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1 OVERVIEW

In this supplementary material, more details about the proposed
COMD and more experimental results are provided, including:

More implementation details (Sec. 2);

Solving Poisson Equation (Sec. 3);

Temporal attention maps determines the video motion (Sec. 4)
More Comparison Results (Sec. 5);

More Experiments on the hyperparameters (Sec. 6);

User Study (Sec. 7).

To see the generated results more clearly, we provide a demo.html,
which includes all the videos in the experiments.

2 MORE IMPLEMENTATION DETAILS

We conduct experiments based on AnimateDiff-v2 [5]. we use
DDIM [6] to accelerate the generation process with 25 denois-
ing steps. Moreover, to decrease the computation cost, we employ
the temporal attention maps in timestep ¢ = 15 to represent the
video motions in different timesteps as illustrated in Sec. 3.2 of the
main paper. Furthermore, for few-shot camera motion disentan-
glement, we specified a video count of 5 and configured DBSCAN
clustering [3] with an Eps-neighborhood of 4 and core points of 3.

3 SOLVING POISSON EQUATION

We complete the temporal attention map inside the object-moving
region by solving a Poisson equation. The gradients within object-
moving regions of the completed attention map are assumed to be
zero and the boundary values should match those of the original
attention map. We choose the parallel red-black ordering Gauss-
Seidel iteration method to solve the Poisson equation. Initially, we
label the pixels with red-black ordering, ensuring that each pixel and
its neighboring pixels alternate between being labeled red and black.
Next, while ensuring that the values of boundary nodes remain
unchanged, we update the red and black pixels alternately until
reaching a specified number of iterations or until the residual falls
below a predefined threshold. The iteration process is illustrated by
the pseudo code. This algorithm can be accelerated using parallel
computing frameworks like CUDA.

4 TEMPORAL ATTENTION MAPS
DETERMINES THE VIDEO MOTION

The foundation of our method comes from the observation that the
temporal attention map determines the motions in the generated
videos, including camera motions and object motions. To validate
this, we conduct an experiment to swap the temporal attention
maps between two videos, where one of them contains only camera
motion while the other one contains only object motion. The results
are shown in Fig. 1. It can be seen that after swapping the temporal

Algorithm 1 Solving Poisson Equation

1: function POISSON_SOLVING(u, f)

2 u: RGB, f: gradient

3 choose an initial guess u(©®

4 while not converge do:

5 for (i, j) is red node do:
w2 1 (fi.j +u® B ),

6 ij T iy T U1 T T
7: end for

8 for (i,j) is black node do:

9: ul.(’lj.ﬂ) =1(fij+ ul(f;rjl) + ul(]:ri) + ul(];ﬁ) + ul(];tll)
10: end for

11 end while

12: end function

attention map, the contents of the two videos are similar and the
motions are totally swapped. The source videos of (a) keep the
camera fixed while moving the bus from left to right and (b) keep
the object fixed while zooming out the camera. After swapping
the temporal attention maps, the second row of (a) keeps the bus
fixed while zooming out the camera and (b) keeps the camera fixed,
but a shadow of a bus moves from left to right. Therefore, the
temporal attention maps determine both the camera and object
motions and by swapping the temporal attention map, the motions
can be transferred to a new video.

5 MORE COMPARISON RESULTS

Qualitative comparison. In this section, we show more results on
one-shot and few-shot camera motion transfer results, where both
one-shot and few-shot methods are employed to transfer zoom-in,
zoom-out, pan-left, and pan-right camera motions. The qualitative
comparison results are shown in Fig. 2 and 3. In the one-shot sce-
nario, AnimateDiff+Lora [5] appears prone to overfitting to the
provided video, whereas in the few-shot scenario, it tends to amal-
gamate features from the training videos, leading to inaccurate
video generation in response to the given prompts. MotionCtrl [8]
exhibits improved alignment with prompts in video generation;
however, it may introduce shape distortions and logical inconsis-
tencies in camera motion control. In contrast, our model achieves
high-quality and high-diversity generation with only one-shot or
few-shot data, without the need for training.

Quantitative comparison. To further validate the effectiveness
of our model, we conduct quantitative comparisons on the four basic
camera motions with one-shot and few-shot data. The comparison
results are shown in Tab. 1. It shows that our model achieves the
best FVD [7] and FID-V [1] scores, indicating the best generation
quality and diversity of our model. Since Animatediff is overfitted
to the training data, it has the minimum optical flow distance [4],
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(a) Prompt: A yellow school bus pulling into a driveway

Source Videos

Swap Temporal
Attention Map

Anonymous Authors

(b) Prompt: A countryside barn surrounded by sunflowers

Figure 1: After swapping the temporal attention maps of the first-row videos, we have the second-row videos which swap the
motions. The source videos of (a) moves the bus while fixing the camera, and (b) keeps the objects fixed while zooming out
the camera. After swapping the temporal attention map, (a) keeps the bus fixed while zooming out the camera. And (b) fixed
camera, but there is a shadow of a moving bus in the generated video (it is clearer in demo.html).

Table 1: Quantitative comparison results with the state-of-the-art methods on FVD, FID-V, and Optical Flow Distance. Note that
AnimateDiff+Lora [5] overfits to the training data, thereby achieving the lowest flow distance. But FVD and FID-V demonstrate
its worst generation diversity. In contrast, our model achieves the best FVD and FID-V, while also ensuring a good camera

transfer accuracy compared to MotionCtrl [8].

