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ABSTRACT

Past research on interactive decision making problems (bandits, reinforcement
learning, etc.) mostly focuses on the minimax regret that measures the algorithm’s
performance on the hardest instance. However, an ideal algorithm should adapt to
the complexity of a particular problem instance and incur smaller regrets on easy
instances than worst-case instances. In this paper, we design the first asymptotic
instance-optimal algorithm for general interactive decision making problems with
finite number of decisions under mild conditions. On every instance f , our algo-
rithm outperforms all consistent algorithms (those achieving non-trivial regrets on
all instances), and has asymptotic regret C(f) lnn, where C(f) is an exact charac-
terization of the complexity of f . The key step of the algorithm involves hypothe-
sis testing with active data collection. It computes the most economical decisions
with which the algorithm collects observations to test whether an estimated in-
stance is indeed correct; thus, the complexity C(f) is the minimum cost to test the
instance f against other instances. Our results, instantiated on concrete problems,
recover the classical gap-dependent bounds for multi-armed bandits (Lai et al.,
1985) and prior works on linear bandits (Lattimore & Szepesvari, 2017), and im-
prove upon the previous best instance-dependent upper bound (Xu et al., 2021)
for reinforcement learning.

1 INTRODUCTION

Bandit and reinforcement learning (RL) algorithms demonstrated a wide range of successful real-
life applications (Silver et al., 2016; 2017; Mnih et al., 2013; Berner et al., 2019; Vinyals et al.,
2019; Mnih et al., 2015; Degrave et al., 2022). Past works have theoretically studied the regret
or sample complexity of various interactive decision making problems, such as contextual bandits,
reinforcement learning (RL), partially observable Markov decision process (see Azar et al. (2017);
Jin et al. (2018); Dong et al. (2021); Li et al. (2019); Agarwal et al. (2014); Foster & Rakhlin (2020);
Jin et al. (2020), and references therein). Recently, Foster et al. (2021) present a unified algorithmic
principle for achieving the minimax regret—the optimal regret for the worst-case problem instances.

However, minimax regret bounds do not necessarily always present a full picture of the statistical
complexity of the problem. They characterize the complexity of the most difficult instances, but
potentially many other instances are much easier. An ideal algorithm should adapt to the complexity
of a particular instance and incur smaller regrets on easy instances than the worst-case instances.
Thus, an ideal regret bound should be instance-dependent, that is, depending on some properties
of each instance. Prior works designed algorithms with instance-dependent regret bounds that are
stronger than minimax regret bounds, but they are often not directly comparable because they depend
on different properties of the instances, such as the gap conditions and the variance of the value
function (Zanette & Brunskill, 2019; Xu et al., 2021; Foster et al., 2020; Tirinzoni et al., 2021).

A more ambitious and challenging goal is to design instance-optimal algorithms that outperform, on
every instance, all consistent algorithms (those achieving non-trivial regrets on all instances). Past
works designed instance-optimal algorithms for multi-armed bandit (Lai et al., 1985), linear bandits
(Kirschner et al., 2021; Hao et al., 2020), Lipschitz bandits (Magureanu et al., 2014), and ergodic
MDPs (Ok et al., 2018). However, instance-optimal regret bounds for tabular reinforcement learning
remain an open question, despite recent progress (Tirinzoni et al., 2021; 2022). The challenge partly
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stems from the fact that the existence of such an instance-optimal algorithm is even a priori unclear
for general interactive decision making problems. Conceivably, each algorithm can have its own
specialty on a subset of instances, and no algorithm can dominate all others on all instances.

Somewhat surprisingly, we prove that there exists a simple algorithm (T2C, stated in Alg. 1) that is
asymptotic instance-optimal for general interactive decision making problems with finite number of
decisions.We determine the exact leading term of the optimal asymptotic regret for instance f to be
C(f) lnn. Here, n is the number of interactions and C(f) is a complexity measure for the instance
f that intuitively captures the difficulty of distinguishing f from other instances (that have different
optimal decisions) using observations. Concretely, under mild conditions on the interactive decision
problem, our algorithm achieves an asymptotic regret C(f) lnn (Theorem 5.2) for every instance f ,
while every consistent algorithm must have an asymptotic regret at least C(f) lnn (Theorem 3.2).

Our algorithm consists of three simple steps. First, it explores uniformly for o(1)-fraction of the
steps and computes the MLE estimate of the instance with relatively low confidence. Then, it tests
whether the estimate instance (or, precisely, its associated optimal decision) is indeed correct using
the most economical set of queries/decisions. Concretely, it computes a set of decisions with mini-
mal regret, such that, using a log-likelihood ratio test, it can either distinguish the estimated instance
from all other instances (with different optimal decisions) with high confidence, or determine that
our estimation was incorrect. Finally, with the high-confidence estimate, it commits to the optimal
decision of the estimated instance in the rest of the steps. The algorithmic framework essentially
reduces the problem to the key second step — optimal hypothesis testing with active data collection.

Our results recover the classical gap-dependent regret bounds for multi-armed bandits (Lai et al.,
1985) and prior works on linear bandits (Lattimore & Szepesvari, 2017; Hao et al., 2020). As an
instantiation of the general algorithm, we present the first asymptotic instance-optimal algorithm for
tabular RL, improving upon prior instance-dependent algorithms (Xu et al., 2021; Simchowitz &
Jamieson, 2019; Tirinzoni et al., 2021; 2022).

1.1 ADDITIONAL RELATED WORKS

Some algorithms are proved instance-optimal for specific interactive decision making problems.
Variants of UCB algorithms are instance-optimal for bandits with various assumptions (Lattimore
& Szepesvári, 2020; Gupta et al., 2021; Tirinzoni et al., 2020; Degenne et al., 2020; Magureanu
et al., 2014), but are suboptimal for linear bandits (Lattimore & Szepesvari, 2017). These algo-
rithms rely on the optimism-in-face-of-uncertainty principle to deal with exploration-exploitation
tradeoff, whereas our algorithm explicitly computes the best tradeoff. Kirschner et al. (2021); Lat-
timore & Szepesvari (2017); Hao et al. (2020) design non-optimistic instance-optimal algorithms
for linear bandits. There are also instance-optimal algorithms for ergodic MDPs where the regret is
less sensitive to the exploration policy (Ok et al., 2018; Burnetas & Katehakis, 1997; Graves & Lai,
1997), interactive decision making with finite hypothesis class, finite state-action space, and known
rewards (Rajeev et al., 1989), and interactive decision making with finite observations (Komiyama
et al., 2015).

The most related problem setup is structured bandits (Combes et al., 2017; Van Parys & Golrezaei,
2020; Jun & Zhang, 2020), where the instances also belong to an abstract and arbitrary family F .
The structured bandits problem is a very special case of general decision making problems and does
not contain RL because the observation is a scalar. In contrast, the observation in general decision
making problems could be high-dimensional (e.g., a trajectory with multiple states, actions, and
rewards for episodic RL), which makes our results technically challenging.

Many algorithms’ regret bounds depend on some properties of instances such as the gap condition.
Foster et al. (2020) prove a gap-dependent regret bound for contextual bandits. For reinforcement
learning, the regret bound may depend on the variance of the optimal value function (Zanette &
Brunskill, 2019) or the gap of the Q-function (Xu et al., 2021; Simchowitz & Jamieson, 2019;
Yang et al., 2021). Xu et al. (2021); Foster et al. (2020) also prove that the gap-dependent bounds
cannot be improve on some instances. To some extent, these instance-dependent lower bounds can
be viewed as minimax bounds for a fine-grained instance family (e.g., all instances with the same
Q-function gap), and therefore are different from ours.
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2 SETUP AND NOTATIONS

Interactive decision making problems. We focus on interactive decision making problem with
structured observations (Foster et al., 2021), which includes bandits and reinforcement learning
as special cases. An interactive decision making problem is defined by a space of decisions Π,
observations O, a reward function R : O → R, and a function f (also called an instance) that maps
a decision π ∈ Π to a distribution over observations f [π]. We use f [π](·) : O → R+ to denote the
density function of the distribution f [π]. We assume that the rewardR is a deterministic and known.

An environment picks an ground-truth instance f? from a instance family F , and then an agent
(which knows the instance family F but not the ground-truth f?) interacts with the environment for
n total rounds. In round t ≤ n,

(a) the learner selects a decision πt from the decision class Π, and
(b) the environment generates an observation ot following the ground-truth distribution f?[πt] and

reveals the observation. Then the agent receives a reward R(ot).

For example, multi-armed bandits, linear bandits, and episodic reinforcement learning all belong to
interactive decision making problems. For bandits, a decision π corresponds to an action and an
observation o corresponds to a reward. For reinforcement learning, a decision π is a deterministic
policy that maps from states to actions, and an observation o is a trajectory (including the reward
at each step). In other words, one round of interactions in the interactive decision making problem
corresponds to one episode of the RL problem. We will formally discuss the RL setup in Section 5.

Let Rf (π) = Eo∼f [π][R(o)] be the expected reward for decision π under instance f , and π?(f) ,
argmaxπ Rf (π) the optimal decision of instance f . The expected regret measures how much worse
the agent’s decision is than the optimal decision:

Regf,n = Ef
[∑n

t=1

(
maxπ∈ΠRf (π)−Rf (πt)

)]
. (1)

We consider the case where the decision family Π is finite, and every instance f ∈ F has a unique
optimal decision, denoted by π?(f). We also assume that for every f ∈ F and π ∈ Π, 0 ≤ R(o) ≤
Rmax almost surely when o is drawn from the distribution f [π], and supo f [π](o) <∞.

Consistent algorithms and asymptotic instance-optimality. We first note that it’s unreasonable to
ask for an algorithm that can outperform or match any arbitrary algorithm on every instance. This
is because, for any instance f ∈ F , a bespoke algorithm that always outputs π?(f) can achieve zero
regret on instance f (though it has terrible regrets for other instances). Therefore, if an algorithm
can outperform or match any algorithm on any instance, it must have zero regret on every instance,
which is generally impossible. Instead, we are interested in finding an algorithm that is as good as
any other reasonable algorithms that are not completely customized to a single instance.

We say an algorithm is consistent if its expected regret satisfies Regf,n = o(np) for every p > 0
and f ∈ F (Lai et al., 1985). Most of the reasonable algorithms are consistent, such as the UCB
algorithm for multi-armed bandits (Lattimore & Szepesvári, 2020), UCBVI, and UCB-Q algorithm
for tabular reinforcement learning (Simchowitz & Jamieson, 2019; Yang et al., 2021), because all of
them achieve asymptotically O(lnn) regrets on any instance, where O hides constants that depend
on the property of the particular instance.1 However, consistent algorithms exclude the algorithm
mentioned in the previous paragraph which is purely customized to a particular instance.

We say an algorithm is asymptotically instance-optimal if on every instance f ∈ F ,
lim supn→∞Regf,n/ lnn is the smallest among all consistent algorithms (Lai et al., 1985). We
note that even though an instance-optimal algorithm only needs to perform as well as every consis-
tent algorithm, a priori, it’s still unclear if such an algorithm exists.

Some prior works have also used a slightly weaker definition in place of consistent algorithms, e.g.,
α-uniformly good algorithms in Tirinzoni et al. (2021), which allows a sublinear regret boundO(nα)
for some constant α < 1. The alternative definition, though apparently includes more algorithms,
does not change the essence. Our algorithm is still instance-optimal up to a constant factor—
simple modification of the lower bound part of the proof shows that its asymptotic regret is at most

1Here the regret scales in logn because we are in the asymptotic setting where the instance is fixed and
n tends to infinity. If the instance can depend on n (which is not the setting we are interested in), then the
minimax regret typically scales in O(

√
n).
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(1 − α)−1 factor bigger than any α-uniformly good algorithms on any instance. This paper thus
primarily compares with consistent algorithms for simplicity.

3 MAIN RESULTS

In this section, we present an intrinsic complexity measure C(f) of an instance f (Section 3.1), and
an instance-optimal algorithm that achieves an asymptotic regret C(f) lnn (Section 3.2).

3.1 COMPLEXITY MEASURE AND REGRET LOWER BOUNDS

In this section, our goal is to understand the minimum regret of consistent algorithms, which is an
intrinsic complexity measure of an instance. We define an instance-dependent complexity measure
C(f) and prove that any consistent algorithm must have asymptotic regret at least C(f) lnn.

The key observation is that any consistent algorithm has to collect enough information from the
observations to tell apart the ground-truth instance from other instances with different optimal de-
cisions. Consider the situation when a sequence of n decisions is insufficient to distinguish two
instances, denoted by f and g, with different optimal decisions. If an algorithm achieves a sublinear
regret on f , the sequence must contain π?(f) (the optimal decision for f ) at least n − o(n) times.
As a result, if the true instance were g, the algorithm suffers a linear regret (due to the linear number
of π?(f)), and therefore cannot be consistent.

An ideal algorithm should find out decisions that can most efficiently identify the ground-truth in-
stance (or precisely the family of instances with the same optimal decision as the ground-truth).
However, decisions collect information but also incur regrets. So the algorithm should pick a list
of decisions with the best tradeoff between these two effects—minimizing the decisions’ regret and
collecting sufficient information to identify the true instance. Concretely, suppose a sequence of de-
cisions includes wπ occurrences of decision π. The regret of these decisions is

∑
π∈Π wπ∆(f, π),

where ∆(f, π) , Rf (π?(f)) − Rf (π) is the sub-optimality gap of decision π. We use KL diver-
gence between the observations of π under two instances f and g (denoted by DKL(f [π]‖g[π])) to
measure π’s power to distinguish them. The following optimization problem defines the optimal
mixture of the decisions (in terms of the regret) that has sufficient power to distinguish f from all
other instances with different optimal decision.

C(f, n) , min
w∈R|Π|+

∑
π∈Π wπ∆(f, π) (2)

s.t.
∑
π∈Π wπDKL(f [π]‖g[π]) ≥ 1, ∀g ∈ F , π?(g) 6= π?(f), (3)

‖w‖∞ ≤ n. (4)

The last constraint makes sure thatwπ <∞ even if the decision has no regret (i.e., ∃π,∆(f, π) = 0).
We only care about the case when n approaches infinity. The asymptotic complexity of f is

C(f) , limn→∞ C(f, n). (5)

In Eq. (3), we only require separation between instances f, g when they have different optimal
decisions. As there are only finite decisions, there are finite equivalent classes, so f and g are in
principle separable with sufficient number of observations. Thus, the complexity measure C(f, n) is
well defined as stated in the following lemma.
Lemma 3.1. For any f ∈ F , C(f, n) is non-increasing in n, and there exists n0 > 0 such that for
all n > n0, C(f, n) <∞. As a corollary, C(f) <∞ and is well defined.

Proof of Lemma 3.1 is deferred to Appendix B.1. In Section 3.1, we formalize the intuition above
and prove that C(f) is a lower bound of the asymptotic regret, as stated in the following theorem.
Theorem 3.2. For every instance f ∈ F , the expected regret of any consistent algorithm satisfies
lim supn→∞

Regf,n
lnn ≥ C(f).

We prove Theorem 3.2 in Appendix B.2. Theorem 3.2 is inspired by previous works (Lattimore &
Szepesvari, 2017; Tirinzoni et al., 2021). When applied to tabular RL problems, our lower bound is
very similar to that in Tirinzoni et al. (2021) with the only difference that their optimization problems
omit the second constraint (Eq. (4)), which can make it slightly less tight (see Section B.5).
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The complexity measure C(f) reduces to the well-known inverse action gap bound
O(
∑
a∈A,∆(a)>0 1/∆(a)) for multi-armed bandits (Proposition B.2), and recovers the result of

Lattimore & Szepesvari (2017) for linear bandits (Proposition B.3). For reinforcement learning,
Tirinzoni et al. (2021) prove that the instance-optimal bound can be smaller than the gap-dependent
bound O(

∑
s,a:∆(s,a)>0 1/∆(s, a)) in Xu et al. (2021) and Simchowitz & Jamieson (2019).

3.2 INSTANCE-OPTIMAL ALGORITHMS

Algorithm 1 Test-to-Commit (T2C)

1: Parameters: the number of rounds of interactions n.
Step 1: Initialization.
2: Play each decision d lnn

ln lnne times. We denote these decisions by {π̂i}minit
i=1 , where minit =

|Π|d lnn
ln lnne, and the corresponding observations by {ôi}minit

i=1 .
3: Compute the max likelihood estimation (MLE) with arbitrary tie-breaking

f̂ = argmaxf∈F
∑minit

i=1 ln f [π̂i](ôi). (6)

Step 2: Identification.
4: Let η = (ln lnn)1/4 for shorthand, and ŵ be the solution of the program defining C(f̂ , η).

Compute w̄π = (1 + 1/η)ŵπ + 1/η for all π ∈ Π.
5: Play each decision π for dw̄π lnne times. Denote these decisions by w = {πi}mi=1 where
m =

∑
πdw̄π ln(n)e, and the corresponding observations by {oi}mi=1.

6: Run the log-likelihood ratio test on instance f̂ , the sequence of decision {πi}mi=1 and its corre-
sponding observations {oi}mi=1 (that is, compute the event E f̂acc defined in Eq. (8)).

Step 3: Exploitation.
7: if E f̂acc = true then
8: Commit to π?(f̂) (i.e., run π?(f̂) for the remaining steps).
9: else

10: Run UCB for the remaining steps.

We first present the regret bound for our algorithm of the T2C algorithm. For simplicity, we consider
a finite hypothesis (i.e., |F| <∞) here, and extend to infinite hypothesis case in Section 5.

We start by stating a condition that excludes abnormal observation distributions f [π]. Recall that for
any ζ ∈ (0, 1), the Rényi divergence of two distributions p, q is

Dζ(p‖q) = 1
ζ−1 ln

∫
x
p(x)ζq(x)1−ζdx. (7)

The Rényi divergence Dζ(p‖q) is non-decreasing in ζ, and limζ↑1Dζ(p‖q) = DKL(p‖q) (Van Er-
ven & Harremos, 2014). We require the limits converge uniformly for all instances g ∈ F and
decisions π ∈ Π with a ζ bounded away from 1 (the choice of the constants in Condition 1 is not
critical to our result), as stated below.
Condition 1. For any fixed α > 0, ε > 0, instance f ∈ F , there exists λ0(α, ε, f) > 0 such
that for all λ ≤ λ0(α, ε, f), g ∈ F and π ∈ Π, D1−λ(f [π]‖g[π]) ≥ min{DKL(f [π]‖g[π]) −
ε, α}. Moreover, we require λ0(α, ε, f) ≥ εc1 min{1/α, c2}c3ι(f) for some universal constants
c1, c2, c3 > 0, where ι(f) > 0 is a function that only depends on f .

