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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF BASELINES

Textual Inversion. For this baseline method, we train the model for 2,000 iterations with a con-
stant learning rate 2e-3. We use the batch size of 4 to train the method. Other than the concept
token embeddings, no parameters are updated during the training. We set the batch size for MLM
as 25.

XTI. For this baseline method, we train the model for 1,500 iterations with a constant learning
rate of 2e-3. We use the batch size of 4 to train the method. Following the original method, a set
of multiple concept embeddings is utilized to be aligned with the same concept image. We set the
batch size for MLM as 12 due to the memory limit.

DreamBooth. For this baseline method, we train the model for 1,000 iterations with a constant
learning rate of 1e-6. We use the batch size of 2 to train the method. Following the original
method, the prior preservation loss is adopted during the training. For this, we generate a set of 200
images by prompting with “a picture of [SUBJECT CLASS]”, by denoting the general class of the
concept in the prompt. We update the parameters of both the CLIP text encoder and the diffusion
U-Net. We set the batch size for MLM as 25.

CustomDiffusion. For this baseline method, we train the model for 5,00 iterations with a constant
learning rate of 4e-5. We use the batch size of 4 to train the method. Following the original method,
we adopt prior preservation with generated images. During training only the Key/Value projection
layers of the diffusion U-Net are updated during training. We set the batch size for MLM as 25.

A.2 DETAILS OF TEXT PROMPT SET CONSTRUCTION

To generate a contextually diverse prompt set with minimal human intervention, we utilize a large
pretrained language model (LLM) OpenAI (2023). Based on whether the personal concept is classi-
fied as living or nonliving, we predefined context categories and query the LLM to generate relevant
elements for each category. The predefined categories for the living personal concepts are as below,

1. Human Interactive Prompts: A set of prompts that involves diverse interaction between
different human subjects (e.g., “Albert Einstein is watching TV with [V]”).

2. Relative Position Prompts: A set of prompts that involves different positioning words and
different objects (e.g., “a picture of [V] next to a red vase”).

3. Background Prompts: A set of prompts that describes a scene with different backgrounds
(e.g., “a picture of [V] with Eiffel Tower in the background”).

4. Image Style Prompts: A set of prompts that describe image style (e.g., “a picture of [V]
in Pop Art style”

5. Attributes Changing Prompts: A set of prompts that describe the target concept with
different visual attributes (e.g., “a picture of [V] in blue sailor outfit”

Similarly, for non-living objects, we construct a set of prompts in five different types of contexts,

1. Human Interactive Prompts: A set of prompts that involves diverse interaction between
different human subjects (e.g., “Albert Einstein is watching TV with [V]”).

2. Relative Position Prompts: A set of prompts that involves different positioning words and
different objects (e.g., “a picture of [V] next to a red vase”).

3. Background Prompts: A set of prompts that describes a scene with different backgrounds
(e.g., “a picture of [V] with Eiffel Tower in the background”).

4. Image Style Prompts: A set of prompts that describe image style (e.g., “a picture of [V]
in Pop Art style”

5. Attributes Changing Prompts: A set of prompts that describe the target concept with
different visual attributes (e.g., “a picture of [V] in blue sailor outfit”
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A.3 IMPLEMENTATION DETAILS OF CONTEXTUALIZER

Contextualizer constitutes four blocks of a self-attention layer and a feed-forward layer, followed
by a layer normalization layer, where each block learns the residuals of the input with the residual
connection. To train the contextualizer, we use a merged set of COCO caption dataset Chen et al.
(2015) and the prompt set that we constructed. For the manual prompt set, we replace the personal
concept token with the personal concept token to corresponding prior concept token. During training
we set the ratio of batch of the two prompt set to be 70 to 30. The contextualizer is pretrained for
100K iterations with a learning rate of 1e-4, and batch size 150. We use the AdamW optimizer
Loshchilov (2017).

A.4 JUSTIFICATION - SEMANTIC ENHANCEMENT IN TEXTUAL SPACE

The proof of Proposition 1.

Proof. Given an attention map A, with
∑
j A[i, j] = 1, A[i, j] ≥ 0, and the value matrix V, the

output of the attention layer is,

ci =

N∑
j=1

A[i, j]V[j, :]. (1)

The concept token at index j∗ has the highest attention value, i.e., A[i, j∗] ≫ A[i, j],∀j ̸= j∗. We
have,

ci =

N∑
j=1

A[i, j]V[j, :] =

N∑
j=1,j ̸=∗

A[i, j]V[j, :] + A[i, j∗]V[j∗, :] ≈ A[i, j∗]V[j∗, :] ≈ V[j∗, :]. (2)

The L2 norm between the text embeddings of the concept token ci∗ and context tokens ci is,

∥ci − ci∗∥2

=∥
N∑

j=1,j ̸=j∗

(A[i, j]− A[i∗, j])V[j, :] + (A[i, j∗]− A[i∗, j∗])V[j∗, :]∥2

≤∥
N∑

j=1,j ̸=j∗

(A[i, j]− A[i∗, j])V[j, :]∥2 + ∥(A[i, j∗]− A[i∗, j∗])V[j∗, :]∥2

≤
N∑

j=1,j ̸=j∗

∥A[i, j]− A[i∗, j]∥2∥V[j, :]∥2 + ∥A[i, j∗]− A[i∗, j∗]∥2∥V[j∗, :]∥2. (3)

