
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

2M-AF: A Strong Multi-Modality Framework For Human Action
Quality Assessment with Self-supervised Representation Learning

Anonymous Authors

ABSTRACT
Human Action Quality Assessment (AQA) is a prominent area of
research in human action analysis. Current mainstream methods
only consider the RGB modality which results in limited feature
representation and insufficient performance due to the complexity
of the AQA task. In this paper, we propose a simple and modu-
lar framework called the Two-Modality Assessment Framework
(2M-AF), which comprises a skeleton stream, an RGB stream and a
regression module. For the skeleton stream, we develop the Self-
supervised Mask Encoder Graph Convolution Network (SME-GCN)
to achieve representation learning, and further implement score
assessment. Additionally, we propose a Preference Fusion Module
(PFM) to fuse features, which can effectively avoid the disadvan-
tages of different modalities. Our experimental results demonstrate
the superiority of the proposed 2M-AF over current state-of-the-art
methods on three publicly available datasets: AQA-7, UNLV-Diving,
and MMFS-63.

CCS CONCEPTS
• Computing methodologies;

KEYWORDS
Action Quality Assessment, skeleton, RGB

1 INTRODUCTION
Action quality assessment (AQA) models have witnessed a surge
in recent years due to their importance in various applications
[1, 2, 7, 12]. Compared with traditional tasks such as classification
or segmentation [5, 8], the AQA task presents more challenges.
Specifically, human actions for the AQA task usually have the same
background and action type but significantly different degrees of
completion, which cause the networks for conventional action tasks
with inadequate discrimination power in the AQA task [23].

To address this challenge, researchers have explored improve-
ments in feature capture [19, 23] and regression modules [28, 29].
However, achieving a breakthrough on challenging datasets re-
mains elusive, which showcases the limitations of RGB modality.
RGB data contains rich environmental and colour information, but
lying in the limited representation of spatial relationships and sen-
sitivity to external factors, the RGB methods are hard to capture
the important features of human actions. The result reflected in
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the AQA task is that the RGB modality struggles to achieve better
performance in some environmentally irrelevant actions (e.g. gym,
figure skating) because it is not only highly redundant in its fea-
tures, but also more sensitive to subtle motion variations. To solve
this problem, recent methods [28, 29] had to use complex regres-
sion structures, which led to complex calculations. Based on the
above problem, we consider the introduction of another modality
to ameliorate the defects of RGBs.

As a comparison to the RGB modality, the skeleton modality
showcases different advantages for video tasks, including its intu-
itive spatial representation and robust feature specificity [6, 27].
Futhermore, the skeleton-based models offer significantly fewer
parameters and faster computational speed than RGB ones [4]. But
the flaw in skeleton data is that all environmental information is
negelected, some of which may be crucial (e.g. splashes in diving
sports). Therefore, designing a method to harness the advantages
of both modalities will be effective. However, previous mainstream
AQA researches seem to have little interest in skeleton as it seems
not perform as well as RGB in unimodal states. Consequently, the
purpose of our work is to design a competitive skeleton-based
network and further build a multi-modality, simple and effi-
cient AQA framework.

In this paper, we propose a Self-supervised Mask Encoder Graph
Convolution Network (SME-GCN) to achieve representation learn-
ing for skeleton data. SME-GCN separately preserves the dynamic
and temporal characteristics of skeleton data by developing two
masking strategies to achieve an additional emphasis on the mo-
tion and obtain high-quality contrastive sequences. Building upon
these masked data, SME-GCN then employs a siamese network and
contrastive loss for self-supervised learning. By simply attaching
a regression structure, SME-GCN improved the performance of
the skeleton model on the AQA task, which reflects the excellent
utilization of skeleton characteristics.

For the feature regression in action-based multi-modality meth-
ods, a common idea is to share the information in one or more
layer(s) [13, 15]. These methods tend to introduce more extra com-
putation in multi-modality calculations. In the AQA task, since
almost each action has at least one modality capable of achiev-
ing good performance, we consider the feasibility of a new fusion
approach that trains each sample to automatically select a more
appropriate result from two modalities. Therefore, we design Pref-
erence Fusion Module (PFM) to choose the modality which is more
suited for different action samples. Combining our SME-GCN, PFM
and a simple RGB stream (I3D), we propose the Two-Modality
Assessment Framework (2M-AF). It is worth noting that multi-
ple backbones and regression losses can be configured within the
modular 2M-AF, which exhibits the flexibility of our work. Our ex-
perimental results show that our 2M-AF has significantly surpassed
the previous state-of-the-art methods on AQA-7, UNLV-Diving and
MMFS-63 datasets.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The key contributions we make are as follows:
1. We propose a skeleton-based self-supervised representation

learning network named SME-GCN which incorporates a unique
masking strategy designed specifically for the characteristics of
skeleton data. To the best of our knowledge, we are the first to
apply self-supervised representation learning to the AQA task and
achieve performance comparable to mainstream RGB approaches.