Condition 1 holds for a wide range of distributions, such as Gaussian, Bernoulli, multinomial,
Laplace with bounded mean, Log-normal (Gil et al., 2013), and tabular RL where f [π] is a dis-
tribution over a trajectory consists of state, action and reward tuples (see Theorem 5.1 for the proof
of tabular RL). A stronger but more interpretable variant of Condition 1 is that the log density ratio
of f [π] and g[π] has finite fourth moments (see Proposition B.4), therefore Condition 1 can also be
potentially verified for other distributions.

The main theorem analyzing Alg. 1 is shown below. The asymptotic regret of Alg. 1 matches the
constants in the lower bound (Theorem 3.2), indicating its asymptotic instance-optimality.
Theorem 3.3. Suppose F is a finite hypothesis class and satisfies Condition 1 The regret of Alg. 1
satisfies lim supn→∞

Regf?,n
lnn ≤ C(f?).
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Our algorithm is stated in Alg. 1 and consists of three steps: initialization, identification, and ex-
ploitation. In the initialization step, we explore uniformly for a short period and compute the MLE
estimate f̂ of the true instance (Line 3 of Alg. 1), where we only requires f̂ to be accurate with
moderate probability (i.e., 1 − 1/ lnn). The estimation is used to compute the lowest-regret list of
decisions that can distinguish the optimal decision of f̂ . Since we only collect o(lnn) samples, the
regret of this step is negligible asymptotically.

In the identification step, we hold the belief that f̂ is the true instance and solve C(f̂ , (ln lnn)1/4)
to get the best list of decisions to fortify this belief (see Line 4 of Alg. 1). Then we collect more
samples using this list (with minor decorations) to boost the confidence of our initial estimation to
1− 1/n (or reject it when the estimation is not accurate) by the following log-likelihood ratio test:

E f̂acc = I
[
∀g ∈ F and π?(g) 6= π?(f̂),

∑m
i=1 ln f̂ [πi](oi)

g[πi](oi)
≥ lnn

]
. (8)

Intuitively, if f̂ is not the ground-truth f?, E f̂acc is unlikely to hold because the expected log-
likelihood ratio is non-positive: Eo∼f?[π][ln(f̂ [π](o)/f?[π](o))] = −DKL(f?[π]‖f̂ [π]) ≤ 0.
Hence, with high probability a wrong guess cannot be accepted. On the other hand, the first con-
straint (Eq. (3)) in the definition of C(f̂) guarantees that when f̂ = f?, the expected log-likelihood
ratio is large for all g ∈ F and π?(g) 6= π?(f̂), so an accurate guess will be accepted. In this
step m = Θ̃(lnn), so Step 2 dominates the regret of Alg. 1. In other words, the efficiency of the
log-likelihood test is critical to our analysis.

Finally in the exploitation step, the algorithm commits to the optimal decision of f̂ if it believes this
estimation with confidence 1−1/n, or run a standard UCB algorithm as if on a multi-armed bandits
problem (with a well-knownO(lnn) regret) when the initial estimation is not accurate (happens with
probability at most 1/ lnn). Hence, the expected regret here is O(lnn)/ lnn+O(n)/n = O(1).

Our three-stage algorithm is inspired by Lattimore & Szepesvari (2017), where their test in Step 2
only uses the reward information. However, the observation for general interactive decision making
problem contains much more information such as the transition in tabular RL problems. In contrast,
the T2C algorithm relies on a general hypothesis testing method (i.e., log-likelihood ratio test) and
achieves optimal regret for general interactive decision making problems.

4 PROOF SKETCHES OF THE MAIN RESULTS

In this section, we discuss the proof sketch of our main results. Section 4.1 discusses the proof
sketch of the lower bound, and Section 4.2 shows the main lemmas for each step in Alg. 1. In
Section 4.3, we discuss the log-likelihood ratio test in detail.

4.1 PROOF SKETCH OF THEOREM 3.2

Recall that C(f) is the minimum regret of a list of decisions that can distinguish the instance f with
all other instances g (with a different optimal decision). Hence, to prove the lower bound, we show
that the sequence of decisions played by any consistent algorithm must also distinguish f , and thus,
C(f) lower bounds the regret of any consistent algorithm.

For any consistent algorithm, number of interactions n > 0, and two instances f, g ∈ F with
different optimal decisions, let Pf,n and Pg,n denote the probability space generated by running
the algorithm on instances f and g respectively for n rounds. Since f, g have different optimal
decisions, Pf,n and Pg,n should be very different — following the same proof strategy in (Lattimore
& Szepesvari, 2017), we can show that

DKL(Pf,n‖Pg,n) ≥ (1 + o(1)) lnn.

Let the random variable πi be the decision of the algorithm in round i. The chain rule of KL
divergence shows

DKL(Pf,n‖Pg,n) = Ef,n
[∑n

i=1DKL(f [πi]‖g[πi])
]

=
∑
π Ef,n[Nπ]DKL(f [π]‖g[π]).

Now consider the vector w ∈ R|Π|+ where wπ = Ef [Nπ]/((1 + o(1)) lnn). Based on the derivation
above, we can verify that w is a valid solution to C(f, n), and therefore

Regf,n =
∑
π Ef [Nπ]∆(f, π) =

∑
π wπ∆(f, π)(1 + o(1)) lnn ≥ C(f, n)(1 + o(1)) lnn.
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Then the final result is proved by the fact that C(f) = limn→∞ C(f, n).

4.2 PROOF SKETCH OF THEOREM 3.3

In the following, we discuss main lemmas and their proof sketches for the three steps of Alg. 1.

Step 1: Initialization. In this step we show that the max likelihood estimation can find the exact
instance (i.e., f̂ = f?) with probability at least 1 − 1/ lnn and negligible regret. Note that the
failure probability is not small enough to directly commit to the optimal decision of f̂ (i.e., play
π?(f̂) forever), which would incur linear regret when f̂ 6= f?. Formally speaking, the main lemma
for Step 1 is stated as follows, whose proof is deterred to Appendix A.1.

Lemma 4.1. Under Condition 1, with probability at least 1 − 1/ lnn we get f̂ = f?. In addition,
the regret of Step 1 is upper bounded by O( lnn

ln lnn ).

Lemma 4.1 is not surprising since the MLE only requires O(log(1/δ)) samples to reach a failure
probability δ in general (Van de Geer, 2000, Section 7). Here we require 1/ lnn failure probability
but allow lnn/(ln lnn) = Ω(ln lnn) samples, hence the result is expected for large enough n.

Step 2: Identification. In the identification step, we boost the failure probability to 1/n using the
log-likelihood test. To this end, we compute the optimal list of decisions w = {π1, · · · , πm} that
distinguishes f̂ by solving C(f̂ , (ln lnn)1/4) (Line 4 of Alg. 1). The choice of (ln lnn)1/4 is not
critical, and could be replaced by any smaller quantity that approaches infinity as n→∞. Then we
run the log-likelihood ratio test using the observations collected by executing the list of decision w,
and achieve the following:

(a) when the true instance f? and the estimation f̂ have different optimal decisions, accept f̂ with
probability at most 1/n;

(b) when f̂ = f?, accept f̂ with probability at least 1− 1/ lnn.

In Section 4.3, we will discuss the log-likelihood ratio test in detail. Note that the regret after we
falsely reject the true instance isO(lnn) (by the regret bound of UCB algorithm), so we only require
a 1/ lnn failure probability for (b) because then it leads to a O(lnn)/ lnn = O(1) expected regret.
The main lemma for Step 2 is stated as follows, and its proof is deferred to Appendix A.2

Lemma 4.2. Under Condition 1, for any finite hypothesisF , for large enough n the following holds:

(a) conditioned on the event π?(f̂) 6= π?(f?), E f̂acc is true with probability at most 1/n;

(b) conditioned on the event f̂ = f?, E f̂acc is true with probability at least 1− 1/ lnn;

(c) conditioned on the event f̂ = f?, the expected regret of Step 2 is upper bounded by(
C(f?, (ln lnn)1/4) + o(1)

)
lnn. Otherwise, the expected regret of Step 2 is upper bounded

by O(lnn ln lnn).

Step 3: Exploitation. Finally, in Step 3 we either commits to the optimal decision π?(f̂) when
the estimation f̂ is accepted, or run a standard UCB algorithm with O(lnn) regret (Lattimore &
Szepesvári, 2020). Combining Lemma 4.1 and Lemma 4.2 we can prove that

(a) the probability of Step 3 incurring a O(n) regret is at most 1/n, and
(b) the probability of Step 3 incurring a O(lnn) regret is at most 1/ lnn.

As a result, the expected regret in Step 3 is O(1) and negligible . Finally Theorem 3.3 is proved by
stitching the three steps together, and deferred to Appendix A.4.

4.3 THE LOG-LIKELIHOOD RATIO TEST

The goal of the log-likelihood ratio test is to boost the confidence of our initial estimation f̂ to
1 − 1/n, so that the algorithm can safely commit to its optimal decision in Step 3. In other words,
the test should reject a wrong estimation but also accept a correct one.

7
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Formally speaking, in the test we observe a list of observations {o1, · · · , om} collected by the list of
decision {π1, · · · , πm} on the true instance f?, and achieve the following two goals simultaneously,

(a) when f̂ and f? are sufficiently different (i.e., their KL divergence is large in the sense that∑m
i=1DKL(f̂ [πi]‖f?[πi]) ≥ (1 + o(1)) lnn), accept f̂ with probability at most 1/n, and

(b) when f̂ = f?, accept f̂ with probability at least 1− 1/ lnn.

We prove that the log-likelihood ratio test with proper parameters achieves (a) and (b) under Condi-
tion 1 in the next lemma, whose proof is deferred to Appendix A.3.
Lemma 4.3. Given two sequences of distributions P = {Pi}mi=1 and Q = {Qi}mi=1, and a
sequence of independent random variables o = {oi}mi=1. For any fixed λ > 0, c > 0, and
β = 1

m

∑m
i=1D1−λ(Pi‖Qi), the test event Eacc = I

[∑m
i=1 ln Pi(oi)

Qi(oi)
≥ c
]

satisfies

Pro∼Q(Eacc) ≤ exp(−c), (9)
Pro∼P (Eacc) ≥ 1− exp(−λ(mβ − c)). (10)

To use Lemma 4.3 in the proof of Lemma C.2, we set c = lnn and λ = poly(ln lnn). Note
that the choice of w in Line 4 of Alg. 1 and Condition 1 implies mβ =

∑m
i=1D1−λ(Pi‖Qi) '∑m

i=1DKL(f̂ [πi]‖f?[πi]) = (1 + o(1)) lnn when f̂ , f? have different optimal policies. So the
conclusion of this lemma matches the first two items in Lemma 4.2.

Lemma 4.3 is closely related to the Chernoff-Stein lemma (see Chernoff (1959) and Mao (2021, The-
orem 4.11)), with the difference that the failure probability of Eq. (10) in classical Chernoff-Stein
lemma is a constant, while here it decreases withm. The proof of Eq. (9) is the same as in Chernoff-
Stein lemma, and proof of Eq. (10) only requires an one-sided concentration of the empirical log-
likelihood ratio. Indeed, the expectation of empirical log-likelihood ratio can be lower bounded
by EP

[∑m
i=1 ln Pi(oi)

Qi(oi)

]
=
∑m
i=1DKL (Pi‖Qi) ≥

∑m
i=1D1−λ (Pi‖Qi) = mβ. Hence, PrP (Eacc)

is the probability that the empirical log-likelihood ratio is (approximately) larger than its expecta-
tion. We also note that the concentration is non-trivial because we do not make assumptions on the
boundedness on the tail of Qi.

5 EXTENSIONS TO INFINITE HYPOTHESIS CLASS

Now we extend our analysis to infinite hypothesis settings, and instantiate our results on tabular
RL. Our results in the infinite hypothesis case need two additional conditions. The first condition
requires an upper bound on covering number of the hypothesis, and is used to prove a infinite-
hypothesis version of Lemma 4.2. Formally speaking, for any f, g ∈ F , define their distance as

d(f, g) = supπ∈Π,o |f [π](o)− g[π](o)|. (11)

An ε (proper) covering of F is a subset C ⊆ F , such that for any g ∈ F , there exists g′ ∈ C with
d(g, g′) ≤ ε. The covering number N (F , ε) is the size of the minimum ε covering of F .
Condition 2. There exists constant c that depends on F such that lnN (F , ε) ≤ O(c ln(1/ε)) for
every ε > 0. In addition, the base measure of the probability space has a finite volume Vol <∞.

The second condition upper bounds the distance of two instances by a polynomial of their KL
divergence, and is used to prove a stronger version of Lemma 4.1.
Condition 3. There exists a constant cmin > 0 (which may depend on f?) such that for all π ∈ Π
and o ∈ supp(f?[π]) f?[π](o) > cmin. In addition, there exists a constant ι(f?) > 0 that only
depends on f? and c5 > 0, such that for all f ∈ F , π ∈ Π, when DKL(f?[π]‖f [π]) ≤ 1

‖f?[π]− f [π]‖∞ ≤ ι(f?)DKL(f?[π]‖f [π])c5 .

A lot of interactive decision making problems satisfy Conditions 2, 3, such as multi-armed ban-
dits and linear bandits with Bernoulli reward or truncated Gaussian reward. For bandit problems,
Conditions 2 and 3 only depend on the noise of the reward function and can be verified easily.

For tabular RL, an observation o denotes a trajectory (s1, a1, r1, · · · , sH , aH , rH) where the state-
action pairs (sh, ah) are discrete random variables but the rewards rh are continuous. A decision

8
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π : S → A is a mapping from the state space to action space, so |Π| = |A||S| <∞. In Appendix D,
we formally define the tabular RL problems where the reward rh given (sh, ah) follows a truncated
Gaussian distribution, and prove that Conditions 1-3 are satisfied as stated in the following theorem.
Theorem 5.1. LetF be the family of tabular RL with truncated Gaussian reward and unique optimal
policies. Then Conditions 1, 2, 3 holds simultaneously.

For tabular RL with truncated Gaussian reward, the observation o is a mixture of discrete random
variables (i.e., the states and actions sh, ah) and continuous random variables (i.e., the rewards
rh). To prove Conditions 1-3, we deal with the discrete and continuous part of the observation
separately. We also have flexibility in the reward distribution, e.g., our proof technique can deal
with other distributions such as truncated Laplace distribution. We present these unified conditions
for bounded random variables, but Conditions 2 and 3 do not hold for unbounded random variables
because the base measure has an infinite volume (which contradicts to Condition 2), and the density
of the observation cannot be lower bounded (which contradicts to Condition 3). However, we can
still prove the same result using a slightly different approach (see Appendix E).

With Conditions 1-3, we can prove our main results for infinite hypothesis class. The asymptotic
regret of Alg. 1 in this case still matches the lower bound exactly. The proof of Theorem 5.2 is
deferred to Appendix C.1.
Theorem 5.2. Suppose F is an infinite hypothesis class that satisfies Conditions 1-3, the regret of
Alg. 1 satisfies lim supn→∞

Regf?,n
lnn ≤ C(f?).

As a corollary of Theorem 5.1 and Theorem 5.2, our algorithm strictly improves upon previous best
gap-dependent boundsO(

∑
s,a:∆(s,a)>0 1/∆(s, a)) in Xu et al. (2021) and Simchowitz & Jamieson

(2019) because the gap-dependent bounds are not tight for many instances (Tirinzoni et al., 2021).

In the following we discuss the challenges when extending to infinite hypothesis settings.

Covering Number. With infinite hypothesis, we need to accept an accurate estimation even when
there are infinitely many other choices. Recall that the accept event is

E f̂acc = I
[
∀g ∈ F and π?(g) 6= π?(f̂),

∑m
i=1 ln f̂ [πi](oi)

g[πi](oi)
≥ lnn

]
. (12)

So informally speaking, we need to show that with high probability,

∀g ∈ F and π?(g) 6= π?(f̂),
∑m
i=1 ln f̂ [πi](oi)

g[πi](oi)
& (Dw

1−λ(f̂‖g)− ε)m ≥ lnn, (13)

which is essentially an uniform concentration inequality as discussed in Section 4.3. So we resort
to a covering number argument. The standard covering argument is not directly suitable in this
case — even if d(g, g′) is small, it’s still possible that ln(f [π](o)/g[π](o)) is very different from
ln(f [π](o)/g′[π](o)) (especially when g[π](o) is very close to 0). Instead, we consider the distribu-
tion with density ĝ[π](o) , (g′[π](o) + ε)/Z where Z is the normalization factor, and only prove
a one-sided covering (that is, ln(f [π](o)/g[π](o)) ≥ ln(f [π](o)/ĝ[π](o)) − O(ε)). We state and
prove the uniform concentration in Appendix F.

Initialization. With infinite hypothesis, we cannot hope to recover the true instance f? exactly —
some instances can be arbitrarily close to f? and thus indistinguishable. Instead, we prove that the
estimation in Step 1 satisfies supπ∈ΠDKL(f?[π]‖f̂ [π]) ≤ poly( ln lnn

lnn ). The main lemma of Step 1
in the infinite hypothesis class case is stated in Lemma C.1.

6 CONCLUSION

In this paper, we design instance-optimal algorithms for general interactive decision making prob-
lems with finite decisions. As an instantiation, our algorithm is the first instance-optimal algorithm
for tabular MDPs. For future works, we raise the following open questions.

(a) To implement Alg. 1, we need to solve C(f, (ln lnn)1/4/2), which is a linear programming
with |Π| variables and infinitely many constraints. However, |Π| is exponentially large for
tabular MDPs. Can we compute this optimization problem efficiently for tabular MDPs?

(b) Although our algorithm is asymptotically optimal, the lower order terms may dominate the
regret unless n is very large. Can we design non-asymptotic instance optimal algorithms?

9
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A PROOFS FOR FINITE HYPOTHESIS CLASS

In this section we show the missing proofs in Section 4.

A.1 PROOF OF LEMMA 4.1

In this section, we prove Lemma 4.1.

Proof of Lemma 4.1. Recall that minit = |Π|d lnn
ln lnne. Let w = {π̂i}minit

i=1 be the sequence of deci-
sions in the initialization step of Alg. 1, and {ôi}minit

i=1 the corresponding observations. Define

ρ = min
g∈F,g 6=f?

max
π∈Π

D1/2(f?[π]‖g[π]). (14)
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For finite hypothesis we have ρ > 0. Then Lemma A.2, for any ε > 0 we get

Pr

(
1

minit

minit∑
i=1

ln
f?[π̂i](ôi)

g[π̂i](ôi)
≥ 1

minit

minit∑
i=1

D1/2(f?[π̂i]‖g[π̂i])− ε

)
≥ 1− exp(−minitε/2).