Camera Motion Pan Right Pan Left Zoom In Zoom Out
Data Scale Method FVD| FID-V| FlowDis| | FVD| FID-V| FlowDis| | FVD| FID-V| FlowDis| | FVD| FID-V] Flow Dis |
One shot Animatediff 382.4  4956.42 19.76 382.04 5939.96 15.22 482.58  6322.46 6.91 396.96  7767.33 5.78
COMD (ours) | 54.45 921.95 37.92 64.43  933.77 35.64 61.45 863.24 12.11 55.23 862.9 6.93
Largescale MotionCtrl 95.83  1207.52 38.18 98.04  1196.54 55.25 80.58 935.08 13.12 80.12 928.41 7.88

(a) Comparison results on one-shot camera motion control. Bold and underline represent optimal and sub-optimal results,

respectively.
Camera Motion Pan Right Pan Left ‘ Zoom In Zoom Out
Data Scale Method FVD| FID-V]| FlowDis| | FVD| FID-V| FlowDis | ‘ FVD| FID-V| FlowDis| | FVD| FID-V| Flow Dis |
Few shot Animatediff 290.86 5198.78 25.61 268.29  4629.08 14.76 281.73  4333.26 5.72 251.44 397541 3.12
W COMD (ours) | 55.94 1153.27 35.98 61.38 1092.09 38.94 51.97 847.08 12.93 52.90 910.76 5.10
Largescale MotionCtrl 95.83 1207.52 38.18 98.04 1196.54 55.25 80.58 935.08 13.12 80.12 928.41 7.88

(b) Comparison results on few-shot camera motion control. Bold and underline represent optimal and sub-optimal results,

respectively.

but it suffers from much worse FVD and FID-V. In summary, our
model achieves the best FVD and FID-V, while also ensuring a good
camera transfer accuracy compared to MotionCtrl. (Note that the
header of Tab. 1(b) in the main paper should be "Pan Left" and
"Zoom Out" and Tab. 1 here is the correct version)

Comparison on the computation cost. Moreover, we also
compare the computation cost including computation time and
GPU memory requirement between COMD, Animatediff+Lora [5]
and MotionCtrl [2]. Since our model is a training-free method, we
compute the time for disentangling the camera-object motions as
our training time. To ensure the fairness of the experiment, we
compute the time on the same NVIDIA A100 GPU. Meanwhile,
we compare the GPU memory required for all the methods. The
comparison results are shown in Tab. 2. It can be seen that our
model can accomplish camera motion disentanglement in a few
minutes while the other methods require a much longer training
time. Moreover, both AnimateDiff+Lora and MotionCtrl require
more than 30G GPU memory, while our model only needs 13G GPU

Table 2: Comparison on the computation resources. Our
training-free COMD requires much less time to control the
camera motions and it is the only method that is capable of
running on a single NVIDIA 24G 3090/4090 GPU.

Method ‘ Computation Time GPU Memory
Animatediff+Lora [5] ~10 hours 52G
MotionCitrl [8] > 10 days 32G
One-shot COMD (Ours) ~ 60 seconds 13G
Few-shot COMD (Ours) ~150 seconds 13G

memory which is the only method that can be implemented on a
single 24G 3090/4090 GPU.
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Table 3: User Study from 28 volunteers in related research
of video: A new metric & challenges. arXiv preprint arXiv:1812.01717 (2018).

areas.
[8] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Tianshui Chen, Menghan Xia, Ping
. . . Luo, and Ying Shan. 2023. Motionctrl: A unified and flexible motion controller for
Method ‘ Animatediff+Lora MotionCtrl COMD (Ours) video generation. arXiv preprint arXiv:2312.03641 (2023).
Percentage of
reen’ag 0.65% 25.22% 74.13%
Ranking First (%) T
Average Rank | 2.93 1.80 1.27

6 MORE EXPERIMENTS ON THE
HYPERPARAMETERS

In section 3.2 of the main paper, we propose that we can employ the
temporal attention map in one intermediate step ¢ to represent the
motions in different timesteps. We find that the timestep ¢ cannot
either be too large or too small, since the temporal attention map
in a too large t contains too much noise and the temporal attention
map in a too small ¢ contains little temporal information. To validate
this, we conduct one-shot camera motion transfer experiments on
different timesteps t, which are shown in Fig. 4. It can be seen
that when t is too large (¢ > 22), the output videos suffer from
heavy artifacts due to the noise in the temporal attention map.
And when t is too small (¢ < 3), the generated video cannot be
correctly generated since the temporal attention map contains too
little motion information, which fails to guide the video generation
process with accurate camera motions. The intermediate timesteps
5 < t < 20 all generate good results. Therefore, we choose timestep
t = 15 as our default hyperparameter.

7 USER STUDY

In this section, we conduct a user study to evaluate the effectiveness
of our COMD. We have invited 28 volunteers in related research
areas to rank the generated results from AnimateDiff+Lora [5],
MotionCrtl [8] and our COMD considering the generation quality,
diversity, and the camera transfer accuracy. Specifically, each vol-
unteer ranked 20 sets of results, where each basic camera motion
(pan left, pan right, zoom in, and zoom out) contains 5 videos. We
compute the average ranking and the percentage of ranking first
of the three methods, which is shown in Tab. 3. It can be seen that
our model ranks first in 74.13% situations and achieves the best
average rank of 1.27, demonstrating the superior performance of
our COMD in camera motion transfer.
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(b) A peaceful vineyard with rows of
grapevines and rolling hills

(a) A charming seaside village with colorful
fishing boats

t=24

t=22

t=20

t=15
(Ours)

Figure 4: Ablation on the hyperparameter timestep t. When it ¢ is too large (¢ > 22), there is too much noise in the temporal
attention map, which causes the artifacts in the generated videos. When ¢ is too small (¢ < 3), the latent z; is too close to the
denoised zj, where the temporal attention module contains less motion information. Therefore, the camera motions in the
generated results are not as obvious as others. We choose the medium timestep ¢ = 15, whose temporal attention maps capture
the video motions accurately.
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