2. We propose a simple and efficient PFMmodule which can effec-
tively avoid the disadvantages of different modalities and enhance
the quality of multi-modality fusion without excessive hyperpa-
rameter tuning.

3. By combining our SME-GCN, PFMmodule and an RGB stream,
we propose a Multi-Modality Action Quality Assessment Frame-
work called 2M-AF. Our experimental results show that 2M-AF
outperforms the State-of-the-art methods on three competitive
datasets, AQA-7, UNLV-Diving and MMFS-63.

2 RELATEDWORKS
2.1 Action quality assessment
RGB-based methods are the primary approaches used in current
AQA tasks. The traditional methods [19, 21, 23, 26] utilize feature
extractors like C3D or I3D to obtain features from videos and the
final scores are generated through an LSTM or MLP regress module.
However, due to the high requirements of feature discriminabil-
ity in the AQA task, the previous methods have failed to achieve
satisfactory results. Thus, feature regress modules emerge as a
new research branch. C3D-AVG-MTL [20] adopts multi-task learn-
ing, simultaneously performing assessment, text generation and
recognition tasks, but mutual interference by multi-task leads to
an undesirable performance. CoRe-based methods [28, 29] utilize
contrast learning to reduce the difficulty of scoring by comparing
samples of the same class. However, training contrastive learn-
ing methods relies on additional category annotations and extra
storage spaces. Recently, attention mechanisms have been utilized
to highlight assessment-related information in features. TSA-Net
[24] proposed a spatial-temporal attention module called Tube to
reduce the detrimental effects of redundant information. Overall,
researchers have done considerable work on RGB data, but they
have still not made ideal progress, which has led us to consider
adding extra modality information to the AQA model.

2.2 Skeleton-based Self-supervised
representation learning

Self-supervised representation learning aims to obtain high-quality
features from unlabeled samples. Early methods generated fea-
tures through pretext tasks [16, 25]. Then, self-supervised learning
rapidly progressed and achieve remarkable performance, which
is comparable to supervised learning. Some methods [3, 11] uti-
lize contrastive learning by constructing pairs of samples to learn
the correlations between samples and enable the backbone net-
work to acquire rich discriminative representations. Building on
this foundation, in the past two years, some methods [9, 32] have
started to explore the application of self-supervised learning in
skeleton-based action recognition but fail to consider the unique
spatial-temporal relationship of joints. After that, MAE [10], which
adopts pixel masking to reconstruct images using encoder-decoder

structures, lets researchers realize the importance of masking. As
an improvement, PSTL [30] proposes a spatial-temporal masking
strategy to generate pairs of skeleton samples. Overall, the masking
strategy is primarily aimed at incorporating variability information
while preserving key features. However, due to the complexity and
atypical nature of AQA actions, masking at the skeleton dimension
can easily compromise the fine details of the actions themselves.
Therefore, the transfer learning of methods like PSTL is limited in
terms of performance for the AQA task, which promotes us to build
a self-supervised network more fitting our assignment.

3 METHODS
3.1 Self-supervised Mask Encoder Graph

Convolution Network
As Figure 1 (4) shows, the original skeleton sequence will be trans-
formed into two new sequences using the frame-level masking
strategies. Then, the two sequences will be processed by the encoder
with shared weights. Finally, the model will achieve self-supervised
learning using contrast loss.

Masking strategy. A 3D human skeleton sequence can be de-
noted as 𝑥 ∈ R𝐶×𝑇×𝑉 , which has C channels, T frames, and V
joints. As the input of SME-GCN, we define skeleton sequences
as 𝑥𝑠 ∈ R𝑁×𝐶×𝑇×𝑉 , where 𝑁 is the batch size, and 𝑥𝑠

𝑖
∈ R𝐶×𝑇×𝑉

represents the 𝑖𝑡ℎ sequence in 𝑥𝑠 .
In self-supervised tasks, the first and most crucial step is to

construct partial skeleton data, which should retain sufficient key
information to preserve the original characteristics of the actions.
Our masking strategy pay extra attention to the spatial-temporal
properties of the skeleton. Our variance mask module aims to focus
on the shift within actions. First, we subtract the coordinates of
each joint from the coordinates of the central joint, which provides
a standardized measure:

𝑥𝑠𝑖,:,:,: = 𝑥𝑠𝑖,:,:,: − 𝑥𝑠𝑖,:,:,𝑚, (1)

where 𝑥𝑠
𝑖,:,:,𝑚 denotes the centre joint𝑚 of 𝑥𝑠

𝑖
, we recommend

selecting the joint closer to the human centre as the central joint
(for HRNet, we choose𝑚 = 8). Next, we define the alteration degree
𝐷𝑖 (𝑡) to obtain a measure of change for the 𝑡𝑡ℎ frame of the 𝑖𝑡ℎ
skeleton:

𝐷𝑖 (𝑡) =
𝐶∑︁
𝑐=1

𝑉∑︁
𝑣=1

𝑡+𝑘∑︁
𝑗=𝑡−𝑘

𝑗∈[0,𝑇−1]

(𝑥𝑠𝑖,𝑐, 𝑗,𝑣 − 𝑥𝑠𝑖,𝑐,𝑡,𝑣)
2
, (2)

where 𝑘 is a hyperparameter that represents the range of percep-
tion, and 𝑥𝑠

𝑖,𝑐, 𝑗,𝑣
indicates the 𝑐𝑡ℎ channel, 𝑡𝑡ℎ frame and 𝑣𝑡ℎ joint

of 𝑥𝑠
𝑖
, 𝑥𝑠𝑖,𝑐,𝑡,𝑣 denotes the average of the data from the (𝑡 − 𝑘)𝑡ℎ to

(𝑡 + 𝑘)𝑡ℎ frames (if the index is a valid number). By calculating the
variances between frames and their surrounding 𝑘 frames, we can
mask out skeleton frames which have lower change. We sort the
index list of the 𝑥𝑠

𝑖,𝑡
in ascending order based on𝐷𝑖 (𝑡). As we define

the mask rate 𝑟𝑚 , we acquire the (𝑟𝑚)𝑇 𝑡ℎ index and label its 𝐷𝑖 (𝑡)
as 𝛼 . The variance masked sequence 𝑥𝑠

𝑖
is represented as:
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Figure 1: The overall architecture of 2M-AF. (1) The skeleton stream. HRNet [22] is utilized to estimate skeleton data. (2) The
RGB stream. (3) The diagram of our PFM regress module. 𝐶 represents concatenate, each dot indicates a prediction of a sample,
and Reg represents the regress loss (MSE+MAE is set in our work). The central classifier optimizes the stream towards predicted
results that are closer to the ground-truth scores. In inference, the classifier will directly choose the final prediction from the
outputs of two streams. (4) The structure of our SME-GCN for representation learning. The diagonal lines represent masked
frames. GAP in the GCN encoder denotes global average pooling.

𝑥𝑠𝑖,𝑡 =

{
0 𝑖 𝑓 𝐷𝑖 (𝑡) < 𝛼

𝑥𝑠𝑖,𝑡 𝑒𝑙𝑠𝑒
. (3)

Our strategy obtains strong data while preserving the dynamic
characteristics of the original data. In contrast, the temporal mask
strategy is primarily used to preserve the temporal characteristics
of the data. Therefore, the new sequence 𝑥𝑠

𝑖
is formed by applying

the interval mask based on 𝑟𝑚 . In summary, we have generated two
samples which are preserving key characteristics from the original
data. This lays a crucial foundation for improving the performance
of our self-supervised learning.

Encoder and loss function. As a modular approach, various
skeleton encoders can be configured with SME-GCN. After con-
ducting extensive experiments, we ultimately choose the graph
convolutional part of CTR-GCN [4] and incorporate a fully con-
nected layer as the encoder in SME-GCN. The sequences 𝑥𝑠

𝑖
and

𝑥𝑠
𝑖
will be passed into the weight-shared encoder to generate fea-

ture vector pair, 𝑓 𝑠
𝑖
∈ R𝐶𝑠

and 𝑓 𝑠
𝑖
∈ R𝐶𝑠

(𝐶𝑠 is the number of the
output channel). For ease of description, we merge 𝑁 pairs of 𝑓 𝑠

𝑖

and 𝑓 𝑠
𝑖
into 𝑓𝑚 ∈ R2𝑁×𝐶𝑠

by placing all 𝑓 𝑠
𝑖
after 𝑓 𝑠

𝑖
. With similar-

ity measured, InfoNCE [17] is adapted as the contrast loss of our
method:

L𝑆𝑀𝐸 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑠𝑖𝑚 (𝑓𝑚

𝑖
,𝑓𝑚
𝑁 +𝑖 )/𝜏∑2𝑁

𝑘=1,𝑘≠𝑖 𝑒
𝑠𝑖𝑚 (𝑓𝑚

𝑖
,𝑓𝑚
𝑘

)/𝜏 , (4)

where 𝑠𝑖𝑚(., .) indicates the product of the 𝑙2 normalised in-
puts and 𝜏 denotes a constant temperature parameter. As a robust
method, our SME-GCN can be utilized as the skeleton backbone for
multiple human action tasks. In addition to our main focused AQA
task in this paper, we also explored the effectiveness of SME-GCN
on recognition tasks in our experiments.

3.2 Multi-Modality Assessment Framework
SME-GCN for AQA. By appending a linear regress module on
top of the encoder and then finetuning the entire network on the
target AQA dataset, we build a skeleton-based network for the AQA
task. The overall architecture of our 2M-AF is shown in Figure 1.
In the skeleton stream, the input frames are sent into HRNet [22]
to estimate skeleton data. The pretrained SME-GCN is utilized as
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the backbone of the skeleton stream to obtain the skeleton feature
𝐹𝑠 ∈ R𝑁×𝐶𝑠

.
The RGB stream of 2M-AF. In the RGB stream, the input

frames are divided into 𝑛 small clips (𝑛 is adjusted based on the
length of the dataset). Then the clips are sent into I3D ConvNets for
extracting features. Finally, we calculate the average of the features
to realize the RGB feature 𝐹𝑟 ∈ R𝑁×𝐶𝑟

, where 𝐶𝑟 represents the
number of the output channel.

Preference Fusion Module. Our Preference Fusion Module
(PFM) consists of two regression heads and a selection head to
process the RGB and the skeleton features, 𝐹𝑟 and 𝐹𝑠 . (1) In the
regression heads, 𝐹𝑟 and 𝐹𝑠 separately regress the predicted score,
𝑆𝑟 ∈ R𝑁 and 𝑆𝑠 ∈ R𝑁 by a fully connected layer. (2) The selection
head is the core of PFM. We concatenate 𝐹𝑟 and 𝐹𝑠 and then send
the merged feature to a fully connected layer and a Softmax layer
to acquire a two-category vector 𝐹𝑐 ∈ R𝑁×2 to compare with the
preference label 𝑦𝑐 , which is formed by calculating the L1 distance
between the predicted score of each stream and the ground truth
score. 𝑦𝑐 can be presented as:

𝑦𝑐𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛{(|𝑆𝑠𝑖 − 𝑦𝑖 |), ( |𝑆𝑟𝑖 − 𝑦𝑖 |)}, (5)

where 𝑦𝑐
𝑖
is the 𝑖𝑡ℎ sample of 𝑦𝑐 , and 𝑆𝑠

𝑖
, 𝑆𝑟

𝑖
denotes the predicted

score of the 𝑖𝑡ℎ skeleton sample and RGB sample, respectively.
To enable backpropagation, our loss function L combines both
regression and classification losses. Motivated by MTL-AQA [20],
our regression loss L𝑠 for the skeleton adapted L1 distance in
addition to MSE:

L𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

𝜆1 (𝑆𝑠𝑖 − 𝑦𝑖 )2 + 𝜆2 |𝑆𝑠𝑖 − 𝑦𝑖 |, (6)

where 𝑦𝑖 is the ground truth score, and 𝜆1 and 𝜆2 is represented
as the weights for the two metrics. The loss function L𝑟 for the
RGB stream is the same as L𝑠 .

L𝑟 = − 1
𝑁

𝑁∑︁
𝑖=1

𝜆1 (𝑆𝑟𝑖 − 𝑦𝑖 )2 + 𝜆2 |𝑆𝑟𝑖 − 𝑦𝑖 |, (7)

We calculate the loss function separately for both streams and
then sum them up to obtain the loss of the regression part. For
the classification, based on the preference label 𝑦𝑐 and the output
vector 𝐹𝑐 , we utilize cross-entropy loss L𝑐 to iterate parameters:

L𝑐 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑐𝑖 · 𝑙𝑜𝑔(𝐹
𝑐
𝑖,0) + (1 − 𝑦𝑐𝑖 ) · 𝑙𝑜𝑔(𝐹

𝑐
𝑖,1), (8)

where 𝐹𝑐
𝑖,𝑘

indicates the 𝑖𝑡ℎ sample and the 𝑘𝑡ℎ feature of 𝐹𝑐 . Dur-
ing the training process, the complete loss function L is obtained
by adding up the aforementioned losses:

L = L𝑠 + L𝑟 + L𝑐 . (9)
In testing, PFM selects the scores based on the classification

results as the final predicted score. As a result, PFM facilitates inde-
pendent regression of the two streams and possesses the ability to
select the more accurate result for each sample from outputs. Con-
sidering all the aforesaid work, our 2M-AF solution addresses the
challenge of fusing multimodal networks with attribute differences.

