+ Lm−1Bσ

(1)
T (x) (128)

≤ (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x) + Bσ

(m)
T

(
(µ(m−1)

T ◦ · · · ◦ µ
(1)
T)(x)

)
+ LBσ

(m−1)
T

(
(µ(m−2)

T ◦ · · · ◦ µ
(1)
T)(x)

)
+ · · ·+ Lm−1Bσ

(1)
T (x) (129)

= (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x) + B

m∑
i=1

Lm−i(σ(i)
T ◦ µ

(i−1)
T ◦ · · · ◦ µ(1))(x) (130)

= (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x) + B

m∑
i=1

Lm−iσ̃
(i)
T (x), (131)

where the first two inequalities use the confidence bounds and Lipschitz assumption, and the third inequality
follows by continuing recursively. Similarly, we also have

g(x) ≥ (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x)−B

m∑
i=1

Lm−iσ̃
(i)
T (x). (132)

Hence, defining σ̃
(i)
T := maxx∈X σ̃

(i)
T (x), it follows that

r∗
T = g(x∗)− g(x∗

T) (133)

≤
(

(µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x∗) + B

m∑
i=1

Lm−iσ̃
(i)
T (x∗)

)
−
(

(µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x∗

T)−B

m∑
i=1

Lm−iσ̃
(i)
T (x∗

T)
)

(134)

≤ 2B

m∑
i=1

Lm−i max{σ̃(i)
T (x∗), σ̃

(i)
T (x∗

T)} (135)

≤ 2B

m∑
i=1

Lm−iσ̃
(i)
T , (136)

25

Published in Transactions on Machine Learning Research (05/2024)

where (135) uses the fact that x∗
T maximizes the composite posterior mean function. It remains to derive

an upper bound on σ̃
(i)
T for i ∈ [m]. Firstly, by Lemma 5, we have

σ̃
(1)
T (x) = σ

(1)
T (x) = O

(
(δT)ν

)
= O(T −ν/d). (137)

We now represent the upper bound on σ̃
(i+1)
T in terms of {σ̃(j)

T : j ∈ [i]} for i ∈ [m− 1]. For all x ∈ X , the
distance between (µ(i)

T ◦ · · · ◦ µ
(1)
T)(x) and its closest point in X (i+1) is

δi+1(x) = min
z∈X (i+1)

|(µ(i)
T ◦ · · · ◦ µ

(1)
T)(x)− z| (138)

≤ |µ(i)
T ◦ · · · ◦ µ

(1)
T (x)− f (i) ◦ · · · ◦ f (1)(x)| (139)

= B

i∑
j=1

Li−j σ̃
(j)
T (x), (140)

where the last step follows from (131). Then, recalling the definition of δ
(i)
T in (101), we have that the

distance between (µ(i)
T ◦ · · · ◦ µ

(1)
T)(x) and its closest point in X (i+1)

T is

δ′
i+1(x) = min

s∈[T]
|(µ(i)

T ◦ · · · ◦ µ
(1)
T)(x)− x(i+1)

s | (141)

≤ δ
(i+1)
T + δi+1(x) (142)

≤ O(LiT −1/d) + B

i∑
j=1

Li−j σ̃
(j)
T (x) (143)

= O
(

max
{

LiT −1/d, iB ·max
j∈[i]

Li−j σ̃
(j)
T (x)

})
, (144)

where (142) applies the triangle inequality, and (143) uses (105) and (140).

Now, we extend X (i+1) to X̃ (i+1), the shortest interval that covers both {µ(i)
T ◦ · · · ◦ µ

(1)
T (x) : x ∈ X} and

X (i+1). Then, the fill distance of the extended domain with respect to X (i+1)
T is

δ′
i+1 := max

x∈X
δ′

i+1(x) = O
(

max
{

LiT −1/d, iB ·max
j∈[i]

Li−j σ̃
(j)
T

})
, (145)

and by Lemma 5, we have

σ̃
(i+1)
T = max

x∈X
σ̃

(i+1)
T (x) = O

(
(δ′

i+1)ν
)

= O

((
max

{
LiT −1/d, iB ·max

j∈[i]
Li−j σ̃

(j)
T

})ν
)

. (146)

We now split the analysis into two cases.

The case that ν ≤ 1: Recall that we assume B = Θ(L), and using the fact that Õ(Lcν) is equivalent to
O
(
(Lcνpoly(c log L))

)
for fixed ν, it follows from (137) and (146) that when ν ≤ 1, we have

σ̃
(2)
T = O

(
max

{
LνT −ν/d, BνT −ν2/d

})
= O(LνT −ν2/d), (147)

σ̃
(3)
T = O

(
max

{
L2νT −ν/d, 2νBνLνT −ν2/d, 2νBνLν2

T −ν3/d
})

= O(2νBνLνT −ν3/d) = Õ(BνLνT −ν3/d),
(148)

...

σ̃
(i)
T = Õ

(
(i− 1)νBνL(i−2)νT −νi/d

)
= Õ(BνL(i−2)νT −νi/d), (149)

and the simple regret is

r∗
T ≤ 2B

m∑
i=1

Lm−iσ̃
(i)
T = Õ(BLm−1T −νm/d). (150)

26

Published in Transactions on Machine Learning Research (05/2024)

The case that ν ≤ 1: With B = Θ(L), using the property of Õ(·) similarly to the first case, it follows from
(137) and (146) that when ν > 1, we have

σ̃
(2)
T = O

(
max

{
LνT −ν/d, BνT −ν2/d

})
= O(LνT −ν/d), (151)

σ̃
(3)
T = O

(
max

{
L2νT −ν/d, 2νBνLν2

T −ν2/d
})

= O(2νBνLν2
T −ν/d) = Õ(BνLν2

T −ν/d), (152)
...

σ̃
(i)
T = Õ

(
max

{
L(i−1)νT −ν/d, (i− 1)νBν+···+νi−2

Lνi−1
T −ν2/d

})
= Õ

(
max

{
L(i−1)νT −ν/d, Bν+···+νi−2

Lνi−1
T −ν2/d

})
, (153)

and the simple regret is

r∗
T ≤ 2B

m∑
i=1

Lm−iσ̃
(i)
T = Õ

(
max

{
BL(m−1)νT −ν/d, B1+ν+ν2+···+νm−2

Lνm−1
T −ν2/d

})
. (154)

G.2 Two More Restrictive Cases for Chains

Recall the following two more restrictive cases introduced in the main body:

• Case 1: We additionally assume that (µ(i)
T ◦· · ·◦µ

(1)
T)(x∗) ∈ X (i+1) and (µ(i)

T ◦· · ·◦µ
(1)
T)(x∗

T) ∈ X (i+1)

for i ∈ [m− 1].

• Case 2: We additionally assume that all the X (i)’s are known. Defining

µ̃
(i)
T (z) = arg min

z′∈X (i+1)
|µ(i)

T (z)− z′|, (155)

we let the algorithm return

x∗
T = arg max

x∈X
(µ̃(m)

T ◦ · · · ◦ µ̃
(1)
T)(x). (156)

In Case 1, it follows from Corollary 1 (along with (115) and δT = Θ(T − 1
d)) that for each x′ ∈ {x∗, x∗

T }

σ̃
(i+1)
T (x′) = (σ(i+1)

T ◦ µ
(i)
T ◦ · · · ◦ µ

(1)
T)(x′) ≤ σ

(i+1)
T = O

(
(LiδT)ν

)
= O

(
(LiT −1/d)ν

)
. (157)

By substituting these upper bounds into (135), it holds that

r∗
T ≤ 2B

m∑
i=1

Lm−i max{σ̃(i)
T (x∗), σ̃

(i)
T (x∗

T)} (158)

≤ 2B

m∑
i=1

Lm−iO
(
(LiT −1/d)ν

)
(159)

=
{

O(BLm−1T −ν/d) when ν ≤ 1,
O(BL(m−1)νT −ν/d) when ν > 1.

(160)

In Case 2, for all z ∈ X (i), we have µ̃
(i)
T (z) ∈ X (i+1), and

|f (i)(z)− µ̃
(i)
T (z)| ≤ |f (i)(z)− µ

(i)
T (z)|+ |µ(i)

T (z)− µ̃
(i)
T (z)| (161)

≤ |f (i)(z)− µ
(i)
T (z)|+ |µ(i)

T (z)− f (i)(z)| (162)

≤ 2Bσ
(i)
T (z), (163)

27

Published in Transactions on Machine Learning Research (05/2024)

where we used (155) and the confidence bounds. By recursion, we also have (µ̃(i)
T ◦ · · · ◦ µ̃

(1)
T)(x) ∈ X (i+1) for

all x ∈ X , and therefore

(σ(i+1)
T ◦ µ̃

(i)
T ◦ · · · ◦ µ̃

(1)
T)(x) ≤ σ

(i+1)
T . (164)

Hence, replacing µ with µ̃ in (125)–(135), it follows from Corollary 1 that

r∗
T ≤ 4B

m∑
i=1

Lm−iσ
(i)
T =

{
O(BLm−1T −ν/d) when ν ≤ 1,
O(BL(m−1)νT −ν/d) when ν > 1.

