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ABSTRACT

Bayesian deep learning counts on the quality of posterior distribution estimation.
However, the posterior of deep neural networks is highly multi-modal in nature,
with local modes exhibiting varying generalization performance. Given a practi-
cal budget, targeting at the original posterior can lead to suboptimal performance,
as some samples may become trapped in “bad” modes and suffer from overfitting.
Leveraging the observation that “good” modes with low generalization error often
reside in flat basins of the energy landscape, we propose to bias sampling on the
posterior toward these flat regions. Specifically, we introduce an auxiliary guid-
ing variable, the stationary distribution of which resembles a smoothed posterior
free from sharp modes, to lead the MCMC sampler to flat basins. By integrating
this guiding variable with the model parameter, we create a simple joint distri-
bution that enables efficient sampling with minimal computational overhead. We
prove the convergence of our method and further show that it converges faster than
several existing flatness-aware methods in the strongly convex setting. Empirical
results demonstrate that our method can successfully sample from flat basins of
the posterior, and outperforms all compared baselines on multiple benchmarks
including classification, calibration, and out-of-distribution detection.

1 INTRODUCTION

The effectiveness of Bayesian neural networks relies heavily on the quality of posterior distribution
estimation. However, achieving an accurate estimation of the full posterior is extremely difficult due
to its high-dimensional and highly multi-modal nature (Zhang et al.| 2020b; [zmailov et al., [2021).
Moreover, the numerous modes in the energy landscape typically exhibit varying generalization
performance. Flat modes often show superior accuracy and robustness, whereas sharp modes tend
to have high generalization errors (Hochreiter & Schmidhuber, 1997 Keskar et al.,|2017; Bahri et al.,
2022). This connection between the geometry of energy landscape and generalization has spurred
many works in optimization, ranging from theoretical understanding (Neyshabur et al., [2017; |Dinh
et al.,[2017; |[Dziugaite & Royl 2018}, Jiang et al., [2019a) to new optimization algorithms (Mobabhi,
2016; Izmailov et al.l 2018 /Chaudhari et al., [2019; |[Foret et al., [2020).

However, most of the existing Bayesian methods are not aware of the flatness in the energy landscape
during posterior inference (Welling & Teh| 2011} |Chen et al., 2014; Ma et al.| |2015 Zhang et al.,
2020b). Their inference strategies are usually energy-oriented and cannot distinguish between flat
and sharp modes that have the same energy values. This limitation can significantly undermine their
generalization performance, particularly in practical situations where capturing the full posterior is
too costly. In light of this, we contend that prioritizing the capture of flat modes is essential when
conducting posterior inference for Bayesian neural networks. This is advantageous for improved
generalization as justified by previous works (Hochreiter & Schmidhuber| 1997 |[Keskar et al., 2017}
Bahri et al.l 2022). It can further be rationalized from a Bayesian marginalization perspective:
within the flat basin, each model configuration occupies a substantial volume and contributes signif-
icantly to a more precise estimation of the predictive distribution (Bishopl[2006). Moreover, existing
flatness-aware methods often rely on a single solution to represent the entire flat basin (Chaudhari
et al.| 2019; [Foret et al.| 2020), ignoring the fact that the flat basin contains many high-performing
models. Therefore, Bayesian marginalization can potentially offer significant improvements over
flatness-aware optimization by sampling from the flat basins (Wilson, 2020; [Huang et al.| 2020).
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Figure 1: Illustration of Entropy-MCMC. (a) shows how the guiding variable 6, pulls 0 toward flat
basins; (b) shows two posterior distributions, where p(6,|D) is a smoothed distribution transformed
from p(0|D), and only keeps flat modes. Entropy-MCMC prioritizes flat modes by leveraging the
guiding variable 8, from the smoothed posterior as a form of regularization.

Prioritizing flat basins during posterior inference poses an additional challenge to Bayesian infer-
ence. Even for single point estimation, explicitly biasing toward the flat basins will introduce sub-
stantial computational overhead, inducing nested loops (Chaudhari et al.| [2019; |Dziugaite & Roy,
2018)), doubled gradients calculation (Foret et al., [2020; Mollenhoff & Khan| [2022) or min-max
problems (Foret et al., |2020). The efficiency problem needs to be addressed before any flatness-
aware Bayesian method becomes practical for deep neural networks.

In this paper, we propose an efficient sampling algorithm to explicitly prioritize flat basins in the en-
ergy landscape of deep neural networks. Specifically, we introduce an auxiliary guiding variable 8,
into the Markov chain to pull model parameters 6 toward flat basins at each updating step (Fig. [La).
6, is sampled from a smoothed posterior distribution which eliminates sharp modes based on local
entropy (Baldassi et al., 2016) (Fig. . 0, can also be viewed as being achieved by Gaussian
convolution, a common technique in diffusion models (Sohl-Dickstein et al., 2015} Song & Ermon,
2019). Our method enjoys a simple joint distribution of € and 6,,, and the computational overhead
is similar to Stochastic gradient Langevin dynamics (SGLD) (Welling & Tehl 2011). Theoretically,
we prove that our method is guaranteed to converge faster than some common flatness-aware meth-
ods (Chaudhari et al., |2019; |Dziugaite & Roy, [2018) in the strongly convex setting. Empirically,

we demonstrate that our method successfully finds flat basins efficiently across multiple tasks. Our
main contributions are summarized as follows:

* We propose Entropy-MCMC (EMCMC) for sampling from flat basins in the energy land-
scape of deep neural networks. EMCMC utilizes an auxiliary guiding variable and a simple
joint distribution to efficiently steer the model toward flat basins.

* We prove the convergence of EMCMC and further show that it converges faster than several
existing flatness-aware methods in the strongly convex setting.

* We provide extensive experimental results to demonstrate the advantages of EMCMC in
sampling from flat basins. EMCMC outperforms all compared baselines on classification,
calibration, and out-of-distribution detection with comparable overhead akin to SGLD. We
release the code athttps://github.com/lblaoke/EMCMC.

2 RELATED WORKS

Flatness-aware Optimization. The concept of flatness in the energy landscape was first stud-
ied by Hochreiter & Schmidhuber (1994)), and its connection with generalization was then em-
pirically discussed by Keskar et al.[ (2017); [Dinh et al.| (2017); Jiang et al.| (2019b). To pursue
flatness for better generalization, Baldassi et al.| (2015) proposed the local entropy to measure the
flatness of local modes, [Baldassi et al.[(2016)) used “replicated” models to implement local entropy,
Entropy-SGD (Chaudhari et al., 2019) introduced a nested chain to approximate the local entropy,
SAM (Foret et al.| [2020) developed a new optimizer to minimize the worst-case near the current
model, bSAM (Mollenhoft & Khanl 2022)) further improved SAM with a Bayes optimal convex
lower bound, LPF (Bisla et al., |2022) introduced low-pass filter to actively search flat basins, and
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SWA (Izmailov et al.,[2018) found that averaging weights along the trajectory of SGD training can
also find flatter modes. Our Entropy-MCMC follows the local entropy measurement and collects
more than a single point to fully exploit the flat basins. For detailed comparisons with prior works
considering local entropy, please refer to Appendix [B]

MCMC on Deep Neural Networks. Markov chain Monte Carlo is a class of general and prac-
tical sampling algorithms (Andrieu et al., 2003)), which has been applied to infer Bayesian neural
network posteriors (Neal,2012). SGMCMC (Welling & Teh, 201 1; Ma et al.,|2015)) methods use the
mini-batching technique to adapt MCMC to deep neural networks. SGHMC (Chen et al., 2014)) ex-
ploited the second-order Langevin dynamics to calibrate the stochastic estimates of HMC gradients.
¢cSGMCMC (Zhang et al.,|2020b) further improves sampling efficiency by leveraging a cyclical step
size schedule. Symmetric Split HMC (Cobb & Jalaian, 2021) developed a way to apply HMC to
deep neural networks without stochastic gradients. Our Entropy-MCMC builds upon the SGMCMC
framework and is designed to favor the flat basins in the energy landscape during sampling.

