
A Additional Related Works

Robust MDP and CVaR Criterion Bayesian decision theory provides a principled formalism for
decision making under uncertainty. Robust MDP [23, 24], Conditional Value at Risk (CVaR) [49]
and our proposed criterion can be deemed as the specializations of Bayesian decision theory, but
derived from different principles and with different properties.

Robust MDP is proposed as a surrogate to optimize the percentile performance. Early works mainly
focus on the algorithmic design and theoretical analysis in the tabular case [23, 24] or under linear
function approximation [50]. Recently, it has also been extended to continuous action spaces and
nonlinear cases, by integrating the advances of deep RL [51, 52]. Meanwhile, a variety of works
generalize the uncertainty in regard to system disturbance [53] and action disturbance [54, 55].
Although robust MDP produces robust policy, it purely focuses on the percentile performance, and
ignoring the other possibilities is reported to be over-conservative [25–27].

CVaR instead considers the average performance of the worst δ-fraction possibilities. Despite
involving more information about the stochasticity, CVaR is still solely from the pessimistic view.
Recent works propose to improve by maximizing the convex combination of mean performance
and CVaR [25], or maximizing mean performance under CVaR constraint [56]. However, they are
intractable regarding policy optimization, i.e., proved as an NP-hard problem or relying on heuristic.
As comparison, the proposed AMG formulation presents an alternative way to tackle the entire
spectrum of plausible transitions while also give more attention on the pessimistic parts. Besides, the
policy optimization is with theoretical guarantee.

Apart from offline RL, Bayesian decision theory is also applied in other RL settings. Particularly,
Bayesian RL considers that new observations are continually received and utilized to make adaptive
decision. The goal of Bayesian RL is to fast explore and adapt, while that of offline RL is to
sufficiently exploit the offline dataset to generate the best-effort policy supported or surrounded by
the dataset. Recently, Bayesian robust RL [57] integrates the idea of robust MDP in the setting of
Bayesian RL, where the uncertainty set is constructed to produce robust policy, and will be updated
upon new observations to alleviate the degree of conservativeness. Besides, CVaR criterion is also
considered in Bayesian RL [58].

B Theorem Proof

We first present and prove the fundamental inequalities applied to prove the main theorem, and then
present the proofs for Sections 3 and 4 respectively. For conciseness, the subscripts N, k are omitted
in Q-value and Bellman backup operator when clear from the context.

B.1 Preliminaries

Lemma 1. Let ⌊min⌋ki xi denote the kth minimum in {xi}, then

min
i

(xi − yi) ≤ ⌊min⌋ki xi − ⌊min⌋ki yi ≤ max
i

(xi − yi) , ∀k = 1, 2, · · · , N,

where N is the size of both {xi} and {yi}.

Proof of Lemma 1. Denote i∗ = arg⌊min⌋ki xi and j∗ = arg⌊min⌋ki yi. Next, we prove the first
inequality. The proof is done by dividing into two cases.

Case 1: yi∗ ≥ yj∗

It is easy to check

⌊min⌋ki xi − ⌊min⌋ki yi = xi∗ − yj∗ ≥ xi∗ − yi∗ ≥ min
i

(xi − yi) .

Case 2: yi∗ < yj∗

We prove by contradiction. Let Sx =
{
arg⌊min⌋li xi

∣∣∣ l = 1, 2, · · · , k − 1
}

. Assume

ys < yj∗ , ∀s ∈ Sx.

1

Since yj∗ is the kth minimum, the above assumption implies Sx ⊆ Sy. Meanwhile, according to
the condition of case 2, i∗ ∈ Sy. Put these together, we have {i∗} ∪ Sx ⊆ Sy. According to the
definition of i∗, we know i∗ /∈ Sx. This concludes that Sy has at least k elements, contradicting with
its definition.

Thus,

∃s̄ ∈ Sx : ys̄ ≥ yj∗ .

By applying the above inequality and xs̄ ≤ xi∗ , we have

⌊min⌋ki xi − ⌊min⌋ki yi = xi∗ − yj∗ ≥ xs̄ − ys̄ ≥ min
i

(xi − yi) .

In summary, we have mini (xi − yi) ≤ ⌊min⌋ki xi − ⌊min⌋ki yi for both cases.

The second inequality can be proved by resorting to the first one. By respectively replacing xi and yi
with −xi and −yi in first inequality, we obtain

min
i

(−xi + yi) ≤ ⌊min⌋ki (−xi)− ⌊min⌋ki (−yi),

which can be rewritten as

max
i

(xi − yi) ≥ −
(
⌊min⌋ki (−xi)− ⌊min⌋ki (−yi)

)
= ⌊min⌋N−k

i xi − ⌊min⌋N−k
i yi,

where the last equation is due to ⌊min⌋ki (−xi) = −⌊min⌋N−k
i xi. As the above inequalities holds

for any k ∈ {1, 2, · · · , N}, we can replace N − k by k, and this is right the second inequality in
Lemma 1.

Corollary 1. ∣∣∣⌊min⌋ki xi − ⌊min⌋ki yi

∣∣∣ ≤ max
i
|xi − yi|, ∀k = 1, 2, · · · , N.

Proof of Corollary 1. The inequality can be attained through simple derivation based on Lemma 1,
i.e.,

⌊min⌋ki xi − ⌊min⌋ki yi ≥ min
i

(xi − yi) ≥ min
i

(− |xi − yi|) = −max
i
|xi − yi|

and

⌊min⌋ki xi − ⌊min⌋ki yi ≤ max
i

(xi − yi) ≤ max
i
|xi − yi| .

Put them together, we obtain∣∣∣⌊min⌋ki xi − ⌊min⌋ki yi

∣∣∣ ≤ max
i
|xi − yi| .

2

B.2 Proofs for Section 3

Proof of Theorem 1. Let Q1 and Q2 be two arbitrary Q function, then

∥BπQ1 − BπQ2∥∞

= γmax
s,a

∣∣∣∣∣EPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]]
− EPN

T

[
⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]]∣∣∣∣∣

= γmax
s,a

∣∣∣∣∣EPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]
− ⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]]∣∣∣∣∣

≤ γmax
s,a

(
EPN

T

∣∣∣∣⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]
− ⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]∣∣∣∣
)

≤ γmax
s,a

(
EPN

T

[
max
τ∈T

∣∣∣Eτ,π

[
Q1(s

′, a′)−Q2(s
′, a′)

]∣∣∣])
≤ γmax

s,a

(
EPN

T
∥Q1 −Q2∥∞

)
= γ∥Q1 −Q2∥∞,

where the second inequality is due to Corollary 1. Thus, the pessimistic Bellman update operator Bπ
is a contraction mapping.

After convergence, it is easy to check J(π) = Eρ0,π

[
Qπ(s0, a0)

]
by recursively unfolding Q-

function.

Proof of Theorem 2. For conciseness, in this proof we drop the superscript sa in τsa,Psa
T and P̃sa

T .

The proof is based on the definition and the probability density function of order statistic [59]. For any
random variables X1, X2, · · · , XN , their kth order statistic is defined as ⌊min⌋kn∈{1,··· ,N}Xn, which
is another random variable. Particularly, when X1, X2, · · · , XN are independent and identically
distributed following a probability density function P(x), the order statistic is with the probability
density function

PN,k(x) =
N !