(165)

G.3 Non-Adaptive Sampling Method for Multi-Output Chains

For multi-output chains, the composite posterior mean of g(x) is

µg
T (x) = (µ(m)

T ◦ µ
(m−1)
T ◦ · · · ◦ µ

(1)
T)(x), (166)

where µ
(i)
T denotes the posterior mean of f (i) computed using (3) based on {(x(i)

s , x(i+1)
s)}T

s=1 for each i ∈ [m].

We again assume that each X (i) is a hyperrectangle of dimension di. Then, the upper bound on simple
regret of Algorithm 2 using (166) is provided in the following theorem.
Theorem 7 (Non-adaptive sampling method for multi-output chains). Under the setup of Section 2, given
B = Θ(L), k = kMatérn, Γ(·, ·) = k(·, ·)I, and a multi-output chain g = f (m) ◦ f (m−1) ◦ · · · ◦ f (1) with
f (i) ∈ HΓ(B) ∩ F(L) and X (i) being a hyperrectangle for each i ∈ [m],

• when ν ≤ 1, Algorithm 2 achieves

r∗
T = Õ(BLm−1T −νm/d);

• when ν > 1, Algorithm 2 achieves

r∗
T = Õ

(
max

{
BL(m−1)νT −ν/d, B1+ν+ν2+···+νm−2

Lνm−1
T −ν2/d

})
.

Proof. The analysis is similar to the case of chains, so we omit some details and focus on the main differences.
Defining Γ̃(i)

T (x) = ∥Γ(i)
T ◦ µ

(i−1)
T ◦ · · · ◦ µ

(1)
T (x)∥1/2

2 , similarly to the case of chains, we have

|g(x)− (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x)| ≤ B

m∑
i=1

Lm−iΓ̃(i)
T (x), (167)

and

r∗
T = g(x∗)− g(x∗

T) ≤ 2B

m∑
i=1

Lm−i max{Γ̃(i)
T (x∗), Γ̃(i)

T (x∗
T)}. (168)

For each x′ ∈ {x∗, x∗
T }, we extend X (i+1) to the smallest hyperrectangle X̃ (i+1) that covers (µ(i)

T ◦· · ·◦µ(1))(x′),
and the original domain X (i+1) (see Figure 5). Recalling the definition of δ

(i+1)
T in (101), with δi+1(x) =

minz∈X (i+1) ∥(µ(i)
T ◦ · · · ◦ µ(1))(x)− z∥2, the fill distance of X̃ (i+1) with respect to {x(i+1)

s }T
s=1 is

δ′
i+1 = max

z′∈X̃ (i+1)
min
s∈[T]

∥z′ − x(i+1)
s ∥2 (169)

≤ δ
(i+1)
T + max

z′∈X̃ (i+1)
min

z∈X (i+1)
∥z′ − z∥2 (170)

≤ δ
(i+1)
T + δi+1(x′) (171)

≤ δ
(i+1)
T + B

i∑
j=1

Li−jΓ̃(i)
T (x′). (172)

28

Published in Transactions on Machine Learning Research (05/2024)

x
(i+1)
1

x
(i+1)
2

x
(i+1)
3 x

(i+1)
4

z

X (i+1)

X̃ (i+1)

µ(i) ◦ · · · ◦ µ(1)(x′)

z′

δi+1(x
′)

Figure 5: Extended domain for multi-output chains.

Since X̃ (i+1) is a hyperrectangle and µ
(i)
T ◦ · · · ◦ µ(1)(x′) ∈ X̃ (i+1), it follows from (112) that

Γ̃(i+1)
T (x′) = O

(
(δ′

i+1)ν
)

(173)

= O

((
max

{
LiT −1/d, iB ·max

j∈[i]
Li−jΓ̃(j)

T (x′)
})ν

)
. (174)

By Lemma 4, we also have

Γ̃(1)
T (x′) = ∥Γ(1)

T (x′)∥1/2
2 = σ

(1)
T (x′) = O

(
(δT)ν) = O(T −ν/d). (175)

This recursive relation is exactly the same as that of chains in (146), showing Theorem 4 extends to multi-
output chains.

For the two more restrictive cases, Corollary 2, with the same posterior standard deviation upper bound as
Corollary 1, implies that the results in Appendix G.2 also extend to multi-output chains.

G.4 Non-Adaptive Sampling Method for Feed-Forward Networks

For feed-forward networks of scalar-valued functions, let µ
(i,j)
T denote the posterior mean of f (i,j) computed

using (1) based on {(x(i)
s , x(i+1,j)

s)}T
s=1. The composite posterior mean of g(x) with feed-forward network

structure is

µg
T (x) = µ

(m,1)
T (z(m)) (176)

with

z(1) = x, (177)

z(i+1,j) = µ
(i,j)
T (z(i)) for i ∈ [m− 1], j ∈ [di+1], (178)

z(i+1) = µ
(i)
T (z(i)) = [z(i+1,1), . . . , z(i+1,di)] for i ∈ [m− 1]. (179)

Assuming each X (i) is a hyperrectangle of dimension di, the following theorem provides the upper bound on
simple regret of Algorithm 2 using (176) for feed-forward networks.
Theorem 8 (Non-adaptive sampling method for feed-forward networks). Under the setup of Section 2, given
B = Θ(L), k = kMatérn, and a feed-forward network g = f (m)◦f (m−1)◦· · ·◦f (1) with f (i)(z) = [f (i,j)(z)]di+1

j=1 ,
f (i,j) ∈ Hk(B) ∩ F(L), and X (i) being a hyperrectangle for each i ∈ [m], j ∈ [di+1],

29

Published in Transactions on Machine Learning Research (05/2024)

• when ν ≤ 1, Algorithm 2 achieves

r∗
T = Õ(

√
D2,mBLm−1T −νm/d); (180)

• when ν > 1, Algorithm 2 achieves

r∗
T = Õ

(
max

{
(D2,m)ν/2BL(m−1)νT −ν/d, D̃ν

2,mB1+ν+ν2+···+νm−2
Lνm−1

T −ν2/d
})

, (181)

where D2,m =
∏m

i=2 di and D̃ν
2,m =

∏m
i=2(di)νm+1−i/2.

Proof. With µ
(i)
T (·) = [µ(i,j)

T (·)]di+1
j=1 , we have

∥f (i)(z)− µ
(i)
T (z)∥2 =

√√√√di+1∑
j=1

(
f (i,j)(z)− µ

(i,j)
T (z)

)2 (182)

≤

√√√√di+1∑
j=1

(
Bσ

(i,j)
T (z)

)2 (183)

=
√

di+1Bσ
(i,1)
T (z), (184)

where we use the confidence bounds and the fact that σ
(i,j)
T (z) = σ

(i,1)
T (z) by the symmetry of our setup.

Since each f (i,j) is Lipschitz continuous with parameter L, we have that f (i) is Lipschitz continuous with
parameter

√
di+1L, and f (m) ◦ · · · ◦ f (i) is Lipschitz continuous with parameter

√
Di+1,m+1Lm−i+1, where

Di,j =
∏j

s=i ds and dm+1 = 1. Then, defining σ̃
(i,1)
T (x) = (σ(i,1)

T ◦ µ
(i−1)
T ◦ · · · ◦ µ

(1)
T)(x), we can follow

(125)–(131) to obtain

g(x) = (f (m) ◦ f (m−1) ◦ · · · ◦ f (2))
(
f (1)(x)

)
(185)

≤ (f (m) ◦ f (m−1) ◦ · · · ◦ f (2))
(
µ

(1)
T (x)

)
+
√

D3,m+1Lm−1∥f (1)(x)− µ
(1)
T (x)∥2 (186)

= (f (m) ◦ f (m−1) ◦ · · · ◦ f (2))
(
µ

(1)
T (x)

)
+
√

D2,m+1Lm−1Bσ
(1,1)
T (x) (187)

≤ (f (m) ◦ f (m−1) ◦ · · · ◦ f (3))
(
(µ(2)

T ◦ µ
(1)
T)(x)

)
+
√

D3,m+1Lm−2Bσ
(2,1)
T

(
µ

(1)
T (x)

)
+
√

D2,m+1Lm−1Bσ
(1,1)
T (x) (188)

≤ (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x) + Bσ(m,1)((µ(m−1)

T ◦ · · · ◦ µ
(1)
T)(x)

)
+ LBσ(m−1)((µ(m−2)

T ◦ · · · ◦ µ
(1)
T)(x)

)
+ · · ·+

√
D2,m+1Lm−1Bσ

(1,1)
T (x) (189)