(15)

Let ε = ρ
2|Π| . By definition of ρ we get, for all g ∈ F \ {f?}

Pr

(
1

minit

minit∑
i=1

ln
f?[π̂i](ôi)

g[π̂i](ôi)
≥ ρ

2|Π|

)
(16)

≥ Pr

(
1

minit

minit∑
i=1

ln
f?[π̂i](ôi)

g[π̂i](ôi)
≥ 1

minit

minit∑
i=1

D1/2(f?[π̂i]‖g[π̂i])−
ρ

2|Π|

)
(17)

≥ 1− exp

(
− ρ lnn

4 ln lnn

)
. (18)

By union bound, with probability at least 1− |F| exp
(
− ρ lnn

4 ln lnn

)
we have

∀g ∈ F \ {f?},
minit∑
i=1

ln
f?[π̂i](ôi)

g[π̂i](ôi)
> 0 =

minit∑
i=1

ln
f?[π̂i](ôi)

f?[π̂i](ôi)
, (19)

which implies that

∀g ∈ F \ {f?},
minit∑
i=1

ln g[π̂i](ôi) <

minit∑
i=1

ln f?[π̂i](ôi). (20)

Recalling that f̂ = argmaxf∈F
∑minit

i=1 ln f [π̂i](ôi), Eq. (20) implies f̂ = f?.

By algebraic manipulation, for large enough n we have

exp

(
− ρ lnn

4 ln lnn

)
≤ exp(− ln |F| − ln lnn) =

1

|F| lnn
. (21)

As a result, for large enough n we get Pr(f̂ = f?) ≥ 1− 1/ lnn. In addition, the regret of Step 1 is
upper bounded by O(minit) = O( lnn

ln lnn ).

A.2 PROOF OF LEMMA 4.2

In this section, we prove Lemma 4.2. To this end, we need the following lemma.

Lemma A.1. Consider an instance f ∈ F and n > 0. Let δ = (ln lnn)−1/4 and ε = (ln lnn)−1.
Define

λ = λ0

(
4(ln lnn)3/4,

1

ln lnn
, f

)
(22)

as the value that Condition 1 holds with corresponding parameters.

Consider any ŵ ∈ R|Π|+ such that ‖ŵ‖∞ ≤ (ln lnn)1/4. Let w = {πi}mi=1 be a list of decisions
where a decision π occurs d((1 + δ)ŵπ + δ) lnne times for every π ∈ Π, and m =

∑
πd((1 +

δ)ŵπ + δ) lnne.
Define the set F(ŵ, f) = {g ∈ F :

∑
π∈Π ŵπDKL(f [π]‖g[π]) ≥ 1}. For any constant c > 0, there

exits n0 > 0 such that for all n > n0,

Dw
1−λ(f‖g) ≥ lnn

m
+ cε, ∀g ∈ F(ŵ, f). (23)

In addition, we have λ−1 = O(poly(ln lnn)) and m ≥ |Π| lnn
(ln lnn)1/4 .
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Proof. To prove this lemma, we invoke Condition 1 with proper parameters.

First we bound the value of m. By the assumption of this lemma, we have ‖ŵ‖∞ ≤ (ln lnn)1/4.
Consequently, for large enough n we get

m =
∑
π

d((1 + δ)ŵπ + δ) lnne ≤ 2|Π| lnn(ln lnn)1/4. (24)

On the other hand,

m =
∑
π

d((1 + δ)ŵπ + δ) lnne ≥ |Π|δ lnn =
|Π| lnn

(ln lnn)1/4
. (25)

Define α = lnn
m + cε. Then for large enough n we have α + ε ≤ 2

|Π| (ln lnn)1/4. We can also
lower bound γ = 1

m minπd((1 + δ)ŵπ + δ) lnne. By the upper bound of m and the fact that
d((1 + δ)ŵπ + δ) lnne ≥ δ lnn = lnn

(ln lnn)1/4 , we get γ ≥ 1
2|Π|(ln lnn)1/2 .

We invoke Condition 1 with parameters ((α + ε)/γ, ε, f). Note that λ defined in Eq. (22) satisfies
λ ≤ λ0((α+ ε)/γ, ε, f) because (α+ ε)/γ ≤ 4(ln lnn)3/4. Therefore we get

D1−λ(f [π]‖g[π]) ≥ min{DKL(f [π]‖g[π])− ε, (α+ ε)/γ}, ∀g ∈ F , π ∈ Π. (26)

In the following, we prove that Dw
1−λ(f‖g) ≥ α for all g ∈ F(ŵ, f). First of all, for large enough

n, for all g ∈ F(ŵ, f) we get

Dw
KL(f‖g) =

1

m

m∑
i=1

DKL(f [πi]‖g[πi]) =
1

m

∑
π∈Π

d((1 + δ)ŵπ + δ) lnneDKL(f [π]‖g[π]) (27)

≥ 1

m

∑
π∈Π

(1 + δ)(lnn)ŵπDKL(f [π]‖g[π]) ≥ 1

m
(1 + δ) lnn ≥ 1

m
(lnn+ (c+ 1)mε), (28)

where the last inequality comes from the fact that δ lnn = lnn
(ln lnn)1/4 & 2(c + 1)|Π| lnn

(ln lnn)3/4 ≥
(c+ 1)mε.

Now for a fixed g ∈ F(ŵ, f), consider the following two cases.

Case 1: ∃π̄ ∈ Π, DKL(f [π̄]‖g[π̄]) ≥ (α+ ε)/γ. In this case we have

Dw
1−λ(f‖g) =

1

m

m∑
i=1

D1−λ(f [πi]‖g[πi]) (29)

≥ d((1 + δ)ŵπ̄ + δ) lnne
m

D1−λ(f [π̄]‖g[π̄]) (30)

≥ γD1−λ(f [π̄]‖g[π̄]) ≥ α, (31)

where the last inequality comes from Eq. (26).

Case 2: ∀π ∈ Π, DKL(f [π]‖g[π]) ≤ (α+ ε)/γ. In this case, Eq. (26) implies that

D1−λ(f [π]‖g[π]) ≥ DKL(f [π]‖g[π])− ε, ∀π ∈ Π. (32)

Consequently,

Dw
1−λ(f‖g) =

1

m

m∑
i=1

D1−λ(f [πi]‖g[πi]) ≥
1

m

m∑
i=1

(DKL(f [πi]‖g[πi])− ε) = Dw
KL(f‖g)− ε.

By Eq. (28) we get Dw
KL(f‖g) ≥ α+ ε. Therefore Dw

1−λ(f‖g) ≥ α.

Combining the two cases together we get the desired result. The lower bound of λ−1 follows directly
from Condition 1.

Now we are ready to prove Lemma 4.2.
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Proof of Lemma 4.2. We prove the four items in Lemma 4.2 separately. We will invoke Lemma A.1
and Lemma 4.3 in the proof. Following Lemma A.1, let δ = (ln lnn)1/4, ε = (ln lnn)−1 and

λ = λ0

(
4(ln lnn)3/4,

1

ln lnn
, f

)
. (33)

Recall that Λ(f) = {g ∈ F : π?(g) 6= π?(f)}.

Proof of item (a). In this case we have f? ∈ Λ(f̂). By Lemma 4.3 we get

Prf?
(
E f̂acc

)
= Prf?

(
∀g ∈ Λ(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ lnn

)
(34)

≤ Prf?

(
m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
≥ lnn

)
≤ exp(− lnn) = 1/n. (35)

Proof of item (b). Recall that in this case we have f̂ = f?. Since ŵ is the solution to
C(f̂ , (ln lnn)1/4) (Line 4 of Alg. 1), we have

∑
π∈Π ŵπDKL(f̂ [π]‖g[π]) ≥ 1 for all g ∈ Λ(f̂).

Recall that w is the list of decisions computed by Line 5 of Alg. 1. By Lemma A.1 we get

Dw
1−λ(f‖g) ≥ lnn

m
+ ε, ∀g ∈ Λ(f̂). (36)

Let β = lnn
m + ε. By Lemma 4.3, for every g ∈ Λ(f̂) we have

Prf?

(
m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥ lnn

)
≥ 1− exp(−mλε). (37)

Lemma A.1 also yields λ−1 ≤ poly(ln lnn) and m ≥ |Π| lnn
(ln lnn)1/4 . Therefore mλε ≥ lnn

poly(ln lnn) .
Consequently, for large enough n we have

exp(−mλε) ≤ lnn

|F|
. (38)

Applying union bound, under the event I
[
f̂ = f?

]
we get

Prf?
(
E f̂acc

)
= Prf?

(
∀g ∈ Λ(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ lnn

)
≥ 1− lnn. (39)

Proof of item (c). Recall that ∆(f, π) is the sub-optimality gap of decision π on instance f , and
∆max(f) = maxπ ∆(f, π) is the maximum decision gap of instance f . Since ŵ is the solution to
C(f̂ , (ln lnn)1/4), we have ‖ŵ‖∞ ≤ (ln lnn)1/4. As a result, the regret of Step 2 is upper bounded
by ∑

π

d((1 + δ)ŵπ + δ) lnne∆max(f?) . |Π| lnn(ln lnn)1/4, (40)

which proves the second part of (c). For the first part, when f̂ = f? we have∑
π

d((1 + δ)ŵπ + δ) lnne∆(f?, π) (41)

≤
∑
π

(1 + δ)ŵπ(lnn)∆(f?, π) + |Π|∆max(f?)(1 + δ lnn) (42)

= ((1 + δ)C(f?, (ln lnn)1/4) + o(1)) lnn. (43)

By Lemma B.1, C(f?, (ln lnn)1/4) = O(1). As a result,

((1 + δ)C(f?, (ln lnn)1/4) + o(1)) lnn ≤ (C(f?, (ln lnn)1/4) + o(1)) lnn. (44)
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A.3 PROOF OF LEMMA 4.3

In this section, we prove Lemma 4.3. To this end, we need the following concentration inequality.

Lemma A.2. Consider two sequences of distributions P = {Pi}mi=1 and Q = {Qi}mi=1, and a
sequence of random variables o = {oi}mi=1 independently drawn from P . For any λ ∈ (0, 1) and
ε > 0 we have

Pro∼P

(
1

m

m∑
i=1

ln
Pi(oi)

Qi(oi)
≥ 1

m

m∑
i=1

D1−λ(Pi‖Qi)− ε

)
≥ 1− exp(−mλε). (45)

Proof of Lemma A.2. We prove Lemma A.2 by moment method. Consider any λ ∈ (0, 1), ε > 0
and let β = 1

m

∑m
i=1D1−λ(Pi‖Qi). Then we have

Pro∼P

(
m∑
i=1

ln
Pi(oi)

Qi(oi)
≤ m(β − ε)

)
(46)

= Pro∼P

(
m∑
i=1

ln
Qi(oi)

Pi(oi)
≥ −m(β − ε)

)
(47)

= Pro∼P

(
exp

(
λ

m∑
i=1

ln
Qi(oi)

Pi(oi)

)
≥ exp(−λm(β − ε))

)
(48)

≤ exp(λm(β − ε))Eo∼P

[
exp

(
λ

m∑
i=1

ln
Qi(oi)

Pi(oi)

)]
(49)

≤ exp(λm(β − ε))
m∏
i=1

Eoi∼Pi
[(
Qi(oi)

λPi(oi)
−λ)] (50)

≤ exp(λm(β − ε))
m∏
i=1

(∫
o

(
Qi(o)

λPi(o)
1−λ) do

)
(51)

≤ exp(λm(β − ε))
m∏
i=1

exp((λ− 1)Dλ(Qi‖Pi)). (52)

where Eq. (49) follows from Markov inequality. By Van Erven & Harremos (2014, Proposition 2)
we get Dλ(Q‖P ) = λ

1−λD1−λ(P‖Q) for any distributions P,Q. As a result,

exp(λm(β − ε))
m∏
i=1

exp((λ− 1)Dλ(Qi‖Pi)) (53)

= exp(λm(β − ε))
m∏
i=1

exp(−λD1−λ(Pi‖Qi)) (54)

= exp(λm(β − ε)) exp (−λmβ) (55)
= exp (−mλε) . (56)

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. First we prove Eq. (9). By the moment method, for any c > 0

PrQ(Eacc) = PrQ

(
m∑
i=1

ln
Pi(oi)

Qi(oi)
≥ c

)
(57)

= PrQ

(
exp

(
m∑
i=1

ln
Pi(oi)

Qi(oi)

)
≥ exp(c)

)
(58)
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≤ exp(−c)EQ

[
m∏
i=1

Pi(oi)

Qi(oi)

]
(Markov inequality)

≤ exp(−c)
m∏
i=1

Eoi∼Qi
[
Pi(oi)

Qi(oi)

]
(independence of oi’s)

= exp(−c), (59)

where the last line comes from the fact that both Pi, Qi are valid distributions. For Eq. (10), we can
directly invoke Lemma A.2 with ε = β − c/m.

A.4 PROOF OF THEOREM 3.3

We prove Theorem 3.3 by stitching Lemma 4.1 and Lemma 4.2 together.

Proof of Theorem 3.3. We upper bound the regret of Alg. 1 by discussing the regret under following
events separately. Let RegStep1,RegStep2, and RegStep3 be the regret incurred in Step 1, 2, and 3

respectively. Let Einit = I
[
f̂ = f?

]
be the event that the initial estimation is accurate.

Regret of Step 1: By Lemma 4.1 we have,

lim sup
n→∞

1

lnn
E[RegStep1] ≤ 0.

Regret of Step 2. By item (c) of Lemma 4.2 and Lemma 4.1,

E
[
RegStep2

]
= E

[
RegStep2 | Einit

]
Pr(Einit) + E

[
RegStep2 | Ecinit

]
Pr(Ecinit) (60)

≤ (C(f?, (ln lnn)1/4) + o(1)) ln(n) +O(lnn ln lnn)/ lnn. (61)

As a result,

lim sup
n→∞

1

lnn
E
[
RegStep2

]
≤ lim sup

n→∞
C(f?, (ln lnn)1/4) = C(f?). (62)

Regret of Step 3. First focus on the event Einit. Under event E f̂acc ∩ Einit, there is no regret in Step
3. On the other hand, by item (b) of Lemma 4.2 we have Pr(Einit ∩ (E f̂acc)c) ≤ 1/ lnn. Since UCB
gives logarithmic regret, we have

lim sup
n→∞

1

lnn
E
[
I
[
Einit, (E f̂acc)c

]
RegStep3

]
≤ lim sup

n→∞

O(lnn)

lnn
Pr(Einit ∩ (E f̂acc)c) ≤ 0. (63)

As a result,

lim sup
n→∞

1

lnn
E
[
I [Einit] RegStep3

]
≤ 0. (64)

Now we focus on the event Ecinit. Let E1 = {π?(f̂) = π?(f?)}. Under event E f̂acc ∩E1 the algorithm
has no regret in Step 3:

E
[
I
[
Ecinit, E1, E f̂acc

]
RegStep3

]
= 0. (65)

On the other hand, consider the event E f̂acc ∩ Ec1 . By item (a) of Lemma 4.2 we have

E
[
I
[
Ecinit, Ec1 , E f̂acc

]
RegStep3

]
≤ n∆max Pr

(
I
[
π?(f?) 6= π?(f̂), E f̂acc

])
≤ n∆max

n
≤ O(1).

(66)

Under the event (E f̂acc)c, Step 3 incurs logarithmic regret. As a result,

E
[
I
[
Ecinit, (E f̂acc)c

]
RegStep3

]
≤ O(lnn) Pr (Ecinit) ≤ O(1). (67)
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Combining Eqs. (65), (66) and (67) we get

lim sup
n→∞

1

lnn
E
[
I [Ecinit] RegStep3

]
= 0. (68)

Therefore, combining Eqs. (64) and (68),

lim sup
n→∞

1

lnn
E
[
RegStep3

]
= 0. (69)

Stitching the regrets from steps 1-3 together we prove Theorem 3.3.

B MISSING PROOFS IN SECTION 3.1

In this section, we present the missing proofs in section 3.1.

B.1 PROOF OF LEMMA 3.1

To prove Lemma 3.1, we need the following lemma.

Lemma B.1. For any f ∈ F , let n0 = 5(∆min(f)/Rmax)−2. Consider w ∈ R|Π|+ such that
wπ = n0 for all π ∈ Π. Then w is a valid solution to C(f, n) for all n > n0. As a corollary,
C(f, n) ≤ ∆max(f)|Π|n0 for all n > n0.

Proof of Lemma B.1. Recall that ∆(f, π) = maxπ′∈ΠRf (π′)−Rf (π) is the reward gap of decision
π under instance f , and ∆min(f) = minπ:∆(f,π)>0 ∆(f, π) is the minimum decision gap of the
instance f .

Let Λ(f) = {g ∈ F , π?(g) 6= π?(f)}. For any instance g ∈ Λ(f), consider the following two
decisions: π1 = π?(f), π2 = π?(g). We claim that

max
π∈{π1,π2}

|Rf (π)−Rg(π)| ≥ ∆min(f)

3
. (70)

This claim can be proved by contradiction. Suppose on the contrary that

max
π∈{π1,π2}

|Rf (π)−Rg(π)| < ∆min(f)/3.

Then we have

Rg(π1) ≥ Rf (π1)− ∆min(f)

3
≥ Rf (π2) +

2∆min(f)

3
≥ Rg(π2) +

∆min(f)

3
> Rg(π2),

which contradicts with the fact that π2 = π?(g).

Recall that Rf (π) = Eo∼f [π][R(o)]. As a result, |Rf (π)−Rg(π)| ≤ RmaxDTV(f [π]‖g[π]). Now,
by Pinsker’s inequality, for any π ∈ Π we have

DKL(f [π]‖g[π]) ≥ 2DTV(f [π]‖g[π])2 ≥ 2(|Rf (π)−Rg(π)|/Rmax)2. (71)

Combining with Eq. (70), for any g ∈ Λ(f) we get∑
π∈Π

n0DKL(f [π]‖g[π]) ≥ 1. (72)

Since this inequality holds for every g ∈ Λ(f), we prove the desired result.

Now we present the proof of Lemma 3.1.