Suppose A[i, j∗] = 1 − δij∗ and A[i∗, j∗] = 1 − δi∗j∗ , where 0 ≤ δij∗ < δ and 0 ≤ δi∗j∗ < δ.
A[i, j] = δij ,∀j ̸= j∗, A[i∗, j] = δi∗j ,∀j ̸= j∗, 0 ≤ δij < δ and 0 ≤ δi∗j < δ, where δ is a small
value. We have ∥δij − δi∗j∥2 < δ and ∥δi∗j∗ − δij∗∥2 < δ. Thus,

∥ci − c∗∥2

≤
N∑

j=1,j ̸=j∗

∥δij − δi∗j∥2∥V[j, :]∥2 + ∥δi∗j∗ − δij∗∥2∥V[j∗, :]∥2

≤δ
N∑

j=1,j ̸=j∗

∥V[j, :]∥2 + δ∥V[j∗, :]∥2. (4)

Since ∥V[j, :]∥2 is bounded, we have,

∥ci − c∗∥2 ≤ δV, (5)

where δV = δ
∑N
j=1∥V[j, :]∥2.

The proof of Proposition 2.
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Proof. Suppose ∥cb − ĉb∥2 is a small value, using the Taylor series, we have,

LMLM(cb) = LMLM(ĉb) + (cb − ĉb)
T grad(LMLM(ĉb)) +O(cb − ĉb)

≈ LMLM(ĉb) + (cb − ĉb)
T grad(LMLM(ĉb)), (6)

where grad(·) is the first-order derivative. Using Cauchy-Schwartz inequality, we have,

(cb − ĉb)
T grad(LMLM(ĉb)) ≤ ∥cb − ĉb∥2 · ∥grad(LMLM(ĉb))∥2. (7)

Since ĉb is near the optimal value, which is achieved by optimizing the contextualizer, we have
grad(LMLM(ĉb)) ≤ δg , where δg is a small value. Therefore, we have

LMLM(cb)− LMLM(ĉb) ≤ δg∥cb − ĉb∥2. (8)

A.5 JUSTIFICATION - SEMANTIC ENHANCEMENT IN IMAGE SPACE

The proof of Proposition 4.

Proof. The image embedding z and text embedding C are projected asQI = zWQ,KT = CWK .
For text embeddings at indices i and j, we have,

KT [i, :] = ciWK (9)
KT [j, :] = cjWK . (10)

The relation map is M = QIK
T
T , and M[:, i] = QIKT [i, :], M[:, j] = QIKT [j, :]. Thus,

∥M[:, i]− M[:, j]∥2 = ∥QI(KT [i, :]−KT [j, :])∥2
≤ ∥QI∥F ∥(KT [i, :]−KT [j, :])∥2
= ∥QI∥F ∥(ci − cj)WK∥2
≤ ∥QI∥F ∥WK∥F ∥(ci − cj)∥2
= α∥(ci − cj)∥2, (11)

where ∥·∥F is Frobenius norm, and α = ∥QI∥F ∥WK∥F .

A.6 ADDITIONAL QUALITATIVE EXAMPLES

We provide additional qualitative results of our approach combined with each baseline method, TI
(Gal et al., 2022), XTI(Voynov et al., 2023), DB(Ruiz et al., 2023) and CD(Kumari et al., 2023). We
provide two types of generation results, living or non-living objects (Figures 1, 2, 3, 4, 5, 6, 7,8)
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In the jungle

On a cobble stone street

Wearing a red hat

Input Images

In the snow

Figure 1: Additional Qualitative Result of TI - Living Objects.
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With Eiffel Tower at the Background

On a cobble stone

On top of a dirt road

Input Images

Mountain in the background

Figure 2: Additional Qualitative Result of TI - Non-living Objects.
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Input Images

In a firefighter outfit

Wearing a red hat

On top of pink fabric

In a purple wizard outfit

Figure 3: Additional Qualitative Result of XTI - Living Objects.
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Input Images

With Eiffel Tower in the background

In the snow

On the beach

In the jungle

Figure 4: Additional Qualitative Result of XTI - Non-living Objects.

7



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Input Images

With a city in the background

Wearing a red hat

In a police outfit

On top of a wooden floor

Figure 5: Additional Qualitative Result of DB - Living Objects.
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Input Images

With Eiffel Tower in the background

With a wheat field in the background

Green grass with sunflowers around it

on a cobble stone street

Figure 6: Additional Qualitative Result of DB - Non-living Objects.
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Input Images

On top of a purple rug in a forest

Wearing a rainbow scarf

Wearing a black top hat and a monocle

On a cobblestone street

Figure 7: Additional Qualitative Result of CD - Living Objects.
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Input Images

With a city in the background

With Eiffel Tower in the background

On top of the sidewalk in a crowded street

In the snow

Figure 8: Additional Qualitative Result of CD - Non-living Objects.
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