Direct and Explicit 3D Generation from a Single Image

Supplementary Material

In Appendix A, we provide an example of our gener-
ated multi-view outputs, additional comparisons on single-
image 3D reconstruction, an analysis on the number of
views, and a comparison with monocular depth estimators.
In Appendix B, we provide more details on our model ar-
chitecture. In Appendix C, we describe our experimental
settings in more detail. In Appendix D, we show how to
extend our approach to obtain rigged and posed meshes.
In Appendix E, we discuss the limitations of our method.
We also include a supplementary video that compares our
method’s results against baseline methods and shows addi-
tional results of our approach.

A. Additional Results

Our Multi-view Outputs. Given an input image, our
method generates depth map along with RGB and Gaus-
sian feature maps in six orthographic views (relative camera
poses from the front, back, left, right, top, and bottom). In
Fig. 1, we present an example of our multi-view predictions.
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Figure 1. An example of our generated multi-view depth, RGB,
and Gaussian feature images. For rotation of quaternion q € R*,
we visualize its last three channels.

Additional Comparison on Single-image 3D Recon-
struction. In Fig. 3, we provide additional qualitative com-
parisons with other methods on generated textured meshes
on the GSO dataset [3]. Our results appear to have higher
quality and better details in both geometry and texture.

Number of Views. We conduct an empirical study on the
relationship between the number of views for RGB and
depth images used to reconstruct a 3D object and the qual-
ity of its reconstruction. We use Objaverse dataset [2] for
this study, which contains a wide range of 800K objects.

We randomly sample 1,000 objects from 18 high-level cat-
egories on Objaverse dataset. We make sure that the number
of objects we sample from each category matches the orig-
inal percentage of that category. For the sampled objects,
we attempt to reconstruct textured mesh using 4, 6, 8, or
14 views of RGB and depth images, and report the quality
of the reconstruction. The view names in orders are front,
back, left, and right, top, bottom, right-top-front, right-top-
back, right-bottom-front, right-bottom-back, left-top-front,
left-top-back, left-bottom-front, and left-bottom-back. We
use screened Poisson surface reconstruction [5] to obtain
the mesh. As shown in Tab. 1, increasing the number of
views consistently improves reconstruction quality. The ef-
fect diminishes after 6 views, where the improvement from
4 to 6 views is significant, but further gains from 6 to 8 or
14 views are relatively smaller.

Views  CDJ IoUt  PSNRT SSIMt LPIPS|

4 0.0078 0.7468  23.75 0.926 0.060
6 0.0070 0.7661  25.44 0.938 0.049
8 0.0068 0.7687  25.67 0.939 0.046
14 0.0062 0.7780  26.37 0.946 0.041

Table 1. Comparison of reconstruction quality for different num-
bers of views on Objaverse dataset.

Comparison with monocular depth estimators. We com-
pare our method with other single-image depth estimation
methods in Tab. 2. This study is conducted on 3D objects
using the same GSO [3] evaluation dataset as in the main
text. For a fair comparison, we use our predicted depth map
for the front (input) view as our single-view depth estima-
tion result. Following prior works [7, 8], we evaluate and
report the mean absolute value of the relative error in depth
space (AbsRel).

MiDaS [7] DPT [8] Omnidata [4] Ours
AbsRel (%) 17.3 13.5 12.6 6.37

Table 2. Comparisons on single-image depth estimation.

B. Additional Model Details

Network Architectures. As mentioned in the main text,
we add a depth branch to the Stable Diffusion U-Net and in-
corporate epipolar attention into the Stable Diffusion VAE
decoder. We compare our U-Net and decoder architectures
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Figure 2. Refined coarse quality triangulated meshes and a rigged and re-posed example (bottom right).

