
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

COMD: Training-free Camera Motion Transfer With
Camera-Object Motion Disentanglement

(Supplementary Material)
Anonymous Authors

1 OVERVIEW
In this supplementary material, more details about the proposed

COMD and more experimental results are provided, including:

• More implementation details (Sec. 2);

• Solving Poisson Equation (Sec. 3);

• Temporal attentionmaps determines the videomotion (Sec. 4)

• More Comparison Results (Sec. 5);

• More Experiments on the hyperparameters (Sec. 6);

• User Study (Sec. 7).

To see the generated resultsmore clearly, we provide a demo.html,
which includes all the videos in the experiments.

2 MORE IMPLEMENTATION DETAILS
We conduct experiments based on AnimateDiff-v2 [5]. we use

DDIM [6] to accelerate the generation process with 25 denois-

ing steps. Moreover, to decrease the computation cost, we employ

the temporal attention maps in timestep 𝑡 = 15 to represent the

video motions in different timesteps as illustrated in Sec. 3.2 of the

main paper. Furthermore, for few-shot camera motion disentan-

glement, we specified a video count of 5 and configured DBSCAN

clustering [3] with an Eps-neighborhood of 4 and core points of 3.

3 SOLVING POISSON EQUATION
We complete the temporal attention map inside the object-moving

region by solving a Poisson equation. The gradients within object-

moving regions of the completed attention map are assumed to be

zero and the boundary values should match those of the original

attention map. We choose the parallel red-black ordering Gauss-

Seidel iteration method to solve the Poisson equation. Initially, we

label the pixels with red-black ordering, ensuring that each pixel and

its neighboring pixels alternate between being labeled red and black.

Next, while ensuring that the values of boundary nodes remain

unchanged, we update the red and black pixels alternately until

reaching a specified number of iterations or until the residual falls

below a predefined threshold. The iteration process is illustrated by

the pseudo code. This algorithm can be accelerated using parallel

computing frameworks like CUDA.

4 TEMPORAL ATTENTION MAPS
DETERMINES THE VIDEO MOTION

The foundation of our method comes from the observation that the

temporal attention map determines the motions in the generated

videos, including camera motions and object motions. To validate

this, we conduct an experiment to swap the temporal attention

maps between two videos, where one of them contains only camera

motion while the other one contains only object motion. The results

are shown in Fig. 1. It can be seen that after swapping the temporal

Algorithm 1 Solving Poisson Equation

1: function poisson_solving(u, f)

2: u: RGB, f: gradient

3: choose an initial guess 𝑢 (0)

4: while not converge do:
5: for (i, j) is red node do:
6: 𝑢

(𝑘+1)
𝑖, 𝑗

= 1

4
(𝑓𝑖, 𝑗 + 𝑢 (𝑘 )

𝑖+1, 𝑗 + 𝑢
(𝑘 )
𝑖−1, 𝑗 + 𝑢

(𝑘 )
𝑖, 𝑗+1 + 𝑢

(𝑘 )
𝑖, 𝑗−1)

7: end for
8: for (i,j) is black node do:
9: 𝑢

(𝑘+1)
𝑖, 𝑗

= 1

4
(𝑓𝑖, 𝑗 +𝑢 (𝑘+1)

𝑖+1, 𝑗 +𝑢 (𝑘+1)
𝑖−1, 𝑗 +𝑢 (𝑘+1)

𝑖, 𝑗+1 +𝑢 (𝑘+1)
𝑖, 𝑗−1 )

10: end for
11: end while
12: end function

attention map, the contents of the two videos are similar and the

motions are totally swapped. The source videos of (a) keep the

camera fixed while moving the bus from left to right and (b) keep

the object fixed while zooming out the camera. After swapping

the temporal attention maps, the second row of (a) keeps the bus

fixed while zooming out the camera and (b) keeps the camera fixed,

but a shadow of a bus moves from left to right. Therefore, the

temporal attention maps determine both the camera and object

motions and by swapping the temporal attention map, the motions

can be transferred to a new video.

