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1 OVERVIEW
In this supplementary material, more details about the proposed

COMD and more experimental results are provided, including:

• More implementation details (Sec. 2);

• Solving Poisson Equation (Sec. 3);

• Temporal attentionmaps determines the videomotion (Sec. 4)

• More Comparison Results (Sec. 5);

• More Experiments on the hyperparameters (Sec. 6);

• User Study (Sec. 7).

To see the generated resultsmore clearly, we provide a demo.html,
which includes all the videos in the experiments.

2 MORE IMPLEMENTATION DETAILS
We conduct experiments based on AnimateDiff-v2 [5]. we use

DDIM [6] to accelerate the generation process with 25 denois-

ing steps. Moreover, to decrease the computation cost, we employ

the temporal attention maps in timestep 𝑡 = 15 to represent the

video motions in different timesteps as illustrated in Sec. 3.2 of the

main paper. Furthermore, for few-shot camera motion disentan-

glement, we specified a video count of 5 and configured DBSCAN

clustering [3] with an Eps-neighborhood of 4 and core points of 3.

3 SOLVING POISSON EQUATION
We complete the temporal attention map inside the object-moving

region by solving a Poisson equation. The gradients within object-

moving regions of the completed attention map are assumed to be

zero and the boundary values should match those of the original

attention map. We choose the parallel red-black ordering Gauss-

Seidel iteration method to solve the Poisson equation. Initially, we

label the pixels with red-black ordering, ensuring that each pixel and

its neighboring pixels alternate between being labeled red and black.

Next, while ensuring that the values of boundary nodes remain

unchanged, we update the red and black pixels alternately until

reaching a specified number of iterations or until the residual falls

below a predefined threshold. The iteration process is illustrated by

the pseudo code. This algorithm can be accelerated using parallel

computing frameworks like CUDA.

4 TEMPORAL ATTENTION MAPS
DETERMINES THE VIDEO MOTION

The foundation of our method comes from the observation that the

temporal attention map determines the motions in the generated

videos, including camera motions and object motions. To validate

this, we conduct an experiment to swap the temporal attention

maps between two videos, where one of them contains only camera

motion while the other one contains only object motion. The results

are shown in Fig. 1. It can be seen that after swapping the temporal

Algorithm 1 Solving Poisson Equation

1: function poisson_solving(u, f)

2: u: RGB, f: gradient

3: choose an initial guess 𝑢 (0)

4: while not converge do:
5: for (i, j) is red node do:
6: 𝑢

(𝑘+1)
𝑖, 𝑗

= 1

4
(𝑓𝑖, 𝑗 + 𝑢 (𝑘 )

𝑖+1, 𝑗 + 𝑢
(𝑘 )
𝑖−1, 𝑗 + 𝑢

(𝑘 )
𝑖, 𝑗+1 + 𝑢

(𝑘 )
𝑖, 𝑗−1)

7: end for
8: for (i,j) is black node do:
9: 𝑢

(𝑘+1)
𝑖, 𝑗

= 1

4
(𝑓𝑖, 𝑗 +𝑢 (𝑘+1)

𝑖+1, 𝑗 +𝑢 (𝑘+1)
𝑖−1, 𝑗 +𝑢 (𝑘+1)

𝑖, 𝑗+1 +𝑢 (𝑘+1)
𝑖, 𝑗−1 )

10: end for
11: end while
12: end function

attention map, the contents of the two videos are similar and the

motions are totally swapped. The source videos of (a) keep the

camera fixed while moving the bus from left to right and (b) keep

the object fixed while zooming out the camera. After swapping

the temporal attention maps, the second row of (a) keeps the bus

fixed while zooming out the camera and (b) keeps the camera fixed,

but a shadow of a bus moves from left to right. Therefore, the

temporal attention maps determine both the camera and object

motions and by swapping the temporal attention map, the motions

can be transferred to a new video.