(k − 1)!(N − k)!︸ ︷︷ ︸
C

P(x)
[
F (x)

]k−1[
1− F (x)

]N−k
,

where F (x) is the cumulative distribution corresponding to P(x).

Let g(τ) = Eτ,π

[
Qπ(s′, a′)

]
for short. As τ is random following the belief distribution, g as the

functional of τ is also a random variable. Its sample can be drawn by

g = g(τ), τ ∼ PT (τ).

As the elements in T are independent and identically distributed samples from PT (τ), the elements
in G = {g(τ) | τ ∈ T } are also independent and identically distributed. Thus, ⌊min⌋kg∈G g is their
kth order statistic, and we have

EPN
T

[
⌊min⌋kτ∈T g(τ)

]
= EPN

T

[
⌊min⌋kg∈G g

]
=

∫ ∞

−∞
PN,k(g)gdg

= C

∫ ∞

−∞
P(g)

[
F (g)

]k−1[
1− F (g)

]N−k
gdg,

= C

∫ ∞

−∞

[∫
τ :g(τ)=g

PT (τ)dν(τ)

] [
F (g)

]k−1[
1− F (g)

]N−k
gdg,

= C

∫ ∞

−∞

∫
τ :g(τ)=g

PT (τ)
[
F (g)

]k−1[
1− F (g)

]N−k
gdν(τ)dg,

3

(∗)
= C

∫
τ

∫
g=g(τ)

PT (τ)
[
F (g)

]k−1[
1− F (g)

]N−k
gdgdν(τ),

=

∫
τ

C PT (τ)
[
F
(
g(τ)

)]k−1[
1− F

(
g(τ)

)]N−k

︸ ︷︷ ︸
P̃T (τ)

g(τ)dν(τ)

= EP̃T
[g(τ)],

where ν(τ) is the reference measure based on which the belief distribution PN
T is defined, and the

equation (∗) is obtained by exchanging the orders of integration. The above equation can rewritten as

EPN
T

[
⌊min⌋kτ∈T Eτ,π [Q(s′, a′)]

]
= EP̃T

Eτ,π [Q(s′, a′)] .

Taking this into consideration, the pessimistic Bellman backup operator in (6) is exactly the vanilla
Bellman backup operator for the MDP with transition probability T̃ (s′|s, a) = EP̃T

[τ(s′)]. Then,
evaluating/optimizing policy in the AMG is equivalent to evaluating/optimizing in this MDP.

To prove the property of w, we treat it as a composite function with form of w
(
F (x)

)
. Then, the

derivative of w over F is

δw

δF
= F k−2(1− F)N−k−1 [(k − 1)− (N − 1)F] . (15)

It is easy to check that δw
δF ≥ 0 for F ≤ k−1

N−1 and δw
δF ≤ 0 for F ≥ k−1

N−1 . Thus, w(F) reaches the
maximum at F = k−1

N−1 . Besides, as F (·) is the PDF of x, it monotonically increases with x. Put
the monotonicity of w and F together, we know w(F (x)) first increases, then decreases with x and
achieves the maximimum at x∗ = F−1

(
k−1
N−1

)
.

Lemma 2 (Monotonicity of Pessimistic Bellman Backup Operator). Assume that Q1 ≥ Q2 holds
element-wisely, then BπQ1 ≥ BπQ2 element-wisely.

Proof of Lemma 2.

BπQ1(s, a)− BπQ2(s, a)

= γEPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]
− ⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]]

≥ γEPN
T

[
min
τ∈T

Eτ,π

[
Q1(s

′, a′)−Q2(s
′, a′)

]]
≥ 0, ∀s, a,

where the first inequality is due to Lemma 1.

Proof of Theorem 3. It is sufficient to prove Qπ
N,k+1 ≥ Qπ

N,k, Q
π
N+1,k ≤ Qπ

N,k and Qπ
N+1,N+1 ≥

Qπ
N,N element-wisely. The idea is to first show BπN,k+1Q

π
N,k ≥ Qπ

N,k,BπN+1,kQ
π
N,k ≤ Qπ

N,k and
BπN+1,N+1Q

π
N,N ≥ Qπ

N,N . Then, the proof can be finished by recursively applying Lemma 2, for
example:

Qπ
N,k+1 = lim

n→∞

(
BπN,k+1

)n
Qπ

N,k ≥ · · · ≥ BπN,k+1Q
π
N,k ≥ Qπ

N,k.

Next, we prove the three inequalities in sequence.

4

BπN,k+1Q
π
N,k ≥ Qπ

N,k

BπN,k+1Q
π
N,k(s, a)

= r(s, a) + γEPn
T

[
⌊min⌋k+1

τ∈T Eτ,π

[
Qπ

N,k(s
′, a′)

]]
≥ r(s, a) + γEPn

T

[
⌊min⌋kτ∈T Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= BπN,kQ

π
N,k(s, a)

= Qπ
N,k(s, a), ∀s, a,

BπN+1,kQ
π
N,k ≤ Qπ

N,k

BπN+1,kQ
π
N,k(s, a)

= r(s, a) + γET ∼PN+1
T

[
⌊min⌋kτ∈T Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= r(s, a) + γET ′∼PN

T

[
Eτ ′∼PT

[
⌊min⌋kτ∈T ′∪{τ ′}Eτ,π

[
Qπ

N,k(s
′, a′)

]]]

≤ r(s, a) + γET ′∼PN
T

[
⌊min⌋kτ∈T ′Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= BπN,kQ

π
N,k(s, a)

= Qπ
N,k(s, a), ∀s, a,

where we divide the (N + 1)-size set T into T ′ and {τ ′}, T ′ contains the first N elements and τ ′ is
the last element. The second equality is due to the independence among the set elements.

BπN+1,N+1Q
π
N,N ≥ Qπ

N,N

BπN+1,N+1Q
π
N,N (s, a)

= r(s, a) + γET ∼PN+1
T

[
max
τ∈T

Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= r(s, a) + γET ′∼PN

T

[
Eτ ′∼PT

[
max

τ∈T ′∪{τ ′}
Eτ,π

[
Qπ

N,k(s
′, a′)

]]]

≥ r(s, a) + γET ′∼PN
T

[
max
τ∈T ′

Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= BπN,kQ

π
N,k(s, a)

= Qπ
N,k(s, a), ∀s, a,

B.3 Proofs for Section 4

Analogous to the policy evaluation for non-regularized case, we define the KL-regularized Bellman
update operator for a given policy π by

B̄πN,kQ(s, a) = r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q(s′, a′)− αDKL

(
π(·|s)

∣∣∣∣ µ(·|s))]]. (16)

It is easy to check all proofs in last subsection adapt well for the KL-regularized case. We state the
corresponding theorems and lemma as below, and apply them to prove the theorems in Section 4.
Theorem 6 (Policy Evaluation for KL-Regularized AMG). The regularized (N, k)-pessimistic
Bellman backup operator B̄πN,k is a contraction mapping. By starting from any function Q : S ×
A → R and repeatedly applying B̄πN,k, the sequence converges to Q̄π

N,k, with which we have

J̄(π;µ) = Eρ0,π

[
Q̄π

N,k(s0, a0)− αDKL

(
π(·|s0)

∣∣∣∣ µ(·|s0))].
5

Theorem 7 (Equivalent KL-Regularized MDP with Pessimism-Modulated Dynamics Belief). The
KL-regularized alternating Markov game in (9) is equivalent to the KL-regularized MDP with tuple
(S,A, T̃ , r, ρ0, γ), where the transition probability T̃ (s′|s, a) = EP̃sa

T
[τsa(s′)] is defined with the

reweighted belief distribution P̃sa
T :

P̃sa
T (τsa) ∝ w

(
Eτsa,π

[
Q̄π

N,k(s
′, a′)

]
; k,N

)
Psa
T (τsa), (17)

w(x; k,N) =
[
F (x)

]k−1[
1− F (x)

]N−k
, (18)

and F (·) is cumulative density function. Furthermore, the value of w(x; k,N) first increases and

then decreases with x, and its maximum is obtained at the k−1
N−1 quantile, i.e., x∗ = F−1

(
k−1
N−1

)
.