5 MORE COMPARISON RESULTS
Qualitative comparison. In this section, we show more results on

one-shot and few-shot camera motion transfer results, where both

one-shot and few-shot methods are employed to transfer zoom-in,

zoom-out, pan-left, and pan-right camera motions. The qualitative

comparison results are shown in Fig. 2 and 3. In the one-shot sce-

nario, AnimateDiff+Lora [5] appears prone to overfitting to the

provided video, whereas in the few-shot scenario, it tends to amal-

gamate features from the training videos, leading to inaccurate

video generation in response to the given prompts. MotionCtrl [8]

exhibits improved alignment with prompts in video generation;

however, it may introduce shape distortions and logical inconsis-

tencies in camera motion control. In contrast, our model achieves

high-quality and high-diversity generation with only one-shot or

few-shot data, without the need for training.

Quantitative comparison. To further validate the effectiveness
of ourmodel, we conduct quantitative comparisons on the four basic

camera motions with one-shot and few-shot data. The comparison

results are shown in Tab. 1. It shows that our model achieves the

best FVD [7] and FID-V [1] scores, indicating the best generation

quality and diversity of our model. Since Animatediff is overfitted

to the training data, it has the minimum optical flow distance [4],

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Source Videos

Swap Temporal 
Attention Map

(a) Prompt: A yellow school bus pulling into a driveway (b) Prompt: A countryside barn surrounded by sunflowers

Figure 1: After swapping the temporal attention maps of the first-row videos, we have the second-row videos which swap the
motions. The source videos of (a) moves the bus while fixing the camera, and (b) keeps the objects fixed while zooming out
the camera. After swapping the temporal attention map, (a) keeps the bus fixed while zooming out the camera. And (b) fixed
camera, but there is a shadow of a moving bus in the generated video (it is clearer in demo.html).

Table 1: Quantitative comparison results with the state-of-the-art methods on FVD, FID-V, and Optical Flow Distance. Note that
AnimateDiff+Lora [5] overfits to the training data, thereby achieving the lowest flow distance. But FVD and FID-V demonstrate
its worst generation diversity. In contrast, our model achieves the best FVD and FID-V, while also ensuring a good camera
transfer accuracy compared to MotionCtrl [8].

Camera Motion Pan Right Pan Left Zoom In Zoom Out

Data Scale Method FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓

One shot

Animatediff 382.4 4956.42 19.76 382.04 5939.96 15.22 482.58 6322.46 6.91 396.96 7767.33 5.78
COMD (ours) 54.45 921.95 37.92 64.43 933.77 35.64 61.45 863.24 12.11 55.23 862.9 6.93

Largescale MotionCtrl 95.83 1207.52 38.18 98.04 1196.54 55.25 80.58 935.08 13.12 80.12 928.41 7.88

(a) Comparison results on one-shot camera motion control. Bold and underline represent optimal and sub-optimal results,
respectively.

Camera Motion Pan Right Pan Left Zoom In Zoom Out

Data Scale Method FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓

Few shot

Animatediff 290.86 5198.78 25.61 268.29 4629.08 14.76 281.73 4333.26 5.72 251.44 3975.41 3.12
COMD (ours) 55.94 1153.27 35.98 61.38 1092.09 38.94 51.97 847.08 12.93 52.90 910.76 5.10

Largescale MotionCtrl 95.83 1207.52 38.18 98.04 1196.54 55.25 80.58 935.08 13.12 80.12 928.41 7.88

(b) Comparison results on few-shot camera motion control. Bold and underline represent optimal and sub-optimal results,
respectively.

but it suffers from much worse FVD and FID-V. In summary, our

model achieves the best FVD and FID-V, while also ensuring a good

camera transfer accuracy compared to MotionCtrl. (Note that the

header of Tab. 1(b) in the main paper should be "Pan Left" and

"Zoom Out" and Tab. 1 here is the correct version)