3 PRELIMINARIES

Flatness-aware Optimization. One common flatness-aware optimization technique is to use the
concept of local entropy, which measures the geometric properties of the energy landscape (Baldassi
et al.| 20165 |Chaudhari et al.,[2019). The local entropy is computed by:

1
F(i) =1og [ exp{~1(6) ~ 5.0 - 0 pao’, m
) 21
where f(-) is the loss function computed over the entire dataset and 7 is a scalar. The local entropy
of a point 0 is determined by its neighbors weighted by their distances, which considers the volume
of local modes. Previous optimization methods minimize —F(6;7) to find the flat minimum.

SGMCMC. Given a dataset D, a neural network with parameters @ € R, the prior p(6) and the
likelihood p(D|@), we can use Markov chain Monte Carlo (MCMC) to sample from the posterior
p(0|D) o exp(—U(H)), where the energy function is U(0) = — > _,logp(x|@) — logp(0).
However, the computational cost for MCMC with large-scale data is too high to be practical. SGM-
CMC tackles this problem by stochastic gradient VUg based on a subset of data & C D. We
use Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, |2011) in the paper as the
backbone MCMC algorithm, which has the following updating rule:

0 — 6 —aVeUs(0) +V2a - €, 2)

where « is the step size and € is standard Gaussian noise. Our method can also be implemented by
other SGMCMC methods. During testing, Bayesian marginalization is performed to make predic-
tions based on the sample set collected during sampling S = {6} jle and the predictive distribution

is obtained by p(y|x, D) = [ p(y|x,0)p(8|D)d6 ~ Y. s (Y|, 6).

4 ENTROPY-MCMC

In this section, we present the Entropy-MCMC algorithm. We introduce the guiding variable 8,
obtained from the local entropy in Section[4.1]and discuss the sampling strategy in Section[4.2]

4.1 FROM LOCAL ENTROPY TO FLAT POSTERIOR

While flat basins in the energy landscape are shown to be of good generalization (Hochreiter &
Schmidhuber, [1997} [Keskar et al., 2017; Bahri et al., [2022)), finding such regions is still challenging
due to the highly multi-modal nature of the DNN energy landscape. The updating direction of the
model typically needs extra force to keep the sampler away from sharp modes (Chaudhari et al.,
2019; [Foret et al.l 2020). To bias sampling to flat basins, we look into the local entropy (Eq. ,
which can eliminate the sharp modes in the energy landscape (Chaudhari et al.|[2019).

We begin by the original posterior distribution p(8|D) o exp(—f(0)) = exp{logp(D|0) +
log p(@)}, which contains both sharp and flat modes. By replacing the original loss function with
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local entropy, we obtain a smoothed posterior distribution in terms of a new variable 6,,:

1
exp{—f<0> ~5-lo —ea|2}d0. )

The effect of local entropy on this new posterior is visualized in Fig. The new posterior mea-
sures both the depth and flatness of the mode in p(@|D) by considering surrounding energy values.
Thereby, p(0,|D) is expected to primarily capture flat modes in the energy landscape, which can
be used as the desired external force to revise the updating directions of the model parameter 6.
Moreover, the smoothed posterior p(6|D) can be regarded as being obtained through Gaussian con-
volution, a common approach in diffusion models (Sohl-Dickstein et al., 2015} |Song & Ermon)
2019). We also show the effect of hyper-parameter 7 on the flatness of p(8,|D) in Appendix

p(04|D) x exp F(O,;1n) = /@

However, the complex integral in Eq. [3|requires marginalization on the model parameter 8, which
poses a non-trivial challenge. Previous works using local entropy usually adopt an inner Markov
chain for approximation (Chaudhari et al., 2019} Dziugaite & Royl [2018), which sacrifices the accu-
racy in local entropy computation and induces computationally expensive nested loops in training.
We tackle this challenge in a simple yet principled manner, eliminating the need for nested loops or
approximation. This is achieved by coupling @ ~ p(0|D) and 8, ~ p(6,|D) into a joint posterior
distributiorﬂ which enjoys a simple form, as discussed in Lemmaj|l

Lemma 1. Assume 6 = [07,07)T € R2® and 6 has the following distribution:
~ 1
(B1D) = p(6.0.ID) o exp {~1(6) ~ 510 - 0.1 | @

Then the marginal distributions of 6 and 8, are the original posterior p(6|D) and p(6.|D) (Eq. B3).
Further, the density p(0|D) integrates to a finite quantity and thus it is mathematically well-defined.

This joint posterior offers three key advantages: i) by coupling 8 and 6,, we avoid the intricate inte-
gral computation, and thus remove the requirement of expensive nested training loops and mitigate
the MC approximation error; ii) the joint posterior turns out to be surprisingly simple, making it
easy to sample from both empirically and theoretically (details discussed in Sections .2 and [5); iii)
after coupling, 8, provides additional paths for 6 to traverse, making 6 reach flat modes efficiently.

4.2 SAMPLING FROM FLAT BASINS

We discuss how to sample from the joint posterior distribution (Eq. @) in this section. We adopt
SGLD (Welling & Teh, |2011)), a simple stochastic gradient MCMC algorithm that is suitable for
deep neural networks, as the backbone of EMCMC sampling. More advanced MCMC algorithms
can also be combined with our method. The energy function of the joint parameter variable 0 is

U(g) = f(0) + %HO — 6,||%, and thus its gradients is given by:
VeU(8) } _ [ Vo f(0) +7(6 — 64) }

Val'(0) = [ 7 L6, " 0)

Ve, U(0) ®

For the model parameter 6, the original gradient direction Vg f(0) is revised by %(0 —6,) to get

the flatness-aware gradient direction VU (5) as visualized in Fig. Importantly, the practical
implementation does not require computing Vg U(8) through back-propagation, as we can utilize

the analytical expression presented in Eq. |5} Therefore, despite 8 being in a 2d dimension, our cost
of gradient computation is essentially the same as d-dimensional models (e.g., standard SGLD).