≤ (µ(m)
T ◦ µ

(m−1)
T ◦ · · · ◦ µ

(1)
T)(x) + B

m∑
i=1

√
Di+1,m+1Lm−iσ̃

(i,1)
T (x). (190)

Hence, we have

r∗
T = g(x∗)− g(x∗

T) ≤ 2B

m∑
i=1

√
Di+1,mLm−i max{σ̃(i,1)

T (x∗), σ̃
(i,1)
T (x∗

T)}. (191)

It remains to upper bound max{σ̃(i,1)
T (x∗), σ̃

(i,1)
T (x∗

T)} for i ∈ [m]. Firstly, by Lemma 5, we have

σ̃
(1,1)
T (x) = σ

(1,1)
T (x) = O

(
(δT)ν

)
= O(T −ν/d). (192)

30

Published in Transactions on Machine Learning Research (05/2024)

We now represent the upper bound on σ̃
(i+1,1)
T (·) in terms of {σ̃(j,1)

T (·) : j ∈ [i]} for i ∈ [m − 1]. For all
x ∈ X , the distance between µ

(i)
T ◦ · · · ◦ µ

(1)
T (x) and its closest point in X (i+1) is

δi+1(x) = min
z∈X (i+1)

|(µ(i)
T ◦ · · · ◦ µ

(1)
T)(x)− z| (193)

≤ |(µ(i)
T ◦ · · · ◦ µ

(1)
T)(x)− f (i) ◦ · · · ◦ f (1)(x)| (194)

≤ B

i∑
j=1

√
Dj+1,i+1Li−j σ̃

(j,1)
T (x), (195)

where the last step follows from (190). Then, the distance between (µ(i)
T ◦ · · · ◦ µ

(1)
T)(x) and its closest point

in X (i+1)
T is

δ′
i+1(x) = min

s∈[T]
|(µ(i)

T ◦ · · · ◦ µ
(1)
T)(x)− x(i+1)

s | (196)

≤ δ
(i+1)
T + δi+1(x) (197)

≤ O(
√

D2,i+1LiT −1/d) + B

i∑
j=1

√
Dj+1,i+1Li−j σ̃

(j,1)
T (x) (198)

= O
(

max
{√

D2,i+1LiT −1/d, iB ·max
j∈[i]

√
Dj+1,i+1Li−j σ̃

(j,1)
T (x)

})
, (199)

where (197) applies the triangle inequality, and (198) uses (122) and (195).

Now, for each x′ ∈ {x∗, x∗
T }, we extend X (i+1) to X̃ (i+1), the smallest hyperrectangle that covers (µ(i)

T ◦ · · · ◦
µ

(1)
T)(x′) and X (i+1). Then, the fill distance of the extended domain with regard to X (i+1)

T is

δ′
i+1 = O

(
max

{√
D2,i+1LiT −1/d, iB ·max

j∈[i]

√
Dj+1,i+1Li−j σ̃

(j,1)
T (x′)

})
, (200)

and by Lemma 5, we have

σ̃
(i+1,1)
T (x′) = O

(
(δ′

i+1)ν
)

= O

((
max

{√
D2,i+1LiT −1/d, iB ·max

j∈[i]

√
Dj+1,i+1Li−j σ̃

(j,1)
T (x′)

})ν
)

. (201)

We now consider two cases;

The case that ν ≤ 1: Recalling the assumption B = Θ(L), and using the fact that Õ(Lcν) is equivalent to
O
(
(Lcνpoly(c log L))

)
for fixed ν, it follows from (192) and (201) that when ν ≤ 1, we have

σ̃
(2,1)
T (x′) = O

(
max

{
(d2)ν/2LνT −ν/d, (d2)ν/2BνT −ν2/d

})
= O

(
(d2)ν/2LνT −ν2/d

)
, (202)

σ̃
(3,1)
T (x′) = O

(
max

{
(D2,3)ν/2L2νT −ν/d, 2ν(D2,3)ν/2BνLνT −ν2/d, 2ν(d3)ν/2Bν(d2)ν2/2Lν2

T −ν3/d
})

= O
(
2ν(D2,3)ν/2BνLνT −ν3/d

)
= Õ

(
(D2,3)ν/2BνLνT −ν3/d

)
, (203)

...

σ̃
(i,1)
T (x′) = Õ

(
(i− 1)ν(D2,i)ν/2BνL(i−2)νT −νi/d

)
= Õ

(
(D2,i)ν/2BνL(i−2)νT −νi/d

)
, (204)

and the simple regret is

r∗
T ≤ 2B

m∑
i=1

√
Di+1,mLm−i max{σ̃(i,1)

T (x∗), σ̃
(i,1)
T (x∗

T)} (205)

= Õ(
√

D2,mBLm−1T −νm/d). (206)

31

Published in Transactions on Machine Learning Research (05/2024)

The case that ν > 1: With B = Θ(L), and using the property of Õ(·) similar to the first case, it follows from
(192) and (201) that when ν > 1, we have

σ̃
(2,1)
T (x′) = O

(
max

{
(d2)ν/2LνT −ν/d, (d2)ν/2BνT −ν2/d

})
= O((d2)ν/2LνT −ν/d), (207)

σ̃
(3,1)
T (x′) = O

(
max

{
(D2,3)ν/2L2νT −ν/d, (d3)ν/2Bν(d2)ν2/2Lν2

T −ν2/d
})

= O
(
2ν(d3)ν/2(d2)ν2/2BνLν2

T −ν/d
)

= Õ
(
(d3)ν/2(d2)ν2/2BνLν2

T −ν/d
)
, (208)

...

σ̃
(i,1)
T (x′) = Õ

(
max

{
(D2,i)ν/2L(i−1)νT −ν/d, (i− 1)ν(di)ν/2(di−1)ν2/2 · · · (d2)νi−1/2Bν+···+νi−2

Lνi−1
T −ν2/d

})
= Õ

(
max

{
(D2,i)ν/2L(i−1)νT −ν/d, (di)ν/2(di−1)ν2/2 · · · (d2)νi−1/2Bν+···+νi−2

Lνi−1
T −ν2/d

})
,

(209)

and the simple regret is

r∗
T ≤ 2B

m∑
i=1

√
Di+1,mLm−i max{σ̃(i,1)

T (x∗), σ̃
(i,1)
T (x∗

T)} (210)

= Õ
(

max
{

(D2,m)ν/2BL(m−1)νT −ν/d, D̃ν
2,mB1+ν+ν2+···+νm−2

Lνm−1
T −ν2/d

})
, (211)

where D̃ν
2,m =

∏m
i=2(di)νm+1−i/2.

Next, we recall the following two restrictive cases introduced in the main body:

• Case 1: We additionally assume that (µ(i)
T ◦· · ·◦µ

(1)
T)(x∗) ∈ X (i+1) and (µ(i)

T ◦· · ·◦µ
(1)
T)(x∗

T) ∈ X (i+1)

for i ∈ [m− 1].

• Case 2: We additionally assume that all the X (i)’s are known. Defining

µ̃
(i)
T (z) = arg min

z′∈X (i+1)
|µ(i)

T (z)− z′|, (212)

we let the algorithm return

x∗
T = arg max

x∈X
(µ̃(m)

T ◦ · · · ◦ µ̃
(1)
T)(x). (213)

Similarly to chains and multi-output chains, in either case, it follows that

r∗
T ≤ 2B

m∑
i=1

√
Di+1,mLm−i max{σ̃(i,1)

T (x∗), σ̃
(i,1)
T (x∗

T)} = O
(

B

m∑
i=1

√
Di+1,mLm−iσ

(i,1)
T

)
. (214)

Moreover, by Corollary 3, we can further upper bound this by

r∗
T ≤ O

(
B

m∑
i=1

√
Di+1,mLm−iσ

(i,1)
T

)
=
{

O(
√

D2,mBLm−1T −ν/d) when ν ≤ 1,
O
(
(D2,m)ν/2BL(m−1)νT −ν/d

)
when ν > 1.

(215)

H Lower Bound on Simple Regret (Proof of Theorem 5)

Recall the high-level intuition behind our lower bound outlined in Section 5: We use the idea from (Bull,
2011) of having a small bump that is difficult to locate, but unlike (Bull, 2011), we exploit Lipschitz functions
at the intermediate layers to “amplify” that bump (which means the original bump can have a much narrower
width for a given RKHS norm).

We first show that, for fixed ϵ > 0, we can construct a base function g with height 2ϵ and support radius
w = Θ

(
(ϵ

BLm−1)1/ν
)

for each network structure.

32

Published in Transactions on Machine Learning Research (05/2024)

H.1 Hard Function for Chains

To construct a base function with chain structure, we define the following two scalar-valued functions.

Considering the “bump” function h(x) = exp
(−1

1−∥x∥2
2

)
1{∥x∥2 < 1}, for some ϵ1 > 0 and width w > 0, we

define (Bull, 2011)

h̃(x, ϵ1, w) = 2ϵ1

h(0)h
(x

w

)
, (216)

which is a scaled bump function with height 2ϵ1 and compact support {x ∈ X : ∥x∥2 < w}.