Comparison on the computation cost. Moreover, we also

compare the computation cost including computation time and

GPU memory requirement between COMD, Animatediff+Lora [5]

and MotionCtrl [2]. Since our model is a training-free method, we

compute the time for disentangling the camera-object motions as

our training time. To ensure the fairness of the experiment, we

compute the time on the same NVIDIA A100 GPU. Meanwhile,

we compare the GPU memory required for all the methods. The

comparison results are shown in Tab. 2. It can be seen that our

model can accomplish camera motion disentanglement in a few

minutes while the other methods require a much longer training

time. Moreover, both AnimateDiff+Lora and MotionCtrl require

more than 30G GPUmemory, while our model only needs 13G GPU

Table 2: Comparison on the computation resources. Our
training-free COMD requires much less time to control the
camera motions and it is the only method that is capable of
running on a single NVIDIA 24G 3090/4090 GPU.

Method Computation Time GPU Memory

Animatediff+Lora [5] ≈10 hours 52G

MotionCtrl [8] > 10 days 32G

One-shot COMD (Ours) ≈ 60 seconds 13G

Few-shot COMD (Ours) ≈150 seconds 13G

memory which is the only method that can be implemented on a

single 24G 3090/4090 GPU.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

COMD: Training-free Camera Motion Transfer With Camera-Object Motion Disentanglement
(Supplementary Material) ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 3: User Study from 28 volunteers in related research
areas.

Method Animatediff+Lora MotionCtrl COMD (Ours)

Percentage of

Ranking First (%) ↑ 0.65% 25.22% 74.13%

Average Rank ↓ 2.93 1.80 1.27

6 MORE EXPERIMENTS ON THE
HYPERPARAMETERS

In section 3.2 of the main paper, we propose that we can employ the

temporal attention map in one intermediate step 𝑡 to represent the

motions in different timesteps. We find that the timestep 𝑡 cannot

either be too large or too small, since the temporal attention map

in a too large 𝑡 contains too much noise and the temporal attention

map in a too small 𝑡 contains little temporal information. To validate

this, we conduct one-shot camera motion transfer experiments on

different timesteps 𝑡 , which are shown in Fig. 4. It can be seen

that when 𝑡 is too large (𝑡 ≥ 22), the output videos suffer from

heavy artifacts due to the noise in the temporal attention map.

And when 𝑡 is too small (𝑡 ≤ 3), the generated video cannot be

correctly generated since the temporal attention map contains too

little motion information, which fails to guide the video generation

process with accurate camera motions. The intermediate timesteps

5 < 𝑡 < 20 all generate good results. Therefore, we choose timestep

𝑡 = 15 as our default hyperparameter.

7 USER STUDY
In this section, we conduct a user study to evaluate the effectiveness

of our COMD. We have invited 28 volunteers in related research

areas to rank the generated results from AnimateDiff+Lora [5],

MotionCrtl [8] and our COMD considering the generation quality,

diversity, and the camera transfer accuracy. Specifically, each vol-

unteer ranked 20 sets of results, where each basic camera motion

(pan left, pan right, zoom in, and zoom out) contains 5 videos. We

compute the average ranking and the percentage of ranking first

of the three methods, which is shown in Tab. 3. It can be seen that

our model ranks first in 74.13% situations and achieves the best

average rank of 1.27, demonstrating the superior performance of

our COMD in camera motion transfer.

REFERENCES
[1] Yogesh Balaji, Martin Renqiang Min, Bing Bai, Rama Chellappa, and Hans Peter

Graf. 2019. Conditional GAN with Discriminative Filter Generation for Text-to-

Video Synthesis.. In IJCAI, Vol. 1. 2.
[2] Tsai-Shien Chen, Chieh Hubert Lin, Hung-Yu Tseng, Tsung-Yi Lin, and Ming-

Hsuan Yang. 2023. Motion-conditioned diffusion model for controllable video

synthesis. arXiv preprint arXiv:2304.14404 (2023).
[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise. In

kdd, Vol. 96. 226–231.
[4] Gunnar Farnebäck. 2003. Two-frame motion estimation based on polynomial

expansion. In Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad,
Sweden, June 29–July 2, 2003 Proceedings 13. Springer, 363–370.

