
A Theoretical Results

Lemma A.1. Let e0 = 0 < e1 < · · · < eM�1 < T be a sequence following a Sequential Survival

process for node pair (i, j) 2 V2
. Then, the average squared distance between nodes during interval

[em, em+1) associated with survival function Sm(·) and state sm 2 {�1, 1} can be bounded by

bm(�1)  1

(em+1�em)

em+1Z

em

kri(t)� rj(t)k2dt  bm(+1)

where bm(s) := �2s log(em+1�em)� s logS(em+1)� s�(s).

Proof. Let e0 = 0 < e1 < · · · < eM�1 < T be a sequence following a Sequential Survival process
for node pair (i, j) 2 V2, so we have an associated survival function, Sm(t), for each m’th interval
[em, em+1) with state sm 2 S := {�1, 1} due to the construction of the Sequential Survival process.
Then, bounds for the survival function, Sm(t), can be given by using Markov’s inequality as:

Sm(t) = P(Tm � em+1) 
E[Tm]

em+1 � em

=
1

(em+1 �em)

1⇣R em+1

em
exp

�
�(s) + skri(t)� rj(t)k2

�
dt
⌘

where Tm is the random variable showing event time after time em. The last line implies that

1

(em+1�em) Sm(t)
�

em+1Z

em

exp
⇣
�(sm) + skri(t)� rj(t)k2

⌘
dt

= exp(�(sm))

em+1Z

em

exp
⇣
smkri(t)� rj(t)k2

⌘
dt (8)

Furthermore, we can apply Jensen’s inequality for exp(s · x) term since it is a convex function for
any s 2 {�1, 1} value. Hence, we can write

1

(em+1�em)

em+1Z

em

exp
⇣
smkri(t)� rj(t)k2

⌘
dt � exp

0

B@
sm

(em+1�em)

em+1Z

em

kri(t)� rj(t)k2dt

1

CA (9)

By combining Eq. (8) and Eq. (9), we can obtain the following inequality:

1

(em+1�em)2Sm(t)
� exp(�(sm)) exp

0

B@
sm

(em+1�em)

em+1Z

em

kri(t)� rj(t)k2dt

1

CA .

The reorganization of the terms after taking the logarithm of the inequality yields:

2 log(em+1�em) + logSm(em+1) + �(sm)  � sm
(em+1�em)

em+1Z

em

kri(t)� rj(t)k2dt

Finally, we can conclude that

bm(�1)  1

(em+1�em)

em+1Z

em

kri(t)� rj(t)k2dt  bm(+1)

where bm(s) := �2s log(em+1�em)� s logS(em+1)� s�(s).
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Lemma A.2 (Integral Computation). The integral of the hazard function for a given pair (i, j) 2 V2

having constant velocities and states during the interval (tl, tu) is equal to

tuZ

tl

�ij(s, t) =

p
⇡

2k�vijk
exp

⇣
�(s) + sk�xijk2 � s⇢2ij

⌘

⇥ Eij(s, ⌧(tl), ⌧(tu))
where ⇢ij := h�vij ,�xiji/k�vijk and E(⌧(tl), ⌧(tu), s) is defined by

Eij(s, tl, tu) :=

(
erf
�
⌧(tu)

�
� erf

�
⌧(tl)

�
s = +1

erfi
�
⌧(tu)

�
� erfi

�
⌧(tl)

�
s = �1

for position difference, �xij := ri(tl)� rj(tl), at time tl and velocity difference �vij := vi � vj .

The function ⌧ : (tt, tu) ! R is defined as k�vijkt+ ⇢ij , and erf(·), and erfi(·) represent the error

and the imaginary error functions.

