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Figure 1: Visualization results of our FaceShot. Given any character and any driven video, FaceShot effectively
captures subtle facial expressions and generates stable animations for each character. Especially for non-human
characters, such as emojis and toys, FaceShot demonstrates remarkable animation capabilities.

ABSTRACT

In this paper, we present FaceShot, a novel training-free portrait animation frame-
work designed to bring any character into life from any driven video without
fine-tuning or retraining. We achieve this by offering precise and robust reposed
landmark sequences from an appearance-guided landmark matching module and
a coordinate-based landmark retargeting module. Together, these components
harness the robust semantic correspondences of latent diffusion models to pro-
duce facial motion sequence across a wide range of character types. After that,
we input the landmark sequences into a pre-trained landmark-driven animation
model to generate animated video. With this powerful generalization capabil-
ity, FaceShot can significantly extend the application of portrait animation by
breaking the limitation of realistic portrait landmark detection for any stylized
character and driven video. Also, FaceShot is compatible with any landmark-
driven animation model, significantly improving overall performance. Exten-
sive experiments on our newly constructed character benchmark CharacBench
confirm that FaceShot consistently surpasses state-of-the-art (SOTA) approaches
across any character domain. More results are available at our project website
https://faceshot2024.github.io/faceshot/.

1 INTRODUCTION

"I wish my toys could talk"-many people make this wish on birthdays or at Christmas, hoping for
the companionship from their “imaginary friends”. Achieving this usually requires a bit of “magic”,
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as seen with the talking teddy bear in Ted1 or the three chipmunks in Alvin and The Chipmunks2.
Behind these productions, making this “magic” a reality often requires specialized equipment and
significant manual effort for character modeling and rigging. In this work, to bring any character into
life for every person, we propose a novel, training-free portrait animation framework. As shown in
Figure 1, even for emojis and toys, which have totally different facial appearances from humans, our
proposed framework demonstrates remarkable performance in making these characters alive.

Portrait animation (Guo et al., 2024; Ma et al., 2024; Xie et al., 2024; Yang et al., 2024; Wei et al.,
2024; Niu et al., 2024; Wang et al., 2021; Zeng et al., 2023) has demonstrated impressive results with
the recent advancements in generative models, such as Generative Adversarial Networks (GANs)
(Goodfellow et al., 2020; Donahue et al., 2016; Odena et al., 2017; Radford, 2015) and diffusion
models (Rombach et al., 2022; Nichol et al., 2021; Saharia et al., 2022; Ho et al., 2020; Song et al.,
2021a). However, these methods depend on facial landmark recognition, and their performance are
constrained by the generalization capability of facial landmark detection models (Zhou et al., 2023;
Yang et al., 2023). For non-human characters, such as emojis, animals and toys, which often exhibit
significantly different facial features compared to human portraits, always resulting in landmark
recognition failures due to the supervised training paradigm and limited datasets. As shown in Figure
2, the unaligned target facial features for non-human character lead to disrupted animation results;
the animation models even generate a human mouth in the wrong position for a dog. In addition,
Xie et al. (2024); Yang et al. (2024) indicate that these methods cannot control subtle facial motions,
leading to inconsistent animation results.

Target X-Portrait Follow Your 
Emoji

AniPortrait FaceShot

Figure 2: Visual results generated from current portrait animation methods
and our FaceShot. Previous methods apparently retain the target human’s
appearance. In contrast, the result of FaceShot both aligns the dog’s facial
features and captures the target human’s expression.

To address the above
limitations, we propose
FaceShot, a novel portrait
animation framework
capable of animating any
character from any driven
video without the need for
training. As demonstrated
in Figure 1, FaceShot
produces vivid and stable
animations for various
characters, particularly for
non-human characters. This
is achieved through three
key components: (1) the appearance-guided landmark matching module, (2) the coordinate-based
landmark retargeting module, and (3) a landmark-driven animation model.

