A Experimental Set-up

For methods SGPR, SGPR + HMC, JointHMC and Ablation experiment we use the Adam [Kingma
and Ba, 2014] optimizer with a learning rate set at 0.01 (we didn’t extensively tune for learning
rates and 0.01 seemed to give a reasonable performance). We do maintain consistency over the data
splits and initialisation values for the inducing locations and hyperparameters across all the methods.
Further, all the sparse models use M = 100 inducing variables to aid in run-time analysis. All the
hyperparameters are initialised at the gpytorch default of log(2) and inducing locations at a random
subset of the training data split.

SGPR + HMC: We place individual priors over the set of hyperparameters {{l4}%_,, 0,7} shown
in the code block below. During the warm-up phase we optimize both the inducing locations and
hyperparamters. We use .J = 100 samples to construct the stochastic ELBO for the first sampling
window along with 500 steps of tuning, thereafter just 10 samples are used every 50 gradient steps.
At the end of training we again draw J = 100 samples. The intermediate sampling windows do
not require elaborate tuning as we persist good initial step-size values from the penultimate chains.
Despite this we do expend a few tuning steps in each sampling window as it improved the overall
performance of the sampler. The inducing locations are kept fixed during sampling and are only
optimized through the stochastic ELBO.

JointHMC: As recommended by the authors we use a warm-up phase of 100 gradient steps to
optimize inducing locations. Subsequent training happens through the HMC sampler which targets
the joint variables (v, @) (where v is a whitened representation of w) with a target acceptance rate of
0.8, path length (number of leapfrog steps) to 10 and an initial step-size of 0.01 with an adaptation
rate of 0.1. We use tfd.Gamma (2.0, 1.0) for each inidividual kernel hyperparamter.

A.1 Software & Code

The software for all the methods is largely written in gpytorch [Gardner et al., 2018]. For sampling
we resort to the auto-tuning NUTS sampler in pymc3 [Salvatier et al., 2016]. The JointHMC model
uses the SGPMC class from gpflow [Van der Wilk et al., 2020]. The source code for all the models
and experiments is attached with the supplementary.

The code-snippet below shows the straight-forward pymc3 sampling loop which is triggered at
pre-specified intervals.

with pm.Model() as model_pymc3:

1ls = pm.Gamma("ls", alpha=2, beta=1, shape=(input_dim,))
sig_f = pm.HalfCauchy("sig_£f", beta=1)

cov = sig_f *x 2 * pm.gp.cov.ExpQuad(input_dim, 1ls=1s)
gp = pm.gp.MarginalSparse(cov_func=cov, approx="VFE")
sig_n = pm.HalfCauchy("sig_n", beta=1)

Z_opt is the intermediate inducing points from the optimisation stage
y_ = gp.marginal_likelihood("y", X=self.train_x.numpy(), Xu=Z_opt, \\
y=self.train_y.numpy(), noise=sig_n)

if sampler_params is not None:
step = pm.NUTS(step_scale = sampler_params[’step_scale’])
else:
step = pm.NUTS()
trace = pm.sample(n_samples, tune=tune, chains=1, step=step, \\
return_inferencedata=False)
return trace

B Further Analysis

B.1 Comparison with Deep GPs and Neural Network Benchmarks

We additionally compare the performance of our algorithm to 2, 3 and 4 layer deep GPs (DGP 2-4), each with
100 inducing points and point estimation for the hyperparameters [Damianou and Lawrence, 2013], [Salimbeni

14

and Deisenroth, 2017]. We also compare to a two-layer Bayesian neural network with ReLu activations, 50
hidden units, with inference by probabilistic backpropagation (PBP). The results were taken from Salimbeni
and Deisenroth [2017] and Hernandez-Lobato and Adams [2015] respectively and follow a very similar data
processing scheme for the datasets. We learn the inducing locations Z through optimisation but keep the number

of inducing points fixed across all methods.

PBP

DGP4 ~——e—

DGP 3 ——r—

DGP 2

SGPR + HMC

SGPR

SVGP

Neg. log predictive density across benchmarks for UCI Regression datasets (left is better)

Concrete

WineRed

—_— -
—_— -
= ———
—_—————— —_——
-

15 20 094 095 096 097
Test NLPD

Figure 5: Negative test log likelihoods with standard error of mean with 80% of the data reserved for training.