Proof of Lemma 3.1. By Lemma B.1, for n > 5(∆min(f)/Rmax)−2, we get C(f, n) <∞.
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B.2 PROOF OF THEOREM 3.2

Now we show the proof of Theorem 3.2.

Proof of Theorem 3.2. In the following we fix a consistent algorithm A. Consider any instance
g ∈ F such that π?(g) 6= π?(f).

Recall that ∆(f, π) = maxπ′∈ΠRf (π′) − Rf (π) is the reward gap of decision π under instance
f and ∆min(f) = minπ:∆(f,π)>0 ∆(f, π) is the minimum decision gap of the instance f . Let
ε = min{∆min(g),∆min(f)}/2. Consider two distributions (over observations and decisions)
Pf,n, Pg,n induced by running n steps of algorithm A on instance f, g respectively. In addition,
let Nπ be the random variable indicates the number of times decision π is executed, and πi the
random variable indicating the decision executed at step i.

Let Regf,n and Regg,n be the regret of running algorithm A on instances f and g respectively. By
definition we have

Regf,n + Regg,n
εn

≥ Prf

(
Nπ?(f) ≤

n

2

)
+ Prg

(
Nπ?(f) >

n

2

)
(73)

By basic inequality of KL divergence (Lattimore & Szepesvari, 2017, Lemma 5) we get,

Prf

(
Nπ?(f) ≤

n

2

)
+ Prg

(
Nπ?(f) >

n

2

)
≥ 1

2
exp(−DKL(Pf,n‖Pg,n)). (74)

Combining Eq. (73) and Eq. (74) we get,

DKL(Pf,n‖Pg,n) ≥ ln

(
εn

2
(
Regf,n + Regg,n

)) . (75)

Now applying the chain rule for KL divergence (see, e.g., (Cover, 1999, Theorem 2.5.3)), we get

DKL(Pf,n‖Pg,n) = Ef

[
n∑
i=1

DKL(f [πi]‖g[πi])

]
=
∑
π∈Π

Ef [Nπ]DKL(f [π]‖g[π]). (76)

Therefore we have∑
π∈Π

Ef [Nπ]

ln (εn)− ln
(
2
(
Regf,n + Regg,n

))DKL(f [π]‖g[π]) ≥ 1. (77)

Consider the mixture of decisions

wπ =
Ef [Nπ]

ln (εn)− ln
(
2
(
Regf,n + Regg,n

)) .
Since Regf,n + Regg,n ≤ n∆max and Ef [Nπ] ≤ n, wπ satisfies the constraint of C (f, n) for large
enough n. In addition, the expected regret of algorithm A is

Regf,n = Ef

[
n∑
i=1

∆πi

]
=
∑
π

Ef [Nπ]∆π (78)

≥
∑
π

∆πwπ ln

(
εn

2
(
Regf,n + Regg,n

)) (79)

≥ C (f, n) ln

(
εn

2
(
Regf,n + Regg,n

)) . (80)

Since A is consistent, for any p > 0 we have Regf,n + Regg,n = O(np). Consequently, for any
p > 0,

lim sup
n→∞

Regf,n
ln(n)

(81)
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≥ lim sup
n→∞

C (f, n)
ln(n)− ln

(
2
(
Regf,n + Regg,n

)
/ε
)

ln(n)
(82)

≥ C(f)(1− p). (83)

Since p > 0 is an arbitrary constant, we get

lim sup
n→∞

Regf,n
ln(n)

≥ C(f). (84)

B.3 INSTANTIATION OF THE COMPLEXITY MEASURE

In this section, we instantiate our complexity measure C(f) on concrete settings.

First we consider multi-armed bandits with unit Gaussian reward. The family of decisions is Π =
{1, 2, · · · , A}. Let (µ1, µ2, · · · , µA) be the mean rewards of each decision. An instance f in this
case is characterized by the mean rewards, and f [i] = N (µi, 1).

Proposition B.2. For an multi-armed bandit instance f with unique optimal decision and unit Gaus-
sian noise, let (µ1, µ2, · · · , µA) be the mean reward of each action. Then

C(f) ≤
∑

i∈[1,A] and ∆i>0

2

∆i

where ∆i = maxi′ µi′ − µi.

Proof. We prove this proposition by constructing a solution w ∈ RA+ to the optimization problem
C(f, n) for large enough n.

Without loss of generality, we assume µ1 > µi for all i ≥ 2. Consider the action frequency

wi =

{
2n

n∆2
i−3

, i ≥ 2,

n, i = 1.
(85)

Then when n is large enough we have ‖w‖∞ ≤ n. On the other hand, consider any g ∈ F such that
π?(g) 6= π?(f). Suppose π?(g) = i. In the following we show that

n∑
i=1

wiDKL(f [i]‖g[i]) ≥ 1. (86)

Let (µ′1, µ
′
2, · · · , µ′A) be the mean reward of instance g. For multi-armed bandits with unit Gaussian

noise, we have
n∑
i=1

wiDKL(f [i]‖g[i]) =
1

2

n∑
i=1

wi(µi − µ′i)2 ≥ 1

2

(
w1(µ1 − µ′1)2 + wi(µi − µ′i)2

)
. (87)

By the condition that π?(g) = i, we get µ′i ≥ µ′1. Combining with the fact that µ1 > µi we get

min
µ′1,µ

′
i:µ
′
1≤µ′i

(
w1(µ1 − µ′1)2 + wi(µi − µ′i)2

)
(88)

= min
µ′1∈[µi,µ1]

(
w1(µ1 − µ′1)2 + wi(µi − µ′1)2

)
(89)

=
w1wi
w1 + wi

(µ1 − µi)2. (90)

By the definition of wi, we have

w1wi
w1 + wi

(µ1 − µi)2 =

2n2

n∆2
i−3

n+ 2n
n∆2

i−3

∆2
i =

2∆2
in

n∆2
i − 1

≥ 2. (91)
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As a result,

C(f, n) ≤
A∑
i=2

2n

n∆2
i − 3

∆i. (92)

It follows that

C(f) = lim
n→∞

C(f, n) ≤ lim
n→∞

A∑
i=2

2n

n∆2
i − 3

∆i =

A∑
i=2

2

∆i
. (93)

In the following, we focus on a linear bandit instance f where the action set is A ⊂ Rd. The mean
of an action x ∈ A is given by µx = 〈x, θ〉 for some θ ∈ Rd. Let x? = argmaxx µx be the optimal
action, and ∆x , µx? − µx be the sub-optimality gap of action x. Define A− = A \ {x?}. An
linear bandit instance is characterized by the vector θ, and f [x] = N (〈x, θ〉 , 1).

We assume that A is discrete, full rank, and ‖x‖2 ≤ 1 for all x ∈ A. Then we have the following
proposition.

Proposition B.3. For an linear bandit instance f with unique optimal decision and unit Gaussian
noise, our complexity measure C(f) recovers that in Lattimore & Szepesvari (2017). That is,

C(f) ≤ inf
w∈RA+

∑
x∈A−

wx∆x, (94)

s.t. ‖x‖2H(w)−1 ≤
∆2
x

2
, ∀x ∈ A−, (95)

where H(w) =
∑
x wxxx

>.

Proof. Let ŵ be the solution to the RHS of Eq. (94). In the following we construct a solution to our
optimization problem C(f, n) from ŵ. Recall that

C(f, n) , min
w∈R|A|+

∑
x∈A

wπ∆(f, x) (96)

s.t.
∑
x∈A

wxDKL(f [x]‖g[x]) ≥ 1, ∀g ∈ F , π?(g) 6= π?(f), (97)

‖w‖∞ ≤ n. (98)

For any w ∈ RA+ and any instance g ∈ F associates with parameter θ′, we have

∑
x∈A

wxDKL(f [x]‖g[x]) =
∑
x∈A

wxDKL(N (〈x, θ〉 , 1)‖N (〈x, θ′〉 , 1)) =
‖θ − θ′‖2H(w)

2
. (99)

Consider any g such that π?(g) 6= π?(f). Suppose π?(g) = x 6= x?. It follows that 〈x− x?, θ′〉 >
0. Recall that ∆x = 〈x? − x, θ〉 . By algebraic manipulation we have,

min
θ′:〈x?−x,θ−θ′〉>∆x

1

2
‖θ − θ′‖2H(w) =

1

2

∆2
x

‖x? − x‖2H(w)−1

(100)

Therefore to satisfy Eq. (97), it’s enough to construct a solution w such that

1

2

∆2
x

‖x? − x‖2H(w)−1

≥ 1,∀x ∈ A−. (101)

Define A =
∑
x∈A− ŵxxx

> + (x?)(x?)>. When the action set A is full rank, A is positive def-
inite (see Lattimore & Szepesvari (2017, Appendix C)). We use σmax(A), σmin(A) to denote the
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maximum/minimum singular value of a matrix A respectively. Then for any n > 0, consider the
following solution

wx =

{
ŵx

(
1− 8

∆2
min

σmax(A−1)
1+(n−1)σmin(A−1)

)−1

, when x 6= x?,

n, when x = x?.
(102)

For large enough n we get ‖w‖∞ ≤ n. In the following, we prove that w satisfies Eq. (100). Let

cn =

(
1− 8

∆2
min

σmax(A−1)

1 + (n− 1)σmin(A−1)

)−1

for shorthand. Since ∆x? = 0, we have ŵx? = ∞. Therefore ‖x?‖H(ŵ)−1 = 0. Then for any
x ∈ A−, by Eq. (95) we have

(x? − x)>H(cnŵ)−1(x? − x) = c−1
n (x? − x)>H(ŵ)−1(x? − x) (103)

= c−1
n x>H(ŵ)−1x ≤ ∆2

x

2
− 4σmax(A−1)

1 + (n− 1)σmin(A−1)
. (104)

Invoking Lemma G.7 we get

(x? − x)>H(w)−1(x? − x) ≤ (x? − x)>H(cnŵ)−1(x? − x) +
4σmax(A−1)

1 + (n− 1)σmin(A−1)
=

∆2
x

2
,

which implies Eq. (101). As a result, w is a valid solution ot C(f, n). Consequently,

C(f, n) ≤
∑
x

∆xwx ≤ cn
∑
x

ŵx∆x. (105)

By definition we have limn→∞ cn = 1. Consequently, C(f) = limn→∞ C(f, n) ≤
∑
x ŵx∆x.

B.4 A SUFFICIENT CONDITION FOR CONDITION 1

In this section, we discuss a sufficient but more interpretable condition to Condition 1.
Proposition B.4. Suppose there exists a constant cM such that for every f, g ∈ F and π ∈ Π,

Eo∼f [π]

[(
ln
f [π](o)

g[π](o)

)4
]
≤ c4M .

Then Condition 1 holds with λ0(α, ε, f) = min{2ε/c2M , 1/2}.

Proof. For any fixed f, g ∈ F , π ∈ Π and λ < 1/2, by Lemma G.8 we get

DKL(f [π]‖g[π])−D1−λ(f [π]‖g[π]) ≤ λ

2
Eo∼f [π]

[(
ln
f [π](o)

g[π](o)

)4
]1/2

. (106)

Therefore we have

DKL(f [π]‖g[π])−D1−λ(f [π]‖g[π]) ≤ λ

2
c2M . (107)

Since D1−λ(f [π]‖g[π]) is monotonically decreasing with λ, we prove the desired result.

B.5 COMPARISON WITH EXISTING LOWER BOUNDS

Recall that when applied to tabular RL problems, our lower bound is very similar to that in Tirinzoni
et al. (2021), and the only difference is that their optimization problems omit the second constraint
(Eq. (4)), On a high level, the constraint ‖wπ‖∞ ≤ n is necessary to prevent degenerate cases and
guarantee mathematical rigor.

The value C(f, n) can be different from the solution without this constraint for some artifi-
cial hypothesis class F . For example, we can construct a multi-armed bandit hypothesis class
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F = {µ ∈ RA : µ(1) 6= 0.5} ∪ {[0.5, 0.1, · · · , 0.1]} (where µ ∈ RA represents the mean
reward of each arm). Then for f = [0.5, 0.1, · · · , 0.1], C(f, n) > 0 for every n > 0 (be-
cause there exits other instances in F whose mean reward of action 1 is arbitrarily close of
0.5). As a result, C(f) = limn→∞ C(f, n) > 0 by the definition of limits and in this case
limn→∞ C(f, n) 6= C(f,∞). However, without the constraint ‖wπ‖∞ ≤ n, the solution will be
0, achieved by letting w1 =∞ and wi = 0,∀i 6= 1.

For other hypothesis classes (such as the standard MAB and linear bandits discussed in Proposi-
tion B.2 & B.3, and tabular RL), however, this constraint does not change the value of C(f, n).

C EXTENSION TO INFINITE HYPOTHESIS CLASS

In this section, we extend our results to the infinite hypothesis case.

C.1 PROOF OF THEOREM 5.2

To prove Theorem 5.2, we require the following lemmas for steps 1 and 2 by analogy with the finite
hypothesis case.

Lemma C.1 (Main lemma for Initialization). Let Einit be the event that, there exists a universal
constant c4 > 0 such that

(a) maxπDKL(f?[π]‖f̂ [π]) ≤
(

ln lnn
lnn

)c4 ,

(b)
∣∣∣Rf̂ (π)−Rf?(π)

∣∣∣ ≤ Rmax

(
ln lnn
lnn

)c4 , for all π ∈ Π,

(c) π?(f̂) = π?(f?).

Under Conditions 1 and 2, there exists n0 > 0 such that when n > n0, Pr(Einit) ≥ 1 − 1/ lnn. In
addition, the regret of Step 1 is upper bounded by O( lnn

ln lnn ).

Proof of Lemma C.1 is deferred to Appendix C.2.

Lemma C.2 (Main lemma for Identification). Under Conditions 1, 2, and 3, there exists n0 > 0
such that when n > n0, the following holds.

(a) Conditioned on the event π?(f̂) 6= π?(f?), Pr(Eacc) ≤ 1/n.

(b) Conditioned on the event Einit, Pr(Eacc) ≥ 1− 1/ lnn.

(c) The expected regret of Step 2 is always upper bounded by O(lnn ln lnn).

(d) Conditioned on the event Einit, the expected regret of Step 2 is upper bounded by(
C(f?, (ln lnn)1/4/2) + o(1)

)
lnn.

Proof of Lemma C.2 is deferred to Appendix C.3.

Then, proof of Theorem 5.2 is the same as that of Theorem 3.3 by plugging in Lemma C.1 and
Lemma C.2,

C.2 PROOF OF LEMMA C.1

Proof of Lemma C.1. We prove the two items in this lemma separately.

Proof of item (a): Let c1 > 0 be the constant from Condition 1. Set c6 = 1
2c1+3 , α =

(
ln lnn
lnn

)c6 ,
and ε = α

5 . Let w = (π1, · · · , πminit
) be the list of decisions run by Step 1, and o1, · · · , ominit

the
corresponding observations. Recall that by definition,

f̂ = argmax
g∈F

minit∑
i=1

ln g[πi](oi). (108)
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Combining with the fact that f? ∈ F , we have
minit∑
i=1

ln
f?[πi](oi)

f̂ [πi](oi)
≤
minit∑
i=1

ln
f?[πi](oi)

f?[πi](oi)
≤ 0. (109)

Let G(α) = {g ∈ F : ∃π : DKL(f?[π]‖g[π]) ≥ α}. We will prove that for all g ∈ G(α), we have∑minit

i=1 ln f?[πi](oi)
g[πi](oi)

> 0. Combining with Eq. (109) we get DKL(f?[π]‖f̂ [π]) ≤ α,∀π.

To this end, we apply Lemma F.1 with parameters (α/|Π|, ε/|Π|, w). Following Lemma F.1, define

γ =
1

minit
min
π

minit∑
i=1

I [πi = π] .

Then we have γ = 1/|Π|. Let λ = λ0(α, ε/|Π|, f) be the value that satisfies Condition 1, and

ε0 =
exp(−α)(ελ/|Π|)1/λ

3Vol
.

Recall that the condition of Lemma F.1 states

minit ≥
1

λε
(lnN (F , ε0) + ln(1/δ))) . (110)

The failure probability in this case is δ = 1/ lnn. By Condition 1, for large enough n we get
1/λ . ε−c1 . By Condition 2 we get

lnN (F , ε0) . ln(1/ε0) . O(1) +
1

λ
ln(1/(ελ)) + α.

As a result, when n is large enough
1

λε
(lnN (F , ε0) + ln(1/δ))) .

1

εc1+1

(
O(1) + ln lnn+

1

εc1
ln

1

εc1

)
(111)

. ε−(2c1+2) .

(
lnn

ln lnn

)1− 1
2c1+3

, (112)

where the last inequality comes from the definition of ε, i.e., ε = O
((

ln lnn
lnn

) 1
2c1+3

)
. Recall that

minit ≥ |Π| lnn
ln lnn . When n is large enough, the condition of Lemma F.1 (i.e., Eq. (110)) is satisfied.

Because every policy appears in w exactly the same number of times, we haveDw
KL(f?‖g) ≥ α/|Π|

for all g ∈ G(α). Therefore, by Lemma F.1 with paremeters (α/|Π|, ε/|Π|, w),

∀g ∈ G(α),

minit∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥
(
α

|Π|
− 4

ε

|Π|

)
m > 0. (113)

Combining with Eq. (109), we get f̂ 6∈ G(α). As a result

∀π ∈ Π, DKL(f?[π]‖f̂ [π]) ≤ α =

(
ln lnn

lnn

)c6
. (114)

Proof of item (b): Now we focus on item (b). For any fixed π ∈ Π, by Pinsker’s inequality and
Eq. (114) we get

DTV(f?[π]‖f̂ [π]) ≤
√

1

2
DKL(f?[π]‖f̂ [π]) ≤

(
ln lnn

lnn

)c6/2
. (115)

By assumption we have 0 ≤ R(o) ≤ Rmax almost surely for both f?[π] and f̂ [π]. It follows that∣∣∣Rf̂ (π)−Rf?(π)
∣∣∣ ≤ RmaxDTV(f?[π]‖f̂ [π]). (116)

Then we prove item (b) with c4 = c6/2 and ι(f?) = Rmax.

Proof of item (c): Since ∆min(f?) > 0, (c) follows from (b) directly when n is large enough.

Proof of regret: The number of samples collected in Step 1 is upper bounded by minit =
|Π|d lnn

ln lnne. As a result, the regret is upper bounded by

O(∆maxminit) = O
(

lnn

ln lnn

)
. (117)
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C.3 PROOF OF LEMMA C.2

Proof of Lemma C.2. We prove the four items in Lemma C.2 separately.