Similar to the non-regularized case, the reweighting factor w reshapes the initial belief distribution
towards being pessimistic in terms of Eτ,π

[
Q̄π

N,k(s
′, a′)

]
.

Lemma 3 (Monotonicity of Regularized Pessimistic Bellman Backup Operator). Assume that
Q1 ≥ Q2 holds element-wisely, then B̄πN,kQ1 ≥ B̄πN,kQ2 element-wisely.
Theorem 8 (Monotonicity in Regularized Alternating Markov Game). The converged Q-function
Q̄π

N,k are with the following properties:

• Given any k, the Q-function Q̄π
N,k element-wisely decreases with N ∈ {k, k + 1, · · · }.

• Given any N , the Q-function Q̄π
N,k element-wisely increases with k ∈ {1, 2, · · · , N}.

• The Q-function Q̄π
N,N element-wisely increases with N .

Proof of Theorem 4. The proof of contraction mapping basically follows the same steps in proof of
Theorem 1 Let Q1 and Q2 be two arbitrary Q function.∥∥B̄∗Q1 − B̄∗Q2

∥∥
∞

= γmax
s,a

∣∣∣∣∣EPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)]

− ⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q2(s

′, a′)

)]]∣∣∣∣∣
≤ γmax

s,a

(
EPN

T

∣∣∣∣∣⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)]

− ⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q2(s

′, a′)

)] ∣∣∣∣∣
)

≤ γmax
s,a

(
EPN

T

[
max
τ∈T

∣∣∣∣∣Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)]
− Eτ

[
α logEµ exp

(
1

α
Q2(s

′, a′)

)] ∣∣∣∣∣
])

= γmax
s,a

(
EPN

T

[
max
τ∈T

∣∣∣∣∣Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)
− α logEµ exp

(
1

α
Q2(s

′, a′)

)] ∣∣∣∣∣
])

≤ γmax
s,a

(
EPN

T
∥Q1 −Q2∥∞

)
= γ ∥Q1 −Q2∥∞ ,

where the second inequality is obtained with Corollary 1, and the last inequality is due to∥∥α logEµ exp
(
1
αQ1(s, a)

)
− α logEµ exp

(
1
αQ2(s, a)

)∥∥
∞ ≤ ∥Q1 −Q2∥∞. We present its proof

by following [34]:

Suppose ϵ = ∥Q1 −Q2∥∞, then

α logEµ exp

(
1

α
Q1(s, a)

)
≤ α logEµ exp

(
1

α
Q2(s, a) +

ϵ

α

)
= α logEµ exp

(
1

α
Q2(s, a)

)
+ ϵ.

6

Similarly, α logEµ exp
(
1
αQ1(s, a)

)
≥ α logEµ exp

(
1
αQ2(s, a)

)
− ϵ. The desired inequality is

proved by putting them together.

Next, we prove π̄∗(a|s) ∝ µ(a|s) exp
(
1
α Q̄

∗(s, a)
)

is the optimal policy for J̄(π;µ).

First, for any policy π′,

B̄∗Q̄π′
(s, a)

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q̄π′

(s′, a′)

)]]

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q̄π′

(s′, a′)

)

−min
π

αDKL

(
π(·|s′)

∣∣∣∣∣
∣∣∣∣∣ µ(·|s′) exp 1

α Q̄
π′
(s′, ·)

Eµ exp
(
1
α Q̄

π′(s′, a′)
))]]

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
max
π

(
Eπ

[
Q̄π′

(s′, a′)
]
− αDKL

(
π(·|s′)

∣∣∣∣ µ(·|s′)))]]

≥ r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
Eπ′
[
Q̄π′

(s′, a′)
]
− αDKL

(
π′(·|s′)

∣∣∣∣ µ(·|s′))]]
= B̄π

′
Q̄π′

(s, a)

= Q̄π′
(s, a), ∀s, a.

By applying Lemma 3 recursively, we obtain

Q̄∗(s, a) = lim
n→∞

(
B̄∗
)n

Q̄π′
(s, a) ≥ · · · ≥ B̄∗Q̄π′

(s, a) ≥ Q̄π′
(s, a), ∀s, a. (19)

Besides,

B̄π̄
∗
Q̄∗(s, a)

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ,π̄∗

[
Q̄∗(s′, a′)− αDKL

(
π̄∗(·|s)

∣∣∣∣ µ(·|s))]]
= r(s, a) + γEPN

T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q̄∗(s′, a′)

)]]
= Q̄∗(s, a), ∀s, a.

By repeatedly applying B̄π̄∗
to the above equation, we obtain

Q̄π̄∗
(s, a) = lim

n→∞

(
B̄π̄

∗
)n

Q̄∗(s, a) = · · · = B̄π̄
∗
Q̄∗(s, a) = Q̄∗(s, a), ∀s, a. (20)

By combining equations (19) and (20), we have

Q̄π̄∗
(s, a) ≥ Q̄π′

(s, a), ∀π′,∀s, a. (21)

Finally, by expanding J̄ as stated in Theorem 6 and applying (21), the proof is completed

J̄(π̄∗;µ) = Eρ0,π̄∗

[
Q̄π̄∗

(s0, a0)− αDKL

(
π̄∗(·|s0)

∣∣∣∣ µ(·|s0))]
≥ Eρ0,π̄∗

[
Q̄π′

(s0, a0)− αDKL

(
π̄∗(·|s0)

∣∣∣∣ µ(·|s0))]
≥ Eρ0,π′

[
Q̄π′

(s0, a0)− αDKL

(
π′(·|s0)

∣∣∣∣ µ(·|s0))]
= J̄(π′;µ), ∀π′.

7

Proof of Theorem 5. We first prove J(πi+1) > J(πi). As the iteration requires J̄(πi+1;πi) >
J̄(πi;πi) = J(πi), it is sufficient to prove J(πi+1) ≥ J̄(πi+1;πi). We do that by showing Qπi+1 ≥
Q̄πi+1 element-wisely.

First,
Bπi+1Q̄πi+1(s, a)− Q̄πi+1(s, a)

= Bπi+1Q̄πi+1(s, a)− B̄πi+1Q̄πi+1(s, a)

= γEPN
T

[
⌊min⌋kτ∈T Eτ,πi+1

[
Q̄πi+1(s′, a′)

]]
− γEPN

T

[
⌊min⌋kτ∈T Eτ,πi+1

[
Q̄πi+1(s′, a′)− αDKL

(
πi+1(·|s′)

∣∣∣∣ πi(·|s′)
)]]

≥ γEPN
T

[
min
τ

Eτ

[
αDKL

(
πi+1(·|s′)

∣∣∣∣ πi(·|s′)
)]]

≥ 0, ∀s, a, (22)
where the first inequality is due to Lemma 1, the second inequality is due to the non-negativity of
KL-divergence.