5 MORE COMPARISON RESULTS
Qualitative comparison. In this section, we show more results on

one-shot and few-shot camera motion transfer results, where both

one-shot and few-shot methods are employed to transfer zoom-in,

zoom-out, pan-left, and pan-right camera motions. The qualitative

comparison results are shown in Fig. 2 and 3. In the one-shot sce-

nario, AnimateDiff+Lora [5] appears prone to overfitting to the

provided video, whereas in the few-shot scenario, it tends to amal-

gamate features from the training videos, leading to inaccurate

video generation in response to the given prompts. MotionCtrl [8]

exhibits improved alignment with prompts in video generation;

however, it may introduce shape distortions and logical inconsis-

tencies in camera motion control. In contrast, our model achieves

high-quality and high-diversity generation with only one-shot or

few-shot data, without the need for training.

Quantitative comparison. To further validate the effectiveness
of ourmodel, we conduct quantitative comparisons on the four basic

camera motions with one-shot and few-shot data. The comparison

results are shown in Tab. 1. It shows that our model achieves the

best FVD [7] and FID-V [1] scores, indicating the best generation

quality and diversity of our model. Since Animatediff is overfitted

to the training data, it has the minimum optical flow distance [4],
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Source Videos

Swap Temporal 
Attention Map

(a) Prompt: A yellow school bus pulling into a driveway (b) Prompt: A countryside barn surrounded by sunflowers

Figure 1: After swapping the temporal attention maps of the first-row videos, we have the second-row videos which swap the
motions. The source videos of (a) moves the bus while fixing the camera, and (b) keeps the objects fixed while zooming out
the camera. After swapping the temporal attention map, (a) keeps the bus fixed while zooming out the camera. And (b) fixed
camera, but there is a shadow of a moving bus in the generated video (it is clearer in demo.html).

Table 1: Quantitative comparison results with the state-of-the-art methods on FVD, FID-V, and Optical Flow Distance. Note that
AnimateDiff+Lora [5] overfits to the training data, thereby achieving the lowest flow distance. But FVD and FID-V demonstrate
its worst generation diversity. In contrast, our model achieves the best FVD and FID-V, while also ensuring a good camera
transfer accuracy compared to MotionCtrl [8].

Camera Motion Pan Right Pan Left Zoom In Zoom Out

Data Scale Method FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓

One shot

Animatediff 382.4 4956.42 19.76 382.04 5939.96 15.22 482.58 6322.46 6.91 396.96 7767.33 5.78
COMD (ours) 54.45 921.95 37.92 64.43 933.77 35.64 61.45 863.24 12.11 55.23 862.9 6.93

Largescale MotionCtrl 95.83 1207.52 38.18 98.04 1196.54 55.25 80.58 935.08 13.12 80.12 928.41 7.88

(a) Comparison results on one-shot camera motion control. Bold and underline represent optimal and sub-optimal results,
respectively.

Camera Motion Pan Right Pan Left Zoom In Zoom Out

Data Scale Method FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓ FVD ↓ FID-V ↓ Flow Dis ↓

Few shot

Animatediff 290.86 5198.78 25.61 268.29 4629.08 14.76 281.73 4333.26 5.72 251.44 3975.41 3.12
COMD (ours) 55.94 1153.27 35.98 61.38 1092.09 38.94 51.97 847.08 12.93 52.90 910.76 5.10

Largescale MotionCtrl 95.83 1207.52 38.18 98.04 1196.54 55.25 80.58 935.08 13.12 80.12 928.41 7.88

(b) Comparison results on few-shot camera motion control. Bold and underline represent optimal and sub-optimal results,
respectively.

but it suffers from much worse FVD and FID-V. In summary, our

model achieves the best FVD and FID-V, while also ensuring a good

camera transfer accuracy compared to MotionCtrl. (Note that the

header of Tab. 1(b) in the main paper should be "Pan Left" and

"Zoom Out" and Tab. 1 here is the correct version)

Comparison on the computation cost. Moreover, we also

compare the computation cost including computation time and

GPU memory requirement between COMD, Animatediff+Lora [5]

and MotionCtrl [2]. Since our model is a training-free method, we

compute the time for disentangling the camera-object motions as

our training time. To ensure the fairness of the experiment, we

compute the time on the same NVIDIA A100 GPU. Meanwhile,

we compare the GPU memory required for all the methods. The

comparison results are shown in Tab. 2. It can be seen that our

model can accomplish camera motion disentanglement in a few

minutes while the other methods require a much longer training

time. Moreover, both AnimateDiff+Lora and MotionCtrl require

more than 30G GPUmemory, while our model only needs 13G GPU

Table 2: Comparison on the computation resources. Our
training-free COMD requires much less time to control the
camera motions and it is the only method that is capable of
running on a single NVIDIA 24G 3090/4090 GPU.