Item (a): First we prove item (a) of Lemma C.2. By Markov inequality, for any c > 0, we have

Prf?

(
m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
≥ lnn

)
= Prf?

(
exp

(
m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)

)
≥ exp(lnn)

)
(118)

≤ exp(− lnn)Ef?
[

exp

(
m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)

)]
= exp(− lnn)

m∏
i=1

Ef?
[
f̂ [πi](oi)

f?[πi](oi)

]
(119)

= 1/n. (120)

The last equality follows from the fact that f̂ [π] and f?[π] are both probability distributions given
any decision π ∈ Π.

Recall that in this case π?(f̂) 6= π?(f?). Therefore,

Pr(E f̂acc) = Pr

(
∀g ∈ F and π?(g) 6= π?(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ lnn

)
(121)

≤ Pr

(
m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
≥ lnn

)
≤ 1/n. (122)

Item (b): Let ε = 1/ ln lnn and α = lnn
m . We prove this statement by invoking Lemma F.1

with parameters (α + 5ε, ε, w). Following Lemma F.1, let γ = 1
m minπ

∑m
i=1 I [πi = π] and λ =

λ0((α+ 5ε)/γ, ε, f?) be the value that satisfies Condition 1. Let

ε0 =
exp(−(α+ 5ε)/γ)(ελ)1/λ

3Vol
.

First of all, we prove that the condition for Lemma F.1 holds. That is,

m ≥ 1

λε
(lnN (F , ε0) + ln lnn) . (123)

Recall that in Alg. 1, ŵ is the solution of C(f̂ , (ln lnn)1/4), w̄π =
(

1 + 1
(ln lnn)1/4

)
ŵπ+ 1

(ln lnn)1/4 ,

and m =
∑
xdw̄π ln(n)e. As a result, m ≥ |Π| lnn

(ln lnn)1/4 . Now consider the RHS of Eq. (123).

By the definition of w̄π we get m ≤ 2|Π| lnn(ln lnn)1/4, so α ≤ 1
|Π| (ln lnn)1/4 and γ−1 ≤

2|Π|(ln lnn)1/2. It follows from Condition 1 that λ ≥ poly(1/ ln lnn). By the definition of ε0 and
Condition 2 we get

lnN (F , ε0) . ln(1/ε0) . poly(ln lnn). (124)
Consequently, when n is sufficiently large, Eq. (123) holds. By Lemma F.1 we get, with probability
at least 1− 1/ lnn,

m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥ (α+ ε)m, ∀g ∈ F(w, f?, α+ 5ε), (125)

where F(w, f?, α + 5ε) = {g ∈ F : Dw
KL(f?‖g) ≥ α + 5ε}. In the following, we prove that

Eq. (125) implies E f̂acc. Recall that E f̂acc is the event defined as follows:

E f̂acc = I

[
∀g ∈ Λ(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ lnn

]
. (126)

Recall that Λ(f̂) = {g ∈ F , π?(g) 6= π?(f̂)}. Next, we apply Lemma G.4 to show that Λ(f̂) ⊆
F(w, f?, α + 5ε). To verify the condition of Lemma G.4, we have DTV(f?[π]‖f̂ [π]) .

(
ln lnn
lnn

)c4
for all π ∈ Π by item (a) of Lemma C.1. By the definition of ŵ we get

∀g ∈ Λ(f̂),
∑
π∈Π

ŵπDKL(f̂ [π]‖g[π]) ≥ 1. (127)
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Therefore when n is large enough,

∀g ∈ Λ(f̂), Dw
KL(f?‖g) ≥ lnn

m
+ 5ε = α+ 5ε. (128)

Then Λ(f̂) ⊆ F(w, f?, α+ 5ε). It follows from Eq. (125) that
m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥ (α+ ε)m, ∀g ∈ Λ(f̂). (129)

Finally, by Condition 3 we get f?[π](o) > cmin for any π ∈ Π and o ∈ supp(f?[π]). As a result∣∣∣∣∣ln f̂ [π](o)

f?[π](o)

∣∣∣∣∣ ≤
∣∣∣∣∣ln
(

1 +
f̂ [π](o)− f?[π](o)

f?[π](o)

)∣∣∣∣∣ ≤
∣∣∣∣∣ln
(

1 +
f̂ [π](o)− f?[π](o)

cmin

)∣∣∣∣∣. (130)

When ‖f̂ − f?‖∞ ≤ cmin/2, applying the basic inequality |ln(1 + x)| ≤ 2x, ∀|x| ≤ 1/2 we get∣∣∣∣∣ln
(

1 +
f̂ [π](o)− f?[π](o)

cmin

)∣∣∣∣∣ ≤ 2

cmin
‖f̂ − f?‖∞ .

2

cmin

(
ln lnn

lnn

)c4c5
, (131)

where the last inequality comes from item (a) of Lemma C.1 and Condition 3. Therefore, for large
enough n we get

∣∣∣ln f̂ [π](o)
f?[π](o)

∣∣∣ ≤ ε. As a result,

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
=

m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
+

m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
≥ αm = lnn. (132)

Since g ∈ Λ(f̂) is arbitrary, have

Pr(E f̂acc) = Pr

(
∀g ∈ Λ(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ lnn

)
(133)

≥ Pr

(
∀g ∈ F(w, f?, α+ 5ε),

m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥ (α+ ε)m

)
≥ 1− 1/ lnn. (134)

Item (c): By the definition of C(f̂ , (ln lnn)1/4), we have ŵπ ≤ (ln lnn)1/4 for every π ∈ Π. As a
result, m ≤ 2A lnn(ln lnn)1/4. Therefore, the expect regret of Step 2 is upper bounded by

∆max2A lnn(ln lnn)1/4 = O(lnn ln lnn). (135)

Item (d): Recall that ŵ is the solution of C(f̂ , (ln lnn)1/4). As a result, the regret of Step 2 is upper
bounded by (∑

π∈Π

ŵπ∆(f?, π) + o(1)

)
lnn (136)

where ∆(f?, π) is the sub-optimality gap of decision π under instance f?. In the following, we
prove that ∑

π∈Π

ŵπ∆(f?, π) ≤ C(f?, (ln lnn)1/4/2). (137)

Let ŵ? be the solution to C(f?, (ln lnn)1/4/2). Define δ = 1
(ln lnn)1/4 . Let w̄? , {(1 + δ) ŵ?π+δ}π

and m? =
∑
π∈Πdw̄?π lnne. We will show that w̄? is also (approximately) a solution of

C(f̂ , (ln lnn)1/4/2)

By the definition of C(f?, (ln lnn)1/4/2), for any g ∈ Λ(f?), we have∑
π∈Π

(ŵ?π)DKL(f?[π]‖g[π]) ≥ 1. (138)
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Let w? be the list of decisions that π appears dw̄? lnne times for every π ∈ Π. Define α? = lnn
m?

and ε = 1
ln lnn . Next we apply Lemma G.4 with parameters (ε, w?). To verify its condition, item (a)

of Lemma C.1 gives

DTV(f?[π]‖f̂ [π]) ≤ DKL(f?[π]‖f̂ [π])1/2 .

(
ln lnn

lnn

)c4/2
, ∀π ∈ Π, (139)

which satisfies the condition of Lemma G.4. Consequently, we get Dw?

KL(f̂ [π]‖g[π]) ≥ lnn
m? for

every g ∈ Λ(f?). Therefore,

∀g ∈ Λ(f?),
∑
π∈Π

dw̄?π lnne
lnn

DKL(f̂ [π]‖g[π]) ≥ 1. (140)

By item (c) of Lemma C.1, Λ(f̂) = Λ(f?). When n is large enough, we have dw̄
?
π lnne
lnn ≤

(ln lnn)1/4. Therefore,
{
dw̄?π lnne

lnn

}
π∈Π

satisfies all the constraints of C(f̂ , (ln lnn)1/4). Recall

that ŵ is the solution to C(f̂ , (ln lnn)1/4). By the optimality of ŵ we have∑
π

ŵπ∆(f̂ , π) ≤
∑
π

dw̄?π lnne
lnn

∆(f̂ , π) ≤
∑
π

w̄?π∆(f̂ , π) + o(1). (141)

By item (b) of Lemma C.1,
∣∣∣∆(f̂ , π)−∆(f?, π)

∣∣∣ ≤ ι(f?) ( ln lnn
lnn

)c4
. As a result,∑

π

w̄?π∆(f̂ , π) ≤
∑
π

w̄?π∆(f?, π) + o(1) (142)

≤
∑
π

ŵ?π∆(f?, π) + o(1) = C(f?, (ln lnn)1/4/2) + o(1). (143)

In addition, ∑
π∈Π

ŵπ∆(f?, π) ≤
∑
π

ŵπ∆(f̂ , π) + o(1). (144)

Stitching the inequalities above we have∑
π

ŵπ∆(f?, π) ≤ C(f?, (ln lnn)1/4/2) + o(1). (145)

As a result, the regret in Step 2 is bounded by(
C(f?, (ln lnn)1/4/2) + o(1)

)
lnn.

D PROOF OF CONDITIONS FOR TABULAR REINFORCEMENT LEARNING

In this section, we first prove that Conditions 1- 3 holds for tabular RL with truncated Gaussian
reward. Consequently, Theorem 5.2 gives the first asymptotic instance-optimal regret bound in this
setting. Later in Appendix E, we extend our analysis to Gaussian reward.

First of all, we define some additional notations. A finite horizon Markov Decision Process (MDP)
is denoted by a tuple (S,A, p, r,H). S and A are the state and action spaces respectively. H > 0
denotes the horizon. The tansition function pmaps a state-action pair (s, a) ∈ S×A to a distribution
over S, and the reward function r maps state-action pair (s, a) to a truncated Gaussian distribution.
In particular, for a fixed (s, a), the mean reward is µ(s, a) ∈ [−1, 1], and the density of the reward
r(s, a) is

r[s, a](x) = I [x ∈ [−2, 2]]
1

Z
exp

(
− (x− µ(s, a))2

2

)
, (146)
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where Z =
∫
x∈[−2,2]

exp
(
−(x− µ(s, a))2/2

)
is the normalization factor. We use a fixed trun-

cation for every state-action pair regardless of µ(s, a) because otherwise the KL divergence of
two instances will easily be infinity. Without loss of generality, we assume S is partitioned into
S1, · · · ,SH where for any state s ∈ Sh and action a ∈ A, supp(p(s, a)) ⊆ Sh+1. We also assume
that the initial state s1 is fixed.

A decision (a.k.a. policy) π : S → A is a deterministic mapping from a state to an action, and
Π = AS is the set of possible decisions with |Π| = |A||S| < ∞. An observation o is a trajectory
(s1, a1, r1, · · · , sH , aH , rH). The reward of an observation isR(o) =

∑H
h=1 rh.We emphasize that

sh, ah are discrete random variables and rh ∈ R is a continuous random variable. In the following,
we use osa = (s1, a1, · · · , sH , aH) to denote the set of state-action pairs in o and or = (r1, · · · , rH)
the set of rewards. As a basic property of MDP, the rewards are independent conditioned on osa, and
rh ∼ r(sh, ah).

An instance f is a represented by the transition function p and reward function r (which is uniquely
determined by µ : S ×A → [−1, 1]). The family of instances F is defined as the set of all possible
instances.

For an instance f and a decision π, the density of an observation o = (s1, a1, r1, · · · , sH , aH , rH)
is

f [π](o) =

H∏
h=1

p[sh, ah](sh+1)r[sh, ah](rh). (147)

For simplicity, we also use fp[s, a](s′) to denote the distribution p[s, a](s′), and fr[s, a](r) to denote
r[s, a](r).

By definition, for all s, a, r, s′ we have p[s, a](s′)r[s, a](r) < 1. We also define

f [π](osa) =

H∏
h=1

p[sh, ah](sh+1) (148)

to be the marginal density of osa, and

f [π](or | osa) =

H∏
h=1

r[sh, ah](rh)

the conditional distribution of or.

For an instance f ∈ F , we define µmin(f) = minosa,π:f [π](osa)>0 f [π](osa). Since osa, π are finite,
we have µmin(f) > 0.

D.1 PROOF OF THEOREM 5.1

In this section, we prove Theorem 5.1.

Proof. In the following, we prove the three conditions separately. Proof of Condition 1. We prove
this condition by invoking Lemma D.1. For instances f, g ∈ F and state-action pair s, a ∈ S × A,
let fr[s, a], gr[s, a] be their reward distributions respectively. Since fr[s, a], gr[s, a] are truncated
Gaussian distributions, we get exp(−3) ≤ gr[s, a](x) ≤ 1 for every x ∈ supp(fr[s, a]) and g ∈ F .
Therefore supx

∣∣∣ln fr[s,a](x)
gr[s,a](x)

∣∣∣ ≤ 3 for all s ∈ S, a ∈ A. By Lemma D.1 with cM = 3, we get
Condition 1.

Proof of Condition 2. The first part of this condition is proved by Lemma D.2. On the other hand,
we have ∫

1do = (2|S||A|)H <∞. (149)

Proof of Condition 3. To prove the first part of this condition, recall that

f?[π](o) =

H∏
h=1

p[sh, ah](sh+1)r[sh, ah](rh), (150)
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where p is the transition function and r is the reward distribution. Let

cmin =

(
min

s,a∈S×A,s′∈supp p[s,a](·)
p[s, a](s′)

)H
exp(−4H),

As a result, f?[π](o) > cmin for all o ∈ supp(f?[π]). We prove the second part of this condition in
Lemma D.3.

D.2 PROOF OF CONDITION 1

In this section, we present a lemma that establishes Condition 1 for tabular RL.
Lemma D.1. Consider any fixed RL instance f with discrete state, action and general reward distri-
bution. Suppose there exists a constant cM > 0 such that for any g ∈ F , s ∈ S, a ∈ A, the reward
distributions of instance f and g at state s and action a (denoted by fr[s, a], gr[s, a] respectively)
satisfy

Ex∼fr[s,a]

[(
ln
fr[s, a](x)

gr[s, a](x)

)4
]
≤ c4M . (151)

Then for every α > 0, ε ∈ (0, 1), Condition 1 holds with

λ0(α, ε, f) =
ε

32H2
min

{
µmin(f)

4α
,
µmin(f)

10
,

1

cM

}2

. (152)

Proof of Lemma D.1. Let

κ =
µmin(f)

e2
exp

(
− 2α

µmin(f)

)
. (153)

Recall that for reinforcement learning, an observation o = (s1, a1, r1, · · · , sH , aH , rH) represents
a trajectory, and osa = (s1, a1, s2, a2, · · · , sH , aH) denotes the state-action pairs in the trajectory.
Consider any fixed decision π, for any λ < λ0, we prove the following two cases separately.

Case 1: minosa:f [π](osa)>0 g[π](osa) < κ. In this case, we prove that D1−λ(f [π]‖g[π]) ≥ α.

Let ôsa = argminosa:f [π](osa)>0 g[π](osa). By the condition of this case we have g[π](ôsa) < κ.
Applying Lemma G.1 we get

D1−λ(f [π](o)‖g[π](o)) ≥ D1−λ(f [π](osa)‖g[π](osa)). (154)

In the following we prove the RHS of Eq. (154) is larger than α. We start with Hölder’s inequality
and the basic inequality that (1− x)t ≤ 1− tx for any t ∈ (0, 1), x ∈ (0, 1):

sa∑
o

f [π](osa)1−λg[π](osa)λ (155)

=
∑

osa 6=ôsa

f [π](osa)1−λg[π](osa)λ + f [π](ôsa)1−λg[π](ôsa)λ (156)

≤

 ∑
osa 6=ôsa

f [π](osa)

1−λ ∑
osa 6=ôsa

g[π](osa)

λ

+ f [π](ôsa)1−λg[π](ôsa)λ (157)

≤
(
1− f [π](ôsa)

)1−λ (
1− g[π](ôsa)

)λ
+ f [π](ôsa)1−λg[π](ôsa)λ (158)

≤
(
1− f [π](ôsa)

)1−λ
+ f [π](ôsa)1−λg[π](ôsa)λ (159)

≤ 1− f [π](ôsa)(1− λ) + f [π](ôsa)1−λg[π](ôsa)λ. (160)

Recall the basic inequality ln(1 + x) ≤ x for all x > −1. Therefore,

1

λ
ln

(
sa∑
o

f [π](osa)1−λg[π](osa)λ

)
(161)
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≤ 1

λ

(
−f [π](ôsa)(1− λ) + f [π](ôsa)1−λg[π](ôsa)λ

)
(162)

≤ 1

λ

(
f [π](ôsa)

((
g(ôsa)

f(ôsa)

)λ
− 1

)
+ λf [π](ôsa)

)
(163)

≤ 1

λ

(
f [π](ôsa)

((
κ

f(ôsa)

)λ
− 1

)
+ λf [π](ôsa)

)
. (164)

Recall the basic inequality that exp(x) ≤ 1 + x/2 for all −1 ≤ x ≤ 0. Since we have(
κ

f [π](ôsa)

)λ
= exp

(
λ ln

(
κ

f [π](ôsa)

))
,

when λ ≤
(
ln
(
f [π](ôsa)/κ

))−1
we get

1

λ

(
f [π](ôsa)

((
κ

f [π](ôsa)

)λ
− 1

)
+ λf [π](ôsa)

)
(165)

≤ 1

2
f [π](ôsa) ln(κ/f [π](ôsa)) + f [π](ôsa) =

1

2
f [π](ôsa) ln(e2κ/f [π](ôsa)). (166)

By the definition of κ we get
1

2
f [π](ôsa) ln(e2κ/f [π](ôsa)) ≤ −α, (167)

which leads to D1−λ(f [π](osa)‖g[π](osa)) ≥ α.