For a fixed u > 0 and L̃ =
√

2B/
√

k(0)− k(2u), where k is the Matérn kernel on R with smoothness ν and
k(|x− x′|) = k(x, x′), we define

g̃k(·) = L̃

2
(
k(·, u)− k(·,−u)

)
. (217)

Theorem 9 (Hard function for chains). For the Matérn kernel k with smoothness ν ≥ 1, sufficiently small
ϵ > 0, and sufficiently large B, there exists ϵ1 > 0, L = Θ(B), c = Θ(1), w = Θ

(
(ϵ

B(cL)m−1)1/ν
)
, and u > 0

such that g := f
(m) ◦ f

(m−1) ◦ · · · ◦ f
(1) with f

(1)(·) = h̃(·, ϵ1, w) and f
(s)(·) = g̃k(·) for s ∈ [2, m] has the

following properties:

• f
(i) ∈ Hk(B) ∩ F(L) for each i ∈ [m],

• maxx g(x) = 2ϵ,

• g(x) > 0 when ∥x∥2 < w , and g(x) = 0 otherwise.

Proof. For k being the Matérn kernel with smoothness ν, recalling that

h̃(x, ϵ1, w) = 2ϵ1

h(0)h
(x

w

)
(218)

with h being the bump function, (Bull, 2011, Section A.2) has shown that for some constant C1,

∥h̃∥k ≤ C1
2ϵ1

h(0)

(1
w

)ν

∥h∥k. (219)

Hence, we have ∥h̃∥k ≤ B when w =
(2C1∥h∥kϵ1

h(0)B

)1/ν . When ϵ1
B is sufficiently small, the diameter of the

support satisfies 2w ≪ 1. Since the bump function is infinitely differentiable, h̃ is Lipschitz continuous with
some constant L′ = Θ(ϵ1

w), and our assumption of ν ≥ 1 further implies L′ = O(B).

Recall that for a fixed u > 0 and the Matérn kernel k on a one-dimension domain, we define

g̃k(·) = L̃

2
(
k(·, u)− k(·,−u)

)
(220)

with L̃ =
√

2B√
k(0)−k(2u)

. Applying (23) with g̃k replacing both f and f ′, we have

∥g̃k∥k = L̃

2
√

k(u, u) + 2k(u,−u) + k(−u,−u) = L̃

2
√

2k(0)− 2k(2u) = B, (221)

where k(dx,x′) = k(x, x′) with dx,x′ = ∥x− x′∥2.

We choose the two constants u > ũ > 0 to satisfy the following:

1. k(dx,x′) is non-increasing when dx,x′ ∈ [u− ũ, u + ũ].

33

Published in Transactions on Machine Learning Research (05/2024)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
k
gk

(u, k(u))
(u u, k(u u))
(u + u, k(u + u))
(u, gk(u))

ν = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
k
gk

(u, k(u))
(u u, k(u u))
(u + u, k(u + u))
(u, gk(u))

ν = 3/2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
k
gk

(u, k(u))
(u u, k(u u))
(u + u, k(u + u))
(u, gk(u))

ν = 2

Figure 6: k = kMatérn with lengthscale l = 1 and smoothness ν, and g̃k with B = 5, u = 0.5, and ũ = 0.3.

2. k(u− ũ)− k(u + ũ) ≥ 2
L̃

=
√

2
√

k(0)−k(2u)
B .

3. Defining rmax = sup
z∈(0,ũ]

k(u−z)−k(u+z)
2z and rmin = inf

z∈(0,ũ]
k(u−z)−k(u+z)

2z , it holds that rmax =
Θ(1) and rmin = Θ(1).

Whenever k(dx,x′) is continuous and non-increasing in dx,x′ on R+ (e.g., the Matérn kernel), condition 1 is
satisfied. This condition guarantees that k(·, u) is non-decreasing on [0, ũ], and k(·,−u) is non-increasing on
[0, ũ], which together implies that g̃k is non-decreasing on [0, ũ]. Under condition 1, condition 2 is satisfied
as long as B is sufficiently large, and it implies that g̃k(ũ) ≥ 1. Examples of g̃k for k = kMatérn are given in
Figure 6.

Let L = max{L′, sup
z∈(0,ũ]

g̃k(z)
z } = max{L′, rmaxL̃} and α = inf

z∈(0,ũ]
g̃k(z)

zL = rminL̃
L . Then, it holds for all

z ∈ (0, ũ] that

1 < αL ≤ g̃k(z)
z
≤ L. (222)

Clearly α cannot exceed 1, and moreover, condition 3 above along with L′ = O(B) implies that α =
min

{
rmin

√
2

k(0)−k(2u)
B
L′ , rmin

rmax

}
= Θ(1).

Defining gi = f
(i) ◦ f

(i−1) ◦ · · · ◦ f
(1), we denote the height of gi by hi = maxx gi(x). If hi−1 ≤ ũ, (222)

implies

hi−1 < αLhi−1 ≤ hi ≤ Lhi−1. (223)

Then, given ϵ ∈ (0, g̃k(ũ)/2] (recalling that we assume ϵ ∈ (0, 1/2] and noting that condition 2 implies
g̃k(ũ) ≥ 1), we choose ϵ1 to satisfy

(f (m) ◦ · · · ◦ f
(2))(2ϵ1) = (g̃k ◦ · · · ◦ g̃k)(2ϵ1) = 2ϵ, (224)

By h1 = 2ϵ1 and (223), this choice of ϵ1 must also satisfy

2(αL)m−1ϵ1 = (αL)m−1h1 ≤ hm = 2ϵ ≤ Lm−1h1 = 2Lm−1ϵ1, (225)

implying (via (222)) that
ϵ

Lm−1 ≤ ϵ1 ≤
ϵ

(αL)m−1 < ϵ. (226)

Since h̃ has a compact support with radius w and g̃(0) = 0, g also has a compact support with radius

w = Θ
((ϵ1

B

)1/ν
)

= Θ
((ϵ

B(cL)m−1

)1/ν
)

, (227)

34

Published in Transactions on Machine Learning Research (05/2024)

for some constant c = Θ(1).

Lastly, (222) implies g̃k on [0, ũ] is a member of F(L), and L ≥ L′ guarantees h̃ ∈ F(L).

H.2 Hard Function for Multi-Output Chains

In this section, we consider the operator-valued Matérn kernel Γ(i)(x, x′) = k(i)(x, x′)I(i+1), where k(i) is the
scalar-valued Matérn kernel on Rdi and I(i+1) is the identity matrix of size di+1. Then, for a fixed u(i) ∈ Rdi

and L̃(i) =
√

2B/
√

k(i)(0)− k(i)(2∥u(i)∥2) where k(i)(∥x− x′∥2) = k(i)(x, x′), we define

g̃(i)(·) = L̃(i)

2
(
Γ(i)(·, u(i))− Γ(i)(·,−u(i))

)
. (228)

Theorem 10 (Hard function for multi-output chains). Let I(i) denote the identity matrix of size di, let e(i)
1

denote the first column of I(i), and let k(i) denote the scalar-valued Matérn kernel on Rdi with smoothness
ν ≥ 1. For Γ(i)(x, x′) = k(i)(x, x′)I(i+1), sufficiently small ϵ > 0, and sufficiently large B, there exists
ϵ1 > 0, L = Θ(B), c = Θ(1), w = Θ

(
(ϵ

B(cL)m−1)1/ν
)
, and u ∈ R such that g := f

(m) ◦ f
(m−1) ◦ · · · ◦ f

(1)

with f
(1)(·) = h̃(·, ϵ1, w)e(2)

1 and f
(s)(·) = g̃(s)(·)e(s+1)

1 with u(s) = ue(s)
1 for s ∈ [2, m] has the following

properties:

• f
(i) ∈ HΓ(i)(B) ∩ F(L) for each i ∈ [m],

• maxx g(x) = 2ϵ,

• g(x) > 0 when ∥x∥2 < w , and g(x) = 0 otherwise.

Proof. The rough idea is to reduce to the case of regular chains by only making use of a single coordinate
throughout the network. We leave open the question as to whether the lower bound can be improved by
utilizing all coordinates.