Then, by recursively applying Lemma 2 we obtain
Qπi+1(s, a) = lim

n→∞
(Bπi+1)

n
Q̄πi+1(s, a) ≥ · · · ≥ Bπi+1Q̄πi+1(s, a) ≥ Q̄πi+1(s, a), ∀s, a.

(23)

By substituting into J(πi+1) and J̄(πi+1;πi), we have
J(πi+1) = Eρ0,πi+1

Qπi+1(s0, a0)

≥ Eρ0,πi+1
Q̄πi+1(s0, a0)

≥ Eρ0,πi+1

[
Q̄πi+1(s0, a0)− αDKL(πi+1(·|s0) || πi(·|s0))

]
= J̄(πi+1;πi). (24)

To summarize, the proof is done via J(πi+1) ≥ J̄(πi+1;πi) > J̄(πi;πi) = J(πi).

Next, we consider the special case where {πi} are obtained via regularized policy optimization in
Theorem 4. For the (i+ 1)th step, πi+1 is the optimal solution for the sub-problem of maximizing
J(π;πi). Thus, according to (21), Q̄πi+1(s, a) ≥ Q̄π′

(s, a),∀π′,∀s, a. For π′ = πi, the KL term in
Q-value vanishes and we have Q̄πi+1(s, a) ≥ Qπi(s, a). By combining it with (23), we obtain

Qπi+1(s, a) ≥ Q̄πi+1(s, a) ≥ Qπi(s, a), ∀s, a. (25)
Then, the boundness of Q indicates the existence of limi→∞ Qπi(s, a) and also limi→∞ Qπi(s, a) =
limi→∞ Q̄πi(s, a),∀s, a.

For any s, a, a′ satisfying limi→∞ Qπi(s, a) > limi→∞ Qπi(s, a′), it satisfies limi→∞ Q̄πi(s, a) >
limi→∞ Q̄πi(s, a′). Thus,

∃N, ϵ > 0 ∀j ≥ N : Q̄πj (s, a)− Q̄πj (s, a′) ≥ ϵ. (26)

According to Theorem 4, the updated policy is with form of4

πi(a|s) ∝ πi−1(a|s) exp
(
1

α
Q̄πi(s, a)

)
.

Then, the policy ratio can be rewritten and bounded as

πi(a|s)
πi(a′|s)

=
πN (a|s)
πN (a′|s)

exp

 i∑
j=N

Q̄πj (s, a)− Q̄πj (s, a′)

α

 ≥ πN (a|s)
πN (a′|s)

exp

(
i−N

α
ϵ

)
, ∀i ≥ N.

(27)

With the prerequisite of π0(a|s) > 0,∀s, a and the form of policy update, we know πN (a|s) >

0,∀s, a, and further πN (a|s)
πN (a′|s) > 0. Then, as i approaches infinity in (27), we obtain πi(a|s)

πi(a′|s) →∞.
4Strictly speaking, Theorem 4 shows π̄∗(a|s) ∝ µ(a|s) exp

(
1
α
Q̄∗

N,k(s, a)
)
. Besides, we have shown

Q̄π̄∗
N,k(s, a) = Q̄∗

N,k(s, a) in (20). Thus, π̄∗(a|s) ∝ µ(a|s) exp
(

1
α
Q̄π∗

N,k(s, a)
)

.

8

C Iterative Regularized Policy Optimization as Expectation–Maximization
with Structured Variational Posterior

This section recasts the iterative regularized policy optimization as an Expectation-Maximization
algorithm for policy optimization, where the Expectation step corresponds to a structured variational
inference procedure for dynamics. To simplify the presentation, we consider the L-length horizon
and let γ = 1 (thus omitted in the derivation). For infinite horizon L → ∞, the discounted factor
γ can be readily recovered by modifying the transition dynamics, such that any action produces a
transition into an terminal state with probability 1− γ.

C.1 Review of RL as Probabilistic Inference

Huawei Proprietary - Restricted Distribution1

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2

𝒪𝒪0 𝒪𝒪1 𝒪𝒪2

⋯

Figure 4: Probabilistic graphical
model for RL as inference.

We first review the general framework of casting RL as probabilistic
inference [60]. It starts by embedding the MDP into a probabilistic
graphical model, as shown in Figure 4. Apart from the basic elements
in MDP, an additional binary random variable Ot is introduced,
where Ot = 1 denotes that the action at time step t is optimal, and
Ot = 0 denotes the suboptimality. Its distribution is defined as5

p(Ot = 1|st, at) = exp

(
r(st, at)

α

)
, (28)

where α is the hyperparameter. As we focus on the optimality, in the following we drop = 1 and
use Ot to denote Ot = 1 for conciseness. The remaining random variables in the probabilistic
graphical model are st and at, whose distributions are defined by the system dynamics ρ0(s) and
T (s′|s, a) as well as a reference policy µ(a|s). Then, the joint distribution over all random variables
for t ∈ {1, 2, · · · , L} can be written as

P (s0:L, a0:L,O0:L) = ρ0(s0) ·
L−1∏
t=0

T (st+1|st, at)µ(at|st) · µ(aL|sL) exp

(
L∑

t=0

r(st, at)

α

)
. (29)

Regarding optimal control, a natural question to ask is what the trajectory should be like given the
optimality over all time steps. This raises the posterior inference of P (s0:L, a0:L|O0:L). According
to d-separation, the exact posterior follows the form of

P (s0:L, a0:L|O0:L) = P(s0|O0:L) ·
L−1∏
t=0

P(st+1|st, at,O0:L)P(at|st,O0:L) · P(aL|sL,O0:L).

(30)

Notice that the dynamics posterior P(s0|O0:L) and P(st+1|st, at,O0:L) depends on O0:L, and in
fact their concrete mathematical expressions are inconsistent with those of the system dynamics
ρ0(s0) and T (st+1|st, at) [60]. This essentially poses the assumption that the dynamics itself can be
controlled when referring to the optimality, unpractical in general.

Variational inference can be applied to correct this issue. Concretely, define the variational approxi-
mation to the exact posterior by

P̂ (s0:L, a0:L) = ρ0(s0) ·
L−1∏
t=0

T (st+1|st, at)π(at|st) · π(aL|sL). (31)

Its difference to (30) is enforcing the dynamics posterior to match the practical one. Under this
structure, the variational posterior can be adjusted by optimizing π to best approximate the exact

5Assume the reward function is non-positive such that the probability is not larger than one. If the assumption
is unsatisfied, we can subtract the reward function by its maximum, without changing the optimal policy.