Proof. Since it is supposed that the pair of nodes (i, j) 2 V2 have constant velocities and states over
the given interval (tl, tu), the integral can be reexpressed in the following way:

tuZ

tl

�ij(s, t)dt =

tuZ

tl

exp
⇣
�(s) + skri(t)�rj(t)k2

⌘
dt

=

tuZ

tl

exp
⇣
�(s) + sk�xij+�vij(t� tl)k2

⌘
dt

=

tu�tlZ

0

exp
⇣
�(s)+sk�xij+�vijtk2

⌘
dt (10)

where �xij := ri(tl)� rj(tl) and �vij := vi � vj indicate the differences between the positions
and velocities, and the last line, Eq. (10), is obtained by changing the boundaries of the integral.
Since the bias term, �(s), does not vary by time, it can be moved outside the integral term:

tu�tlZ

0

exp
⇣
�(s) + sk�xij +�vijtk2

⌘
dt = exp

�
�(s)

�
tu�tlZ

0

exp
⇣
sk�xij +�vijtk2

⌘
dt (11)

Then, we can rewrite the integral term as follows:
tu�tlZ

0

exp
⇣
sk�xij +�vijtk2

⌘
=

tu�tlZ

0

exp
⇣
sk�xijk2+2s

⌦
�xij ,�vij

↵
t+sk�vijk2t2

⌘
dt

=

tu�tlZ

0

exp
⇣
sk�xijk2 �s⇢2ij + s

�
k�vijkt+⇢ij

�2 ⌘
dt

= exp
⇣
sk�xijk2�s⇢2ij

⌘tu�tlZ

0

exp
⇣
s
�
k�vijkt+⇢ij

�2⌘
dt (12)

where ⇢ij := h�vij ,�xiji/k�vijk. A substitution y = k�vijkt+ ⇢ij gives us dy = k�vijkdt,
so we can write

tu�tlZ

0

exp
⇣
s
�
k�vijkt+⇢ij

�2 ⌘
dt =

1

k�vijk

Z ⌧(tu)

⌧(tl)
exp

⇣
sy2
⌘
dy

=
1

k�vijk

p
⇡

2

 
2p
⇡

Z ⌧(tu)

⌧(tl)
exp

⇣
sy2
⌘
dy

!

=

p
⇡

2k�vijk
Eij(s, ⌧(tl), ⌧(tu)) (13)
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where Eij(s, ⌧(tl), ⌧(tu)) is given by

Eij(s, tl, tu) :=

(
erf
�
⌧(tu)

�
� erf

�
⌧(tl)

�
s = +1

erfi
�
⌧(tu)

�
� erfi

�
⌧(tl)

�
s = �1

for ⌧(t) := k�vijkt+ ⇢ij . By combining all the results acquired in Equations (10) to (13), we can
conclude that

tuZ

tl

exp
⇣
�(s) + skrij � rijk2

⌘
dt

=

p
⇡

2k�vijk
exp
⇣
�(s)+sk�xijk2�s⇢2ij

⌘
Eij(s,⌧(tl),⌧(tu))

B Inference

Our objective function defined by the log-likelihood given in Eq. (4) together with the log-prior
regularization term is a non-convex function, so the learning strategy applied for inferring the model’s
hyper-parameters is crucial to avoid poor-quality local minima in the resulting representations.

The position vectors (x) are initialized uniformly within the [�1, 1] range at random. The bias terms
(�) and velocities (v) are sampled from the standard normal distribution. The prior parameters,
(�B , �N ) are set to 1B/B and 1N/N at the beginning. We follow a sequential learning strategy
for training the model, i.e., we optimize different sets of parameters in stages. Firstly, we optimize
the velocities (v) for 100 epochs. Then, we include the initial positions (x) into the optimization
procedure, and we continue to train the model by optimizing these two parameters (x, v) together for
another 100 epochs. Finally, we incorporate the bias and prior parameters and optimize all model
hyper-parameters together. In total, we use 300 epochs for the whole learning procedure, and the
Adam optimizer [20] is employed with an initial learning rate of 0.1. In the experiments, we set the
number of bins (B) to 100 to ensure sufficient capacity for tracking nodes in the latent space (D = 2).

C Experimental Evaluation

In this section, we provide further details regarding the experiments and dynamic visualizations.

C.1 Datasets.