With I denoting the identity matrix of size d2 and e1 denoting the first column of I, we aim to show that
f

(1) ∈ HΓ(1)(B) by showing that if Γ(·, ·) = k(·, ·)I ∈ Rd2×d2 and h̃ ∈ Hk(B) for some scalar-valued kernel
k and some constant B, then the function h̃′(·) = h̃(·)e1 satisfies h̃′ ∈ HΓ(B). Since h̃ ∈ Hk(B), there
exists a sequence {(ai, xi)}∞

i=1 such that h̃(·) =
∑∞

i=1 aik(·, xi). Then, using the definition of RKHS norm
for vector-valued functions in (24), we have

∥h̃′∥2
Γ = lim

n→∞

∥∥∥ n∑
i=1

aik(·, xi)e1

∥∥∥2

Γ
(229)

= lim
n→∞

∥∥∥ n∑
i=1

aiΓ(·, xi)e1

∥∥∥2

Γ
(230)

=
∞∑

i,j=1
⟨Γ(xi, xj)(aie1), aje1⟩ (231)

=
∞∑

i,j=1
aiajk(xi, xj) (232)

= ∥h̃∥2
k (233)

≤ B2, (234)

35

Published in Transactions on Machine Learning Research (05/2024)

and therefore h̃′ ∈ HΓ(B). Next, for i ∈ [2, m], with u(i) = ue(i)
1 we have

∥f (i)∥Γ = L̃(i)

2

√
⟨Γ(i)(u(i), u(i))e1, e1⟩ − 2⟨Γ(i)(u(i),−u(i))e1, e1⟩+ ⟨Γ(i)(−u(i),−u(i))e1, e1⟩ (235)

= L̃(i)

2

√
k(i)(u(i), u(i))− 2k(i)(u(i),−u(i)) + k(i)(−u(i),−u(i)) (236)

= L̃(i)

2

√
2k(i)(0)− 2k(i)(2u) (237)

= B. (238)

Since h̃ ∈ F(L′) for some L′ > 1, we also have h̃′ ∈ F(L′).

We reuse the choice of u and ũ in the previous case. Then, for any z ∈ R, with z(i) = ze(i)
1 and u(i) = ue(i)

1 ,
we have

f
(i)(z) = g̃(i)(z(i), u(i))e(i+1)

1 (239)

= L̃(i)

2
(
Γ(i)(z(i), u(i))− Γ(i)(z(i),−u(i))

)
e(i+1)

1 (240)

= L̃(i)

2
(
k(i)(z(i), u(i))− k(i)(z(i),−u(i))

)
e(i+1)

1 (241)

= L̃(i)

2
(
k(∥z(i) − u(i)∥)− k(∥z(i) + u(i)∥)

)
e(i+1)

1 (242)

= L̃

2
(
k(|z − u|)− k(|z + u|)

)
e(i+1)

1 (243)

= g̃k(z)e(i+1)
1 , (244)

where g̃k(·) depending on u is defined in (217). Hence, as illustrated in Figure 7, for any input x ∈ [0, 1]d of
g, we have

x(2,1) = h̃(x), (245)
x(2,j) = 0 for j ≥ 2, (246)

x(i+1,1) = g̃k(x(i,1)) for i ≥ 2, (247)
x(i+1,j) = 0 for i ≥ 2 and j ≥ 2. (248)

By a similar argument to the case of single-output chains, there exists L ≥ L′ and α = Θ(1) such that for
all z ∈ [0, ũ],

1 < αL ≤ g̃k(z)
z
≤ L. (249)

For 2ϵ ≤ g̃k(ũ), we choose ϵ1 to satisfy

(f (m) ◦ f
(m−1) ◦ · · · ◦ f

(2))(2ϵ1e(2)
1) = (g̃k ◦ · · · ◦ g̃k)(2ϵ1) = 2ϵ, (250)

and g has a compact support with radius

w = Θ
((ϵ1

B

)1/ν
)

= Θ
((ϵ

B(cL)m−1

)1/ν
)

, (251)

for some constant c = Θ(1).

Lastly, since L ≥ L′, we immediately deduce that f
(i) ∈ F(L) on its domain for each i ∈ [m].

36

Published in Transactions on Machine Learning Research (05/2024)

x(1,1)

x(1,2)

x(1,3)

x(1,4)

x(2,1)

0

0

0

0

f̄ (1)f̄ (1)

x(3,1)

0

0

f̄ (2)f̄ (2) yf̄ (3)f̄ (3)

x = x(1)

x(2)

x(3)

d1 = 4

d2 = 5

d3 = 3

d4 = 1

Figure 7: Illustration of g for multi-output chain.

H.3 Hard Function for Feed-Forward Networks

For a fixed u(i) ∈ Rdi and L̃(i) =
√

2B/
√

k(i)(0)− k(i)(2∥u(i)∥2), where k(i)(∥x − x′∥2) = k(i)(x, x′), we
define

g̃
(i)
k (·) = L̃(i)

2
(
k(i)(·, u(i))− k(i)(·,−u(i))

)
. (252)

Theorem 11 (Hard function for feed-forward networks). Let e(i)
1 denote the first column of identity matrix

of size di. For the Matérn kernel k with smoothness ν ≥ 1, sufficiently small ϵ > 0, and sufficiently
large B, there exists ϵ1 > 0, L = Θ(B), c = Θ(1), w = Θ

(
(ϵ

B(cL)m−1)1/ν
)
, and u > 0 such that g :=

f
(m) ◦ f

(m−1) ◦ · · · ◦ f
(1) with f

(i)(·) = [f (i,j)(·)]di+1
j=1 for i ∈ [m], f

(1,1)(·) = h̃(·, ϵ1, w), f
(s,1)(·) = g̃

(s)
k (·) with

u(s) = ue(s)
1 , and f

(s,r)(·) = 0 for s ∈ [2, m] and r ̸= 1 has the following properties:

• f
(i,j) ∈ Hk(B) ∩ F(L) for each i ∈ [m], j ∈ [di+1];

• maxx g(x) = 2ϵ;

• g(x) > 0 when ∥x∥2 < w , and g(x) = 0 otherwise.

Proof. We adopt a similar general approach to the case of chains and multi-output chains, but with some
different details.

As noted in our analysis of chains, we have h̃ ∈ Hk(B) and h̃ ∈ F(L′) for some constant L′ > 1, and we also
have

∥g̃(i)
k ∥k = L̃(i)

2

√
k(i)(u(i), u(i))− 2k(i)(u(i),−u(i)) + k(i)(−u(i),−u(i)) (253)

= L̃(i)

2

√
2k(i)(0)− 2k(i)(2∥u(i)∥2) (254)

= B. (255)

37

Published in Transactions on Machine Learning Research (05/2024)

x(1,1)

x(1,2)

x(1,3)

x(1,4)

x(2,1)

0

0

0

0

h̃̃h
x(3,1)

0

0

g̃k̃gk

yg̃k̃gk

x = x(1)

x(2)

x(3)

d1 = 4

d2 = 5

d3 = 3

d4 = 1

Figure 8: Illustration of g for feed-forward network.

Reusing the choice of u and ũ in the case of chains, with z(i) = ze(i)
1 and u(i) = ue(i)

1 , we have

g̃
(i)
k (z(i)) = L̃(i)

2
(
k(i)(z(i), u(i))− k(i)(z(i),−u(i))

)
(256)

= L̃(i)

2
(
k(i)(∥z(i) − u(i)∥2)− k(i)(∥z(i) + u(i)∥2)

)
(257)

= L̃(i)

2
(
k(i)(|z − u|)− k(i)(|z + u|)

)
(258)

= g̃k(z) (259)

Hence, as illustrated in Figure 8, for any input x ∈ [0, 1]d of g, we have

x(2,1) = h̃(x), (260)
x(2,j) = 0 for j ≥ 2, (261)

x(i+1,1) = g̃k(x(i,1)) for i ≥ 2, (262)
x(i+1,j) = 0 for i ≥ 2 and j ≥ 2. (263)

By a similar argument to the previous cases, there exists L ≥ L′ and α = Θ(1) such that for all z ∈ [0, ũ],

1 < αL ≤ g̃k(z)
z
≤ L. (264)

For 2ϵ ≤ g̃k(ũ), we choose ϵ1 satisfying

(f (m) ◦ f
(m−1) ◦ · · · ◦ f

(2))(2ϵ1e(2)
1) = (g̃k ◦ · · · ◦ g̃k)(2ϵ1) = 2ϵ, (265)

and g has a compact support with radius

w = Θ
((ϵ1

B

)1/ν
)

= Θ
((ϵ

B(cL)m−1

)1/ν
)

, (266)

for some constant c = Θ(1).

Lastly, due to L ≥ L′, f
(i,j) ∈ F(L) on its domain for each i ∈ [m], j ∈ [di+1].

38

Published in Transactions on Machine Learning Research (05/2024)

H.4 Lower Bound on Simple Regret

With the preceding “hard functions” established, the final step is to essentially follow that of (Bull, 2011).
We provide the details for completeness.

By splitting the domain X = [0, 1]d into a grid of dimension d with spacing 2w, we construct M = (⌊ 1
2w ⌋)d

functions with disjoint supports by shifting the origin of g to the center of each cell and cropping the shifted
function into [0, 1]d, which is denoted by G = {g1, . . . , gM}. For g sampled uniformly from G, we first show
that the expected simple regret E[r∗

T] of an arbitrary algorithm is lower bounded, then there must exist a
function in G that has the same lower bound.