9

posterior. The optimization is executed under measure of KL divergence, i.e.,

DKL

(
P̂ (s0:L, a0:L)

∣∣∣∣∣∣ P (s0:L, a0:L|O0:L)
)
=

∫
P̂ (s0:L, a0:L) log

P̂ (s0:L, a0:L)

P (s0:L, a0:L|O0:L)
ds0:Lda0:L

=

∫
P̂ (s0:L, a0:L) log

P̂ (s0:L, a0:L)

P (s0:L, a0:L,O0:L)
ds0:Lda0:L + logP(O0:L)

= Eρ0,T,π

[
L∑

t=0

(
−r(st, at)

α
+ log

π(at|st)
µ(at|st)

)]
+ logP(O0:L)

=
1

α
Eρ0,T,π

[
L∑

t=0

(
− r(st, at) + αDKL

(
π(·|st)

∣∣∣∣∣∣ µ(·|st)))]+ logP(O0:L), (32)

where the third equation is obtained by substituting (29) and (31). As the second term in (32) is
constant, minimizing the above KL divergence is equivalent to maximize the cumulative reward with
policy regularizer. Several fascinating online RL methods can be treated as algorithmic instances
based on this framework [34, 35].

To summarize, the structured variational posterior with form (31) is vital to ensure the inferred policy
meaningful in the actual environment.

C.2 Pessimism-Modulated Dynamics Belief as Structured Variational Posterior

Huawei Proprietary - Restricted Distribution2

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2

𝒪𝒪0 𝒪𝒪1 𝒪𝒪2

⋯

𝜏𝜏0 𝜏𝜏1

Figure 5: Probabilistic graphical model
for offline RL as inference.

The probabilistic graphical model is previously devised for
online RL. In offline setting, the environment can not be
interacted to minimize (32). A straightforward modification
to reflect this is to add the transition dynamics as a random
variable in the graph, as shown in Figure 5. We assume
the transition follows a predefined belief distribution, i.e.,
Psa
T (τsa) introduced in Subsection 3.1. To make its depen-

dence on (s, a) explicit, let PT (τ
sa|s, a) redenote Psa

T (τsa).
For conciseness, we drop the superscript sa in τsa in the
remainder.

The joint distribution over all random variables in Figure 5 for t ∈ {1, 2, · · · , L} can be written as

P (s0:L, a0:L, τ0:L−1,O0:L) = ρ0(s0) ·
L−1∏
t=0

PT (τt|st, at)τt(st+1)µ(at|st)

· µ(aL|sL) exp

(
L∑

t=0

r(st, at)

α

)
. (33)

Similar to online setting, we wonder what the trajectory should be like given the optimality over
all time steps. By examining the conditional independence in the probabilistic graphical model, the
exact posterior follows the form of

P (s0:L, a0:L, τ0:L−1|O0:L) = P(s0|O0:L) ·
L−1∏
t=0

P(τt|st, at,O0:L)P(st+1|τt,O0:L)P(at|st,O0:L)

· P(aL|sL,O0:L). (34)

Unsurprisingly, s0:T and τ0:T again depend on O0:L, indicating that the system transition and its
belief can be controlled when referring to optimality. In other words, it leads to over-optimistic
inference.

To emphasize pessimism, we define a novel structured variational posterior:

P̂ (s0:L, a0:L, τ0:L−1) = ρ0(s0) ·
L−1∏
t=0

P̃T (τt|st, at)τt(st+1)π(at|st) · π(aL|sL), (35)

10

with P̃T being the Pessimism-Modulated Dynamics Belief (PMDB) constructed via the KL-regularized
AMG (see Theorem 7):

P̃T (τ |s, a) ∝ w
(
Eτ,π

[
Q̄π

N,k(s
′, a′)

]
; k,N

)
PT (τ |s, a), (36)

w(x; k,N) =
[
F (x)

]k−1[
1− F (x)

]N−k
, (37)

F (·) is cumulative density function and Q̄π
N,k is the Q-value for the KL-regularized AMG.

As discussed, w reshapes the initial belief distribution towards being pessimistic in terms of
Eτ,π

[
Q̄π

N,k(s
′, a′)

]
.

It seems that we need to solve the AMG to obtain Q̄π
N,k and further define P̃T . In fact, Q̄π

N,k is
also the Q-value for the MDP considered in (35). This can be verified by checking Theorem 7: the
KL-regularized AMG is equivalent to the MDP with transition T̃ (s′|s, a) = EP̃T

[τ(s′)], which can

be implemented by sampling first τ ∼ P̃T and then s′ ∼ τ , right the procedure in (35).

To best approximate the exact posterior, we optimize the variational posterior by minimizing

DKL

(
P̂ (s0:L, a0:L, τ0:L−1)

∣∣∣∣∣∣ P (s0:L, a0:L, τ0:L−1|O0:L)
)

=

∫
P̂ (s0:L, a0:L, τ0:L−1) log

P̂ (s0:L, a0:L, τ0:L−1)

P (s0:L, a0:L, τ0:L−1|O0:L)
ds0:Lda0:L

=

∫
P̂ (s0:L, a0:L, τ0:L−1) log

P̂ (s0:L, a0:L, τ0:L−1)

P (s0:L, a0:L, τ0:L−1,O0:L)
ds0:Lda0:L + logP(O0:L)

= Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

(
−r(st, at)

α
+DKL

(
π(·|st)

∣∣∣∣∣∣ µ(·|st)))]︸ ︷︷ ︸
M(π;µ)

+ Eρ0,P̃T ,τ0:L−1,π

[
L−1∑
t=0

logw
(
Eτt,π

[
Q̄π

N,k(st+1, at+1)
]
; k,N

)]
+ (L− 1) · logC

(∗)
= M(π;µ) + (L− 1) · logC

+

L−1∑
t=0

Eρ0,π,P̂T

[
Eτ0,π,P̂T

· · ·

[
Eτt−1,π,P̃T

[
logw

(
Eτt,π

[
Q̄π

N,k(st+1, at+1)
]
; k,N

)]]]
≈M(π;µ) + (L− 1) · (logC ′ + logC), (38)

where the equation (∗) is by unfolding the expectation sequentially over each step, C = N !
(k−1)!(N−k)!

is the normalization constant in (36), and C ′ = (k−1)k−1(N−k)N−k

(N−1)N−1 is used to approximate w. To

clarify the approximation, recall Theorem 7 stating that a sample τt ∼ P̃T can be equivalently drawn
by finding τt = arg⌊min⌋kτ∈Tt

Eτ,π

[
Q̄π

N,k(st+1, at+1)
]

based on another sampling procedure Tt =
{τ}N ∼ PN

T . Then, given Tt, we observe that Eτt,π

[
Q̄π

N,k(st+1, at+1)
]

is the empirical k−1
N−1 quantile

of the random variable Eτ,π

[
Q̄π

N,k(st+1, at+1)
]
, i.e., F

(
Eτt,π

[
Q̄π

N,k(st+1, at+1)
])
≈ k−1

N−1 . By
substituting into w, we obtain w ≈ C ′.

Note that−αM(π;µ) is exactly the return of KL-regularized MDP in Theorem 7. By the equivalence
of this KL-regularized MDP and the KL-regularized AMG in (9), we have M(π;µ) = − J̄(π;µ)

α .
Thus, minimization of (38) is equivalent to maximization of J̄(π;µ).

C.3 Full Expectation-Maximization Algorithm

In previous subsection, the reference policy µ is assumed as a prior, and the optimized policy would
be constrained close to it through KL divergence. In practice, the prior of optimal policy can not

11

easily obtained, and a popular methodology to handle this is to learn the prior itself in the data-driven
way, i.e., the principle of empirical Bayes.