We treat the networks as undirected and employ the finest available temporal granularity for the input
timestamps, including measurements at the level of seconds and milliseconds. We tailor the datasets
according to the chosen baselines to enable a meaningful comparison. For instance, we transform
dynamic networks into static weighted and unweighted networks by aggregating links over time for
static baselines. Additionally, we exclude the non-link events for the baselines since they cannot
process these data points.

In the experiments, we have considered the following four real networks:

• Facebook [38] is a friendship network signifying one user’s presence within another’s friend
list. We considered users having at least 200 links.

• NeurIPS [9] was formed through collaborations among authors whose works were presented
at the NeurIPS conference covering the years from 1989 to 2001. We focused on authors
with at least ten connections, assuming a year-long duration for each work.

• Contacts [8] consists of the interactions among individuals within an office building, encom-
passing a span of nine days in 2013. (vi) HyperText [17] was collected during a conference
in which participants wore radio badges tracking their face-to-face interactions, covering a
period of approximately 2.5 days.
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• Infectious [17] is another interaction network collected during an event in Dublin. In the
contact datasets (v-vii), each timestamp associated with a link corresponds to a 20-second
connection. When multiple link events occur within a two-minute window, we aggregate
these events and treat them as a single link duration.

We also generated two synthetic networks to examine the model’s predictive behavior in controlled
settings. The link and non-link event times of the Synthetic-↵ graph are generated from the Sequential
Survival process introduced in Subsection 2.1, and the initial embedding locations and velocities are
sampled from a multivariate normal distribution as described in [4]. For the Synthetic-� network, we
divide the timeline into equal-sized 8 bins and randomly group the nodes into 10 clusters for each
bin. Then, we establish connections between nodes within the same cluster with a probability of
0.8, while nodes belonging to different clusters are linked with a 10�2 probability. These links stay
persistent until the next bin. We provide a concise overview of the networks in Table 4.

Table 4: Network statistics (|V|: Number of nodes, |Emin|: Min. number of events that a dyad has,
|Emax|: Max. number of events that a dyad has, |E|: Total number of events).

|V| |Emin| |Emax| |E| Resolution

Synthetic-↵ 100 1 18 4286 N/A
Synthetic-� 100 2 12 8300 N/A

Contacts 92 1 197 5313 Second
HyperText 113 1 133 10450 Second
Infectious 410 1 29 9827 Second
Facebook 461 1 1 10222 Second
NeurIPS 327 1 6 1940 Year

C.2 Continuous-time Dynamic Visualization.

We provide the snapshots of the learned embeddings for various timestamps in Figures 3 to 9 and the
intermittent time-persistent linkage structures of the networks are depicted in Figure 10.

C.3 Optimization.

In our experiments, we train all the models for 300 epochs. The number of walks, walk length, and
window size parameters are set to 80, 10, and 10 for NODE2VEC and 10, 80, and 10 for CTDNE.
The negative sample sizes for HTNE and M2DNE are selected as 10. The learning rate and batch size
for LDM, PIVEM, and GRAS2P are set to 0.1 and 100, respectively. We tune the scaling factor of
the covariance matrix from the set {101, 102, . . . , 1010}, and the number of bins is chosen as 100 for
both PIVEM and GRAS2P. For all the other hyperparameters, we employed the default parameters.

C.4 Weighted-LDM.

In Table 5, we report the performance of the LDM model in terms of the AUC-ROC and AUC-PR
scores for the weighted versions of the datasets.

Table 5: Performance of LDM for the weighted versions of the datasets in various prediction tasks.
Reconstruction Completion Future Link Prediction

AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

Synthetic-↵ .701± .002 .658± .004 .689± .008 .613± .010 .769± .004 .731± .005
Synthetic-� .561± .013 .549± .015 .485± .013 .487± .007 .497± .016 .500± .016

Contacts .585± .003 .538± .004 .505± .010 .490± .009 .818± .003 .764± .005
HyperText .533± .005 .501± .007 .519± .017 .496± .009 .605± .011 .554± .013
Infectious .693± .008 .612± .011 .686± .004 .616± .008 .938± .005 .903± .014
Facebook .681± .005 .615± .005 .714± .005 .656± .008 .726± .005 .678± .005
NeurIPS .740± .007 .666± .009 .689± .011 .620± .015 .731± .010 .671± .013

4



(a) t = 40 (b) t = 80 (c) t = 121 (d) t = 161 (e) t = 202 (f) t = 242

(g) t = 282 (h) t = 323 (i) t = 363 (j) t = 404 (k) t = 444 (l) t = 484

(m) t = 525 (n) t = 565 (o) t = 606 (p) t = 646 (q) t = 686 (r) t = 727

Figure 3: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over Synthetic-↵.