With the form of the gradients in Eq.[5] the training procedure of EMCMC is straightforward us-
ing the SGLD updating rule in Eq. 2| The details are summarized in Algorithm [I] At testing
stage, the collected samples S are used to approximate the predictive distribution p(y|x, D) ~
>0.cs P(ylz, B5). Our choice of sampling from the joint posterior distribution using SGLD, rather
than a Gibbs-like approach (Gelfand, [2000), is motivated by SGLD’s ability to simultaneously up-
date both 0 and 6,,, which is more efficient than alternative updating (see Appendix [A]for a detailed

! Although we refer to p(§ |D) as a joint “posterior” to denote its dependency on the dataset, it is obtained
through coupling rather than Bayes’ rule. Thus, it does not have an explicit prior distribution.
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discussion). For the sample set S, we collect both € and 8,, after the burn-in period in order to obtain
more high-quality and diverse samples in a finite time budget (see Appendix for the evidences
that 6 and 6, find the same mode and Appendix [E.3|for performance justification).

In summary, thanks to EMCMC’s simple joint distribution, conducting sampling in EMCMC is
straightforward, and its computational cost is comparable to that of standard SGLD. Despite its
algorithmic simplicity and computational efficiency, EMCMC is guaranteed to bias sampling to flat
basins and obtain samples with enhanced generalization and robustness.

Algorithm 1: Entropy-MCMC

Inputs: The model parameter @ € ©, guiding variable 8, € ©, and dataset D = {(x;,v:)}
Results: Collected samples S C ©;

0,+6,8S+0; /* Initialize =/
for each iteration do

= < A mini-batch sampled from D;

Uz < —logp(E[6) — logp(8) + 5[0 — 6]
0« 0—aVeUs +V2a- € ; /* €1,62 ~N(0,I) %/
0, — 0, —aVe, U=z + V2 - €;

N .
i=1°

2.
s

if after burn-in then
| S+ Su{6,6,};: /* Collect samples x/
end

end

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis on the convergence rate of Entropy-MCMC and
compare it with previous local-entropy-based methods including Entropy-SGD (Chaudhari et al.,
2019) and Entropy-SGLD (Dziugaite & Roy, [2018) (used as a theoretical tool in the literature rather
than a practical algorithm). We leverage the 2-Wasserstein distance bounds of SGLD, which as-
sumes the target distribution to be smooth and strongly log-concave (Dalalyan & Karagulyan,[2019).
While the target distribution in this case is unimodal, it still reveals the superior convergence rate
of EMCMC compared with existing flatness-aware methods. We leave the theoretical analysis on
non-log-concave distributions for future work. Specifically, we have the following assumptions for
the loss function f(-) and stochastic gradientﬂ

Assumption 1. The loss function f(0) in the original posterior distribution © = p(0|D)
exp (—f(0)) is M-smooth and m-strongly convex (i.e., mI < V2f(0') < MI).

Assumption 2. The variance of stochastic gradients is bounded by E[||V f(0) — V f=(0)]?] < o2
for some constant o > 0.

To establish the convergence analysis for EMCMC, we first observe that the smoothness and convex-
ity of the joint posterior distribution jein (0, 04) = p(0,0,|D) in Eq. is the same as the original
posterior p(6|D), which is formally stated in Lemma 2}

Lemma 2. IfAssumptionholds andm < 1/n < M, then the energy function in the joint posterior
distribution Ty (0, 0,) = p(0, 04|D) is also M-smooth and m-strongly convex.

With the convergence bound of SGLD established by Dalalyan & Karagulyan|(2019), we derive the
convergence bound for EMCMC in Theorem I}

Theorem 1. Under Assumptions[l|and[2] let 11 be the initial distribution and jui be the distribution
obtained by EMCMC after K iterations. If m < 1/n < M and the step size « < 2/(m + M), the
2-Wasserstein distance between |1 and Tjin Will have the following upper bound:
o2(20d)'/? ©)
1.65M + oy/m’

2 Assumption [1/842| are only for the convergence analysis. Our method and experiments are not restricted to
the strong convexity.

Wapixe, Tjoins) < (1 — am)S - Wy (o, ©) + 1.65(M/m)(2ad)*/? +
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Comparing Theorem [I] with the convergence bound of SGLD obtained by [Dalalyan & Karagulyan
(2019), the only difference is the doubling of the dimension, from d to 2d. Theorem [I|implies that
the convergence rate of EMCMC will have at most a minor slowdown by a constant factor compared
to SGLD while ensuring sampling from flat basins.

In contrast, previous local-entropy-based methods often substantially slow down the convergence to
bias toward flat basins. For example, consider Entropy-SGD (Chaudhari et al.| [2019) which mini-
mizes a flattened loss function fj.(0) = —F(0;1) = —log [ exp {—f(@’) - ﬁ 16 — 0'||2}d0'.

We discuss the convergence bound of Entropy-SGD in Theorem [2| which shows how the presence
of the integral (and the nested Markov chain induced by it) slows down the convergence.

Theorem 2. Consider running Entropy-SGD to minimize the flattened loss function f,(6) under
Assumptions |I| and |2| Assume the inner Markov chain runs L iterations and the 2-Wasserstein
distance between the initial and target distributions is always bounded by k. Let f]:,“m represent the
global minimum value of ff.(0) and Ey := E fpu(601) — fg,. If the step size o < 2/(m + M), then
we have the following upper bound:

K
am A(l4nM)
Fr<|1- - E _ 7
K= ( 1+nM> T ™
2_(1_ L. M+1/n 1/2 o*(ad)'/?
where A (I—am)* -k+1.65 (m+1/?7) (ad)'/* + (1 n) o T

Another example is Entropy-SGLD (Dziugaite & Royl, [2018)), a theoretical tool established to ana-
lyze Entropy-SGD. Its main distinction with Entropy-SGD is the SGLD updating instead of SGD
updating in the outer loop. The convergence bound for Entropy-SGLD is established in Theorem [3]

Theorem 3. Consider running Entropy-SGLD to sample from my,(0) x exp F(0;n) under As-
sumptions [[|and 2] Assume the inner Markov chain runs L iterations and the 2-Wasserstein dis-
tance between initial and target distributions is always bounded by k. Let vy be the initial distri-
bution and v be the distribution obtained by Entropy-SGLD after K iterations. If the step size
a<2/(m+ M), then:

1+nM A(l+nM
Wa(Vie, Thar) < (l—am)K~W2(1/0,7rﬂa,)+1.65 (1 +7777m> (M/m)(ad)l/Q—i—%, (8)
2 _ (1 L. M+1/n 1/2 o*(ad)'/?
where A* = (1 —am)* -k + 1.65 (m+1/77> (ad)t/* + et 1/n) oy

The complete proof of theorems is in Appendix [C] Comparing Theorem I} 2]and [3] we observe that
the convergence rates of Entropy-SGD and Entropy-SGLD algorithms are significantly hindered due
to the presence of the nested Markov chains, which induces a large and complicated error term A.
Since o and « are typically very small, the third term in Theorem [T| will be much smaller than both
the third term in Theorem[3]and the second term in Theorem[2l

To summarize, the theoretical analysis provides rigorous guarantees on the convergence of Entropy-
MCMC and further demonstrates the superior convergence rate of Entropy-MCMC compared to
previous methods in the strongly convex setting.