Case 2: minosa:f [π](osa)>0 g[π](osa) ≥ κ. By Lemma G.8, for any λ ∈ (0, 1/2) we get

DKL(f [π]‖g[π])−D1−λ(f [π]‖g[π]) ≤ λ

2
Eo∼f [π]

[(
ln
f [π](o)

g[π](o)

)4
]1/2

. (168)

Let fr, gr : S × A → ∆(R) be the reward distributions of instance f and g respectively, and
fr[s, a](·), gr[s, a](·) the densities of the reward given state-action pair (s, a). Recall that for a
trajectory o = (s1, a1, r1, · · · , sH , aH , rH) we have

f [π](o) = f [π](osa)

H∏
h=1

fr[sh, ah](rh). (169)

By Hölder’s inequality we get

Eo∼f [π]

[(
ln
f [π](o)

g[π](o)

)4
]

(170)

= Eo∼f [π]

(ln
f [π](osa)

g[π](osa)
+

H∑
h=1

ln
fr[sh, ah](rh)

gr[sh, ah](rh)

)4
 (171)

= Eo∼f [π]

[
(H + 1)3

((
ln
f [π](osa)

g[π](osa)

)4

+

H∑
h=1

(
ln
fr[sh, ah](rh)

gr[sh, ah](rh)

)4
)]

(172)

≤ (H + 1)3 ln(1/κ)4 + (H + 1)4 sup
s∈S,a∈A

Ex∼fr[s,a]

[(
ln
fr[s, a](x)

gr[s, a](x)

)4
]

(173)

≤ (H + 1)3 ln(1/κ)4 + (H + 1)4c4M , (174)

where the last inequality comes from item (c) of Condition 4. Therefore, when λ ≤ ε(H +
1)−2 min{ln(1/κ)−2, c−2

M } we get

DKL(f [π]‖g[π])−D1−λ(f [π]‖g[π]) ≤ λ

2
Eo∼f [π]

[(
ln
f [π](o)

g[π](o)

)4
]1/2

(175)
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≤ ε

2
(H + 1)−2 min{ln(1/κ)−2, c−2

M }
(
(H + 1)3 ln(1/κ)4 + (H + 1)4c4M

)1/2
(176)

≤ ε

2
min{ln(1/κ)−2, c−2

M }
(
ln(1/κ)4 + c4M

)1/2
(177)

≤ ε

2
min{ln(1/κ)−2, c−2

M }
(
ln(1/κ)2 + c2M

)
(178)

≤ ε. (179)

Recall that

κ =
µmin(f)

e2
exp

(
− 2α

µmin(f)

)
. (180)

By algebraic manipulation we get

ε

32H2
min

{
µmin(f)

4α
,
µmin(f)

10
,

1

cM

}2

≤ ε(H + 1)−2 min{ln(1/κ)−2, c−2
M }, (181)

which proves the desired result.

D.3 PROOF OF CONDITION 2

Recall that for two instances f, g ∈ F , their distance is d(f, g) = supπ,o |f [π](o)− g[π](o)|.
Lemma D.2. Suppose F represents tabular RL with truncated Gaussian reward with state space S
and action space A, then we have lnN (F , ε) ≤ O(|S||A| ln(1/ε)) for every ε > 0.

Proof. For instances f ∈ F and state-action pair s, a ∈ S ×A, let fr[s, a] be its reward distribution
and fp[s, a] its transition. Recall that for tabular RL we have

f [π](o) =

H∏
h=1

fp[sh, ah](sh+1)fr[sh, ah](rh), (182)

where the observation is o = (s1, a1, r1, · · · , sH , aH , rH). Consequently,

|f [π](o)− g[π](o)|

≤
H∑
h=1

(
|fp[sh, ah](sh+1)fr[sh, ah](rh)− gp[sh, ah](sh+1)gr[sh, ah](rh)|

h−1∏
h′=1

fp[sh′ , ah′ ](sh′+1)fr[sh′ , ah′ ](rh′)

H∏
h′=h+1

gp[sh′ , ah′ ](sh′+1)gr[sh′ , ah′ ](rh′)

)

≤
H∑
h=1

|fp[sh, ah](sh+1)fr[sh, ah](rh)− gp[sh, ah](sh+1)gr[sh, ah](rh)|

≤
H∑
h=1

(|fp[sh, ah](sh+1)− gp[sh, ah](sh+1)|+ |fr[sh, ah](rh)− gr[sh, ah](rh)|)

Therefore, we construct a covering C such that for every f ∈ F , there exists g ∈ C with

|fp[s, a](s′)− gp[s, a](s′)| ≤ ε

2H
, ∀s, a, s′, (183)

|fr[s, a](r)− gr[s, a](r)| ≤ ε

2H
, ∀s, a, r. (184)

Since fp[s, a] is a discrete distribution, the covering number for the transition function is upper
bounded by (4H/ε)|S|

2|A|. On the other hand, fr[s, a](r) is a truncated Gaussian distribution, so
covering number for the reward is also upper bounded by (4H/ε)|S||A|. As a result,

lnN (F , ε) ≤ O(|S||A| ln(1/ε)). (185)
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D.4 PROOF OF CONDITION 3

Lemma D.3. Consider tabular reinforcement learning with truncated Gaussian reward. For a fixed
instance f?, for all f ∈ F , π ∈ Π we have

‖f?[π]− f [π]‖∞ ≤
37H

µmin(f?)1/6
DKL(f?[π]‖f [π])1/6. (186)

Proof. Recall that for tabular RL, an observation is o = (s1, a1, r1, · · · , sH , aH , rH). We use
osa = (s1, a1, s2, a2, · · · , sH , aH) to denote the collection of states and actions in the trajectory
o, and or = (r1, · · · , rH) the collection of of rewards.For instances f ∈ F and state-action pair
s, a ∈ S ×A, let fr[s, a] be its reward distribution and fp[s, a] its transition.

Let ε0 = H
µmin(f?)1/6 . Consider the random variables osa and or. By the chain rules of KL divergence

we have

DKL(f?[π]‖f [π]) = DKL(f?[π](osa)‖f [π](osa)) + Eosa∼f? [DKL(f?[π](or | osa)‖f [π](or | osa))] .
(187)

Since osa is a discrete random variable, we have

|f?[π](osa)− f [π](osa)| ≤ DTV((f?[π]‖f [π]) ≤ DKL(f?[π]‖f [π])1/2. (188)

Therefore, for any osa 6∈ supp(f?[π]),

|f?[π](osa, or)− f [π](osa, or)| ≤ f [π](osa, or) ≤ f [π](osa)f [π](or | osa) ≤ DKL(f?[π]‖f [π])1/2,
(189)

where the last inequality comes from the fact that f [π](or | osa) =
∏

(sh,ah,rh)∈o fr[sh, ah](rh) ≤
1.

Now, for any osa ∈ supp(f?[π]), by Eq. (187) we get

DKL(f?[π](or | osa)‖f [π](or | osa)) ≤ 1

µmin(f?)
DKL(f?[π]‖f [π]). (190)

By the chain rule of KL divergence,

DKL(f?[π](or | osa)‖f [π](or | osa)) =

H∑
h=1

DKL(f?r[sh, ah]‖fr[sh, ah]). (191)

As a result, for every (s, a) ∈ osa we get

DKL(f?r[s, a]‖fr[s, a]) ≤ 1

µmin(f?)
DKL(f?[π]‖f [π]). (192)

By Lemma G.6, |f?r[s, a](r)− fr[s, a](r)| ≤ 36
(

1
µmin(f?)DKL(f?[π]‖f [π])

)1/6

. Therefore,

|f?[π](or | osa)− f [π](or | osa)| (193)

=

∣∣∣∣∣
H∏
h=1

f?r[sh, ah](rh)−
H∏
h=1

fr[sh, ah](rh)

∣∣∣∣∣ (194)

≤
H∑
h=1

|f?r[sh, ah](rh)− fr[sh, ah](rh)| (195)

≤ 36H

(
1

µmin(f?)
DKL(f?[π]‖f [π])

)1/6

. (196)

It follows that,

|f?[π](osa, or)− f [π](osa, or)| (197)
≤ |f?[π](osa)− f [π](osa)|+ |f?[π](or | osa)− f [π](or | osa)| (198)
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≤ DKL(f?[π]‖f [π])1/2 + 36H

(
1

µmin(f?)
DKL(f?[π]‖f [π])

)1/6

(199)

≤ 37H

(
1

µmin(f?)
DKL(f?[π]‖f [π])

)1/6

(200)

E RL WITH GENERAL REWARD DISTRIBUTION

In this section, we extend our analysis to RL with general reward distribution, where the support of
the reward may have infinite volume (e.g., the real line R when the reward distribution is Gaussian).
We assume that for any state-action pair (s, a), the reward distribution r[s, a] comes from a distri-
bution familyR (e.g.,R = {N (µ, 1) : µ ∈ [−1, 1]} when the reward is Gaussian). For any g ∈ R,
let g(·) be its density function and µ(g) , Ex∼g[x] its mean and we assume supg∈R µ(g) ≤ Rmax.
We emphasize that for general reward distributions, we do not require Conditions 2 and 3 because
they do not hold for Gaussian distribution. Instead, we require the following.

Condition 4. LetR be the reward distribution family. Then

(a) for all f ∈ R, there exists a constant c7 ∈ (0, 1], c8 ∈ (0, 1], cM > 0, such that for every
δ > 0,

Prx∼f

(
∀g, g′ ∈ R,

∣∣∣∣ln g(x)

g′(x)

∣∣∣∣ > DTV(g‖g′)c7polylog(1/δ)

)
≤ δ; (201)

(b) for all g, g′ ∈ R, |µ(g)− µ(g′)| . DTV(g‖g′)c8 ;

(c) for all g, g′ ∈ R,

Ex∼g

[(
ln
g(x)

g′(x)

)4
]
≤ c4M ;

(d) for any ε > 0, there exists a covering C(R, ε) ⊆ R such that

∀g ∈ R, ∃g′ ∈ C(R, ε), DTV(g‖g′) ≤ ε. (202)

And log |C(R, ε)| = O(log(1/ε)).

Condition 1 still holds in this case because of Lemma D.1 and item (c) of Condition 4.

For tabular reinforcement learning problems, we only require Condition 4 for the reward distribution
of any fixed state-action pair, which is one-dimensional. Condition 4 holds for Gaussian distribution
(see Proposition E.5), Laplace distribution, etc.

Our main result for tabular RL is stated as follows.

Theorem E.1. Suppose F is the hypothesis class representing tabular reinforcement learning with
a reward distribution that satisfies Conditions 4, then the regret of Alg. 1 satisfies

lim sup
n→∞

Regf?,n
lnn

≤ C(f?). (203)

In section E.1 we present the main lemmas for Steps 1-2. Then, Theorem E.1 is proved using exactly
the same approach as Theorem 5.2 (by replacing the main lemmas for Steps 1-2).

E.1 LEMMAS FOR RL WITH GENERAL REWARD DISTRIBUTION

In this section, we state the main lemmas for RL with general reward distribution (namely,
Lemma E.2 for Step 1 and Lemma E.3 for Step 2).

Lemma E.2. Let Einit be the event that, there exists a universal constant c4 > 0 and a function
ι(f?) that only depends on f? such that
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(a) for all π ∈ Π, DKL(f?[π]‖f̂ [π]) ≤
(

ln lnn
lnn

)c4 ,

(b)
∣∣∣Rf̂ (π)−Rf?(π)

∣∣∣ . 2HRmax

(
ln lnn
lnn

)c4 , for all π ∈ Π,

(c) π?(f̂) = π?(f?).

For tabular reinforcement learning with general reward distribution that satisfies Condition 4, there
exists n0 > 0 such that when n > n0, Pr(Einit) ≥ 1 − 1/ lnn. In addition, the regret of Step 1 is
upper bounded by O( lnn

ln lnn ).

Proof. In the following, we prove the three items separately. Recall that Condition 1 holds by
Lemma D.1 and item (c) of Condition 4.

Items (a) and (c): Proofs of (a) and (c) are the same as that of Lemma C.1 if we replace Lemma F.1
by Lemma F.2.

Item (b): Recall that an observation is a sequence of state-action-reward tuples: o =
(s1, a1, r1, · · · , sH , aH , rH). Therefore, for all π ∈ Π we have∣∣∣Rf̂ (π)−Rf?(π)

∣∣∣ =

∣∣∣∣∣Eo∼f̂ [π]

[
H∑
h=1

rh

]
− Eo∼f?[π]

[
H∑
h=1

rh

]∣∣∣∣∣ (204)

≤

∣∣∣∣∣Eosa∼f̂ [π]

[
H∑
h=1

µ̂(sh, ah)

]
− Eosa∼f?[π]

[
H∑
h=1

µ?(sh, ah)

]∣∣∣∣∣, (205)

where µ̂ and µ? are the mean reward of instance f̂ ,f? respectively. Since µ̂ ∈ [0, 1], we have∣∣∣∣∣Eosa∼f̂ [π]

[
H∑
h=1

µ̂(sh, ah)

]
− Eosa∼f?[π]

[
H∑
h=1

µ?(sh, ah)

]∣∣∣∣∣ (206)

≤

∣∣∣∣∣Eosa∼f̂ [π]

[
H∑
h=1

µ̂(sh, ah)

]
− Eosa∼f?[π]

[
H∑
h=1

µ̂(sh, ah)

]∣∣∣∣∣ (207)

+

∣∣∣∣∣Eosa∼f?[π]

[
H∑
h=1

µ̂(sh, ah)

]
− Eosa∼f?[π]

[
H∑
h=1

µ?(sh, ah)

]∣∣∣∣∣ (208)

≤ HDTV(f?[π]‖f̂ [π]) + Eosa∼f?[π]

[
H∑
h=1

|µ̂(sh, ah)− µ?(sh, ah)|

]
. (209)

In the following we upper bound the second term of Eq. (209). Let f?r, f̂r : S × A → ∆(R) be
the reward distributions of instance f? and f̂ respectively, and f?r[s, a](·), f̂r[s, a](·) the densities
of the reward given state-action pair (s, a). By item (b) of Condition 4 and Cauchy-Schwarz we get

Eosa∼f?[π]

[
H∑
h=1

|µ̂(sh, ah)− µ?(sh, ah)|

]
(210)

. Eosa∼f?[π]

[
H∑
h=1

DKL(f?r[sh, ah]‖f̂r[sh, ah])c8

]
(211)

≤ Eosa∼f?[π]

[
H1−c8

(
H∑
h=1

DKL(f?r[sh, ah]‖f̂r[sh, ah])

)c8]
(212)

≤ H1−c8Eosa∼f?[π]

[
H∑
h=1

DKL(f?r[sh, ah]‖f̂r[sh, ah])

]c8
. (213)

Recall that f?p, f̂p denotes the transition function of instances f?, f̂ respectively. By the chain rule
of KL divergence,

DKL(f?[π]‖f̂ [π]) (214)
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= Eosa∼f?[π]

[
H∑
h=1

(DKL

(
f?p[sh, ah]‖f̂p[sh, ah]

)
+DKL(f?r[sh, ah]‖f̂r[sh, ah]))

]
(215)

≥ Eosa∼f?[π]

[
H∑
h=1

DKL(f?r[sh, ah]‖f̂r[sh, ah])

]
. (216)

By item (a) of this lemma, DKL(f?[π]‖f̂ [π])→ 0 as n→∞. Therefore for large enough n we get∣∣∣Rf̂ (π)−Rf?(π)
∣∣∣ . HDTV(f?[π]‖f̂ [π]) +H1−c8DKL(f?[π]‖f̂ [π])c8 ≤ 2HDKL(f?[π]‖f̂ [π])c8 .

(217)

Combining with item (a) of this lemma, we prove the desired result.

Lemma E.3. For tabular reinforcement learning with general reward distribution that satisfies Con-
dition 4, there exists n0 > 0 such that when n > n0, the following holds.

(a) Conditioned on the event π?(f̂) 6= π?(f?), Pr(Eacc) ≤ 1/n.

(b) Conditioned on the event Einit, Pr(Eacc) ≥ 1− 1/ lnn.

(c) The expected regret of Step 2 is always upper bounded by O(lnn ln lnn).

(d) Conditioned on the event Einit, the expected regret of Step 2 is upper bounded by(
C(f?, (ln lnn)1/4/2) + o(1)

)
lnn.

Proof. We prove the four items above separately.

Items (a), (c), and (d): Proofs of (a), (c), and (d) are the same as that of Lemma C.2.

Item (b): Let ε = 1/ ln lnn, α = lnn
m and δ = 1/(2 lnn). We prove this statement by invoking

Lemma F.2 with parameters (α+5ε, ε, w). Following Lemma F.2, let γ = 1
m minπ

∑m
i=1 I [πi = π]

and λ = λ0((α+ 5ε)/γ, ε, f?) be the value that satisfies Condition 1. Let

ε0 = exp(−(α+ 5ε)/γ)(ελ)1/λ.

First of all, we prove that the condition for Lemma F.2 holds. That is,

m &
poly(|S||A|H)

λε
((ln(m/ε0)) + ln(1/δ)) . (218)

Recall that m =
∑
xdw̄π lnne. As a result, m ≥ |Π| lnn

(ln lnn)1/4 . Now consider the RHS of Eq. (218).

By the definition of w̄π we get α ≤ 2
|Π| (ln lnn)1/4 and γ−1 ≤ 2|Π|(ln lnn)1/2. It follows from

Condition 1 that λ ≥ poly(1/ ln lnn). By the definition of ε0 and Condition 2 we get

ln(m/ε0) . poly(ln lnn). (219)

Consequently, the RHS of Eq. (218) is at most poly(ln lnn), and Eq. (218) holds when n is suffi-
ciently large. By Lemma F.2 we get, with probability at least 1− 1/(2 lnn),

m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥ (α+ ε)m, ∀g ∈ F(w, f?, α+ 5ε), (220)

where F(w, f?, α+ 5ε) = {g ∈ F : Dw
KL(f?‖g) ≥ α+ 5ε}.

In the following, we prove that Eq. (220) implies E f̂acc. Recall that E f̂acc is the event defined as
follows:

E f̂acc = I

[
∀g ∈ Λ(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ lnn

]
. (221)
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Next, we apply Lemma G.4 to any g ∈ Λ(f̂). To verify its condition, we have DTV(f?[π]‖f̂ [π]) ≤
DKL(f?[π]‖f̂ [π])1/2 .

(
ln lnn
lnn

)c4/2 for all π ∈ Π by item (a) of Lemma E.2. Therefore when n is
large enough,

Dw
KL(f?‖g) ≥ lnn

m
+ 5ε = α+ 5ε. (222)

Then g ∈ F(w, f?, α+ 5ε). It follows from Eq. (220) that

m∑
i=1

ln
f?[πi](oi)

g[πi](oi)
≥ (α+ ε)m, ∀g ∈ Λ(f̂). (223)

By Lemma E.4, with probability at least 1− 1/(2 lnn) we have

m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
≥ −m

(
ln lnn

lnn

)c4c6
poly(ln lnn)ι(f?). (224)

For large enough n,
(

ln lnn
lnn

)c4c6
poly(ln lnn)ι(f?) ≤ 1

ln lnn = ε. As a result, combining Eq. (223)
and Eq. (224), with probability 1− 1/ lnn we have

∀g ∈ Λ(f̂),

m∑
i=1

ln
f̂ [πi](oi)

g[πi](oi)
≥ αm = lnn. (225)

The following lemma is used in the proof of Lemma E.3.