The prior learning is done by maximizing the log-marginal likelihood:

L(µ) = logP (O0:L) = log

∫
P (s0:L, a0:L, τ0:L−1,O0:L) ds0:Lda0:Ldτ0:L−1, (39)

where P (s0:L, a0:L, τ0:L−1,O0:L) is given in (33). As the log function includes a high-dimensional
integration, evaluating L(µ) incurs intensive computation. Expectation-Maximization algorithm
instead considers a lower bound of L(µ) to make the evaluation/optimization tractable:

L(µ) ≥ logP (O0:L)−DKL

(
P̂ (s0:L, a0:L, τ0:L−1)

∣∣∣∣∣∣ P (s0:L, a0:L, τ0:L−1|O0:L)
)

=

∫
P̂ (s0:L, a0:L, τ0:L−1) logP (s0:L, a0:L, τ0:L−1,O0:L) ds0:Lda0:Ldτ0:L−1

−H
[
P̂ (s0:L, a0:L, τ0:L−1)

]
, (40)

where the inequality is due to the non-negativity of KL divergence, and P̂ (s0:L, a0:L, τ0:L−1) is an
approximation to the exact posterior P (s0:L, a0:L, τ0:L−1|O0:L). The lower bound is tighter with
the more exact approximation for the posterior. In previous subsection, we introduce the structured
variational approximation with form of (35) to emphasize pessimism on the transition dynamics.
Although this variational posterior would lead to non-zero KL term, it promotes learning robust policy
as we discussed in previous subsection. Since that the variational posterior is with an adjustable
policy π, we denote the lower bound by L̄(µ;π).

By substituting (35) into (40), it follows

L̄(µ;π) =Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

logµ(at|st)

]
+ C ′′

=Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

logµ(at|st)− log π(at|st) + log π(at|st)

]
+ C ′′

=Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

−DKL(π(·|st) || µ(·|st))

]
+ C ′′′, (41)

where C ′′ and C ′′′ includes the constant terms irrelevant to µ. According to the form of (41), given
fixed π, the optimal prior policy to maximize L̄(µ;π) is obtained as µ = π. Maximizing the lower
bound is known as Maximization step.

Recall π in the variational posterior is adjustable, we can optimize it by minimizing
DKL

(
P̂ (s0:L, a0:L, τ0:L−1)

∣∣∣∣∣∣ P (s0:L, a0:L, τ0:L−1|O0:L)
)

to tighten the bound. The minimiza-
tion procedure is known as Expectation step. In our case, the minimization problem is exactly the
one discussed in previous subsection.

When repeatedly and alternately applying the Expectation and Maximization steps, the iterative
regularized policy optimization algorithm is recovered. According to Theorem 5, both π and µ
continuously improve regarding the objective function.

D Algorithm and Implementation Details for Model-Based Offline RL with
PMDB

The pseudocode for model-based offline RL with PMDB is presented in Algorithm 1. As ρ0 is
unknown in practice, we uniformly sample states from D as the initial {s0}. In Step 4, the primary
players act according to the non-parametric policy π, rather than its approximated policy πϕ. This is
because during learning process πϕ is not always trained adequately to approximate π, then following
πϕ will visit unexpected states. In Step 11, the reference policy πϕ′ is returned as the final policy,
considering that it is more stable than πϕ.

12

Algorithm 1 Model-Based Offline RL with PMDB
Require: D,PT , N, k,M .

1: Approximator initialization: Randomly initialize Q-function Qθ(s, a) and policy πϕ(a|s);
Initialize target Q-function Qθ′(s, a) and reference policy πϕ′(a|s) with θ′ ← θ, ϕ′ ← ϕ.

2: Game initialization: Randomly sample C states from D, as the initial states for C paralleled
games {s}.

3: for step t = 1, 2, · · · ,M do
4: Primary players: Sample actions according to

π(a|s) ∝ πϕ′(a|s) exp
(
1

α
Qθ(s, a)

)
.

5: Game transitions: Sample candidate sets {T } according to (3).
6: Update: Sample a batch of transitions from D, together with the C-size game transitions

{(s, a, T)}, to update θ and ϕ via one-step gradient descent regarding (11) and (14).
7: Secondary players: Determine whether to exploit or explore: with probability of (1− ϵ),

τ̄ = arg⌊min⌋kτ∈T Eτ

[
α logEπϕ′ exp

(
1

α
Qθ(s

′, a′)

)]
,

otherwise randomly choose τ̄ from T .
8: Game transitions: Sample states following {τ̄} to update {s}. For terminal states in {s}, use

random samples from D to replace them.
9: Moving-average update: Update reference policy and target Q-function with

ϕ′ ← ω1ϕ+ (1− ω1)ϕ
′,

θ′ ← ω2θ + (1− ω2)θ
′.

10: end for
11: return πϕ′ .

Computing expectation Algorithm 1 involves the computation of expectation. In discrete domains,
the expectation can be computed exactly. In continuous domains, we use Monte Carlo methods to
approximate it. Concretely, for the expectation over states we apply vanilla Monte Carlo sampling,
while for the expectation over actions we apply importance sampling. To elaborate, the expectation
over actions can be written as

Eµ exp

(
1

α
Q(s, a)

)
=

1

2

[
Eµ exp

(
1

α
Q(s, a)

)
+ Eq

µ(a|s) exp
(
1
αQ(s, a)

)
q(a|s)

]

≈ 1

2n

 n∑
ai∼µ(·|s)

exp

(
1

α
Q(s, ai)

)
+

n∑
ai∼q(·|s)

µ(ai|s) exp
(
1
αQ(s, ai)

)
q(ai|s)

 ,

where q is the proposal distribution.

In Algorithm 1, the above expectation is computed for both s ∈ D and s ∈ D′. For s ∈ D, we choose

q(·|s) = N (· ; a, σ2I), where a|s ∼ D,

i.e., the samples are drawn close to the data points, and σ2 determines how much they keep close.
For example, in Step 6 a batch of {(s, a, s′)} are sampled from D to calculate (14), then we construct
the proposal distribution as above for each (s, a) in the batch. The motivation of drawing actions
near the data samples is to enhance learning in the multi-modal scenario, where the offline dataset D
is collected by mixture of multiple policies. If µ is single-modal (say the widely adopted Gaussian
policy) and we solely draw samples from it to approximate the expectation, these samples will be
locally clustered. Then, applying them to update πθ in (14) can be easily get stuck at local optimum.

For s ∈ D′, we choose

q(·|s) = πθ(·|s).

13

The reason is that πθ is an approximator to the improved policy with higher Q-value, and sampling
from it hopefully reduces variance of the Monte Carlo estimator.

Although applying Monte Carlo methods to approximate the expectation incurs extra computation, all
the operators can be executed in parallel. In the experiments, we use 10 and 20 samples respectively
for the expectations over state and action, and the algorithm is run on a single machine with one
Quadro RTX 6000 GPU. The results show that in average it takes 73.4 s to finish 1k training steps,
and the GPU memory cost is 2.5 GB.

Several future directions regarding the Monte Carlo method are worthy to explore. For example, by
reducing the sample size for the expectation over state, the optimized policy additionally tends to
avoid the risk due to aleatoric uncertainty (while in this work we focus on epistemic uncertainty).
Besides, the computational cost can be reduced by more aggressive Monte Carlo approximation, for
example only using mean action to compute the expectation in terms of policy. We leave these as
future work.