6 EXPERIMENTS

We conduct comprehensive experiments to show the superiority of EMCMC. Section [6.1] and [6.3]
demonstrate that EMCMC can successfully sample from flat basins. Section verifies the fast
convergence of EMCMC. Section [6.4]and [6.5|demonstrate the outstanding performance of EMCMC
on multiple benchmarks. Following|Zhang et al.|(2020b), we adopt a cyclical step size schedule for
all sampling methods. For more implementation details, please refer to Appendix [E]

6.1 SYNTHETIC EXAMPLES

To demonstrate EMCMC'’s capability to sample from flat basins, we construct a two-mode energy
landscape 3N ([—2, —1]7,0.5I) + $N([2,1]7, I) containing a sharp and a flat mode. To make the
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Figure 2: Sampling trajectories on a synthetic energy landscape with sharp (lower left) and flat (top
right) modes. The initial point is located at the ridge of two modes. EMCMC successfully biases
toward the flat mode whereas SGD and SGLD are trapped in the sharp mode.
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Figure 3: Logistic regression on MNIST in terms of training NLL and testing accuracy (repeated 10
times). EMCMC converges faster than others, which is consistent with our theoretical analysis.

case challenging, we set the initial point at (—0.2, —0.2), the ridge of the two modesEL which has no
strong preference for either mode. The settings for this experiment are: 7 = 0.5, a = 5x 1073, 1000
iterations, and collecting samples per 10 iterations. Fig. 2] shows that the proposed EMCMC finds
the flat basin while SGD and SGLD still prefer the sharp mode due to the slightly larger gradients
coming from the sharp mode. From Fig. 2Jc)&(d), we see that the samples of 6, are always around
the flat mode, showing its ability to eliminate the sharp mode. Although 6 visits the sharp mode
in the first few iterations, it subsequently inclines toward the flat mode, illustrating the influence of
gradient revision by the guiding variable 8,. If choosing an appropriate n, EMCMC will find the
flat mode no matter how it is initialized. This is due to the stationary distribution of 8,, which is
flattened and removes the sharp mode. Through the interaction term, 8, will encourage 8 to the flat
mode. We also show the results for different initialization in Appendix [D.]

6.2 LOGISTIC REGRESSION

To verify the theoretical results on convergence rates in Section [5] we conduct logistic regres-
sion on MNIST (LeCunl |1998) to compare EMCMC with Entropy-SGD |Chaudhari et al.| (2019),
SGLD (Welling & Tehl 2011) and Entropy-SGLD (Dziugaite & Roy} [2018). We follow Maclaurin
& Adams|(2015) and[Zhang et al.[(2020a) to use a subset containing 7s and 9s and the resulting pos-
terior is strongly log-concave, satisfying the assumptions in Section[3} Fig. 3] shows that EMCMC
converges faster than Entropy-SG(L)D, demonstrating the advantage of using a simple joint distri-
bution without the need for nested loops or MC approximation, which verifies Theorems [T& 2l& [3}
Besides, while EMCMC and SGLD share similar convergence rates, EMCMC achieves better gen-
eralization as shown by its higher test accuracy. This suggests that EMCMC is potentially beneficial
in unimodal distributions under limited budgets due to finding samples with high volumes.

6.3 FLATNESS ANALYSIS ON DEEP NEURAL NETWORKS

We perform flatness analysis with ResNet18 (He et al., [2016) on CIFAR100 (Krizhevskyl 2009).
We use the last sample of SGD, SGLD and EMCMC (averaged result from 6 and 6,) respectively,
and each experiment is repeated 3 times to report the averaged scores.

Eigenspectrum of Hessian. The Hessian matrix of the model parameter measures the second-
order gradients of a local mode on the energy landscape. Smaller eigenvalues of Hessian indicate a
flatter local geometry (Chaudhari et al.|[2019; [Foret et al.|[2020). Since computing the exact Hessian

3A set of local-maximum points with zero gradients in all directions.
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(a) SGD (b) SGLD (c) EMCMC
Figure 4: Eigenspectrum of Hessian matrices of ResNetl8 on CIFAR100. z-axis: eigenvalue, y-
axis: frequency. A nearly all-zero eigenspectrum indicates a local mode that is flat in all directions.
EMCMC successfully finds such flat modes with significantly smaller eigenvalues.
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Figure 5: Parameter space interpolation of ResNet18 on CIFAR100. Exploring the neighborhood of
local modes from 6 to (a)-(b): a random direction in the parameter space, and (c): 8,. (a) and (b)
show that EMCMC has the lowest and the most flat NLL and error curves. (c¢) shows that 8 and 6,
converge to the same flat mode while maintaining diversity.

of deep neural networks is extremely costly due to the dimensionality (Luo et al., [2023)), we use the
diagonal Fisher information matrix (Wasserman, |2004)) to approximate its eigenspectrum:

Ay oy AT~ diag(Z(8)) = E [(VU - EVU)Q} , )

where A1, ..., A are eigenvalues of the Hessian. Fig.[d]shows the eigenspectra of local modes discov-
ered by different algorithms. The eigenvalues of EMCMC are much smaller compared with SGD
and SGLD, indicating that the local geometry of EMCMC samples is flatter. The eigenspectrum
comparison verifies the effectiveness of EMCMC to find and sample from flat basins.

Parameter Space Interpolation. Another way to measure the flatness of local modes is directly
interpolating their neighborhood in the parameter space (Izmailov et al.,|2018)). Local modes located
in flat basins are expected to have larger widths and better generalization performance (Keskar et al.,
2017} |Chaudhari et al.,|2019). The interpolation begins at 8 and ends at 8. (a random point near 6
or 6. = 0,). The interpolated point 8; is computed by:

05 = (1-0/]0 —0c[) 6+ (5/[16 — Oc]) O, (10)

where 0 is the Euclidean distance from 6 to 65. Fig. [5a and [5b| show the training NLL and test-
ing error respectively. The neighborhood of EMCMC maintains consistently lower NLL and er-
rors compared with SGD and SGLD, demonstrating that EMCMC samples are from flatter modes.
Furthermore, Fig. [Sc| visualizes the interpolation between 6 and 6, revealing that both variables
essentially converge to the same flat mode while maintaining diversity. This justifies the benefit of
collecting both of them as samples to obtain a diverse set of high-performing samples.

