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ABSTRACT

In recent years, optimal transport-based distance metrics have shown to be effec-
tive similarity and dissimilarity measures for tackling learning problems involving
network data. Prominent examples range from graph classification and commu-
nity detection to object matching. However, the high computational complexity
of calculating optimal transport costs substantially confines their applications to
large-scale networks. To address this challenge, in this paper, we introduce a
probability distribution on the set of edges of a graph, referred to as the Foster
distribution of the graph, by extending Foster’s theorem from electrical to general
networks. Then, we quantify graph similarity between the corresponding Fos-
ter distributions by utilizing ideas from optimal transport theory. We also extend
the proposed graph similarity measure to incorporate node features by defining
an additional similarity measure on the node attributes. The applicability of the
proposed approach is corroborated on diverse graph-structured datasets, through
which we particularly demonstrate the high efficiency of computing the proposed
graph distance for sparse graphs.

1 INTRODUCTION

Complex systems with multiple agents interacting are prevalent in nature and human society in dif-
ferent scales Brockmann & Helbing (2013); Strogatz (2001); Gao et al. (2016). The undesirable
behavior of such systems, in the form of disease, economic collapse, and social unrest, has gen-
erated significant interest in the comparative analysis of networks. For example, comparing brain
networks obtained from fMRI data is crucial for understanding the difference between healthy and
ill patients, and comparing the trade networks of two countries is of importance in international
economics Tantardini et al. (2019).

In recent years, graph distance metrics rooted in optimal transport (OT) have gained prominence due
to OT’s ability to capture both local and global graph characteristics, which is unattainable by mere
comparison of adjacency matrices or examination of node-centric features such as degree distribu-
tion, degree variance, and clustering coefficients. While these OT-based distance measures are effec-
tive in tasks such as graph classification, their applicability in real-world networks—characterized
by large scale—is impeded by substantial computational cost.

In this paper, we propose a new similarity measure that permits the comparison of large-size sparse
networks in a computationally efficient manner to the existing optimal transport distance measures.
The proposed similarity measure, Graph Foster Distance (GFD), combines Foster’s theorem with
the idea of optimal transport. Specifically, given two graphs, we propose to first estimate the foster
distribution defined on the set of edges and then calculate the optimal transport-type distance be-
tween the evaluated distributions. Furthermore, we extend the applicability of GFD to encompass
node features by introducing an additional transport distance that operates on the node attributes.

The formulation of GFD results in a simple linear program, the size of which is directly proportional
to the square of the total edge count within the network. This results in a significant reduction of
the computational cost, particularly for large-scale complex networks exhibiting sparsity. The en-
hanced computational efficiency of GFD is empirically demonstrated through comparative analyses
with existing methods that leverage optimal transport on graph classification tasks. Our comprehen-
sive analysis shows that GFD not only offers improved computational efficiency but also improves
classification accuracy.
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2 BACKGROUND

In this section, we review the essential background of graph theory, Resistance distance, and optimal
transport that will aid in the development of GFD.

2.1 PRELIMINARIES

We denote an undirected graph by G = (V,E), where V = {v1, . . . , vN} is a finite set of N vertices
and E ⊆ {(vi, vj) | vi, vj ∈ V } denotes the set of edges corresponding to unordered pairs of the
elements of V . The adjacency matrix of the graph is denoted by A ∈ RN×N , where Aij = 1 if
(vi, vj) ∈ E, otherwise Aij = 0. The Laplacian of G is defined as

L = D −A, (1)

where D ∈ RN×N is a diagonal matrix such that Dii is the degree of node vi, i = 1, . . . , N .