(a) t = 40 (b) t = 80 (c) t = 121 (d) t = 161 (e) t = 202 (f) t = 242

(g) t = 282 (h) t = 323 (i) t = 363 (j) t = 404 (k) t = 444 (l) t = 484

(m) t = 525 (n) t = 565 (o) t = 606 (p) t = 646 (q) t = 686 (r) t = 727

Figure 4: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over Synthetic-�.
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(a) t = 78678 (b) t = 128557 (c) t = 178436 (d) t = 228315 (e) t = 278193 (f) t = 328072

(g) t = 377951 (h) t = 427830 (i) t = 477709 (j) t = 527587 (k) t = 577466 (l) t = 627345

(m) t = 677224 (n) t = 727103 (o) t = 776981 (p) t = 826860 (q) t = 876739 (r) t = 926618

Figure 5: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over Contacts.

(a) t = 10719 (b) t = 21438 (c) t = 32157 (d) t = 42876 (e) t = 53595 (f) t = 64315

(g) t = 75034 (h) t = 85753 (i) t = 96472 (j) t = 107191 (k) t = 117911 (l) t = 128630

(m) t = 139349 (n) t = 150068 (o) t = 160787 (p) t = 171507 (q) t = 182226 (r) t = 192945

Figure 6: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over HyperText.
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(a) t = 3712333 (b) t = 7424667 (c) t =
11137000

(d) t =
14849334

(e) t =
18561668

(f) t =
22274000

(g) t =
25986334

(h) t =
29698668

(i) t = (t =
33411000

(j) t =
37123332

(k) t =
40835664

(l) t =
44548000

(m)
t = 48260332

(n) t =
51972664

(o) t =
55685000

(p) t =
59397332

(q) t =
63109664

(r) t =
66822000

Figure 7: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over Facebook.

(a) t = (t =
1989.61

(b) t = 1990.21 (c) t = 1990.82 (d) t = 1991.42 (e) t = 1992.03 (f) t = 1992.64

(g) t = 1993.24 (h) t = 1993.85 (i) t = 1994.45 (j) t = 1995.06 (k) t = 1995.67 (l) t = 1996.27

(m) t = 1996.88 (n) t = 1997.48 (o) t = 1998.09 (p) t = 1998.70 (q) t = 1999.30 (r) t = 1991.91

Figure 8: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over NeurIPS.

7



(a) t = (t =
1435

(b) t = 2870 (c) t = 4306 (d) t = 5741 (e) t = 7176 (f) t = 8612

(g) t = 10047 (h) t = 11482 (i) t = 12918 (j) t = 14353 (k) t = 15788 (l) t = 17224

(m) t = 18659 (n) t = 20094 (o) t = 21530 (p) t = 22965 (q) t = 24401 (r) t = 25836

Figure 9: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points
over Infectious.
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Figure 10: Intermittent time-persistent linkage structures of the networks.
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D Table of Symbols

We provide the list of the symbols used in the manuscript and their explanations in Table 6.

Table 6: Table of symbols
Symbol Description

G Graph
V Vertex set
E Edge set

Eij Edge set of node pair (i, j)
N Number of nodes
D Dimension size
IT Time interval
T Time length
B Number of bins
�i Bias term of node i
x Initial position matrix

v(b) Velocity matrix for bin b
ri(t) Latent representation of node i at time t
�ij(t) Intensity of node pair (i, j) at time t

eij An event time of node pair (i, j)
erf Error function
erfi Imaginary Error function
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