Now, we prove Theorem 5, which is restated as follows.
Theorem 5 (Lower bound on simple regret). Fix ϵ ∈ (0, 1

2], sufficiently large B > 0, k = kMatérn, and
Γ = ΓMatérn with smoothness ν ≥ 1. Suppose that there exists an algorithm (possibly randomized) that
achieves average simple regret E[r∗

T] ≤ ϵ after T rounds for any m-layer chain, multi-output chain, or feed-
forward network on [0, 1]d with some L = Θ(B). Then, provided that ϵ

B is sufficiently small, it is necessary
that

T = Ω
((B(cL)m−1

ϵ

)d/ν
)

for some c = Θ(1).

Proof. Since the theorem concerns worst-case RKHS functions, it suffices to establish the same result when
the function g is drawn uniformly from the hard subset G introduced above. Given that g is random, Yao’s
minimax principle implies that it suffices to consider deterministic algorithms.

For any given deterministic algorithm, let X ′
T = {x′

1, x′
2, · · · , x′

T } be the set of points that it would sample
if the function were zero everywhere. We observe that if g = gi for some gi satisfying g(x′

1) = g(x′
2) = . . . =

g(x′
T) = 0 (i.e., the bump in gi does not cover any of the points in X ′

T), then the algorithm will precisely
sample x′

1, x′
2, · · · , x′

T . Moreover, if there are multiple such functions gi, then the final returned point x∗
T

can only be below 2ϵ (i.e., the bump height) for at most one of those functions, since their supports are
disjoint by construction.

Now suppose that T ≤ M
2 − 1, where M is the number of functions in G. This means that regardless of

the values x′
1, x′

2, · · · , x′
T , there are at least M

2 + 1 functions in G such that the sampled values are all zero.
Hence, there are at least M

2 functions where a simple regret of at least 2ϵ is incurred, meaning that the
average simple regret is at least ϵ.

With this result in place, Theorem 5 immediately follows by substituting M = Θ
(
(1/w)d

)
and w =

Θ
(
(ϵ

B(cL)m−1)1/ν
)
.

H.5 Behavior of cm−1

We readily find from (226) (and the counterparts in the other analyses) that the constant c lies in the range
[α, 1]. The closer c is to 1, the higher our lower bound is. To understand how close c can be to 1, we recall
from Section H.1 that α = rminL̃

L with L = max{L′, rmaxL̃}, L′ = Θ
(

ϵ1
w

)
, and L̃ =

√
2B√

k(0)−k(2u)
(as well as

rmax = sup
z∈(0,ũ]

k(u−z)−k(u+z)
2z and rmin = inf

z∈(0,ũ]
k(u−z)−k(u+z)

2z).

Observe that when ϵ1
B ≪ 1 and ν > 1, we have L′ = Θ

(
ϵ1
w

)
= Θ

(
ϵ1

(ϵ1/B)1/ν

)
≪ B. Since L̃ = Θ(B), we

conclude that L = rmaxL̃, and hence

α = rmin

rmax
=

inf
z∈(0,ũ]

k(u−z)−k(u+z)
2z

sup
z∈(0,ũ]

k(u−z)−k(u+z)
2z

. (267)

39

Published in Transactions on Machine Learning Research (05/2024)

In our analysis, we need to choose u and ũ such that g̃k(ũ) ≥ 2ϵ. Thus, as ϵ decreases towards zero, u and
ũ can also be chosen arbitrarily small, which in turn implies that rmin and rmax are arbitrarily close to each
other as long as the kernel function has a finite slope near zero.

In fact, in Figure 6 we observe that u and ũ do not even need to be particularly small to have rmin
rmax

close to
1; with (u, ũ) = (0.5, 0.3) we get this ratio being 0.958, 0.939, and 0.934 for ν = 1, 1.5, and 2 respectively.

I Lower Bound on Cumulative Regret (Proof of Theorem 6)

In this section, we prove Theorem 6, which is restated as follows.
Theorem 6 (Lower bound on cumulative regret). Fix sufficiently large B > 0, k = kMatérn, and Γ = ΓMatérn
with smoothness ν ≥ 1. Suppose that there exists an algorithm (possibly randomized) that achieves average
cumulative regret E[RT] after T rounds for any m-layer chain, multi-output chain, or feed-forward network
on [0, 1]d with some L = Θ(B). Then, it is necessary that

E[RT] =
{

Ω
(

min{T, B(cL)m−1T 1−ν/d}
)

when d > ν,

Ω
(

min{T,
(
B(cL)m−1)d/ν}

)
when d ≤ ν,

for some c = Θ(1).

Proof. By rearranging Theorem 5, we have ϵ = Ω(B(cL)m−1T −ν/d), which implies that the lower bound on
cumulative regret is

E[RT] = Ω(ϵT) = Ω(B(cL)m−1T 1−ν/d). (268)

However, this lower bound is loose when d < ν. Theorem 5 implies that to have simple regret at most ϵ = Θ(1)
requires T = Ω

(
(B(cL)m−1)d/ν

)
. When T = Θ

(
(B(cL)m−1)d/ν

)
, we have E[r∗

T] = Ω(1) and E[RT] =
Ω
(
(B(cL)m−1)d/ν

)
. Since cumulative regret is always non-decreasing in T , when T = Ω

(
(B(cL)m−1)d/ν

)
,

we also have E[RT] = Ω
(
(B(cL)m−1)d/ν

)
.

For T = o
(
(B(cL)m−1)d/ν

)
(which is equivalent to T = o(B(cL)m−1T 1−ν/d)), we show by contradiction

that E[RT] = Ω(T). Suppose on the contrary that there exists an algorithm guaranteeing E[RT] = o(T)
when T = T0 for some T0 = o

(
(B(cL)m−1)d/ν

)
. Then, by repeatedly selecting the best point among the

first T0 time steps, the algorithm attains E[RT] = o
(
(B(cL)m−1)d/ν

)
when T = Θ

(
(B(cL)m−1)d/ν

)
, which

contradicts the lower bound for T = Ω
(
(B(cL)m−1)d/ν

)
.

Hence, Theorem 6 follows by combining the two cases.

J Summary of Regret Bounds

A detailed summary of our regret bounds for the Matérn kernel is given in Table 2.

K Comparison to Related Works

K.1 Comparison to (Kusakawa et al., 2022)

In this section, we compare our theoretical result to two confidence bound based algorithms cascade UCB
(cUCB) and optimistic improvement (OI) proposed by (Kusakawa et al., 2022). Both algorithms utilize a
novel posterior standard deviation defined using the Lipschitz constant.

Problem Setup.
6For bounds not requiring this conjecture, see Section 3.4.

40

Published in Transactions on Machine Learning Research (05/2024)

Algorithm-Independent Cumulative Regret Lower Bound

Chains/Multi-Output Chains/Feed-Forward Networks
{

Ω
(

min{T, B(cL)m−1T 1−ν/d}
)

when d > ν ≥ 1,

Ω
(

min{T, (B(cL)m−1)d/ν}
)

when d ≤ ν.

Algorithmic Cumulative Regret Upper Bound
(If Conjecture of (Vakili, 2022) Holds)6

Chains
{

O(2mBLm−1T 1−ν/d) when d > ν,

Õ(2mBLm−1) when d ≤ ν.

Multi-Output Chains
{

O(5mBLm−1T 1−ν/dmax) when dmax > ν,

Õ(5mBLm−1) when dmax ≤ ν.

Feed-Forward Networks
{

O(2m
√

D2,mBLm−1T 1−ν/dmax)when dmax > ν,

Õ(2m
√

D2,mBLm−1) when dmax ≤ ν.

Algorithm-Independent Simple Regret Lower Bound
Chains/Multi-Output Chains/Feed-Forward Networks Ω(B(cL)m−1T −ν/d) when ν ≥ 1.

Algorithmic Simple Regret Upper Bound

Chains/Multi-Output Chains
{

Õ(BLm−1T −νm/d) when ν ≤ 1,
Õ(B1+ν+ν2+νm−2

Lνm−1
T −ν/d) when ν > 1.

Chains/Multi-Output Chains (Restrictive Cases)
{

O(BLm−1T −ν/d) when ν ≤ 1,
O(BL(m−1)νT −ν/d) when ν > 1.

Feed-Forward Networks
{

Õ(
√

D2,mBLm−1T −νm/d) when ν ≤ 1,
Õ(D̃ν

2,mB1+ν+ν2+νm−2
Lνm−1

T −ν/d) when ν > 1.

Feed-Forward Networks (Restrictive Cases)
{

O(
√

D2,mBLm−1T −ν/d) when ν ≤ 1,
O
(
(D2,m)ν/2BL(m−1)νT −ν/d

)
when ν > 1.