U-Net ‘ Stable Diffusion Ours
Input/Output B, 4, H/8, W/8 B*6, 8, H/8, W/8
CrossAttnDownBlock2D CrossAttnDownBlockMV2D x 2 (RGB, Depth)
CrossAttnDownBlock2D CrossAttnDownBlockM V2D
Down Blocks
CrossAttnDownBlock2D CrossAttnDownBlockM V2D
DownBlock2D DownBlock2D
Middle Block | UNetMidBlockMV2DCrossAttn UNetMidBlockMV2DCrossAttn
UpBlock2D UpBlock2D
Up Blocks CrossAttnUpBlock2D CrossAttnUpBlockMV2D
CrossAttnUpBlock2D CrossAttnUpBlockM V2D
CrossAttnUpBlock2D CrossAttnUpBlockMV2D x 2 (RGB, Depth)

Table 3. Comparison between our U-Net and Stable Diffusion U-Net [9].

Decoder Stable Diffusion Ours

Input B, 4, H/8, W/8 B*6, 8, H/8, W/8

Output B,3,H,W B*6,12,H, W
UpDecoderBlock2D | (Epipolar) AttnUpDecoderBlock2D

Blocks UpDecoderBlock2D | (Epipolar) AttnUpDecoderBlock2D
UpDecoderBlock2D | (Epipolar) AttnUpDecoderBlock2D
UpDecoderBlock2D | (Epipolar) AttnUpDecoderBlock2D

Table 4. Comparison between our decoder and the VAE decoder in Stable Diffusion [9].

with those in Stable Diffusion in Tab. 3 and Tab. 4, respec-
tively.

Training Configuration. The following training configu-
rations are applied to the fine-tuning of both the U-Net and
the latent decoder.

training config:

optimizer="adamn",
adam_betal=0.9,
adam_beta2=0.999,
adam_eps=1le-8,
learning_rate=le-4,
weight_decay=0.01,
gradient_clip_norm=1.0,



ema_decay=0.9999,
mixed_precision_training=bflé6

C. Additional Experimental Settings

Compensating Global Similarity Using Iterative Clos-
est Point. As we perform 3D reconstruction from single
view images, global scale and rigid pose of the underlying
objects cannot be resolved uniquely, introducing a global
similarity ambiguity. Therefore, before applying geomet-
ric metrics such as Chamfer Distance and Volume IoU,
we perform similarity alignment of our estimated shape
with the ground-truth shape following standard practice of
prior works (as listed in Table 1 from the main document).
Specifically, We extended scale adaptive ICP [10] to iden-
tify optimal scale factors along each coordinate axes, in ad-
dition to its original uniform scale and translation.

D. Application: Refining Extracted Textured
Mesh for Deformations

Here we show how our approach can be extended to obtain
rigged and posed meshes. Our initial mesh is reconstructed
by screened Poisson surface reconstruction [5], which typi-
cally consists of millions of uneven triangles with possible
unnecessary outlier pieces. To improve the quality of the tri-
angles and reduce their number for better rigging and pos-
ing, we perform additional refinement steps. First, we re-
move any small pieces that are disconnected from the main
component. Next, we generate a cage mesh that encapsu-
lates the original mesh, following the method described in
[11]. We then perform Non-rigid ICP [1] to register the
cage mesh to the original mesh. The registered cage mesh,
now aligned with the original mesh, allows us to control the
number and quality of the triangles, resulting in the final re-
fined output mesh. In Fig. 2, we provide examples of refined
meshes, including one that has been rigged and re-posed.

Method CDJ IoUt PSNRfT SSIMtT LPIPS|
Ours 0.0135 0.7339  17.85 0.851 0.159
Ours-Persp.  0.0138 0.7272  17.70 0.848 0.159

Table 5. Comparison between our model and a variant that is
trained with perspective images as the input.

E. Limitations

One limitation of our approach is the assumption that the
input images are orthogonal, which may lead to distortion
in the generated results, even though we do not see many
visual artifacts when using perspective images as input in
inference.

We tried training the model using perspective images
with fixed focal length, and obtained results similar to but

slightly worse than our main model trained based on or-
thogonal views (Tab. 5). Also note that the model trained
using perspective images is still specific to the camera type.
Therefore, developing a model that can handle images from
various camera types remains an open and interesting re-
search direction [6].
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