6.4 IMAGE CLASSIFICATION

We conduct classification experiments on CIFAR (Krizhevsky, 2009), corrupted CIFAR (Hendrycks
& Dietterichl 2019b)) and ImageNet (Deng et al., 2009), to compare EMCMC with both flatness-
aware optimization methods (Entropy-SGD (Chaudhari et al., 2019), SAM (Foret et al., 2020)
and bSAM (Mollenhoff & Khanl [2022)) and MCMC methods (SGLD (Welling & Teh, 2011) and
Entropy-SGLD (Dziugaite & Royl|[2018)). We use ResNet18 and ResNet50 (He et al.| [2016) for CI-
FAR and ImageNet respectively. All sampling algorithms collect a total of 16 samples for Bayesian
marginalization, and all entries are repeated 3 times to report the mean+std. Table[I]shows the re-
sults on the 3 datasets, in which EMCMC significantly outperforms all baselines. The classification
results strongly suggest that by sampling from flat basins, Bayesian neural networks can achieve
outstanding performance and EMCMC is an effective and efficient method to do so.

The results for corrupted CIFAR (Hendrycks & Dietterichl [2019a)) are shown in Table@]to show the
robustness of EMCMC against multiple types of noises. The results are averaged over all noise types,
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Table 1: Classification results on (a) CIFAR10/100, (b) corrupted CIFAR and (c) ImageNet, mea-
sured by NLL and accuracy. EMCMC outperforms all compared baselines.

(a) CIFAR10 and CIFAR100

Method CIFARTO CIFARI00
ACC (%) T NLL T ACC (%) T NLL T
SGD 94.87 £0.04 0.205 £ 0.015 76.49 £ 0.27 0.935 £ 0.021
Entropy-SGD 95.11 £+ 0.09 0.184 £+ 0.020 77.45 £ 0.03 0.895 £ 0.009
SAM 95.25 £ 0.12 0.166 £ 0.005 78.41 £ 0.22 0.876 £+ 0.007
bSAM 95.53 £ 0.09 0.165 £ 0.002 78.92 £+ 0.25 0.870 4 0.005
SGLD 95.47 £ 0.11 0.167 £ 0.011 7879 £ 0.35 0.854 £ 0.031
Entropy-SGLD | 94.46 4+ 0.24 0.194 £+ 0.020 77.98 £+ 0.39 0.897 £+ 0.027
EMCMC 95.69 +0.06 0.162 4+ 0.002 | 79.16 = 0.07 0.840 + 0.004
(b) Corrupted CIFAR (ACC (%) 1) (c) ImageNet
Severity 1 2 3 4 5 Metric [NLL | Top-1 (%) T Top-5 (%) T
SGD 88.43 82.43 76.20 67.93 55.81 SGD 0.960 76.046 92.776
SGLD |88.61 82.46 76.49 69.19 56.98 SGLD | 0.921 76.676 93.174
EMCMC |88.87 83.27 77.44 70.31 58.17 EMCMC|0.895 77.096 93.424

Table 2: OOD detection on CIFAR-SVHN. The predictive uncertainty quantified by EMCMC is the
best among the compared algorithms.

Method CIFARIO-SVHN CIFARIO0-SVHN
AUROC (%) T AUPR (%) T [ AUROC (%) T AUPR (%) T

SGD 98.30 99.24 71.96 84.08
Entropy-SGD 98.71 99.37 79.15 86.92
SAM 94.23 95.67 74.56 84.61
SGLD 97.66 98.64 72.51 83.35
Entropy-SGLD 90.07 91.80 71.83 82.89
EMCMC 98.15 99.04 81.14 87.18

and the severity level refers to the strength of noise added to the original data. EMCMC consistently
outperforms all compared baselines across all severity levels, indicating that samples from flat basins
are more robust to noise. The results for individual noise types are shown in Appendix [D.3]

6.5 UNCERTAINTY AND OOD DETECTION

To illustrate how predictive uncertainty estimation benefits from flat basins, we evaluate EMCMC
on out-of-distribution (OOD) detection. We train each model on CIFAR and quantify uncertainty
using the entropy of predictive distributions (Malinin & Gales, 2018)). Then we use the uncertainty
to detect SVHN samples in a joint testing set combined by CIFAR and SVHN (Netzer et al.,[2011}).
We evaluate each algorithm with Area under ROC Curve (AUROC) (McClish, [1989) and Area
under Precision-Recall curve (AUPR) (Olson & Delen, 2008)). All other settings remain the same
as the classification experiments. Table [2]shows the evaluation results, where EMCMC outperforms
nearly all baselines, especially when trained on CIFAR100. This indicates that predictive uncertainty
estimation is more accurate if the samples are from flat basins of the posterior. The confidence
calibration experiments are shown in Appendix

7 CONCLUSION AND DISCUSSION

We propose a practical MCMC algorithm to sample from flat basins of DNN posterior distributions.
Specifically, we introduce a guiding variable based on the local entropy to steer the MCMC sampler
toward flat basins. The joint distribution of this variable and the model parameter enjoys a simple
form which enables efficient sampling. We prove the fast convergence rate of our method compared
with two existing flatness-aware methods. Comprehensive experiments demonstrate the superiority
of our method, verifying that it can sample from flat basins and achieve outstanding performance
on diverse tasks. Our method is mathematically simple and computationally efficient, allowing for
adoption as a drop-in replacement for standard sampling methods such as SGLD.

The results hold promise for both Bayesian methods and deep learning generalization. On the one
hand, we demonstrate that explicitly considering flatness in Bayesian deep learning can significantly
improve generalization, robustness, and uncertainty estimation, especially under practical computa-
tional constraints. On the other hand, we highlight the value of marginalizing over flat basins in the
energy landscape, as a means to attain further performance improvements compared to single point
optimization methods.
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A  ALGORITHM DETAILS

We list some details of the proposed Entropy-MCMC in this section, to help understand our code
and reproduction. As discussed in Section[#.2] the updating rule of Entropy-MCMC can be written
as:

06 —aVaU(f)+ V2 -e, (11)
which is a full-batch version. We will show how to apply modern deep learning techniques like
mini-batching and temperature to the updating policy in the following sections.

A.1 MINI-BATCHING

We adopt the standard mini-batching technique in our method, which samples a subset of data points
per iteration (Li et al., 2014). We assume the entire dataset to be D = {(z;,y;)}2,. Then a batch
sampled from D is E = {(z;,y;)}M, C D with M < N. For the entire dataset, the loss function
is computed by:

N
£(8) o« = " log p(ys|x:, 0) — log p(6), (12)
=1

and to balance the updating stride per iteration, the loss function for a mini-batch is:

M
N
f=(0) < Y Zlogp(yi\a:i,@) — logp(0). (13)
i=1
Therefore, if we average the mini-batch loss over all data points, we can obtain the following form:
. 1 & 1
f=(8) i glogp(yikc,-ﬂ) - Nlogp(e). (14)

If we regard the averaging process as a modification on the stepsize « (i.e., @ = «/N), we will have
the following form for the updating policy:

AG=—a-VzU(8)+V2a e

——a-V; f5(9)+21n||9—9a||2—\/z€@§ s
=0V, |Fe(0)+ 60, - \/Te 08|,
2nN aN
Therefore, the updating rule in Eq[TT|can be equivalently written as:
0+ 6+ A6. (16)

A.2 DATA AUGMENTATION AND TEMPERATURE

We apply data augmentation, which is commonly used in deep neural networks, and compare all
methods with data augmentation in the main text. Here, we additionally compare the classification
results without data augmentation in Table [3| to demonstrate the effectiveness of EMCMC in this
case.