Table 2: Summary of regret bounds for the Matérn kernel. (The algorithmic simple regret upper bounds are
valid when the domain of each layer is a hyperrectangle.) T denotes the time horizon; m denotes the number
of layers; B denotes the RKHS norm upper bound of each layer; L denotes the Lipschitz constant upper
bound of each layer; ν denotes the smoothness of the Matérn kernel; d denotes the domain dimension of g;
dmax = maxi∈[m] di denotes the maximum dimension among all the m layers; D2,m =

∏m
i=2 di denotes the

product of the dimensions from the second to the last layer; D̃ν
2,m =

∏m
i=2(di)νm+1−i/2. The lower bounds

hold for some c = Θ(1).

• In each layer, (Kusakawa et al., 2022) assumes the entries in the same layer are mutually independent,
which is equivalent to our feed-forward network structure.

• Different from our assumption of f (i,j) ∈ Hk(B) ∩ F(L, ∥ · ∥2) for each i ∈ [m] and j ∈ [di+1],
where the Lipschitz continuity is with respect to ∥ · ∥2, (Kusakawa et al., 2022) assumes f (i,j) ∈
Hk(B)∩F(Lf , ∥ · ∥1), where the Lipschitz continuity is with respect to ∥ · ∥1. Therefore, for a fixed
scalar-valued function f (i,j) ∈ F(L, ∥ · ∥2) ∩ F(Lf , ∥ · ∥1) with the smallest possible L and Lf , it is
satisfied that Lf ≤ L ≤

√
diLf .

• (Kusakawa et al., 2022) has an additional assumption that σ
(i,j)
t ∈ F(Lσ, ∥ · ∥1) for all t ≥ 1 for

some constant Lσ. The constant Lσ is not used in the algorithms, and only appears in the regret
bounds.

Regret Bounds.

• With D2,m =
∏m

i=2 di and D+
2,m =

∑m
i=2 di, noise-free cUCB achieves cumulative regret

RT = O
(
B(BLσ + Lf)m−1D2,mD+

2,m

√
TγT

)
,

41

Published in Transactions on Machine Learning Research (05/2024)

with a T -independent factor no smaller than that in RT = O(2mBLm−1√D2,mTγT) of our GPN-
UCB (Algorithm 1) since BLm−1√D2,m ≤ BLm−1

f D2,m ≤ B(BLσ + Lf)m−1D2,m.

• Noise-free OI achieves simple regret

r∗
T = O

(
mm2+m+ 1

2 Bm+1Lm3

f (BLσ + Lf)3m3
(D2,m)2m2

(D+
2,m)m2+1T − ν

2ν+d
)

for the Matérn kernel with smoothness ν. When ν ≤ 1, our non-adaptive sampling (Algorithm 2)
achieves r∗

T = Õ(
√

D2,mBLm−1T −νm/d), which has a significantly smaller T -independent factor.
When ν > 1, our Algorithm 2 achieves r∗

T = Õ(D̃ν
2,mB1+ν+ν2+νm−2

Lνm−1
T −ν/d), which has a

smaller T -dependent factor. The T -independent factors are more difficult to compare, though ours
certainly become preferable under the more restrictive scenarios discussed leading up to (22).

Generality. (Kusakawa et al., 2022) allows additional (multi-dimensional) input independent of previous
layers for each layer. GPN-UCB and non-adaptive sampling can also be adapted to accept additional input.
Let X̂ (i) ⊂ Rd̂i denote the domain of the additional input of f (i), and let x̂[i:j] = [x̂(i), . . . , x̂(j)] denote the
concatenation of the addition inputs from f (i) to f (j).

• For GPN-UCB (Algorithm 1), we simply modify the upper confidence bound to be

UCBt(x, x̂) = max
z∈∆(m)

t (x,̂x[2:m−1])
UCB(m,1)

t ([z, x̂(m)]), (269)

where

∆(1)
t (x) ={x}, (270)

∆(i+1,j)
t (x, x̂[2:i]) =

[
min

z∈∆(i)
t (x,̂x[2:i−1])

LCB(i,j)
t ([z, x̂(i)]), max

z∈∆(i)
t (x,̂x[2:i−1])

UCB(i,j)
t ([z, x̂(i)])

]
for i ∈ [m− 1], j ∈ [di+1], (271)

∆(i)
t (x, x̂[2:i−1]) =∆(i,1)

t (x, x̂[2:i−1])× · · · ×∆(i,di)
t (x, x̂[2:i−1])

for i ∈ [m]. (272)

The cumulative regret upper bound will remain the same, since diam
(
∆(i)

t (x, x̂[2:i−1])
)

remains the
same.

• For non-adaptive sampling (Algorithm 2), with d̂ = d +
∑m

i=2 d̂i, we choose {xs, x̂(2)
s , . . . , x̂(m)

s }T
s=1

such that

max
[x,̂x(2),...,̂x(m)]∈X ×X̂ (2)×···×X̂ (m)

min
s∈[T]

∥[x, x̂(2), . . . , x̂(m)]− [xs, x̂(2)
s , . . . , x̂(m)

s]∥2 = O(T −1/d̂). (273)

Then, modify the composite mean to be

µg
T (x, x̂) = µ

(m,1)
T ([z(m), x̂(m)]) (274)

with

z(1) = x, (275)

z(i+1,j) = µ
(i,j)
T ([z(i), x̂(i)]) for i ∈ [m− 1], j ∈ [di+1], (276)

z(i+1) = µ
(i)
T ([z(i), x̂(i)]) = [z(i+1,1), . . . , z(i+1,di)] for i ∈ [m− 1]. (277)

Then, the only change in simple regret upper bound is that d is replaced by d̂.

42

Published in Transactions on Machine Learning Research (05/2024)

K.2 Comparison to (Sussex et al., 2023)

Another related work (Sussex et al., 2023) seeks the best intervention action for a given causal graph
structure. Focusing on DAGs, they have a similar setup to (Kusakawa et al., 2022):

• f (i) ∈ Hk(B) ∩ F(L, ∥ · ∥2) for each node i, where the Lipschitz continuity is with respect to ∥ · ∥2.

• σ
(i)
t ∈ F(Lσ, ∥ · ∥2) for each node i and all t ≥ 1 for some constant Lσ.

When the causal graph structure is a feed-forward network, their expected improvement based method
achieves RT = O(BmLm

σ Lmdm
maxD+

2,m

√
TγT) when specialized to the noise-free setting, thus containing

significantly larger T -independent terms compared to GPN-UCB similarly to the above discussion. For
fairness, we note that (Sussex et al., 2023) is concerned mainly with the noisy setting, which we do not
handle in this paper, instead leaving analogous improvements as potential future work.

L Experiments

In this section, we experimentally evaluate the performance of our proposed algorithms on chains composed
of synthetic functions, and compare to three grey-box algorithms (cascaded UCB (cUCB), optimistic im-
provement (OI), and cascaded expected improvement (cEI) (Kusakawa et al., 2022)) and to two classic
black-box algorithms. We note that with our main contributions all being theoretical, these experiments
are only intended to suggest the potential plausibility of our algorithms for practical use, rather than being
comprehensive or definitive.

L.1 Synthetic Chains

We generate two chains g1 = f3◦f2◦f1 and g2 = h3◦h2◦h1 (see Figure 9) with d = 2 and m = 3 by sampling
{f1, f2, f3, h1, h2, h3} from GP prior with zero mean and squared exponential kernel with lengthscale l = 1.
g1 and g2 share the same domain X , which contains 2500 points obtained by evenly splitting [−5, 5]2 into a
50× 50 grid. We set B = 2 and L = 2 for both chains.

L.2 Algorithms

We consider our proposed algorithms GPN-UCB and NonAda, three grey-box algorithms cUCB, OI, and
cEI from (Kusakawa et al., 2022), and two black-box algorithms GP-UCB and EI.

GPN-UCB. To reduce the computational cost of GPN-UCB, with D denoting 100 points evenly selected
from [−5, 5], we make the following adjustments for each i ∈ {2, . . . , m} in the implementation:

• When computing UCB(i)
t (z) (resp. LCB(i)

t (z)), we only take minimum (resp. maximum) over
{z′ ∈ D : ∥z− z′∥ ≤ 1}

• When computing ∆(i+1)
t (x), we always replace ∆(i)

t (x) with ∆(i)
t (x) ∩ D. If ∆(i)

t (x) is too small
making the intersection empty, we use the two endpoints of ∆(i)

t (x) instead.