Lemma E.4. Let f?, f̂ be any fixed tabular RL instances with reward distribution that satisfies
Condition 4. For any sequence of policies {πi}mi=1, let oi ∼ f?[πi](·),∀i ∈ [m] be a sequence of
random observations drawn from f?. Then there exists constant c6 > 0 and ι(f?) that only depends
on f? such that, for any δ > 0, with probability at least 1− δ,

1

m

m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
> −

(
max
π

DKL(f?[π]‖f̂ [π])
)c6

ι(f?)polylog(mH/δ) (226)

assuming maxπDKL(f?[π]‖f̂ [π])1/2 ≤ µmin(f?)/2.

Proof. Recall that for reinforcement learning, an observation o = (s1, a1, r1, · · · , sH , aH , rH) rep-
resents a trajectory, and osa = (s1, a1, s2, a2, · · · , sH , aH) denotes the state-action pairs in the
trajectory. By algebraic manipulation, we get

m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)
=

m∑
i=1

ln
f̂ [πi](o

sa
i )

f?[πi](osa
i )

+

m∑
i=1

ln
f̂ [πi](o

r
i | osa

i )

f?[πi](or
i | osa

i )
. (227)

Recall that for the instance f?, we have

µmin(f?) = min
π

min
osa∈supp(f?[π](·))

f?[π](osa). (228)

Since both osa and π are finite for tabular RL, we get µmin(f?) > 0. On the one hand, for any
osa ∈ supp(f?[π]), by Pinsker’s inequality we get∣∣∣f?[π](osa)− f̂ [π](osa)

∣∣∣ ≤ DTV(f?[π]‖f̂ [π]) ≤ DKL(f?[π]‖f̂ [π])1/2. (229)

As a result∣∣∣∣∣ln f̂ [π](osa)

f?[π](osa)

∣∣∣∣∣ ≤
∣∣∣∣∣ln
(

1 +
f̂ [π](osa)− f?[π](osa)

f?[π](osa)

)∣∣∣∣∣ ≤
∣∣∣∣∣ln
(

1 +
f̂ [π](osa)− f?[π](osa)

µmin(f?)

)∣∣∣∣∣.
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When maxπDKL(f?[π]‖f̂ [π])1/2 ≤ µmin(f?)/2, applying the basic inequality |ln(1 + x)| ≤
2x, ∀|x| ≤ 1/2 we get for all π ∈ Π and osa ∈ supp(f?[π](·)),∣∣∣∣∣ln

(
1 +

f̂ [π](osa)− f?[π](osa)

µmin(f?)

)∣∣∣∣∣ ≤ 2

µmin(f?)

∣∣∣f?[π](osa)− f̂ [π](osa)
∣∣∣ (230)

≤ 2

µmin(f?)
max
π

DKL(f?[π]‖f̂ [π])1/2. (231)

On the other hand, let f?r[s, a] and f̂r[s, a] be the reward distribution of instance f? and f̂ given
state-action pair (s, a) respectively. Then

m∑
i=1

ln
f̂ [πi](o

r
i | osa

i )

f?[πi](or
i | osa

i )
=

m∑
i=1

H∑
h=1

ln
f̂r[si,h, ai,h](ri,h)

f?r[si,h, ai,h](ri,h)
. (232)

For any π ∈ Π, by the chain rule of KL divergence we get

DKL(f?[π]‖f̂ [π]) (233)

= Eosa∼f?[π]

[
H∑
h=1

(DKL

(
f?p[sh, ah]‖f̂p[sh, ah]

)
+DKL(f?r[sh, ah]‖f̂r[sh, ah]))

]
(234)

≥ µmin(f?)DKL(f?r[s, a]‖f̂r[s, a])I [(s, a) ∈ osa for some osa ∈ supp(f?[π])] . (235)

Because oi ∼ f?[πi], for any i ∈ [m], h ∈ [H] we have (si,h, ai,h) ∈ osa
i and osa

i ∈ supp(f?[πi]).
As a result, for all i ∈ [m], h ∈ [H], item (a) of Condition 4 implies that with probability at least
1− δ/(mH)∣∣∣∣∣ f̂r[si,h, ai,h](ri,h)

f?r[si,h, ai,h]

∣∣∣∣∣ ≤ DTV(f?r[si,h, ai,h](ri,h)‖f̂r[si,h, ai,h])c7polylog(mH/δ) (236)

≤ DKL(f?r[si,h, ai,h]‖f̂r[si,h, ai,h])c7/2polylog(mH/δ) (237)

≤ 1

µmin(f?)c7/2
DKL(f?[π]‖f̂ [π])c7/2polylog(mH/δ). (238)

Let ε = 1
µmin(f?)c7/2

(
maxπDKL(f?[π]‖f̂ [π])

)c7/2
. Apply union bound and we get

Pro∼f?[π]

(
1

m

m∑
i=1

H∑
h=1

∣∣∣∣∣ln f̂r[si,h, ai,h](ri,h)

f?r[si,h, ai,h](ri,h)

∣∣∣∣∣ ≥ εHpolylog(mH/δ)

)
≤ 1− δ. (239)

It follows that with probability at least 1− δ,

1

m

m∑
i=1

ln
f̂ [πi](oi)

f?[πi](oi)

≥ − 2

µmin(f?)
max
π

DKL(f?[π]‖f̂ [π])1/2 −Hpolylog(mH/δ)
1

µmin(f?)c7/2

(
max
π

DKL(f?[π]‖f̂ [π])
)c7/2

≥ − 2H

µmin(f?)
polylog(mH/δ)

(
max
π

DKL(f?[π]‖f̂ [π])
)c7/2

.

Therefore, Eq. (226) is satisfied by setting

ι(f?) =
2H

µmin(f?)
, c6 = c7/2. (240)
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E.2 PROOF OF CONDITION 4 FOR GAUSSIAN DISTRIBUTION

In this section, we prove that the reward distribution family R = {N (µ, 1), µ ∈ [0, 1]} satisfies
Condition 4.
Proposition E.5. Condition 4 holds for the reward distribution familyR = {N (µ, 1), µ ∈ [0, 1]}

Proof. In the following we prove the four items of Condition 4 respectively. Item (a). For any fixed
f ∈ R, let µ be the mean of f . In other words, f = N (µ, 1). Then we have

Prx∼f

(
|x| > µ+ 2

√
log(2/δ)

)
≤ δ. (241)

By definition, for any g = N (µg, 1), g′ = N (µ′g, 1) ∈ R, we have

ln
g(x)

g′(x)
=

1

2

(
(x− µg)2 − (x− µ′g)2

)
= (µ′g − µg)(x− (µ′g + µg)/2).

Therefore when µg, µ′g ∈ [0, 1] we get∣∣∣∣ln g(x)

g′(x)

∣∣∣∣ ≤ |µg − µ′g||x+ 1|. (242)

As a result, with probability at least 1− δ we have

∀g, g′ ∈ R,
∣∣∣∣ln g(x)

g′(x)

∣∣∣∣ ≤ |µg − µ′g|(1 + 2
√

log(2/δ)
)
. (243)

In addition, when µg, µ′g ∈ [0, 1] we have DTV(g‖g′) ≥ 1
10 |µg − µ

′
g|. As a result, item (a) holds

with c7 = 1.

Item (b). Recall that for Gaussian distribution with unit variance, when µg, µ′g ∈ [0, 1] we have
DTV(g‖g′) ≥ 1

10 |µg − µ
′
g|. Therefore item (b) holds with c8 = 1.

Item (c). Recall that for any g = N (µg, 1), g′ = N (µ′g, 1) ∈ R, ln g(x)
g′(x) =

1
2

(
(x− µg)2 − (x− µ′g)2

)
. Therefore when µg, µ′g ∈ [0, 1] we get

Ex∼g

[(
ln
g(x)

g′(x)

)4
]

=
1

2
Ex∼g

[(
(x− µg)2 − (x− µ′g)2

)4]
(244)

≤
(µ′g − µg)4

2
Ex∼g

[
(x− (µ′g + µg)/2)4

]
≤ 3(µ′g − µg)4. (245)

Therefore, item (c) holds with cM = 2.

Item (d). For g = N (µg, 1), g′ = N (µ′g, 1) ∈ R, we have

DTV(g‖g′) ≤
√
DKL(g‖g′)/2 =

|µg − µ′g|
2

. (246)

Therefore, we can set C(R, ε) = {N (kε, 1) : k ∈ {−b1/εc,−b1/εc + 1, · · · , b1/εc}}. Then
log |C(R, ε)| ≤ logd2/εe = O(log(1/ε)).

F UNIFORM CONCENTRATION

In this section, we present the uniform concentration results.

F.1 UNIFORM CONCENTRATION WITH `∞ COVERING

In this section we prove uniform concentration results with `∞ covering. For two instances g, g′,
define the `∞ distance as

‖g − g′‖∞ , sup
π,o
|g[π](o)− g′[π](o)|. (247)

LetN (F , ε) be the proper covering number of F w.r.t. the distance `∞. Then we have the following
lemma.
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Lemma F.1. Consider any fixed α > 0, 0 < ε < α/2, list of decisions w = (π1, · · · , πm),
f ∈ F . Let γ = 1

m minπ∈Π

∑m
i=1 I [πi = π] and let λ = λ0(α/γ, ε, f) be the value that satisfies

Condition 1. Let F(w, f, α) = {g ∈ F : Dw
KL(f‖g) ≥ α} and define

ε0 =
exp(−α/γ)(ελ)1/λ

3Vol
.

Then for any δ > 0, when m ≥ 1
λε (lnN (F , ε0) + ln(1/δ)) we have

Proi∼f [πi],∀i

(
∀g ∈ F(w, f, α),

m∑
i=1

ln
f [πi](oi)

g[πi](oi)
≥ (α− 4ε)m

)
≥ 1− δ. (248)

Proof. For any g ∈ F , we define a induced distribution ĝ for all π ∈ Π:

ĝ[π](o) =
g[π](o) + ε0
1 + ε0Vol

. (249)

Because ĝ[π](o) ≥ 0 and

‖ĝ[π](o)‖1 =

∫
g[π](o) + ε0
1 + ε0Vol

dx =
1

1 + ε0Vol

∫
g[π](o) + ε0dx = 1,

the induced distribution ĝ[π] is a valid distribution.

Properties of the induced covering. Let Z = ε0Vol. Consider the minimum ε0 covering set
C(w, f, α) of F(w, f, α). For any g ∈ F(w, f, α), let g′ ∈ C(w, f, α) be its cover and ĝ the induced
distribution of g′. Now, we prove that ĝ satisfies the following two properties:

(a) For any π ∈ Π and o ∈ supp f [π], ln f [π](o)
g[π](o) ≥ ln f [π](o)

ĝ[π](o) − ε, and

(b) Dw
1−λ(f‖ĝ) ≥ α− 2ε for g ∈ F(w, f, α).

First we prove item (a). Since g′ is the ε0 cover of g, we get g′[π](o) + ε0 ≥ g[π](o) for any π ∈ Π
and x ∈ supp f [π]. As a result,

ln
f [π][o]

g[π](o)
≥ ln

f [π][o]

g′[π](o) + ε0
= ln

f [π][o]

ĝ[π](o)
− ln(1 + Z). (250)

By the basic inequality ln(1 + x) ≤ x, ∀x ∈ (−1,∞) we get

ln(1 + Z) ≤ Z = ε0Vol ≤ ε. (251)

As a result, item (a) follows directly. Now we prove item (b). By algebraic manipulation,

DTV(g[π]‖ĝ[π]) ≤
∫
|ĝ[π](o)− g[π](o)|do =

∫ ∣∣∣∣g′[π](o) + ε0
1 + ε0Vol

− g[π](o)

∣∣∣∣do (252)

≤
∫ ∣∣∣∣g′[π](o) + ε0

1 + ε0Vol
− g′[π](o)− ε0

∣∣∣∣do+

∫
|g′[π](o) + ε0 − g[π](o)|do (253)

≤ 1

1 + ε0Vol

∫
|ε0Vol (g′[π](o) + ε0)|do+ 2ε0Vol (254)

≤ ε0Vol + 2ε0Vol = 3ε0Vol = exp(−α/γ)(ελ)1/λ. (255)

Applying Lemma G.5, we get item (b).

Uniform concentration via covering. We define the induced covering set Ĉ(w, f, α) = {ĝ : g′ ∈
C(w, f, α)}. Then |Ĉ(w, f, α)| ≤ |C(w, f, α)| ≤ N (F , ε0). Applying Lemma A.2 and union bound
we get, with probability at least 1− δ,

m∑
i=1

ln
f [πi](oi)

ĝ[πi](oi)
≥ m(Dw

1−λ(f‖ĝ)− ε), ∀ĝ ∈ Ĉ(w, f, α). (256)
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By item (a) of the covering property,
m∑
i=1

ln
f [πi](oi)

g[πi](oi)
≥

m∑
i=1

ln
f [πi](oi)

ĝ[πi](oi)
−mε. (257)

By item (b) of the covering property,

Dw
1−λ(f‖ĝ) ≥ α− 2ε (258)

Combining Eqs. (256), (257), (258), with probability at least 1− δ,
m∑
i=1

ln
f [πi](oi)

g[πi](oi)
≥ m(α− 4ε). (259)

F.2 UNIFORM CONCENTRATION FOR RL WITH GENERAL REWARD DISTRIBUTION

In the following, we present an uniform concentration lemma for tabular RL with general reward.

Lemma F.2. Let F be the instance family representing tabular RL with general reward distribution
that satisfies Condition 4. For any fixed α > 0, 0 < ε < α/2, list of decisions w = (π1, · · · , πm),
f ∈ F , let γ = 1

m minπ:π∈w
∑m
i=1 I [πi = π] and λ = λ0(α/γ, ε, f) be the value that satisfies

Condition 1. Let F(w, f, α) = {g ∈ F : Dw
KL(f‖g) ≥ α} and define

ε0 = exp(−α/γ)(ελ)1/λ.

Then for any δ > 0, when m & poly(|S||A|H)
λε ((ln(m/ε0)) + ln(1/δ)) we have

Proi∼f [πi],∀i

(
∀g ∈ F(w, f, α),

m∑
i=1

ln
f [πi](oi)

g[πi](oi)
≥ (α− 4ε)m

)
≥ 1− δ. (260)

Proof. Recall that a tabular RL instance g ∈ F , we use gr[s, a] to denote its reward distribution
given state-action pair (s, a), and gp[s, a] its transition. We prove this lemma using the covering
argument.

The covering set. Define

ε1 = min

{
ε

2H|S|
,

ε

2Hpolylog(2mH/δ)
,

exp(−α/γ)(ελ)1/λ

4|S|2|A|

}
.

Let C ⊆ F be the minimum covering of F such that for any g ∈ F (parameterized by p, µ), there
exists g′ ∈ F (parameterized by p′, µ′) such that

sup
s,a,s′

∣∣gp[s, a](s′)− g′p[s, a](s′)
∣∣ ≤ ε1, sup

s,a
DTV (gr[s, a]‖g′r[s, a]) ≤ ε1/c71 . (261)

By item (d) of Condition 4 and a standard covering argument for discrete distributions, we have
ln |C| . |S||A| ln(1/ε1). For any g′ ∈ C, we consider the induced instance ĝ defined by

ĝp[s, a](s′) =
g′p[s, a](s′) + ε1

1 + ε1|S|
, ĝr[s, a](·) = g′r[s, a](·). (262)

In the following, we prove that

(a) with probability at least 1− δ/2,

Proi∼f [πi],∀i

(
∀g ∈ F ,

m∑
i=1

ln
ĝ[πi](oi)

g[πi](oi)
≥ −mε

)
≥ 1− δ/2. (263)

(b) Dw
1−λ(f‖ĝ) ≥ α− 2ε for g ∈ F(w, f, α).
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To prove (a), recall that oi = {(si,h, ai,h, ri,h)}Hh=1 represents a trajectory. Consequently,
m∑
i=1

ln
ĝ[πi](oi)

g[πi](oi)
(264)

=

m∑
i=1

H∑
h=1

ln
ĝp[si,h, ai,h](si,h+1)

gp[si,h, ai,h](si,h+1)
+

m∑
i=1

H∑
h=1

ln
ĝr[si,h, ai,h](ri,h)

gr[si,h, ai,h](ri,h)
(265)

≥ −
m∑
i=1

H∑
h=1

ln(1 + |S|ε1) +

m∑
i=1

H∑
h=1

ln
ĝr[si,h, ai,h](ri,h)

gr[si,h, ai,h](ri,h)
. (266)

By item (a) of Condition 4 and union bound we get with probability at least 1− δ/2
m∑
i=1

H∑
h=1

ln
ĝr[si,h, ai,h](ri,h)

gr[si,h, ai,h](ri,h)
≥ −mHε1polylog(mH/δ) ≥ −mε/2. (267)

Therefore,
m∑
i=1

ln
ĝ[πi](oi)

g[πi](oi)
≥ −

m∑
i=1

H∑
h=1

|S|ε1 −mε/2 ≥ −mε, (268)

which proves (a). For (b), by algebraic manipulation we have

DTV(g[π]‖ĝ[π]) ≤
∑
s,a

(DTV(p[s, a]‖ĝp[s, a]) +DTV(r[s, a]‖ĝr[s, a])) (269)

≤
∑
s,a,s′

∣∣∣∣p′[s, a](s′) + ε1
1 + ε1|S|

− p[s, a](s′)

∣∣∣∣+ |S||A|ε1 (270)

≤
∑
s,a,s′

∣∣∣∣p′[s, a](s′) + ε1
1 + ε1|S|

− p′[s, a](s′)− ε1
∣∣∣∣+

∑
s,a,s′

|p′[s, a](s′) + ε1 − p[s, a](s′)|+ |S||A|ε1

(271)

≤ 4|S|2|A|ε1 ≤ exp(−α/γ)(ελ)1/λ. (272)

Applying Lemma G.5, we get item (b).