Table 3: Comparison of data augmentation of 3 baselines on CIFAR10. EMCMC outperforms
previous methods with and without data augmentation.

Augmentation | SGD SGLD EMCMC
X 89.60  89.24 89.87
v 95.59  95.64 95.79

Besides, in the updating policy, a noise term is introduced to add randomness to the sampling pro-
cess. However, in mini-batch training, the effect of noise will be amplified so that the stationary
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distribution of might be far away from the true posterior distribution (Zhang et al.| |2020b} Izmailov
et al.,[2021). Therefore, we also introduce a system temperature 7" to address this problem.

Formally, the posterior distribution is tempered to be p(6|D) x exp(—U(0)/T'), with an averagely
sharpened energy landscape. Similarly, we can regard the temperature effect as a new stepsize
ar = «/T, and the updating policy would be:

~ , 1 2 ~

A=Y [(fa“’”m”"“’”) Ty anee?
= 1 | 2T ~

= —OéT'V'e” [f5(9)+ 2’]7NH9_0G||2 - CVTNGQH .

To empirically determine how temperature influences classification performances, we compare
different temperature levels in Table We compare different temperature magnitudes for both
SGLD (Welling & Tehl 2011) and EMCMC. With smaller temperatures, both sampling algorithms
improve significantly from 10° to 10~%, and EMCMC outperforms SGLD under most of temper-
atures. These findings justify the statement that temperature is needed for good results under data
augmentation (Izmailov et al., 2021} and the superiority of EMCMC against other SG-MCMC al-
gorithms.

a7

Table 4: Test accuracy (%) comparison on different temperature magnitudes, with data augmenta-
tion, on CIFAR10.

Temperature | 10 10~' 10=2 102 10=% 10> 107
SGLD 82.89 91.67 94.12 94.95 94.86 94.88 95.17
EMCMC 81.93 91.67 94.47 94.98 95.06 95.06 95.18

A.3 GIBBS-LIKE UPDATING PROCEDURE

Instead of jointly updating, we can also choose to alternatively update 8 and 6,. The conditional
distribution for the model 0 is:

p(6,6,D) 1

1
~ exp{ﬂe) - anean?}, (18)

016,,D) =

a

where Zg, = exp F(0,4;n) is a constant. While for the guiding variable 6,,, its conditional distribu-
tion is:

o0, PR L (]

X — ex —1|0 — 8, 2}, 19
6D > 7o 277” | (19)

where Zg = exp (—f(0)) is a constant. Therefore, with Guassian noise, 6, is equivalently sampled
from N (0,nI), and the variance 7 controls the expected distance between 6 and 6,. To obtain
samples from the joint distribution, we can sample from p(0|60,, D) and p(0,|0, D) alternatively.
The advantage of doing Gibbs-like updating is that sampling 8, can be done exactly. This Gibbs-
like updating also shares similarities with the proximal sampling methods (Pereyral, [2016; |Lee et al.,
2021).

Empirically, we observe that joint updating yields superior performance compared to Gibbs-like
updating due to the efficiency of updating both 8 and 6, at the same time.

A.4 EFFECT OF THE VARIANCE TERM ON THE SMOOTHED TARGET DISTRIBUTIONS

We visualize flattened target distributions p(6,|D) under different values of 7 in Fig.[] As 7 be-
comes smaller, the target distribution will be flatter.
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— p(6|D)
” — p(6a|D),n=10""
N — pe.ip).n=10"
p(6,|D). n=10"3
— p(6a|D),n=10"*

N

Figure 6: Effect of 1 on the flattened target distribution. Smaller 7 will make the original distribution

flatter.

B DETAILED COMPARISON WITH RELATED WORKS

B.1

COMPARISON WITH ROBUST ENSEMBLE

Entropy-MCMC substantially differs from|Baldassi et al.|(2016) approach and is not a special case of
the Robust Ensemble (RE) with y = 1 replica. There are several key differences between Entropy-
MCMC and RE in[Baldassi et al.| (2016):

* In|Baldassi et al.| (2016)), the definition of Robust Ensemble, as outlined in Eq. 4, traces out
the reference (6, in our paper) and only has y identical replicas in the system, resembling
ensemble methods. This can be further verified by |[Pittorino et al.| (2020). As shown in
Algorithm 2 in |Pittorino et al.| (2020), Robust Ensemble with y = 1 will essentially be the
same as standard SGD. In contrast, Entropy-MCMC has two variables performing different
roles, unlike ensemble methods. 8, cannot be traced out and plays a crucial role in leading
to flat basins during training. Furthermore, Robust Ensemble typically requires at least
four models (i.e., y > 3) while EMCMC only needs two models. Entropy-MCMC greatly
reduces computational costs, especially when using large deep neural networks.

* Though Eq. 3 with y = 1 in(Baldassi et al.| (2016) is equivalent to the proposed joint dis-
tribution, Baldassi et al.| (2016) did not consider the marginal distribution of replicas. In
contrast, our work highlights that the marginal of the replica is the original target distribu-
tion. This distinction arises because our joint distribution is derived by coupling the original
and flattened distributions, a different motivation from|Baldassi et al.| (2016). Moreover, to
the best of our knowledge, Eq. 3 has not been practically applied (as seen in|Baldassi et al.
(2016) and |Pittorino et al.| (2020)), primarily serving as an intermediate step in deriving
Robust Ensemble (which uses y identical replicas).

* RE is an optimization method that aims to find a flat optimum as the point estimation. In
contrast, Entropy-MCMC is a sampling method that aims to sample from the flat basins of
the posterior distribution.

In summary, Entropy-MCMC and RE are developed from distinct ideas and they use local entropy in
significantly different ways. To the best of our knowledge, the proposed auxiliary guiding variable
and the joint distribution’s form are novel and non-trivial solutions to flatness-aware learning.
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B.2 COMPARISON WITH ENTROPY-SGD
Entropy-MCMC is not a straightforward change from|Chaudhari et al.|(2019)). It is highly non-trivial

to develop an efficient flatness-aware method, as biasing toward the flat basins often introduces
substantial computational overhead (Chaudhari et al.| 2019; [Foret et al.| 2020).

A key issue with|Chaudhari et al.| (2019) approach is its usage of nested Markov chains with Monte
Carlo approximation, which significantly reduces convergence speed and estimation accuracy. In
contrast, Entropy-MCMC, with an auxiliary guiding variable, guarantees to converge to flat basins
with fast speed and minimal overhead.