2.2 RESISTANCE DISTANCE

Given a graph G = (V,E), the resistance distance dr,ij between vertices vi and vj is defined as

dr,ij = L†
ii + L†

jj − L†
ij − L†

ji, (2)

where L† is the pseudoinverse of the graph Laplacian matrix L. The Resistance distance is com-
monly studied in electrical engineering where it defines the resistance between two points in an
electrical network when each edge is replaced by a unit resistor Bapat (2010). For an undirected
network, the resistance distance is closely related to the Average Commute Time Distance (ACTD)
and differs only by a constant. Specifically, ACTD between vertices vi and vj , dij , is defined as

dij = VG(L
†
ii + L†

jj − 2L†
ij), (3)

with VG(= |E|) is the number of edges in the graph. The ACTD between two vertices vi and vj
measures the average number of steps a random walker, starting at node vi, will take before arriving
at vj for the first time, and going back. It has been shown that ACTD is sensitive to global structure
change and insensitive to local changes, thus able to distinguish between trivial structural changes
and significant structural changes Saerens et al. (2004). These aforementioned properties of ACTD
are shared by resistance distance which makes resistance distance suitable for capturing the graph
structure information.

2.3 OPTIMAL TRANSPORT

An optimal transport problem is concerned with transferring one probability distribution to another
with the minimum effort. Specifically, let α and β be two discrete probability measures defined on

a metric space (X , d), then α =
n∑

i=1

aiδxi
and β =

m∑
i=1

biδyi
, for some x1, . . . , xn, y1, . . . , ym ∈ X

and a1, . . . , an, b1, . . . , bm ∈ [0, 1] such that
∑n

i=1 ai = 1 and
∑m

i=1 bi = 1. Then, the optimal
transport problem from α to β can be formulated as an optimization problem, given by,

LC(a,b) = min
Π∈U(a,b)

⟨C,P ⟩,

where a = (a1, . . . , an)
′, b = (b1, . . . , bm)′, U(a,b) is the set of admissible couplings, i.e.,

U(a,b) = {P ∈ Rn×m
+ : P1m = a and P1n = b},

and C is a cost function defined on X .

3 PRINCIPLES OF GRAPH FOSTER DISTANCE

In this section, we first introduce Foster’s theorem which allows us to interpret a graph as a proba-
bility measure and then define GFD over the Foster distributions induced by the graphs.
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Theorem 1. (Foster’s theorem) Let dr,ij be the resistance distance between vertices vi and vj of a
connected graph G = (V,E), then dr,ij satisfies :∑

(vi,vj)∈E

dr,ij = N − 1 (4)

The equivalent form is: ∑
(vi,vj)∈E

dr,ij
N − 1

= 1 (5)

Foster’s theorem Foster (1949) shows that for all connected graphs, the summation of all resistance
distances between vertices pairs in the edge set divided by N − 1 are always 1. It’s natural to extend
the resistance distance on the edge set to be a discrete probability measure.

3.1 FOSTER DISTRIBUTION ON GRAPH

By leveraging Foster’s theorem, we define the Foster Distribution on Graph and show that the Foster
Distribution is a probability mass function on the edge set.

Definition 1. For a simple connected graph G = (V,E), the Foster Distribution fG for graph G is a
discrete probability mass function on Edge set E, defined as

fG((vi, vj)) =
dr,ij
N − 1

, (vi, vj) ∈ E, (6)

where dr,ij is the resistance distance between vertices vi and vj .

Theorem 2. Foster Distribution fG is a probability mass function on Edge set E.

Proof. To prove Function fG is a probability mass function, we only need to show that:

fG((vi, vj)) ≥ 0,
∑

(vi,vj)∈E

fG((vi, vj)) = 1 (7)

Note that fG((vi, vj)) ≥ 0 since dr,ij ≥ 0. From Foster’s theorem, we also have∑
(vi,vj)∈E

fG((vi, vj)) =
∑

(vi,vj)∈E

dr,ij
N − 1

= 1

3.2 GRAPH FOSTER DISTANCE

Having obtained the foster distribution representing a graph, now we define the distance on the foster
distributions of two graphs G1 and G2.

Definition 2. Given two connected undirected graphs G1 = (V1, E1) and G2 = (V2, E2), let f1, f2
be their respective Foster distributions, then the Graph Foster Distance GFD(f1, f2) between f1 and
f2 is defined as

GFD(f1, f2) = min
π∈Π(f1,f2)

⟨C, π⟩ =
∑
i,j

Cijπij , (8)

where Π(f1, f2) denotes the set of admissible couplings, i.e.,

Π(f1, f2) = {π ∈ R|E1|×|E2|
+ : π1|E2| = f1 and πT1|E1| = f2},

and C ∈ R|E1|×|E2|
+ such that Cij = (f1(i)− f2(j))

2.