4 EXPERIMENTS
4.1 Datasets
In this section, we conducted experiments on three datasets with
different characteristics and frame lengths to demonstrate the gen-
eralizability of our framework. AQA-7 [19] is currently the most
widely used AQA dataset, which also has the most diverse range of
action categories. In contrast, UNLV-Diving [21] and MMFS-63 [14]
have longer frame sequences and consist of actions from a single
sport. Additionally, MMFS-63 offers a large number of variable-
length frame sequences and pre-processed, high-quality skeleton
data. Consequently, experiments on the above three datasets which
have different scales, frame lengths and adaptability to two modali-
ties are conducted to showcase the strong generalization ability of
our framework. To maintain consistency with existing literature,
Spearman’s rank correlation coefficient is employed as the mea-
surement standard. (The detailed experimental configuration and
download link of the three datasets is written in the Appendix.)

AQA-7. The AQA-7 dataset comprises samples from seven ac-
tions. It contains 1189 videos with 103 frame lengths, of which 803
videos are used for training and 303 videos are used for testing.
To ensure a fair comparison with other methods, we remove the
trampoline category the same as the previous works and calculate
the performance of the other six categories. To compare with the
mainstream methods, Fisher’s z-value [19] is used to measure the
average performance across actions. In order to avoid potential
bias towards certain categories in the results and demonstrate the
performance of our method on a large-scale, multi-category dataset,
we additionally trained our model using all six categories of AQA-7
data in comparing with the current leading method and the ablation
study.

UNLV-Diving. The UNLV-Diving dataset contains 370 video
clips with various diving actions, of which 300 videos are used
for training and 70 videos are used for testing. The length of each
video is 151 frames. According to the dataset description, we use
the execution score of actions as the evaluation label.

MMFS-63. MMFS-63 is a large AQA dataset that consists of
63 classes of actions, which were collected from the World Figure
Skating Championships. There are a total of 4915 samples for both
skeleton and RGB data, of which 3959 samples are for training and
956 for testing.

Evaluation Protocols. To maintain consistency with existing
literature, we employed Spearman’s rank correlation coefficient,
which ranges from -1 to 1 (with higher values indicating better
performance), to evaluate the accuracy of our methods in predicting
the score series compared to the ground-truth data. As the metrics,
Spearman’s correlation coefficient is defined as follows:

𝜌 =

∑𝑁
𝑖=1 (𝑝𝑖 − 𝑝) (𝑞𝑖 − 𝑞)√︃∑𝑁

𝑖=1 (𝑝𝑖 − 𝑝)2∑𝑁
𝑖=1 (𝑞𝑖 − 𝑞)2

. (10)

Here 𝑝𝑖 and 𝑞𝑖 represent the ranking of the 𝑖𝑡ℎ predicted score
and sample score series, respectively. And 𝑝 and 𝑞 denote the av-
erage of the two score series respectively. 𝑁 is the length of the
series.
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Methods Diving Gym Vault BigSki BigSnow S. 3m S. 10m Ave All

C3D-LSTM 0.6047 0.5636 0.4593 0.5029 0.7912 0.6927 0.6165 –
C3D-SVR 0.7902 0.6824 0.5209 0.4006 0.4006 0.9120 0.6937 –

JRG 0.7630 0.7358 0.6006 0.5405 0.9013 0.9254 0.7849 –
MUSDL 0.8099 0.7570 0.6538 0.7109 0.9166 0.8878 0.8102 –
CoRe 0.8824 0.7746 0.7115 0.6624 0.9442 0.9078 0.8401 –

TSA-Net 0.8379 0.8004 0.6657 0.6856 0.9459 0.9334 0.8476 –

DAE-MLP 0.8420 0.7754 0.6836 0.7230 0.9237 0.8902 0.8258 0.8693
DAE-CoRe 0.8923 0.7786 0.7102 0.6842 0.9506 0.9129 0.8520 0.8757

2M-AF (ours) 0.8715 0.8050 0.7276 0.7254 0.9555 0.9380 0.8662 0.8901

Table 1: Accuracy comparison against existingmethods on the AQA-7 dataset, where ’Ave’ represents the performance calculated
by Fisher’s z-value [19], and ’All’ represents the comparison with the all six categories of AQA-7 data.