In our landmark matching module, we inject appearance priors into diffusion features and leverage
their strong semantic correspondences to match the landmarks. For the second component, we
introduce a theoretical algorithm to capture subtle facial motions between frames and generate the
landmark sequence aligned with the driven video. Finally, for the third component, we input the
landmark sequence of the reference character into a pre-trained landmark-driven animation model
to animate the character. As shown in Figure 2, FaceShot provides the reasonable animation result
by offering the precise landmarks of non-human character. Furthermore, FaceShot is compatible
with any landmark-driven portrait animation model as a plugin, improving their performance on
non-human characters, with experimental analysis in Section 4.3.

Moreover, to address the absence of a benchmark for character animation, we establish CharacBench
that contains 46 diverse characters. Qualitative and quantitative evaluations on CharacBench demon-
strate that FaceShot excels in animating characters, especially in non-human characters, outperforming
existing portrait animation methods. Additionally, ablation studies validate the effectiveness and su-
periority of our framework, providing valuable insights for the community. Furthermore, we provide
the animation results of FaceShot from non-human driven videos, bringing a potential solution to the
community for open-domain portrait animation.

The main contributions of this paper are as follows:

1https://en.wikipedia.org/wiki/Ted_(film)
2https://en.wikipedia.org/wiki/Alvin_and_the_Chipmunks_(film)
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• We propose FaceShot, a novel portrait animation framework capable of animating any
character from any driven video without the need for training.

• FaceShot generates precise reposed landmark sequences for any character and any driven
video, bringing a potential solution to the community for open-domain portrait animation.

• FaceShot can be seamlessly integrated as a plugin with any landmark-driven animation
model, further improving its performance.

• We establish CharacBench, a benchmark with diverse characters for comprehensive evalua-
tion. Experiments on CharacBench show that FaceShot outperforms SOTA approaches.

2 RELATED WORK

Portrait Animation. Early portrait animation methods primarily relied on GANs (Goodfellow et al.,
2020) to generate portrait animation through warping and rendering techniques (Drobyshev et al.,
2022; Siarohin et al., 2019; Hong et al., 2022; Wang et al., 2021; Zhao & Zhang, 2022). Recent
advancements in latent diffusion models (LDMs) (Rombach et al., 2022; Ramesh et al., 2022; Shen
et al., 2023; Gao et al., 2024; Shen et al., 2024b; Wang et al., 2024a; Shen et al., 2024a; Li et al.,
2024a; Shen & Tang, 2024) have improved the quality and efficiency of image generation. Building
on this, some methods (Xie et al., 2024; Yang et al., 2024) learn the identity-free expression by
constructing paired data, demonstrating impressive performance. However, current data collection
pipelines face challenges in constructing paired data for diverse domains, particularly for non-human
characters, which limits the generalization ability of these methods. Additionally, other approaches
(Wei et al., 2024; Niu et al., 2024; Ma et al., 2024; Shen et al., 2025) tend to utilize highly scalable
conditions, such as facial landmarks, to enhance motion control. Naturally, these methods depend
on the facial landmark recognition, which also restricts their applicability to non-human characters.
To break these limitations and bring any character into life, we focus on providing precise reposed
landmark sequences within landmark-driven portrait animation in this work.

Facial Landmark Detection Facial landmark detection aims to detect key points in given face.
Traditional methods (Cootes et al., 2000; 2001; Dollár et al., 2010; Kowalski et al., 2017) often
construct a shape model for each key point and perform iterative searches to match the landmarks.
With the development of deep networks, some methods (Sun et al., 2013; Zhou et al., 2013; Wu et al.,
2018; 2017) select a series of coarse to fine cascaded networks to perform direct regression on the
landmarks. Another trend, Huang et al. (2020); Zhou et al. (2023); Merget et al. (2018); Kumar et al.
(2020) predict the heatmap of each point for indirect regression, improving the accuracy of landmark
detection. Recently, Yang et al. (2023); Xu et al. (2022); Li et al. (2024b) collect larger datasets
and train larger models for more generalize landmark detection. However, due to the supervised
training paradigm and limited dataset, these methods are difficult to perfectly detect the landmark of
non-human characters. In our paper, we turn to a training-free landmark matching module through
the strong semantic correspondence and the generalization in diffusion features (Tang et al., 2023;
Hedlin et al., 2024; Luo et al., 2024), aiming to provide precise landmarks for non-human characters.