Note that GFD has a similar structure to the Wasserstein Distance for discrete measures and can be
easily estimated using linear programming solvers. This makes it computationally efficient for large
sparse networks as the size of the linear program depends on the number of edges in the networks.
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Theorem 3. The graph Foster distance satisfies

(1) Positive semi-definiteness: GFD(f1, f2) ≥ 0 and GFD(f1, f2) = 0 if f1 = f2,

(2) Symmetry: GFD(f1, f2) = GFD(f2, f1)

for any Foster distributions f1 and f2.

Proof. The positive semi-definiteness directly follows the definition of GFD in (8). To be more
specific, for any Foster distributions f1 and f2, each entry Cij in the cost function C is nonnegative,
together with the nonnegativity of the joint probability πij , we obtain GFD(f1, f2) ≥ 0. It can be
observed that f1 = f2 implies C = 0, yielding GFD(f1, f2) = 0 if f1 = f2. The symmetry fol-
lows from the observation that GFD(f1, f2) = minπ∈Π(f1,f2)⟨C, π⟩ = minπ∈Π(f1,f2)⟨CT , πT ⟩ =
minρ∈Π(f2,f1)⟨CT , ρ⟩ = GFD(f2, f1), where CT and πT denote the transpose of C and π, respec-
tively.

This theorem implies that the Foster graph distance, although may not be a metric on the space of
discrete probability distributions, can be used as a measure to quantify the similarity between two
graphs.
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Figure 1: Give a graph G, each edge is assigned a weight defined by the normalized resistance
distance. These normalized resistance distances are then used to define Foster’s distribution on the
edge set.

3.3 GFD FOR GRAPHS WITH NODE ATTRIBUTES

The GFD defined in the previous subsection only takes into account the structure of the graphs. In
several applications, graphs are usually found with node attributes, for example, brain networks,
social networks, and chemical compounds Vayer et al. (2020). These node features can be readily
incorporated into our GFD definition by adding an extra cost for the transportation of node features.

To begin, we consider undirected connected graphs with node features given by G = (V,E,A),
where A ∈ Rd×N contains the d-dimensional features of N nodes. Now given two graphs G1 and
G2 with their respective node features A1 and A2, we define the transport distance between node
features as

min
π∈Π(D1,D2)

⟨Ca, π⟩ =
∑
i,j

Caij
πij ,

where Π(D1, D2) denotes the set of admissible couplings, i.e.,

Π(D1, D2) = {π ∈ R|V1|×|V2|
+ : π1|V2| = D1 and πT1|V1| = D2},

with D1 = 1
|V1|1|V1| and D2 = 1

|V2|1|V2|. This ensures identical weight for all the nodes. The cost
matrix Ca is defined as the Euclidean distance between the node features, i.e., Caij = ∥A1i−A2j∥22,
where A1i denotes the ith vector of feature matrix A1, for the continuous node features.

Having defined the transport distance between the node features, the distance between the graphs
G1 and G2 is defined as

GFD (with labels) = α min
π∈Π(f1,f2)

⟨C, π⟩+ (1− α) min
π∈Π(D1,D2)

⟨Ca, π⟩,

where α ∈ (0, 1). In our numerical analysis, we take α = 0.5.
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4 RELATED WORKS

In this section, we review some of the works that leverage the power of optimal transport for graph
comparison and are closely related to our work.
Gromov-Wasserstein Distance (GW): In Mémoli (2011), the authors propose Gromov-
Wasserstein Distance which have become a powerful tool to measure the dissimilarity between
structured objects like graphs. The principle idea of GW is to interpret the graphs as a metric
measure space, for example, a graph G = (V,E) is interpreted as a metric measure space (X , d1, u)
where X = (v1, ..., vN ), u(vi) = vi∑N

i=1 vi
, and di is the distance defined on X . Now the distance

between two graphs or two metric measure spaces (X , d1, u) and (Y, d2, v) is defined as

GWp(u, v) =

 inf
π∈Π(u,v)

∑
x,x′∈X
y,y′∈Y

(
|d1(x, x′)− d2(y, y

′)|
)p

π(x, y)π(x′, y′)


1/p

, (9)

where Π(u, v) is the set of admissible couplings.