Our method is SGPR + HMC.

The negative test log-likelihood results are shown in 5. The test log-likelihoods outperform the non-Bayesian
counterparts and in most cases perform as well if not better than a multi-layer deep GP with a significantly
higher computational cost and intractabilities. Further, the variability across splits is much lower for the HMC

method versus SGPR.

B.2 NUTS Sampling Summary

In the tables below we include the summary statistics of the NUTS sampler for split 4 for each dataset for the
SGPR + HMC model. The statistics were computed based on the trace of the final sampling window. The
columns hdi_3% and hdi_97% calculate the highest posterior density interval based on marginal posteriors.

ess —

— computes effective sample size where M is the number of chains, IV is the number of

B 1"‘22?:11’75

samples in each chain and p; denotes auto-correlation at lag ¢. For the results reported below N = 100 and
M = 1. Each chain was run with 500 warm-up iterations for the sampler to adapt to an optimal step-size.
ess_bulk refers to the effective sample size based on the rank normalized draws and is a useful indicator of
sampling efficiency. ess_tail computes the minimum of the effective sample sizes of the 3% and 97% quantiles
[Vehtari et al., 2021].

B.3 Boston

hyper | mean | sd hdi_ 3% | hdi97% | mcse_mean | mcse_sd | ess_bulk | ess_tail
Is[0] | 2.415 | 0.627 | 1.464 3.685 0.073 0.055 97.0 58.0
Is[1] | 7.236 | 1.641 | 4.814 10.737 0.137 0.105 165.0 71.0
Is[2] | 5.751 | 1.56 | 2.903 8.099 0.169 0.13 104.0 69.0
Is[3] 8.42 1.71 6.041 11.732 0.154 0.109 120.0 112.0
Is[4] | 3.711 | 1.308 | 1.708 6.042 0.141 0.1 89.0 113.0
Is[5] | 3.366 | 0.402 | 2.731 4.155 0.035 0.025 141.0 78.0
Is[6] | 5.594 | 1.235 | 3.363 7.957 0.117 0.086 109.0 60.0
Is[7] | 3.078 | 0.926 | 1.524 4.89 0.092 0.065 97.0 77.0
Is[8] | 6.53 1.515 | 4.034 9.074 0.148 0.106 104.0 62.0
Is[9] | 2.416 | 0.64 1.425 3.8 0.054 0.039 146.0 78.0
Is[10] | 5.388 | 1.505 | 2.815 8.137 0.143 0.106 108.0 74.0
Is[11] | 6.239 | 2.198 | 3.307 10.616 0.267 0.203 75.0 77.0
Is[12] | 1.808 | 0.316 | 1.248 2.34 0.036 0.026 85.0 77.0
sig f | 1.067 | 0.15 | 0.796 1.333 0.017 0.013 75.0 59.0
sign | 0.277 | 0.01 0.261 0.293 0.001 0.001 180.0 87.0