C PROOF OF THEOREMS

C.1 LemMmA[ll

Proof. Assume 6 = [87, 07T is sampled from the joint posterior distribution:
~ 1
pEID) = 1(0.0,/D) x exp { ~110) — 1[0 - 0.1 | 20)
Then the marginal distribution for 6 is:

p(6]D) = /@ p(6.6,|D)db,

P 1
= (2 *52*1/ { 0)— —|6—-86, Q}de,,
(2mn) @exp f(0) 277\\ l , o)

— 2 b espl- @)t [ e {0 6,12} do,
= Zil eXp(—f(O)),

where Z = [ exp(—f(0))d@ is the normalizing constant, and it is obtained by:

L eXp{—f(O)—217)||9—0a||2}d9ad9—(27ﬂ7)3 [ expl-rionas = eaptz. @2

(]

This verifies that the joint posterior distribution p(6, 8,|D) is mathematically well—deﬁneﬂ Simi-
larly, the marginal distribution for 8, is:

p(8.]D) = /@ p(6,0.|D)d6

1 2
«/@exp{ﬂm%noean }do
=exp F(04:1).

(23)

C.2 LemMMA[

Proof. Note that we have

VifO)+ L1 —ir
—V? 10g Tioint = { 71]_7 K fI } ,

and after a row reduction, we get
[v2 f@) o }

17 ir
n n

*The exact form of the joint posterior is p(8, 8,|D) = (27r77)_% Z Vexp(—f(0) — ﬁ 160 — 6.]%).
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The eigenvalues for this matrix are the eigenvalues of V2 f(6’) and 1/7. By the assumption m <
1/n < M, we have

V2fO') 0 }
mI j |: 1 1 j MI7
— HI a1
which means —V?2 log Tjoint 18 also a M -smooth and m-strongly convex function.
In most scenarios, m often takes on very small values and M tends to be very large. Therefore, the
assumption m < 1/n < M is mild. O

C.3 PROOF OF THEOREM/[I]

Proof. The proof relies on Theorem 4 from Dalalyan & Karagulyan| (2019). Lemma [2] has already
provided us with the smoothness and strong convexity parameters for 7oy We will now address the

bias and variance of stochastic gradient estimation. The stochastic gradient is given by [V f 0" +
%(9’ —0), —%(9’ —6)]T. As V£(0') is unbiased and has a variance of o2, the stochastic gradient
in our method is also unbiased and has variance o2. Combining the above results, we are ready to

apply Theorem 4 (Dalalyan & Karagulyan, |[2019) and obtain
o2 (2ad)'/?

WQ([LK, '/Tjoint) S (]. - Oém)KWQ([Lo,’]T) + 165(M/m)(2ad)1/2 + m

C.4 THEOREM

Proof. Letn'(8") oc exp(—f(0') — % 16" — t9||§) It is easy to see that m + 1/n < V2(—log7’) <
M + 1/n. Based on Theorem 4 in Dalalyan & Karagulyan| (2019)), the 2-Wasserstein distance for
the inner Markov chain is

) (o ad)”
m+1/n 1.65(M + 1/n) + on/m + 1/1

— am)Er M+1/n ad) /2 o?(ad)'/?
<a ) +1'65(m+1/n)( 9 +1.65(M+1/77)+0\/m+1/77

Wa(Cr, ') < (1 — am)EWa (o, ') + 1.65 (

= A2

Now we consider the convergence of the outer Markov chain. We denote mqa () o exp F(6;n).
From (Chaudhari et al.|(2019), we know that

inf
0

1
‘m[ = fvzlogﬂﬂm = sup HH MI.

1
’I+W2f(9)‘ ~ o [L+nV2f(0)

Since mI < V2f() = M1, it follows

1 1 1 1
inf > , su < .
0 ’I+W2f(9)H_1+nM ep’1+nV?f(9)"_1+nm
Therefore,
M 1< V2 log M < I
1+nM — 6 Mlat = 1+nm '

The update rule of the outer SGLD is

0=0—a/n6—E[0]) +V2as.
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The gradient estimation can be written as § — E/[0'] + (E/ [9’ | — E¢, [0']) which can be regarded
as the true gradient § — E . [¢’] plus some noise (E./[0'] — E¢, [0]). The bias of the noise can be

bounded as follows
2

|Ex (6]~ Ec, [0]l; = H/ — 07, 1dJ(0.,,6;,)

< [116% = 0,13 a705,65,).
Since the inequality holds for any .J, we can take the infimum over all possible distributions to
conclude

2

2
”Eﬂ" [9/] - ECL [9l]”2 < WQ(CLvﬂJ)'
Furthermore, we note that the variance of the noise is zero. Therefore, by applying Theorem 4 in
Dalalyan & Karagulyan| (2019) we get

14+nM

A(l4+nM)
1+nm '

Wa(vic o) < (1 — am) S Wa (v, m) + 1.65 ( ) (M /m)(ad)/? +

C.5 THEOREM[Z]

Proof. Compared to Entropy-SGLD, the only difference with Entropy-SGD is doing SGD updates
instead of SGLD updates in the outer loop. Therefore, the analysis for the inner Markov chain
remains the same as in Theorem [3] To analyze the error of SGD in the outer loop, we follow the
results in |Ajalloeian & Stich| (2020). Since the strongly convex parameter for fy, is by

Section 4.2 and Assumption 4 in|Ajalloeian & Stich|(2020), we know that
1 E,—E 1
S IV (O < === ¢

—A
o 2
m Et—Et+1 1
= —FBE< —— 4+ A
1+nM b= « +2
am
1+nM

_m__
14+nM >

A

= Et+1 S (1 )Et + OéA

By unrolling the recursion, we obtain

K
am Al +nM)
Fr<|1l—— E —_—.
K—< 1+77M) ot T o

D ADDITIONAL EXPERIMENTAL RESULTS

We list the additional experimental results in this section, to demonstrate the superiority of our
method and show some interesting findings.

D.1 ADDITIONAL SYNTHETIC EXAMPLES

To demonstrate that EMCMC can bias toward the flat mode under random initialization, we conduct
additional synthetic experiments under two different initialization settings. Specifically, we set the
initial point to be (—0.4, —0.4) to prefer the sharp mode (Fig.[7) and (0.0, 0.0) to prefer the flat mode
(Fig.[8). EMCMC can find the flat mode under all initialization settings, while SGD and SGLD are
heavily affected by the choices of initialization.

Besides, we also conduct experiments of running EMCMC for a sufficiently long time to see whether
it can converge to the true target distribution (both modes). The results are shown in Fig.[9] 6
successfully finds both modes and 6,, still samples from the flat mode, both converging to their target
distributions. Compared with Fig. we are confident to claim that Entropy-MCMC prioritizes
flat modes under limited computational budget and will eventually converge to the full posterior
with adequate iterations.

18



Published as a conference paper at ICLR 2024

0o *° 59@ °
S€a, 2% o oodthel s’
° ©® 0 8 Oo0
o&o <X595D - O(ﬁ(%;;% OC% 5] c?
& > 06e ® o
e - AT ®
(a) SGD (b) SGLD (c) EMCMC (0) (d) EMCMC (6,

Figure 7: Synthetic experiments with sharp-mode-biased initialization.
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Figure 8: Synthetic experiments with flat-mode-biased initialization.