Uniform concentration via covering. Now we apply Lemma A.2 and union bound. When

m &
|S||A| ln(1/ε1)

λε
&

ln(|C|/δ)
λε

,

with probability at least 1− δ/2 we get
m∑
i=1

ln
f [πi](oi)

ĝ[πi](oi)
≥ m(Dw

1−λ(f‖ĝ)− ε), ∀ĝ ∈ C. (273)

By item (a) of the covering property, with probability at least 1− δ/2,
m∑
i=1

ln
f [πi](oi)

g[πi](oi)
≥

m∑
i=1

ln
f [πi](oi)

ĝ[πi](oi)
−mε. (274)

By item (b) of the covering property,

Dw
1−λ(f‖ĝ) ≥ α− 2ε (275)

Combining Eqs. (273), (274), (275), with probability at least 1− δ,
m∑
i=1

ln
f [πi](oi)

g[πi](oi)
≥ m(α− 4ε). (276)

42



Published as a conference paper at ICLR 2023

G HELPER LEMMAS

The following lemma shows that the Rényi divergence of a marginal distribution is smaller than that
of the original distribution.
Lemma G.1 (Theorem 1 of Van Erven & Harremos (2014)). Consider any distributions f, g over
variables x, y. Let f(x), g(x) denote their marginal distribution over x respectively. For any α ∈
(0, 1), we have

Dα(f(x)‖g(x)) ≤ Dα(f(x, y)‖g(x, y)). (277)

Proof. When α ∈ (0, 1), we have 1
α−1 < 0. As a result, we only need to prove that∫

f(x, y)αg(x, y)1−αdxy ≤
∫
f(x)αg(x)1−αdx. (278)

We prove this by Hölder’s inequality. In particular,∫
f(x, y)αg(x, y)1−αdxy (279)

=

∫
f(x)αg(x)1−α

∫
f(y | x)αg(y | x)1−αdydx (280)

≤
∫
f(x)αg(x)1−α

(∫
f(y | x)dy

)α(∫
g(y | x)dy

)1−α

dx (281)

≤
∫
f(x)αg(x)1−αdx. (282)

Intuitively, the following two lemmas upper bound the difference of Rényi divergence by the TV
distance.
Lemma G.2. For and fixed λ ∈ (0, 1), α > 0, ε > 0 and distribution f , consider two distributions
g, ĝ such that DTV(g‖ĝ) ≤ exp(−α)(λε)1/λ. Then we have

D1−λ(f‖ĝ) ≥ min{α,D1−λ(f‖g)} − ε. (283)

Proof. Let κ = min{α,D1−λ(f‖g)}. We start by proving∣∣∣∣∫ f(x)1−λg(x)λdx−
∫
f(x)1−λĝ(x)λdx

∣∣∣∣ ≤ (exp(λε)− 1) exp(−λκ). (284)

By Hólder’s inequality we get∣∣∣∣∫ f(x)1−λg(x)λdx−
∫
f(x)1−λĝ(x)λdx

∣∣∣∣ (285)

≤
(∫
|g(x)− ĝ(x)|dx

)λ(∫
f(x)dx

)1−λ

(286)

≤ exp(−λα)λε (287)
≤ exp(−λα) (exp(λε)− 1) (288)
≤ exp(−λκ) (exp(λε)− 1) , (289)

where the Eq. (288) follows from the basic inequality 1 + x ≤ exp(x) for x > 0.

By the definition of Rényi divergence,∫
f(x)1−λg(x)λdx = exp(−λD1−λ(f‖g)) ≤ exp(−λκ). (290)

Combining Eq. (289) and Eq. (290) we get,∫
f(x)1−λĝ(x)λdx ≤ exp(−λ(κ− ε)). (291)
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It follows that

D1−λ(f‖ĝ) = − 1

λ
ln

∫
f(x)1−λĝ(x)λdx ≥ κ− ε. (292)

Lemma G.3. For and fixed λ ∈ (0, 1/2), α > 0, ε > 0 and distribution g, consider two distributions

f, f̂ such that DTV(f‖f̂) ≤ exp
(
− λ

1−λα
)

(λε)1/(1−λ). Then we have

D1−λ(f̂‖g) ≥ min{α,D1−λ(f‖g)} − ε. (293)

Proof. We use a similar proof as Lemma G.2. Let κ = min{α,D1−λ(f‖g)}. Then we have∣∣∣∣∫ f(x)1−λg(x)λdx−
∫
f̂(x)1−λg(x)λdx

∣∣∣∣ (294)

≤
(∫ ∣∣∣f(x)− f̂(x)

∣∣∣dx)1−λ(∫
g(x)dx

)λ
(295)

≤ exp (−λα)λε (296)
≤ exp(−λκ) (exp(λε)− 1) , (297)

By the definition of Rényi divergence,∫
f(x)1−λg(x)λdx ≤ exp(−λD1−λ(f‖g)) ≤ exp(−λκ). (298)

Combining Eq. (297) and Eq. (298) we get,∫
f̂(x)1−λg(x)λdx ≤ exp(−λ(κ− ε)). (299)

It follows that

D1−λ(f̂‖g) = − 1

λ
ln

∫
f̂(x)1−λg(x)λdx ≥ κ− ε. (300)

The following lemma is used to prove that when f̂ is close to f? (measured by TV distance), we can
use f̂ to approximately solve C(f?) (see Lemma C.2).

Lemma G.4. For an instance f ∈ F and n > 0. Let δ = (ln lnn)−1/4 and ε = (ln lnn)−1. For
any ŵ ∈ R|Π|+ such that ‖ŵ‖∞ ≤ (ln lnn)1/4, define w = {πi}mi=1 be a list of decisions where a
decision π occurs d((1+δ)ŵπ+δ) lnne times for every π ∈ Π, andm =

∑
πd((1+δ)ŵπ+δ) lnne.

Consider two instances f, f̂ ∈ F such that there exists constant c6 > 0 with

DTV(f [π]‖f̂ [π]) .

(
ln lnn

lnn

)c6
,∀π ∈ Π.

Define the set F(ŵ, f) = {g ∈ F :
∑
π∈Π ŵπDKL(f [π]‖g[π]) ≥ 1}. Then for any constant c > 0,

there exits n0 > 0 such that for all n > n0,

Dw
KL(f̂‖g) ≥ lnn

m
+ cε, ∀g ∈ F(ŵ, f). (301)

Proof of Lemma G.4. First we invoke Condition 1 with proper parameters. Define

λ = λ0

(
4(ln lnn)3/4,

1

ln lnn
, f

)
(302)
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By the definition of m and the fact that ‖ŵ‖∞ ≤ (ln lnn)1/4 we get
|Π| lnn

(ln lnn)1/4
≤ m ≤ 2|Π| lnn(ln lnn)1/4. (303)

Let α , lnn
m + (c + 2)ε . 2

|Π| (ln lnn)1/4. Consider γ = minπ
1
md((1 + δ)ŵπ + δ) lnne. By the

upper bound of m we get γ ≥ 1
2|Π|(ln lnn)1/2 .

We invoke Condition 1 with parameters (α/γ, ε, f). For large enough n we have α/γ ≤
4(ln lnn)3/4, which implies that λ < λ0(α/γ, ε, f). Then for any π ∈ Π we get

D1−λ(f [π]‖g[π]) ≥ min{α/γ,DKL(f [π]‖g[π])− ε}. (304)

We claim that Dw
KL(f‖g) ≥ lnn

m + (c + 2)ε, ∀g ∈ F(ŵ, f) for large enough n. Indeed, by the
definition of w we get

mDw
KL(f‖g) ≥

∑
π

((1 + δ)ŵπ + δ)(lnn)DKL(f [π]‖g[π]) ≥ (1 + δ) lnn ≥ lnn+ (c+ 2)mε.

(305)
Let

ε1 = exp(−α/γ)(λε)2 = Ω
(

exp(−(ln lnn)3/4)poly(ln lnn)
)
.

By Lemma G.3 with parameters (λ, α/γ, ε) and the assumption that DTV(f [π]‖f̂ [π]) .(
ln lnn
lnn

)c6
= o(ε1) for all π ∈ Π, we get

D1−λ(f̂ [π]‖g[π]) ≥ min{α/γ,D1−λ(f [π]‖g[π])} − ε,∀π ∈ Π. (306)
Now we consider the following two cases.

Case 1: There exists π ∈ w such that DKL(f [π]‖g[π]) ≥ α/γ. In this case Eq. (304) implies that
D1−λ(f [π]‖g[π]) ≥ α/γ − ε. Combining with Eq. (306) we have

D1−λ(f̂ [π]‖g[π]) ≥ α/γ − 2ε. (307)
As a result,

Dw
1−λ(f̂‖g) ≥ 1

m

m∑
i=1

I [πi = π] (α/γ − 2ε) ≥ α− 2ε =
lnn

m
+ cε. (308)

Case 2: For all π ∈ w, DKL(f [π]‖g[π]) ≤ α/γ. In this case we also have D1−λ(f [π]‖g[π]) ≤
α/γ, ∀π ∈ w. Therefore Eq. (306) and Eq. (304) implies that

D1−λ(f̂ [π]‖g[π]) ≥ D1−λ(f [π]‖g[π])− ε, (309)
D1−λ(f [π]‖g[π]) ≥ DKL(f [π]‖g[π])− ε. (310)

As a result,

Dw
1−λ(f̂‖g) ≥ 1

m

m∑
i=1

(D1−λ(f [πi]‖g[πi])− ε) ≥
1

m

m∑
i=1

(DKL(f [πi]‖g[πi])− 2ε) (311)

= Dw
KL(f‖g)− 2ε ≥ lnn

m
+ cε. (312)

Combining the two cases together, we get Dw
1−λ(f̂‖g) ≥ lnn

m + cε.

The following lemma is used to prove a nice property of the covering (see Lemma F.1).
Lemma G.5. Consider any ε > 0, α > 0, sequence of decisions w = {πi}mi=1. Let γ =
1
m minπ:π∈w

∑m
i=1 I [πi = π] and λ = λ0(α/γ, ε, f) be the value that satisfies Condition 1. For

two distributions f, f̂ ∈ F such that

DTV(g[π]‖ĝ[π]) ≤ exp(−α/γ)(λε)1/λ,∀π ∈ Π.

we have

Dw
1−λ(f‖ĝ) ≥ min{Dw

KL(f‖g), α} − 2ε. (313)
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Proof of Lemma G.5. Let ε1 = exp(−α/γ)(λε)1/λ and κ = min{Dw
KL(f‖g), α}.

By Lemma G.2 and the fact that DTV(g[π]‖ĝ[π]) ≤ ε1,∀π ∈ Π, for any π ∈ Π we have

D1−λ(f [π]‖ĝ[π]) ≥ min{α/γ,D1−λ(f [π]‖g[π])} − ε. (314)

Applying Condition 1, for any π ∈ Π we have

D1−λ(f [π]‖g[π]) ≥ min{α/γ,DKL(f [π]‖g[π])− ε}. (315)

Now we consider the following two cases.

Case 1: There exists π ∈ w such that DKL(f [π]‖g[π]) ≥ κ/γ. By the definition of κ we have
κ ≤ α. In this case Eq. (315) implies that D1−λ(f [π]‖g[π]) ≥ κ/γ − ε. Combining with Eq. (314)
we have

D1−λ(f [π]‖ĝ[π]) ≥ κ/γ − 2ε. (316)

As a result,

Dw
1−λ(f‖ĝ) ≥ 1

m

m∑
i=1

I [πi = π] (κ/γ − 2ε) ≥ κ− 2ε. (317)

Case 2: For all π ∈ w, DKL(f [π]‖g[π]) ≤ κ/γ. In this case we also have D1−λ(f [π]‖g[π]) ≤
κ/γ, ∀π ∈ w. Therefore Eq. (314) and Eq. (315) implies that

D1−λ(f [π]‖ĝ[π]) ≥ D1−λ(f [π]‖g[π])− ε, (318)
D1−λ(f [π]‖g[π]) ≥ DKL(f [π]‖g[π])− ε. (319)

As a result,

Dw
1−λ(f‖ĝ) ≥ 1

m

m∑
i=1

(D1−λ(f [πi]‖g[πi])− ε) ≥
1

m

m∑
i=1

(DKL(f [πi]‖g[πi])− 2ε) (320)

= Dw
KL(f‖g)− 2ε ≥ κ− 2ε. (321)

Combining the two cases together, we get Dw
1−λ(f‖ĝ) ≥ κ− 2ε.

The following lemma shows that for truncated Gaussian distributions, the difference in their density
function can be upper bounded by their KL divergence. We use this lemma to prove Condition 3 for
tabular RL with truncated Gaussian reward.
Lemma G.6. Consider two truncated Gaussian distributions p1, p2 with density

pi(x) = I [x ∈ [−2, 2]]
1

Zi
exp

(
− (x− µi)2

2

)
, (322)

where Zi is the normalization factor. Assuming µ1, µ2 ∈ [−1, 1], we have

sup
x∈[−2,2]

|p1(x)− p2(x)| ≤ 36DKL(p1‖p2)1/6. (323)

Proof. We first prove that |µ1 − µ2| . DKL(p1‖p2)1/6. Then we show that
supx∈[−2,2] |p1(x)− p2(x)| . |µ1 − µ2|.

By Pinsker’s inequality,

DTV(p1‖p2) . DKL(p1‖p2)1/2. (324)

Now we prove that |µ1 − µ2|3 . DTV(p1‖p2). W.l.o.g., we assume Z1 ≥ Z2 > 1/
√

2π and
µ1 ≤ µ2. Then we have, for any x ∈ [µ1, µ1 + 1

4 (µ2 − µ1)],

p1(x)− p2(x) ≥ 1√
2π

[
exp(− (µ2 − µ1)2

32
)− exp(−9(µ2 − µ1)2

32
)

]
(325)
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≥ 1√
2π

exp

(
−9(µ2 − µ1)2

32

)(
exp(

1

4
(µ2 − µ1)2)− 1

)
(326)

≥ 1

4e2
√

2π
(µ2 − µ1)2. (327)

As a result,

DTV(p1‖p2) ≥ 1

4
(µ2 − µ1)(p1(x)− p2(x)) & |µ2 − µ1|3. (328)

Now we prove that supx∈[−2,2] |p1(x)− p2(x)| . |µ1 − µ2|. By definition, for any x ∈ [−2, 2] we
have

|p1(x)− p2(x)| =
∣∣∣∣ 1

Z1
exp

(
− (x− µ1)2

2

)
− 1

Z2
exp

(
− (x− µ2)2

2

)∣∣∣∣ (329)

≤ |1/Z1 − 1/Z2|+
1

Z1

∣∣∣∣exp

(
− (x− µ1)2

2

)
− exp

(
− (x− µ2)2

2

)∣∣∣∣, (330)

≤ 4|Z1 − Z2|+ 2

∣∣∣∣exp

(
− (x− µ1)2

2

)
− exp

(
− (x− µ2)2

2

)∣∣∣∣, (331)

where the last inequality comes from the fact that Zi ≥ 1/2 when |µi| ≤ 1. For the second term,∣∣∣∣exp

(
− (x− µ1)2

2

)
− exp

(
− (x− µ2)2

2

)∣∣∣∣ (332)

= exp

(
− (x− µ2)2

2

)
|exp((µ2 − µ1)(µ2 + µ1 − x)/2)− 1| (333)

≤ 2|µ2 − µ1|. (334)

For the first term,

|Z1 − Z2| ≤
∫ 2

x=−2

|p1(x)− p2(x)|dx ≤ 8|µ2 − µ1|. (335)

As a result, we get

|p1(x)− p2(x)| ≤ 36|µ2 − µ1|. (336)

Combining Eq. (328) and Eq. (336) we prove the this lemma.

The following lemma can be viewed as an perturbation analysis to the covariance matrix in linear
bandits setting. We use the lemma to prove that our complexity measure recovers that in (Lattimore
& Szepesvari, 2017).

Lemma G.7. For a fixed positive definite matrix A ∈ Rd×d and an unit vector x ∈ Rd, let G1 =
(A+ nxx>)−1 and G2 = limρ→∞(A+ ρxx>)−1. Then

‖G1 −G2‖2 ≤
σmax(A−1)

1 + nσmin(A−1)
. (337)

Proof. By Sherman–Morrison formula we get

G1 = A−1 − nA−1xx>A−1

1 + nx>A−1x
, (338)

G2 = lim
ρ→∞

A−1 − ρA−1xx>A−1

1 + ρx>A−1x
. (339)

Then for any v ∈ Rd such that ‖v‖2 = 1, we get

v>(G1 −G2)v = lim
ρ→∞

ρv>A−1xx>A−1v

1 + ρx>A−1x
− nv>A−1xx>A−1v

1 + nx>A−1x
(340)
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= lim
ρ→∞

(ρ− n)v>A−1xx>A−1v

(1 + nx>A−1x)(1 + ρx>A−1x)
(341)

=
v>A−1xx>A−1v

x>A−1x(1 + nx>A−1x)
(342)

≤ v>A−1v

1 + nx>A−1x
(343)

≤ σmax(A−1)

1 + nσmin(A−1)
. (344)

The following lemma upper bounds the difference between KL divergence and Rényi divergence,
and is used to prove Condition 1.
Lemma G.8. For any two distribution f, g and constant λ ∈ (0, 1/2), we have

DKL(f‖g)−D1−λ(f‖g) ≤ λ

2
Eo∼f

[(
ln
f(o)

g(o)

)4
]1/2

. (345)

Proof. Recall that

D1−λ(f‖g) = − 1

λ
ln

∫
f(o)1−λg(o)λdo.

Define the function h(λ) ,
∫
f(o)1−λg(o)λdo. By basic algebra we get

h′(λ) =

∫
f(o)1−λg(o)λ ln

g(o)

f(o)
do (346)

h′′(λ) =

∫
f(o)1−λg(o)λ ln2 g(o)

f(o)
do. (347)

By Taylor expansion, there exists ξ ∈ (0, λ) such that

h(λ) = h(0) + λh′(0) +
λ2

2
h′′(ξ). (348)

By definition we have h(0) = 1 and h′(0) = −DKL(f‖g). As a result, we get

D1−λ(f‖g) = − 1

λ
lnh(λ) (349)

= − 1

λ
ln

(
1− λDKL(f‖g) +

λ2

2

∫
f(o)1−ζg(o)ζ ln2 g(o)

f(o)
do

)
(350)

≥ DKL(f‖g)− λ

2

∫
f(o)1−ξg(o)ξ ln2 g(o)

f(o)
do. (351)

By Hölder’s inequality, when ξ < λ < 1/2 we get∫
f(o)1−ζg(o)ξ ln2 g(o)

f(o)
do (352)

= Eo∼f

[(
g(o)

f(o)

)ξ
ln2 g(o)

f(o)

]
(353)

≤ Eo∼f
[
g(o)

f(o)

]ξ
Eo∼f

[(
ln
g(o)

f(o)

) 2
1−ξ
]1−ξ

(354)

≤ Eo∼f

[(
ln
g(o)

f(o)

)4
]1/2

. (355)

Combining the inequalities above we get the desired result.
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