Methods Sp. Corr.

C3D-SVR [21] 0.7800
JRG [18] 0.7630

C3D-AVG-MTL [20] 0.8383
FALCONS [15] 0.8453
CoRe [28] 0.8663

DAE-CoRe [29] 0.8477

2M-AF (ours) 0.8838

Table 2: Accuracy comparison against existing methods on
the UNLV-Diving dataset.

4.2 Comparison with the State-of-the-Art
We compare our method with the state-of-the-art AQA methods on
all three datasets introduced above. As results are shown in Table 1,
we achieved advantages in five out of the six single categories on
AQA-7, and in the other specific single category, ’Diving’, we are
still close to the best result. As results are shown in Tables 1, 2 and
3, our 2M-AF achieves state-of-the-art performance with a large
margin on the three datasets. The results demonstrate the excellent
robustness of 2M-AF to different types, scales and frame lengths of
data.

Methods Sp. Corr.

C3D-LSTM [21] 0.5234
C3D-AVG-STL [20] 0.3831

CoRe [28] 0.7313
DAE-MLP [29] 0.5915
DAE-CoRe [29] 0.7548

2M-AF (ours) 0.8744

Table 3: Accuracy comparison against existing methods on
the MMFS-63 dataset.

4.3 Ablation study
To validate the performance of each module through ablation ex-
periments, firstly, we discuss the significance of introducing multi-
modality. Then, we analyze the competence of SME-GCN from the
aspects of masking rate, the effectiveness of the masking strategy,
and performance compared with other self-supervised methods.
Lastly, we demonstrate the capability of PFM by comparing it with
other fusion methods. The experiments on the AQA-7 dataset utilize
all six categories (like ’All’ in Table 1).

Comparing between different modalities. To demonstrate
the performance on different modalities, we discuss the compari-
son between the RGB modality, skeleton modality, simple modality
fusion (using a fully connected layer after concatenating the fea-
tures), and PFM on AQA-7, UNLV-Diving and MMFS-63 datasets.
To ensure a fair comparison, we set the RGBmodality to use the I3D
ConvNet while the skeleton modality is uniformly implemented
using CTR-GCN. As experimental results are shown in Table 4, (1)
different datasets exhibit distinct inclinations towards modalities.
Both the skeleton modality and RGB modality perform well on
AQA-7 because of its diverse range of action categories, while on
MMFS-63, the skeleton modality exhibits a clear advantage, and on
UNLV-Diving, the RGB modality performs better. This reflects that
different data exhibit significant differences in performance across
different modalities, highlighting the importance of multi-modality
methods in the context of the AQA task. (2) for the modality fusion,
we observe that the direct fusion strategy performs not only lower
than PFM but also than the single modality, especially when there
is a large difference between the performance of the two modalities
(on MMFS-63 and UNLV-Diving). This aligns with our previous
analysis, as the vast information disparity, simply concatenating
features and using fully connected layers is inappropriate.

Configuration of the skeleton backbone. To choose a better
skeleton backbone, we compared several mainstream skeleton net-
works to select the most suitable skeleton backbone for our 2M-AF.
For equal comparison, we added a single MLP layer on each skele-
ton network to regress and predict scores for all skeleton networks.
The experimental results in 5 demonstrate that CTR-GCN is a more
suitable skeleton backbone.
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Dataset RGB Skeleton SF PFM

AQA-7 0.8517 0.8696 0.8631 0.8744
UNLV-Diving 0.8557 0.7744 0.8279 0.8618
MMFS-63 0.7713 0.8595 0.8071 0.8692

Table 4: Comparisons of accuracies when utilizing different
modalities on AQA-7, MMFS-63 and UNLV-Diving datasets.
SF denotes simply fusion modalities by an FC layer.

Methods Accuracy

ST-GCN 0.8618
2S-AGCN 0.8691

EfficientGCN B4 0.8593
PoseC3D 0.8689
CTR-GCN 0.8696

Table 5: Comparisons of accuracies when utilizing different
skeleton backbones on the AQA-7 dataset.

Settings 𝑟𝑚 Sp. Corr.

baseline – 0.8696
A 0.38 0.8848
B 0.69 0.8757
C 0.84 0.8713

Table 6: Ablation study when utilizing SME-GCN on AQA-7
dataset with different 𝑟𝑚 .