E Choice of Initial Dynamics Belief

In offline setting, extra knowledge is strongly desired to aggressively optimize policy. The initial
dynamics belief provides an interface to absorb the aforehand knowledge of system transition. In
what follows, we illustrate several potential usecases:

• Consider the physical system where the dynamics can be described as mathematical ex-
pression but with uncertain parameter. If we have a narrow distribution over the parameter
(according to expert knowledge or inferred from data), the system is almost known for
certain. Here, both the mathematical expression and narrow distribution provide more
information.

• Consider the case where we know the dynamics is smooth with probability of 0.7 and
periodic with probability of 0.3. Gaussian processes (GPs) with RBF kernel and periodic
kernel can well encode these prior knowledge. Then, the 0.7-0.3 mixture of the two GPs
trained with offline data can act as the dynamics belief to provide more information.

• In the case where multi-task datasets are available, we can train dynamics models using
each of the datasets and assign likelihood ratios to these models. If the likelihood ratio
well reflects the similarity between the concerned task and the offline tasks, the multi-task
datasets promote knowledge.

The performance gain is expected to monotonously increase with the amount of correct knowledge.
As an impractical but intuitive example, with the exact knowledge of system transition (the initial
belief is a delta function), the proposed approach is actually optimizing policy as in real system.

In practice, the expert knowledge is not available everywhere. When unavailable, the best we can
hope for is that the final policy stays close to the dataset, but unnecessary to be fully covered (as we
want to utilize the generalization ability of dynamics model at least around the data). To that end, the
dynamics belief is desired to be certain at the region in distribution of dataset, and turns more and
more uncertain when departing. It has been reported that the simple model ensemble leads to such a
behavior [12]. In this sense, the uniform distribution over learned dynamics ensemble can act as a
quite common belief. In the experiments, we apply it for fair comparison with baseline methods.

F Automatically Adjusting KL Coefficient

In Section 4, the KL regularizer is introduced to restrict πϕ in a small region near πϕ′ , such that
the Q-value can be evaluated sufficiently before policy improvement. Apart from fixing the KL
coefficient α throughout, we provide a strategy to automatically adjust it.

Note that the optimal policy to minimize LP in (14) is
πϕ′ (·|s) exp(1

αQθ(s,·))
Eπ

ϕ′ [exp(1
αQθ(s,a))]

. The criterion of choosing

α is to constrain the KL divergence between this policy and πϕ′ smaller than a specified constant, i.e.,

DKL

(
πϕ′(·|s) exp

(
1
αQθ(s, ·)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] ∣∣∣∣∣
∣∣∣∣∣ πϕ′(·|s)

)
≤ d. (42)

14

Finding α to satisfy the above inequation is intractable, instead we consider a surrogate of the KL
divergence:

DKL

(
πϕ′(·|s) exp

(
1
αQθ(s, ·)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] ∣∣∣∣∣
∣∣∣∣∣ πϕ′(·|s)

)

= Eπϕ′

[
exp

(
1
αQθ(s, a)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] · 1
α
Qθ(s, a)

]
− logEπϕ′

[
exp

(
1

α
Qθ(s, a)

)]

≤ 1

α

Eπϕ′

 exp
(

1
α0

Qθ(s, a)
)

Eπϕ′

[
exp

(
1
α0

Qθ(s, a)
)] ·Qθ(s, a)

− Eπϕ′ [Qθ(s, a)]

 ,

where α0 is a predefined lower bound of α.

Then, (42) can be satisfied by setting

α ≥ 1

d

Eπϕ′

 exp
(

1
α0

Qθ(s, a)
)

Eπϕ′

[
exp

(
1
α0

Qθ(s, a)
)] ·Qθ(s, a)

− Eπϕ′ [Qθ(s, a)]

 .

Combining with the predefined lower bound, we choose α as

α = max

1

d

Eπϕ′

 exp
(

1
α0

Qθ(s, a)
)

Eπϕ′

[
exp

(
1
α0

Qθ(s, a)
)] ·Qθ(s, a)

− Eπϕ′ [Qθ(s, a)]

 , α0

 .

In practice, the expectation can be estimated over Monte Carlo samples. Note that the coefficient can
be computed individually for each state, picking d is hopefully easier than picking α suitable for all
states.

G Additional Experimental Setup

Task Domains We evaluate the proposed methods and the baselines on eighteen domains involving
three environments (hopper, walker2d, halfcheetah), each with six dataset types. The dataset types
are collected by different policies, denoted by random: a randomly initialized policy, expert: a policy
trained to completion with SAC, medium: a policy trained to approximately 1/3 the performance of
the expert, medium-expert: 50-50 mixture of medium and expert data, medium-replay: the replay
buffer of a policy trained up to the performance of the medium agent, full-replay: the replay buffer of
a policy trained up to the performance of the expert agent.

Dynamics Belief We adopt an uniform distribution over dynamics model ensemble as the initial
belief. The ensemble contains 100 neural networks, each is with 4 hidden layers and 256 hidden units
per layer. All the neural networks are trained independently with the sample dataset D and in parallel.
The training process stops after the average training loss does not change obviously. Specifically, the
number of epochs for hopper-random and walker2d-medium are 2000, and those for other tasks are
1000. Note that the level of pessimism depends on the candidate size N (= 10 by default), rather
than the ensemble size.

Policy Network and Q Network The policy network is with 3 hidden layers and 256 hidden units
per layer. It outputs the mean and the diagonal variance for a Gaussian distribution, which is then
transformed via tanh function to generate the policy. When evaluating our approach, we apply the
deterministic policy, where the action is the tanh transformation of the Gaussian mean. The Q network
is with the same architecture as the policy network except the output layer. Similar to existing RL
approaches [35], we make use of two Q networks and apply the minimum of them for calculation in
Algorithm 1, in order to mitigate over-estimation when learning in the AMG. The policy learning
stops after the performance in AMG does not change obviously. Specifically, the gradient steps for
walker2d-random, halfcheetah-random and hopper with all dataset types are 1 million, and those for
other tasks are 2 millon.

15

Hyperparameters We list the detailed hyperparameters in Table 3.

Parameter Value

dynamics learning rate 10−4

policy learning rate 3 · 10−5

Q-value learning rate 3 · 10−4

discounted factor (γ) 0.99
smoothing coefficient for policy (ω1) 10−5

smoothing coefficient for Q-value (ω2) 5 · 10−3

Exploration ratio for secondary player (ϵ) 0.1
KL coefficient (α) 0.1
variance for important sampling (σ2) 0.01
Batch size for dynamics learning 256
Batch size for AMG and MDP 128
Maximal horizon of AMG 1000

Table 3: Hyperparameters

H Practical Impact of N

Table 4 lists the impact of N . The performance in the AMGs improve when decreasing k. Regarding
the performance in true MDPs, we notice that N = 15 corresponds to the best performance for
hopper, but for the others N = 5 is better.

hopper-medium walker2d-medium halfcheetah-medium

N MDP AMG MDP AMG MDP AMG

5 90.2±25.4 108.6±2.2 112.7±0.9 101.7±5.7 79.8±0.4 69.5±1.6
10 106.8±0.2 105.2±1.6 94.2±1.1 77.2±3.7 75.6±1.3 67.3±1.1
15 107.3±0.2 103.1±1.8 92.1±0.3 68.3±6.7 75.4±0.4 63.2±2.3

Table 4: Impact of N , with k = 2.