NonAda. Since the non-adaptive sampling strategy depends on the value of T , we run NonAda with
T ∈ {22, 32, . . . , 142} in parallel, and compute the simple regret of the returning point for each T .

cUCB and OI. (Kusakawa et al., 2022) introduces confidence bounds as follows:

UCBt(x) = µ̃
(m)
t (x) + Bσ̃

(m)
t (x), (278)

LCBt(x) = µ̃
(m)
t (x)−Bσ̃

(m)
t (x), (279)

43

Published in Transactions on Machine Learning Research (05/2024)

4 2 0 2 4

4

2

0

2

4

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) f1

4 2 0 2 4
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) f2

4 2 0 2 4

1.0

0.5

0.0

0.5

1.0

(c) f3

4 2 0 2 4

4

2

0

2

4

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) h1

4 2 0 2 4

2.5

2.0

1.5

1.0

0.5

0.0

0.5

(e) h2

4 2 0 2 4

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(f) h3

4 2 0 2 4

4

2

0

2

4

0.2

0.0

0.2

0.4

0.6

(g) g1 = f3 ◦ f2 ◦ f1

4 2 0 2 4

4

2

0

2

4

0.3

0.4

0.5

0.6

0.7

0.8

(h) g2 = h3 ◦ h2 ◦ h1

Figure 9: Synthetic chains g1 = f3 ◦ f2 ◦ f1 and g2 = h3 ◦ h2 ◦ h1

44

Published in Transactions on Machine Learning Research (05/2024)

0 25 50 75 100 125 150 175 200
T

0.0

0.2

0.4

0.6

0.8

1.0

r* T

OI with b = 0.0001
OI with b = 0.001
OI with b = 0.01
OI with b = 0.1
OI with b = 1
OI with b = 10
OI with b = 100
OI with b = 1000
OI with b = 10000
cUCB

(a) g1

0 25 50 75 100 125 150 175 200
T

0.0

0.2

0.4

0.6

0.8

1.0

r* T

OI with b = 0.0001
OI with b = 0.001
OI with b = 0.01
OI with b = 0.1
OI with b = 1
OI with b = 10
OI with b = 100
OI with b = 1000
OI with b = 10000
cUCB

(b) g2

Figure 10: Simple regret of OI with different values of b and cUCB. (The curves of OI with b = 0.0001 and
cUCB for g1 are indistinguishable.)

where

µ̃
(1)
t (x) = µ

(1)
t (x), (280)

µ̃
(i)
t (x) = µ

(i)
t ◦ · · · ◦ µ

(1)
t (x) for i = 2, . . . , m, (281)

σ̃
(1)
t (x) = σ

(1)
t (x), (282)

σ̃
(i)
t (x) = σ

(i)
t

(
µ̃

(i−1)
t (x)

)
+ Lσ̃

(i−1)
t (x) for i = 2, . . . , m. (283)

Then, cUCB iteratively selects

xcUCB
t = arg max UCBt−1(x). (284)

OI iteratively selects

xOI
t = arg max{UCBt−1(x)−max LCBt−1, ηt−1σ̃t−1(x)}, (285)

where ηt = (1 + log t)−1 is an additional parameter.

In our experiments, we introduce a parameter b and set ηt = b·(1+log t)−1. To find the best choice of b for OI,
we conduct experiments for OI with b ∈ {10−4, 10−3, . . . , 104}, as well as cUCB. We conduct 10 independent
trials and plot (see Figure 10) the average simple regret of the best observed points r∗

T = g(x∗)−maxt≤T yt.
The experimental results show that OI with b ≤ 1 has similar performance to cUCB, and we will use OI
with b = 1 as one of the baselines in the following section.

cEI. The exact cascaded expected improvement is

cEIt(x) = Ef(1),...,f(m) [max{(f (m) ◦ · · · ◦ f (1))(x)− ymax, 0}], (286)

where f (i) follows the posterior distribution based on t observations and ymax is the highest observed value.

Similar to (Kusakawa et al., 2022), we approximate this acquisition function by sampling. Specifically, given
x, to generate a sample of g(x), we do the following:

• draw a sample y1
t (x) from N

(
µ

(1)
t (x), σ

(1)
t (x)2);

• recursively draw a sample yi+1
t (x) from N

(
µ

(i+1)
t (z), σ

(i+1)
t (z)2), where z = yi

t(x).

45

Published in Transactions on Machine Learning Research (05/2024)

Repeating this process S times, we obtain Yt(x), containing S samples of g(x) from the cascaded posterior
distribution, and cEIt(x) can be approximated by

ĉEIt(x) = 1
S

∑
s∈Yt(x)

max{s− ymax, 0}. (287)

The algorithm selects

xcEI
t = arg max ĉEIt−1(x). (288)

In the experiments, we set the sample size as S = 1000.

GP-UCB and EI. Both algorithms consider g as a black-box function and ignore the intermediate obser-
vations. With µt(x) and σt(x) denoting the posterior mean and standard deviation of the overall function
g(x), GP-UCB selects

xGP−UCB
t = arg max µt−1(x) + Bσt−1(x), (289)

and EI selects

xEI
t = arg maxEg[max{g(x)− ymax, 0}] (290)

=
(
µt−1(x)− ymax

)
Φ
(µt−1(x)− ymax

σt−1(x)

)
+ σt−1(x)ϕ

(µt−1(x)− ymax

σt−1(x)

)
, (291)

where ϕ and Φ are the pdf and cdf of the standard Gaussian distribution, and ymax is the highest observed
value.

L.3 Experimental Results

We let T = 200, and compute posterior mean and variance with λ = 10−7 to avoid numerical error. The
experimental results are displayed in Figure 11 and Figure 12, where the average regret is computed based
on 10 independent trials with error bars indicating one standard deviation. Note that the randomness of
cEI mainly comes from sampling Gaussian random variables, and the randomness of other algorithms comes
from random tie-breaking in the arg max operation. In Figure 12, except for NonAda, the reported point for
computing simple regret is the best observed point, i.e., r∗

T = g(x∗)−maxt≤T yt. The experimental results
show that both algorithms are able to locate a near-optimal point in a short time (by T = 50).

In terms of cumulative regret, GPN-UCB outperforms all of the baselines. In terms of simple regret, for
g2 with an “obvious” maximizer, NonAda outperforms all the baselines, and GPN-UCB has very similar
performance to cEI. For g1 with several potential maximizers, our algorithms are slightly outperformed by
cEI, but still surpass other baselines. However, it should be noted that the slightly better performance of cEI
requires significantly higher computation resources due to the large sample size. Perhaps unexpectedly, we
found that the grey-box OI and cUCB algorithms (but not GPN-UCB and cEI) are sometimes outperformed
by the black-box GP-UCB and EI algorithms, at least in this simple setting with relatively small m. This
may be caused by the large uncertainty in (283) when L > 1, which makes the confidence bounds loose.
This observation, on the other hand, provides some justification for our envelope technique in constructing
confidence bounds. Comparing the cumulative and simple regret, we observe that although some trials of
cEI and cUCB query a good point at an early time (due to randomness), this does not always help them
find the near-optimal point earlier.

46

Published in Transactions on Machine Learning Research (05/2024)

0 25 50 75 100 125 150 175 200
T

0

20

40

60

80

100

120

140
R T

GPN-UCB
cEI
cUCB
EI
GP-UCB

(a) g1

0 25 50 75 100 125 150 175 200
T

0

20

40

60

80

100

120

140

R T

GPN-UCB
cEI
cUCB
EI
GP-UCB

(b) g2

Figure 11: Cumulative regret of GPN-UCB, cEI, cUCB, EI, and GP-UCB .

0 25 50 75 100 125 150 175 200
T

0.0

0.2

0.4

0.6

0.8

1.0

r* T

GPN-UCB
OI
cEI
cUCB
EI
GP-UCB
NonAda

(a) g1

0 25 50 75 100 125 150 175 200
T

0.0

0.2

0.4

0.6

0.8

1.0

r* T

GPN-UCB
OI
cEI
cUCB
EI
GP-UCB
NonAda

(b) g2

Figure 12: Simple regret of GPN-UCB, NonAda, OI, cEI, cUCB, EI, and GP-UCB.

47

	Applications of the Cascaded Setting
	Reproducing Kernel Hilbert Space (RKHS)
	Scalar-Valued Functions
	Vector-Valued Functions

	Figures Illustrating the Network Structures
	Confidence Region for Vector-Valued Functions (Proof of lem:mul)
	Posterior Variance for Vector-Valued Functions
	Analysis of GPN-UCB (algo:ucb)
	Proof of thm:ucbchain (Chains)
	Proof of thm:ucbmul (Multi-Output Chains)
	Proof of thm:ucbnet (Feed-Forward Networks)

	Analysis of Non-Adaptive Sampling (algo:fd)
	Proof of thm:fdchain (Chains)
	Two More Restrictive Cases for Chains
	Non-Adaptive Sampling Method for Multi-Output Chains
	Non-Adaptive Sampling Method for Feed-Forward Networks

	Lower Bound on Simple Regret (Proof of thm:lowersim)
	Hard Function for Chains
	Hard Function for Multi-Output Chains
	Hard Function for Feed-Forward Networks
	Lower Bound on Simple Regret
	Behavior of cm-1

	Lower Bound on Cumulative Regret (Proof of thm:lowercml)
	Summary of Regret Bounds
	Comparison to Related Works
	Comparison to kusakawa2021bayesian
	Comparison to sussex2023modelbased

	Experiments
	Synthetic Chains
	Algorithms
	Experimental Results