15

B.4 Yacht

hyper | mean sd hdi 3% | hdi97% | mcse_mean | mcse_sd | ess_bulk | ess_tail
Is[0] | 7.486 1.042 | 5522 9.25 0.049 0.037 500.0 343.0
Is[1] 10.361 | 1.496 | 7.657 13.045 0.067 0.048 498.0 320.0
Is[2] 15.365 | 2.588 | 10.592 | 19.864 0.103 0.075 643.0 397.0
Is[3] 12.464 | 2.12 | 8.818 16.494 0.073 0.053 836.0 499.0
Is[4] 15.372 | 2.543 | 10.137 | 19.902 0.092 0.066 740.0 307.0
Is[5] 1.368 | 0.088 | 1.215 1.536 0.005 0.003 360.0 427.0
sigf | 2.334 | 0.341 | 1.765 3.051 0.019 0.014 323.0 382.0
sign | 0.034 | 0.002 | 0.03 0.038 0.0 0.0 562.0 423.0
B.5 Concrete
hyper | mean | sd hdi_3% | hdi.97% | mcse_mean | mcse_sd | ess_bulk | ess_tail
Is[0] | 3.667 | 0.537 | 2.86 4.776 0.059 0.042 80.0 77.0
Is[1] | 5.278 | 0.741 | 4.125 6.865 0.093 0.066 65.0 117.0
Is[2] | 5.558 | 1.264 | 3.415 7.863 0.135 0.095 100.0 64.0
Is[3] | 2.933 | 0.497 | 2.19 3.976 0.054 0.041 104.0 98.0
Is[4] | 3.757 | 0.636 | 2.897 4.969 0.069 0.049 81.0 77.0
Is[5] | 8.633 | 1.716 | 5.898 11.525 0.148 0.112 142.0 38.0
Is[6] | 4.453 | 0.624 | 3.324 5.633 0.065 0.047 95.0 78.0
1s[7] 1.037 | 0.085 | 0.877 1.2 0.012 0.008 51.0 78.0
sig f | 1.588 | 0.242 | 1.187 1.977 0.032 0.023 58.0 96.0
sig-n | 0.307 | 0.009 | 0.293 0.323 0.001 0.001 99.0 52.0
B.6 Energy
hyper | mean sd hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail
Is[0] | 2.788 1.231 | 1.215 5.005 0.114 0.081 93.0 117.0
Is[1] | 3.738 1.886 | 1.459 7.848 0.233 0.172 89.0 102.0
Is[2] | 0.887 | 0.073 | 0.763 1.04 0.006 0.005 128.0 44.0
Is[3] | 2.92 1.186 | 1.209 5.078 0.131 0.093 73.0 78.0
Is[4] | 2.892 1.426 | 1.056 5.868 0.153 0.108 100.0 67.0
Is[5] | 25.615 | 3.875 | 19.263 | 32.822 0.367 0.26 99.0 75.0
Is[6] 1.93 0.165 | 1.668 2.261 0.021 0.015 65.0 78.0
Is[7] | 21.52 | 2.68 16.378 | 26.616 0.228 0.164 139.0 78.0
sigf | 1.002 | 0.134 | 0.795 1.206 0.016 0.011 74.0 76.0
sign | 0.045 | 0.001 | 0.043 0.048 0.0 0.0 86.0 93.0

16

B.7 WineRed

hyper | mean | sd hdi 3% | hdi97% | mcse_mean | mcse_sd | ess_bulk | ess_tail
Is[0] | 2.867 | 0.803 | 1.637 4.057 0.085 0.064 135.0 77.0
Is[1] | 4.048 | 0.947 | 2.594 5.948 0.067 0.056 163.0 91.0
Is[2] | 4.101 | 1.291 | 2.474 6.917 0.104 0.078 170.0 77.0
Is[3] | 6.32 | 2.018 | 3.007 9.72 0.239 0.17 200.0 52.0
Is[4] | 3.806 | 1.135 | 1.815 5.552 0.096 0.073 143.0 77.0
Is[5] | 6.096 | 2.036 | 3.288 10.548 0.18 0.149 196.0 59.0
Is[6] | 3.99 1.029 | 2.415 6.372 0.137 0.097 67.0 65.0
Is[7] | 5.925 | 1.667 | 3.177 8.986 0.189 0.139 74.0 102.0
Is[8] | 4.065 | 1.405 | 1.894 6.46 0.166 0.132 109.0 55.0
Is[9] 1.929 | 0.351 | 1.333 2.573 0.038 0.028 104.0 52.0
Is[10] | 2.58 | 0.453 | 1.765 3.471 0.045 0.033 118.0 77.0
sig.f | 0.698 | 0.095 | 0.547 0.875 0.013 0.01 76.0 34.0
sign | 0.749 | 0.017 | 0.716 0.777 0.001 0.001 188.0 102.0

17

	Introduction
	Related Work
	Background
	Sparse variational inference in Gaussian processes
	Bayesian treatment of hyperparameters and sparse methods
	Making predictions

	Fully Bayesian SGPR with HMC: Doubly collapsed formulation
	Collapsing the evidence lower bound (again)
	Deriving

	Performing approximate inference
	Predictive posterior

	Experiments
	One dimensional synthetic data
	UCI regression benchmarks
	Ablation study
	Runtimes

	Discussion
	Experimental Set-up
	Software & Code

	Further Analysis
	Comparison with Deep GPs and Neural Network Benchmarks
	NUTS Sampling Summary
	Boston
	Yacht
	Concrete
	Energy
	WineRed