[5] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo

Dai. 2023. Animatediff: Animate your personalized text-to-image diffusion models

without specific tuning. arXiv preprint arXiv:2307.04725 (2023).
[6] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion

implicit models. arXiv preprint arXiv:2010.02502 (2020).
[7] Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier,

Marcin Michalski, and Sylvain Gelly. 2018. Towards accurate generative models

of video: A new metric & challenges. arXiv preprint arXiv:1812.01717 (2018).

[8] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Tianshui Chen, Menghan Xia, Ping

Luo, and Ying Shan. 2023. Motionctrl: A unified and flexible motion controller for

video generation. arXiv preprint arXiv:2312.03641 (2023).

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Pan Right Zoom In

Source
Video

Ours

AnimateDiff
+Lora

MotionCtrl
(Trained on 
Large-Scale 

Dataset)

One-Shot Camera Motion Transfer

Source
Videos

Pan Left Zoom Out

One-Shot Camera Motion Transfer

Prompt：A beekeeper inspecting 
hives in an apiary

Prompt：A yellow school bus pulling into
a driveway

MotionCtrl
(Trained on 
Large-Scale 

Dataset)

Ours

AnimateDiff
+Lora

Figure 2: Comparison on one-shot camera motion transfer on four basic camera motions: pan right, pan left, zoom in and zoom
out. AnimateDiff+Lora [5] overfits the training video. Even if MotionCtrl [8] is trained on a large-scale dataset, it still suffers
from inaccurate camera motion control and some artifacts in the generated videos. In contrast, our model accurately transfers
the camera motions while ensuring good generation quality and diversity.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

COMD: Training-free Camera Motion Transfer With Camera-Object Motion Disentanglement
(Supplementary Material) ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Pan Right Zoom In

Source
Video

Ours

AnimateDiff
+Lora

MotionCtrl
(Trained on 
Large-Scale 

Dataset)

Few-Shot Camera Motion Transfer

Source
Videos

Pan Left Zoom Out

Few-Shot Camera Motion Transfer

Prompt：A magical fantasy forest with 
a hidden path

Prompt：A florist arranging flowers in the 
flower shop

MotionCtrl
(Trained on 
Large-Scale 

Dataset)

Ours

AnimateDiff
+Lora

Figure 3: Comparison on few-shot camera motion transfer on four basic camera motions: pan right, pan left, zoom in and
zoom out. AnimateDiff+Lora [5] overfits to the training videos, which generate videos with mixed features from the training
data. Even if MotionCtrl [8] is trained on a large-scale dataset, it still suffers from inaccurate camera motion control and
some artifacts in the generated videos. In contrast, our model accurately transferred the camera motions while ensuring good
generation quality and diversity.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

t = 24

(a) A charming seaside village with colorful 
fishing boats

(b) A peaceful vineyard with rows of 
grapevines and rolling hills

t = 20

t = 22

t = 15
(Ours)

t = 10

t = 5

t = 3

t = 1

Figure 4: Ablation on the hyperparameter timestep 𝑡 . When it 𝑡 is too large (𝑡 ≥ 22), there is too much noise in the temporal
attention map, which causes the artifacts in the generated videos. When 𝑡 is too small (𝑡 ≤ 3), the latent 𝑧𝑡 is too close to the
denoised 𝑧0, where the temporal attention module contains less motion information. Therefore, the camera motions in the
generated results are not as obvious as others. We choose the medium timestep 𝑡 = 15, whose temporal attention maps capture
the video motions accurately.

6


	1 Overview
	2 More Implementation Details
	3 Solving Poisson Equation
	4 Temporal Attention Maps Determines The Video Motion
	5 More Comparison Results
	6 More Experiments on The Hyperparameters
	7 User Study
	References