Methods Sp. Corr.

baseline (CTR-GCN) 0.8696
temporal+random 0.8737
variance+random 0.8803

AimCLR [9] 0.8706
PSTL [30] 0.8699

temporal+variance 0.8848

Table 7: Comparisons of accuracies when utilizing different
contrastive strategies on the AQA-7 dataset.

The masking rate configuration of SME-GCN. As a self-
supervised work designed for the AQA task, we compare the per-
formance of SME-GCN under different configurations of 𝑟𝑚 and
only CTR-GCN backbone [4] (baseline in Table 6). Due to each
video in AQA-7 consisting of 103 frames, we selected three sets of
masking configurations 𝑟𝑚 = 0.84, 𝑟𝑚 = 0.69, 𝑟𝑚 = 0.38 to retain
16, 32, and 64 frames of valid data. As experimental results are
shown in Table 6, regardless of the value of 𝑟𝑚 , SME-GCN outper-
forms the regular CTR-GCN, demonstrating the effectiveness of our
self-supervised strategy. Additionally, the results are even better
when 𝑟𝑚 = 0.38. We believe that this level of masking introduces

sufficient variations to the data without compromising important
features.

Effects of our masking strategies for SME-GCN. In Table 7,
we conducted ablation experiments on different masking strategies
of SME-GCN. (1) We first compared our own masking strategies.
The ’random’ strategy indicates masking random frames, ’temporal’
denotes temporal masking and ’variance’ represents variance mask-
ing. The masking rate is set as 𝑟𝑚 = 0.38 considering the above
experiment. The experimental results demonstrate that including
each masking strategy improves the model’s accuracy. (2) Next, we
compared our SME-GCN with other skeleton-based self-supervised
representation masking strategies. As the result is shown, with the
same CTR-GCN backbone, all self-supervised strategies improve the
performance of downstream AQA tasks. This result validates our
analysis that self-supervised learning can address the limitations
of skeleton models, while our method achieves superior results
compared to other methods due to the emphasis on preserving
crucial spatial-temporal information in the features.

Settings Methods Sp. Corr.

A MLP 0.8631
B BPAN 0.8488
C FALCONS 0.8680
D PFM+MLP 0.8728
E PFM 0.8744

Table 8: Comparisons of accuracies when utilizing different
regression heads with multi-modality model on the AQA-7
dataset.

Figure 2: A comparison of different methods in the scatter
plot. Each point represents a sample in the test AQA-7 dataset.
The red line denotes the perfect predictions.
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The effects of PFM. To validate the performance of PFM, we
compared its performance with mainstream regression heads which
combine RGB and skeleton modalities. All experiments were con-
ducted on the AQA-7 dataset, using CTR-GCN backbone for the
skeleton modality and I3D backbone for the RGB modality. The ex-
perimental results are shown in Table 8. Compared to settings A, B,
C and E, PFM outperforms mainstream regression heads ([15, 31]),
which indicates our method is superior to feature fusion approaches.
Additionally, we conducted additional tests by adding a regression
head that concatenates features and uses an FC layer to let PFM
achieve selection from three outputs (Setting D). The experimental
results show that this configuration does not improve performance.
We are convinced this is due to the decrease in accuracy caused by
the excessive redundancy of features.

The configuration of loss functions for 2M-AF. We com-
pared several commonly used regression loss functions to deter-
mine the most suitable method for AQA tasks and our framework.
Considering the three configurations in Table 9, we decided to use
the combination of MAE (Mean Absolute Error) and MSE (Mean
Squared Error) losses (Setting C) as the regression loss in 2M-AF.

Settings Losses Sp. Corr.

A MSE 0.8699
B MAE 0.8695
C MSE+MAE 0.8744

Table 9: Comparisons of accuracies when utilizing different
loss functions for 2M-AF on the AQA-7 dataset.

4.4 The efficiency of our method
As shown in Table 10, we compared the efficiency of our method
with the State-of-the-art CoRe-based structure [28, 29] on the AQA-
7 dataset. We first conducted a separate analysis of the efficiency
of our skeleton network SME-GCN and found that it accounts for
only about 1/5 Params and 1/10 FLOPs of the overall framework
2M-AF. This indicates that combining the skeleton modality and
RGB modality will not result in an excessively large number of
parameters. Additionally, we observe that our 2M-AF utilizes similar
parameters but is more efficient in speed compared to the current
mainstream solution, which means our 2M-AF no longer need
complex regression structures but can achieve more outstanding
performance.