I Ablation of Randomness of T

Compared to the standard Bellman backup operator in Q-learning, the proposed one additionally
includes the expectation over T ∼ PN

T and the k-minimum operator over τ ∈ T . We report the
impact of choosing different k in Table 2, and present the impact of the randomness of T as below.
Fixed T denotes that after sampling once T from the belief distribution we keep it fixed during policy
optimization.

Task Name Stochastic T Fixed T
hopper-medium 106.8 ± 0.2 106.2 ± 0.3
walker2d-medium 94.2 ± 1.1 90.1 ± 4.3
halfcheetah-medium 75.6 ± 1.3 73.1 ± 2.8

Table 5: Impact of randomness of T

We observe that the randomness of T has a mild effect on the performance in average. The reason can
be that we apply the uniform distribution over dynamics ensemble as initial belief (without additional
knowledge to insert). The model ensemble is reported to produce low uncertainty estimation in
distribution of data coverage and high estimation when departing the dataset [12]. This property
makes the optimized policy keep close to the dataset, and it does not rely on the randomness of
ensemble elements. However, involving the randomness can lead to more smooth variation of the
estimated uncertainty, which benefits the training process and results in better performance. Apart
from these empirical results, we highlight that in cases with more informative dynamics belief, only
picking several fixed samples from the belief distribution as T will result in the loss of knowledge.

16

J Weighting AMG Loss and MDP Loss in (11)

In (11), the Q-function is trained to minimize the Bellman residuals of both the AMG and the
empirical MDP, equipped with the same weight (both are 1). In the following table, we show
experiment results to check the impact of different weights.

Task Name 0.5:1.5 1.0:1.0 1.5:0.5
hopper-medium 106.6 ± 0.3 106.8 ± 0.2 106.5 ± 0.3
walker2d-medium 93.8 ± 1.5 94.2 ± 1.1 93.1 ± 1.3
halfcheetah-medium 75.2 ± 0.8 75.6 ± 1.3 76.1 ± 1.0

Table 6: Impact of weights in (11)

The results suggests that the performance does not obviously depend on the weights. But in cases
with available expert knowledge about dynamics, the weights can be adjusted to match our confidence
on the knowledge, i.e., the less confidence, the smaller weight for AMG.

K Comparison with RAMBO

We additionally compared the proposed approach with RAMBO [61], a concurrent work that also
formulates offline RL as a two-player zero-sum game. The results of RAMBO for random, medium,
medium-expert and medium-replay are taken from [61]. For the other two dataset types, we run the
official code and follow the hyperparameter search procedure reported in its paper.

Task Name BC BEAR BRAC CQL MOReL EDAC RAMBO PMDB

hopper-random 3.7±0.6 3.6±3.6 8.1±0.6 5.3±0.6 38.1±10.1 25.3±10.4 25.4±7.5 32.7±0.1
hopper-medium 54.1±3.8 55.3±3.2 77.8±6.1 61.9±6.4 84.0±17.0 101.6±0.6 87.0±15.4 106.8±0.2
hopper-expert 107.7±9.7 39.4±20.5 78.1±52.6 106.5±9.1 80.4±34.9 110.1±0.1 50.0±8.1 111.7±0.3
hopper-medium-expert 53.9±4.7 66.2±8.5 81.3±8.0 96.9±15.1 105.6±8.2 110.7±0.1 88.2±20.5 111.8±0.6
hopper-medium-replay 16.6±4.8 57.7±16.5 62.7±30.4 86.3±7.3 81.8±17.0 101.0±0.5 99.5±4.8 106.2±0.6
hopper-full-replay 19.9±12.9 54.0±24.0 107.4±0.5 101.9±0.6 94.4±20.5 105.4±0.7 105.2 ±2.1 109.1±0.2

walker2d-random 1.3±0.1 4.3±1.2 1.3±1.4 5.4±1.7 16.0±7.7 16.6±7.0 0.0±0.3 21.8±0.1
walker2d-medium 70.9±11.0 59.8±40.0 59.7±39.9 79.5±3.2 72.8±11.9 92.5±0.8 84.9 ±2.6 94.2±1.1
walker2d-expert 108.7±0.2 110.1±0.6 55.2±62.2 109.3±0.1 62.6±29.9 115.1±1.9 1.6±2.3 115.9±1.9
walker2d-medium-expert 90.1±13.2 107.0±2.9 9.3±18.9 109.1±0.2 107.5±5.6 114.7±0.9 56.7±39.0 111.9±0.2
walker2d-medium-replay 20.3±9.8 12.2±4.7 40.1±47.9 76.8±10.0 40.8±20.4 87.1±2.3 89.2±6.7 79.9±0.2
walker2d-full-replay 68.8±17.7 79.6±15.6 96.9±2.2 94.2±1.9 84.8±13.1 99.8±0.7 88.3±4.9 95.4±0.7

halfcheetah-random 2.2±0.0 12.6±1.0 24.3±0.7 31.3±3.5 38.9±1.8 28.4±1.0 39.5±3.5 37.8 ± 0.2
halfcheetah-medium 43.2±0.6 42.8±0.1 51.9±0.3 46.9±0.4 60.7±4.4 65.9±0.6 77.9 ±4.0 75.6± 1.3
halfcheetah-expert 91.8±1.5 92.6±0.6 39.0±13.8 97.3±1.1 8.4±11.8 106.8±3.4 79.3±15.1 105.7± 1.0
halfcheetah-medium-expert 44.0±1.6 45.7±4.2 52.3±0.1 95.0±1.4 80.4±11.7 106.3±1.9 95.4 ±5.4 108.5±0.5
halfcheetah-medium-replay 37.6±2.1 39.4±0.8 48.6±0.4 45.3±0.3 44.5±5.6 61.3±1.9 68.7± 5.3 71.7±1.1
halfcheetah-full-replay 62.9±0.8 60.1±3.2 78.0±0.7 76.9±0.9 70.1±5.1 84.6±0.9 87.0±3.2 90.0±0.8

Average 49.9 52.4 54.0 73.7 65.1 85.2 68.0 88.2

Table 7: Extended Results for D4RL datasets.

The results show our approach outperforms RAMBO on most of considered tasks. One reason can be
that the problem formulation of RAMBO is based on robust MDP, whose defects are discussed in
Section 2 and Appendix A.

17

	Additional Related Works
	Theorem Proof
	Preliminaries
	Proofs for Section 3
	Proofs for Section 4

	Iterative Regularized Policy Optimization as Expectation–Maximization with Structured Variational Posterior
	Review of RL as Probabilistic Inference
	Pessimism-Modulated Dynamics Belief as Structured Variational Posterior
	Full Expectation-Maximization Algorithm

	Algorithm and Implementation Details for Model-Based Offline RL with PMDB
	Choice of Initial Dynamics Belief
	Automatically Adjusting KL Coefficient
	Additional Experimental Setup
	Practical Impact of N
	Ablation of Randomness of T
	Weighting AMG Loss and MDP Loss in (11)
	Comparison with RAMBO