Fused Gromov-Wasserstein Distance (FGW): An extension of GW to include the node features
was proposed in Vayer et al. (2020). This technique combines the Gromov-Wasserstein Distance
with the Wasserstein Distance and improves the performance of GW on node-feature datasets; how-
ever, the computational complexity is still high.

Filter Graph Optimal Transport (fFOT): It is an optimal transport-based distance that considers
the probability distribution of filtered graph signals for graph comparison purposes Maretic et al.
(2022). The authors address the problem of graph alignment by computing permutations of the graph
that minimize the filter distance. This technique can only evaluate graphs with no node attributed,
and it exhibits high computational complexity for large-scale networks.

Linear Fused Gromov-Wasserstein Distance (Linear FGW): This technique was proposed to
reduce the computational cost of estimating pairwise distance by leveraging kernel matrix. Specifi-
cally, the primary idea is to embed the graph with node features into a linear tangent space through
a fixed reference graph and then estimate the Euclidean distance between the embeddings Nguyen
& Tsuda (2023). However, the author only considers graphs with continuous node attributes.

5 EXPERIMENT ANALYSIS

Here, we present the ability of our proposed graph similarity measure to capture the critical global
properties of the graphs. Furthermore, we demonstrate its effectiveness on real-world datasets in
terms of Graph classification.

Table 1: Distance between modular networks
GFD G1 G2 G3 G4

G1 0 0.08 0.01 0.01
G2 0.08 0 0.05 0.05
G3 0.01 0.05 0 10−30

G4 0.01 0.05 10−30 0

For our initial analysis, we consider four different
types of modular networks, as shown in Figure 2.
In these networks, taken from Petric Maretic et al.
(2019), each network has primarily two modules,
and the primary distinction arises from the num-
ber of links connecting the modules. The networks
G1,G3, and G4 has three links connecting the mod-
ules, while G2 has only one edge. In addition,
G3 and G4 are isomorphic.

We estimate the pair-wise distance between these
networks, shown in Table 1. The calculated distances reveal two important observations: (i) The dis-
tance between the isomorphic networks G3 and G4 is ≈ 0, which highlights that GFD is not affected
by the node alignment; (ii) The degree of graph similarity observed between the weakly and strongly
coupled modules is more than the two strongly coupled modules, i.e., GFD(G1,G2) > GFD(G1,G3).
The second observation underscores the fundamental capability inherent in our similarity measure,
namely, its adeptness in discerning crucial network connections. Each network under consideration
has an identical number of connections; however, it is the inter-module connections that result in
higher GFD in comparison to the intra-module connections.
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Figure 2: A set of four networks. The network G1,G3, and G4 has three links connecting the modules,
while G2 has only one edge; G3, and G4 are isomorphic.

5.1 COMPARATIVE ANALYSIS

5.1.1 DATASETS

We consider five widely used benchmark graph classification datasets: BZR Sutherland et al. (2003),
MUTAG Debnath et al. (1991), PROTEINS Borgwardt & Kriegel (2005), AIDS Riesen et al. (2008),
and REDDIT-BINARY(RB) Yanardag & Vishwanathan (2015). The details of these datasets includ-
ing the number of graphs, average vertices, average edge number, number of classes, and node labels
(Yes or No) are shown in Table 2. These datasets comprise both graphs with and without node at-
tributes.

Table 2: Details of the experimental data sets.

Dataset # Graphs # Avg. Nodes # Avg. Edge # Classes Node Attr.
BZR 405 35.75 38.36 2 Yes