Methods Params FLOPs

CoRe 14.80M 557.53G
SME-GCN 3.72M 15.3G
2M-AF 14.78M 168.21G

Table 10: Efficiency comparison against CoRe.

4.5 Visualization study
To have an intuitive understanding of the differences between our
single skeleton stream, single RGB stream, and 2M-AF, we visualize
the prediction results in the form of a scatter plot in Figure 2. From
the graph, we can observe the following in the prediction of AQA-
7: (1) The skeleton stream has more outlier points (such as the
points in the black circle) compared with other plots. This means
the skeleton model performs better on the majority of samples,
but it produces noticeable errors on a small portion of samples,
which may cause by the poor quality of the skeleton data for a few
samples. (2) In contrast, the RGB stream shows many samples in
the red circle deviations from the perfect predictions, suggesting
its limited regression performance for dense samples. (3) Our 2M-
AF successfully addresses the above two issues, which reflects the
effectiveness of our PFM in selecting more accurate predictions
from both streams.

4.6 Case study
To better illustrate the significant differences in the tendency of
different samples towards modalities, we selected a few examples
for demonstration in Figure 3. It can be observed that: (1) for diving
actions ’a’ and ’b’, RGB data shows a clear advantage due to the
significant influence of environmental features such as splashes
on the quality assessment. As well, frames falling into the water
are difficult for the skeleton to estimate, which makes the skeleton
stream limited. (2) for skating actions ’c’ and ’d’, the skeleton stream
demonstrates a noticeable advantage. This is attributed to the fact
that skating actions rely more on spatial relationships which is
suited for the skeleton methods, but the RGB methods will be badly
subject to environmental factors.

4.7 Migration study
The feature enhancement capability of SME-GCN. In order
to showcase the feature enhancement capability of SME-GCN, we
additionally utilized the SME-GCN encoder with an added classifi-
cation head for the action recognition task. Following our backbone
CTR-GCN, we utilize the fusion results from four different skeleton
modalities. The results are presented in Table 11. The experimen-
tal results demonstrate that SME-GCN achieved improvements in
three branches of skeleton modalities and the final result, indicates
that our self-supervised structure also plays a crucial role in feature
enhancement for the classification task.

Model J B JM BM fusion

CTR-GCN 89.93 89.09 86.62 84.53 92.4
SME-GCN 89.45 90.36 87.71 86.40 92.6

Table 11: Comparisons of classification accuracies with CTR-
GCN on the NTU RGB+D 60 X-sub dataset. J, B, JM, and BM
represent joint, bone, jointmotion, and bonemotion skeleton
modalities.

We used the T-SNE method to visualize the features of the afore-
mentioned classification task. Points with different colours repre-
sent different categories, and the results are shown in Figure 4. It
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Figure 3: The case study on (a) (b) Diving and (c) (d) MMFS-63. Where (a) and (b) have the same difficulty (3.2). (c) and (d) utilizes
the same ’2Axel’ category. The statistical results shown in (a) and (b) are the execution score * difficulty.

can be observed that the SME-GCN on the right exhibits relatively
better classification performance.

Figure 4: Scatter plot by the T-SNE.

The feature enhancement capability by different mask
rate on SME-GCN. In order to showcase the feature enhancement
capability of SME-GCN for multiple tasks, we additionally utilized
the SME-GCN encoder with an added classification head for the
action recognition task. The results are presented in Table 12. At
different mask rates, SME-GCN achieves excellent performance
at mask rates up to 0.25-0.5, and the performance degradation
when the mask rate is higher is caused by the loss of too much
information. The experimental results demonstrate that SME-GCN
can achieve improvements on multiple tasks, which shows strong
generalization capabilities.

Table 12: Comparisons of classification accuracies in different
mask rate on SME-GCN.

configurations mask rate frames Acc

A 0 64 92.4
B 0.25 48 92.5
C 0.5 32 92.6
D 0.75 16 91.7

5 CONCLUSION
This paper proposes a framework for the AQA task named 2M-
AF, which is powerful for providing richer features and facilitat-
ing the utilization of multi-modality information. The framework
comprises a self-supervised graph convolutional skeleton network
called SME-GCN, an RGB backbone, and the proposed PFM module.
The experimental results demonstrate that our method outperforms
the existing approaches on the three challenging datasets. As a sim-
ple and flexible framework, we believe that the value of 2M-AF lies
not only in its significant improvement in accuracy but also in its
compatibility with various components, which provides endless
possibilities for research built on the foundation of 2M-AF.
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