D.2 PARAMETER SPACE INTERPOLATION

As the supplement for Fig. [5] we show additional interpolation results to demonstrate some interest-
ing findings about the model 0 and the auxiliary guiding variable 6,. The additional interpolation
can be separated into the following types:

D.2.1 ToOwWARD RANDOM DIRECTIONS

We show the interpolation results toward averaged random directions (10 random directions) in
Fig. For the training loss, the auxiliary guiding variable @ is located at a flatter local region with
relatively larger loss values. For the testing error, the guiding variable 8, consistently has lower
generation errors, which illustrates that the flat modes are preferable in terms of generalization.

D.2.2 BETWEEN MODEL PARAMETER AND GUIDING VARIABLE

The line between the model parameter @ and the guiding variable 8, is a special direction in the
parameter space. The NLL and testing error are both much lower than random directions, which
is shown in Fig. [T1] Besides, this special direction is biased toward the local region of 8,, with
averagely lower testing errors. This finding justifies the setting of adding 6, to the sample set S,
since the generalization performance of 8, is better.

D.3 CLASSIFICATION ON CORRUPTED CIFAR

We list the detailed classification results on corrupted CIFAR (Hendrycks & Dietterich, [2018)) in
Fig. [12] where each corruption type is evaluated at a corresponding subfigure. For the majority of
corruption types, our method outperforms other baselines under all severity levels, and is superior
especially under severe corruption.

D.4 CONFIDENCE CALIBRATION

The empirical results for confidence calibration are listed in Table[5] The maximum softmax proba-
bilities are adopted as confidence scores (Hendrycks & Gimpel,|2016)), which are then used to predict
misclassification over the test set. We use Area under ROC Curve (AUROC) (McClish, [1989) and
Expected Calibration Error (ECE) (Naeini et al.,|2015) for evaluation. The results indicate that EM-
CMC has good calibration capability compared with other baselines, and does not suffer from the
overconfidence problem.
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Figure 9: Synthetic experiments with sufficient iterations. Both 8 and 8, will fully characterize their
target distributions with enough iterations.

07711 __ g 0260] — @
0.76 6a 0.255 8
0.75
= S 0250
Z )
o 0.74 =
R=| 800.245
£ 0731 ‘:;3
o 2 0240
0.72
0.2351
0.711
0.230 1
0.0 02 04 0.6 08 10 0.0 02 04 0.6 08 10
Distance Distance
(a) Random interpolation by training NLL (b) Random interpolation by testing error

Figure 10: Interpolation toward averaged random directions on CIFAR100, comparing the model 8
and the guiding variable 6,,.

E ABLATION STUDIES

We empirically discuss several important hyper-parameters and algorithm settings in this section,
which justifies our choice of their values. The hyper-parameter choices are tuned via cross-
validation, and the ablation studies primarily discuss the influence of these hyper-parameters on
empirical results.

E.1 VARIANCE TERM
We compare different choices of the variance term 7 to determine its influence on the performance.
The experimental results are shown in Fig. Generally, setting 7 to be 10~ for CIFAR10 and

102 for CIFAR100 will induce outstanding test accuracy. This also implies that the energy land-
scapes of CIFAR10 and CIFAR100 may be different.

E.2 STEP SIZE SCHEDULES

We compare different types of stepsize schedules in Table[7] Specifically, we assume the initial and
final stepsize to be o and «; respectively. 7' is the total number of epochs and ¢ is the current
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Figure 11: Interpolation between the model 8 and the guiding variable 6, in terms of training NLL
and testing error on CIFAR100.

Table 5: Confidence calibration results on CIFAR. EMCMC has good calibration capability to avoid
the overconfidence problem.

Method CIFAR10 CIFAR100
AUROC (%) T ECE (%) ] | AUROC (%) T ECE (%)l

SGD 92.90 2.94 87.85 6.41
Entropy-SGD 93.59 2.46 87.09 5.75
SAM 94.91 1.45 88.94 5.81
SGLD 94.42 0.78 87.47 2.15
Entropy-SGLD 93.80 0.33 87.59 1.66
EMCMC 93.76 0.52 87.69 3.59

epoch. The detailed descriptions of stepsize schedules are listed in Table[6] The cyclical stepsize is
the best among all stepsize schedules.

Table 6: Formulas or descriptions of different stepsize schedules.

Name Formula/Description
constant | a(t) = ap
linear alt) = T (ag —on) + g
exponential | a(t) = aq - (al/ao)t/T
step Remain the same stepsize within one “step”, and decay between “steps”.
cyclical Follow Eq. 1 in|Zhang et al.{(2020b).

E.3 COLLECTING SAMPLES

Due to the introduction of the auxiliary guiding variable 8,, the composition of sample set S has
multiple choices: only collect samples of 8, only collect samples of 8,, collect both samples. We
conduct the comparison of all choices and the results are reported in Table 8| It shows that using
samples from both 0 and 8, gives the best generalization accuracy.

E.4 NORMALIZATION LAYERS

During testing, the usage of bath normalization layers (BN) in the model architecture induces a
problem regarding the mini-batch statistics. The mean and variance of a batch need calculated
through at least one forward pass, which is not applicable for the guiding variable 8, since it is
updated by the distance regularization during training. We try different solutions for this problem,
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Figure 12: Classification accuracies under different severity levels on corrupted CIFAR. The results
are shown per corruption type. Our method outperforms the compared baselines on most of corrup-

tion types, especially under high severity levels.

including one additional forward pass and the Filter Response Normalization (Singh & Krishnan,
[2020). The comparison is listed in Table[9] where simply adding one additional forward pass during
testing can achieve promising accuracy with negligible computational overhead.
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Figure 13: Comparison of different variance levels for Entropy algorithm. 1 = 10~3 is appropriate
for CIFAR10, and 1 ~ 10~2 is appropriate for CIFAR100.

Table 7: Comparison of stepsize
Entropy-MCMC.

schedules on CIFAR100. The cyclical stepsize is the best for

Learning Rate Schedule

constant linear exponential step  cyclical

Testing ACC (%) T

88.04  87.89 87.75 89.59  89.93

E.5 SGD BURN-IN

We also try SGD burn-in in our ablation studies, by adding the random noise term only to the last

few epochs to ensure the fast convergence. We evaluate different settings of SGD burn-in epochs in
Table[I0] We find that adding 40 burn-in epochs per 50 epochs is the best choice.
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Table 8: Ablation study on the composition of sample set S on CIFAR10. With samples from both
6 and @, the Bayesian marginalization can achieve the best accuracy.

0 0, [ ACC (%) T
v 95.58

v 95.64
v v | 9565

Table 9: Comparison of different normalization layers on CIFAR10. Simply adding one additional
forward pass during testing with standard batch normalization is the best solution.

Normalization Layer ACC (%) 1T Time (h)
BN 95.40 1.8
BN (one additional forward) 95.47 1.9
FRN (Singh & Krishnan, [2020) 93.92 2.5

Table 10: Comparison of different SGD burn-in epochs on CIFARI10. In a 50-epoch round, using
SGD burn-in in the first 40 epochs is the best choice.

SGD Burn-in Epoch 0 10 20 30 40 47
Test ACC (%) 1 95.61 95.62 95.57 95.67 95.72 95.41
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