MUTAG 188 17.93 19.79 2 Yes
PROTEINS 1113 39.06 77.82 2 Yes

AIDS 2000 15.69 16.20 2 Yes
REDDIT-BINARY(RB) 2000 429.63 497.75 2 No

5.1.2 EXPERIMENTAL DETAILS

We conduct a comparative analysis of our algorithm, evaluating both graph classification accuracy
and the computational time. For this analysis, we consider four optimal transport-based methods:
GW Mémoli (2011), fGOT Vayer et al. (2020), FGW Vayer et al. (2020), and Linear FGW Nguyen
& Tsuda (2023), alongside with one non-OT-based method: FGSD Verma & Zhang (2017). Out of
these five methods, only FGW and Linear FGW are equipped with the ability to incorporate node
attributes and Linear FGW can only deal with continuous node attributes. The classification per-
formance is evaluated using nonparametric 1-NN based on the estimated pairwise distance between
the graphs for all the methods. For each dataset, we sample 100 graphs to generate the prediction
accuracy in each experiment. Each experiment is repeated 30 times and the mean accuracy of the
classification result is reported in Table 3. All the simulations are performed on a 3 GHz, 13th en
Intel-Core i9-13900K with 48GB RAM machine.

For the graphs with discrete node attributes (MUTAG dataset), we first preprocess the discrete at-
tributes using Weisfeiler-Lehman labeling (WL) by concatenating the labels of the node neighbors
Vayer et al. (2020). This process is repeated H times, which results in a Rd×H feature matrix for
each node in the network. The node feature cost matrix Ca is then defined as the hamming distance
between the node feature matrix Waggener & Waggener (1995). Note that Linear FGW can not
be applied to MUTAG as the method is only designed for continuous node attributes. Similarly, we
don’t apply FGW, Linear FGW, and GFD (with labels) to the RB dataset since it does not have node
features. LinearFGW is not applied to MUTAG and AIDS since parts or all attributes of the dataset
are discrete attributes.
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Table 3: Graph classification accuracy and computation time for the datasets in Table 2
where blue color indicates the best time computation results. ‘OME’ is out of memory error, ‘> D’
denotes the computational time of more than a day, and ‘NA’ stands for not applicable. The bold
fonts correspond to more than 3% improvement in classification accuracy.

BZR MUTAG PROTEINS AIDS RB

FGSD 83.62%
(152.24s)

80.00%
(44.40s)

54.85%
(451.97s)

95.25%
(761.68s) OME

fGoT 77.7%
(> D)

85.56%
(1hr)

64.56%
(> D)

99.0%
(> D)

OME

GW 79.60%
(1665.84s)

83.43%
(74.64s) OME OME OME

FGW
(with labels)

82.47%
17.00s

82.97%
2.30s

65.53%
201.18s

99.53%
243.76s NA

LinearFGW
(with labels)

66.22%
6.74s NA 51.67%

29.78s NA NA

GFD
(w/o labels)

80.33%
(3.25s)

84.00%
(0.79s)

64.40%
(7.59s)

99.77%
(17.77s)

82.56%
(121.96s)

GFD
(with labels)

85.77%
4.75s

85.33%
2.91s

70.03%
17.05s

99.60%
35.85s NA

5.1.3 CLASSIFICATION RESULTS

Table 3 clearly indicates the superior computational efficiency of our algorithm for both cases:
with and without incorporating node attributes. The run-time improvement is 2x-25x compared
with other methods. We find that including node attributes improves our algorithm’s classification
accuracy without a significant increase in the computational time. In addition to the computational
time improvements, our algorithm achieves better classification accuracy (more than 3% improve-
ment). GFD is the only method based on the Wasserstein metric that efficiently operates on the
Reddit-Binary dataset, attaining a commendable accuracy of 82.56%. On the MUTAG dataset, we
find fGOT to have slightly better accuracy, but it is 1200 times slower than GFD with labels. We also
observe that Linear FGW improves the computational time of FGW, however, it results in degraded
classification accuracy and it requires high computational time for hyperparameter tuning.

6 CONCLUSION

In this paper, we propose a foster distribution-based graph similarity measure, GFD, to address the
high computational cost challenges associated with traditional methods using optimal transport. We
utilize the idea of optimal transport to define the similarity measure between the graph foster distri-
butions. The defined graph similarity measure results in a simple linear program with the number of
constraints equal to the sum of the number of edges of two networks. This simple structure of the
similarity measure results in not only lower computational cost than the existing methods but also
improved graph classification accuracy as demonstrated by the extensive comparative analysis. We
also extend GFD to include the node attributes while estimating graph similarity. The results in the
comparative analysis show that adding node attributed improves the classification accuracy of GFD
without a significant increase in the computational time.
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