Method Computation Time GPU Memory

Animatediff+Lora [5] ≈10 hours 52G

MotionCtrl [8] > 10 days 32G

One-shot COMD (Ours) ≈ 60 seconds 13G

Few-shot COMD (Ours) ≈150 seconds 13G

memory which is the only method that can be implemented on a

single 24G 3090/4090 GPU.

2
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Table 3: User Study from 28 volunteers in related research
areas.

Method Animatediff+Lora MotionCtrl COMD (Ours)

Percentage of

Ranking First (%) ↑ 0.65% 25.22% 74.13%

Average Rank ↓ 2.93 1.80 1.27

6 MORE EXPERIMENTS ON THE
HYPERPARAMETERS

In section 3.2 of the main paper, we propose that we can employ the

temporal attention map in one intermediate step 𝑡 to represent the

motions in different timesteps. We find that the timestep 𝑡 cannot

either be too large or too small, since the temporal attention map

in a too large 𝑡 contains too much noise and the temporal attention

map in a too small 𝑡 contains little temporal information. To validate

this, we conduct one-shot camera motion transfer experiments on

different timesteps 𝑡 , which are shown in Fig. 4. It can be seen

that when 𝑡 is too large (𝑡 ≥ 22), the output videos suffer from

heavy artifacts due to the noise in the temporal attention map.

And when 𝑡 is too small (𝑡 ≤ 3), the generated video cannot be

correctly generated since the temporal attention map contains too

little motion information, which fails to guide the video generation

process with accurate camera motions. The intermediate timesteps

5 < 𝑡 < 20 all generate good results. Therefore, we choose timestep

𝑡 = 15 as our default hyperparameter.

7 USER STUDY
In this section, we conduct a user study to evaluate the effectiveness

of our COMD. We have invited 28 volunteers in related research

areas to rank the generated results from AnimateDiff+Lora [5],

MotionCrtl [8] and our COMD considering the generation quality,

diversity, and the camera transfer accuracy. Specifically, each vol-

unteer ranked 20 sets of results, where each basic camera motion

(pan left, pan right, zoom in, and zoom out) contains 5 videos. We

compute the average ranking and the percentage of ranking first

of the three methods, which is shown in Tab. 3. It can be seen that

our model ranks first in 74.13% situations and achieves the best

average rank of 1.27, demonstrating the superior performance of

our COMD in camera motion transfer.
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Source
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AnimateDiff
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Figure 2: Comparison on one-shot camera motion transfer on four basic camera motions: pan right, pan left, zoom in and zoom
out. AnimateDiff+Lora [5] overfits the training video. Even if MotionCtrl [8] is trained on a large-scale dataset, it still suffers
from inaccurate camera motion control and some artifacts in the generated videos. In contrast, our model accurately transfers
the camera motions while ensuring good generation quality and diversity.
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Figure 3: Comparison on few-shot camera motion transfer on four basic camera motions: pan right, pan left, zoom in and
zoom out. AnimateDiff+Lora [5] overfits to the training videos, which generate videos with mixed features from the training
data. Even if MotionCtrl [8] is trained on a large-scale dataset, it still suffers from inaccurate camera motion control and
some artifacts in the generated videos. In contrast, our model accurately transferred the camera motions while ensuring good
generation quality and diversity.
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(a) A charming seaside village with colorful 
fishing boats

(b) A peaceful vineyard with rows of 
grapevines and rolling hills

t = 20

t = 22

t = 15
(Ours)

t = 10

t = 5

t = 3

t = 1

Figure 4: Ablation on the hyperparameter timestep 𝑡 . When it 𝑡 is too large (𝑡 ≥ 22), there is too much noise in the temporal
attention map, which causes the artifacts in the generated videos. When 𝑡 is too small (𝑡 ≤ 3), the latent 𝑧𝑡 is too close to the
denoised 𝑧0, where the temporal attention module contains less motion information. Therefore, the camera motions in the
generated results are not as obvious as others. We choose the medium timestep 𝑡 = 15, whose temporal attention maps capture
the video motions accurately.
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