Image to Video Generation Image to video (I2V) generation has gained significant attention in
recent years due to its potential in various applications, such as image animation (Dai et al., 2023;
Gong et al., 2024; Ni et al., 2023; Guo et al., 2023) and video synthesis (Blattmann et al., 2023b;
Wang et al., 2024b; Ruan et al., 2023). Since diffusion models demonstrate the powerful image
generation capabilities, Zhang et al. (2024); Shi et al. (2024); Xing et al. (2023); Ma et al. (2024)
achieve image animation by inserting temporal layers into a pre-trained 2D UNet and fine-tuning
it with video data. Furthermore, some methods (Zhang et al., 2023a; Blattmann et al., 2023a) have
constructed their own I2V models and performed full training with large amounts of high-quality
data, demonstrating strong competitiveness. In our work, we utilize MOFA-Video (Niu et al., 2024)
as our base animation model.

3 METHOD

The framework of FaceShot is depicted in Figure 3. We first introduce the foundational concepts
of diffusion models in Section 3.1. We then explain the three key components of our framework in
detail in Section 3.2: appearance-guided landmark matching, coordinate-based landmark retargeting,
and character animation model.
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Figure 3: The FaceShot framework first generates precise facial landmarks for the reference character with
appearance guidance. Next, a coordinate-based landmark retargeting module generates the landmark sequence
based on driving video. Finally, this sequence is fed into an animation model to animate character.

3.1 PRELIMINARY

In FaceShot, we utilize Stable Diffusion (SD) (Rombach et al., 2022) as the base model for land-
mark matching, which consists of a Variational Auto-Encoder (VAE) (Kingma, 2013), a CLIP text
encoder (Radford et al., 2021), and a denoising U-Net (Ronneberger et al., 2015). Compared to
pixel-based diffusion models, SD uses the VAE encoder E to encode the input image x into a latent
representation z = E(x). The VAE decoder D then reconstructs the image by decoding the latent
representation: x = D(z).

To train the denoising U-Net ϵθ, the objective typically minimizes the Mean Square Error (MSE) loss
L at each time step t, as follows:

L = Ezt,ϵ∼N (0,I),c,t∥ϵθ(zt, c, t)− ϵt∥2, (1)

where zt =
√
ᾱtz0 +

√
1− ᾱtϵt is the noisy latent at time step t, ᾱt :=

∏t
s=1 α

s and αt := 1− βt,
with βt represent the forward process variances. ϵt denotes the added Gaussian noise, and c is the
text condition, processed by the U-Net’s cross-attention module.

Moreover, the Denoising Diffusion Implicit Model (Song et al., 2021a) (DDIM) enables the inversion
of the latent variable z0 to zt in a deterministic manner. The formula is as follows:

zt =

√
αt

αt−1
zt−1 ++

(√
1

αt
− 1−

√
1

αt−1
− 1

)
· ϵθ
(
zt−1, t− 1, c, c′

)
, (2)

where c′ represents the additional image prompt. In our implementation, we utilize the latent space
features at t-th time step and l-th layer of U-Net from DDIM inversion for landmark matching.

3.2 FACESHOT: BRING ANY CHARACTER INTO LIFE

Reference image (a) w/o appearance (b) w/ appearance 

Figure 4: Visualizations of point matching with (w/,
highlighted in a red box) or without (w/o) appearance
guidance using an anime diffusion model.

Reviewing the remarkable variance in perfor-
mance caused by inaccurate or accurate facial
landmarks in Figure 2. A well-generalized land-
mark detector is necessary for landmark-driven
portrait animation model to bring any character
into life. Prior landmark detectors (Yang et al.,
2023; Xu et al., 2022; Zhou et al., 2023) have
either curated more diverse public datasets or
introduced new loss functions during training
to improve the generalization of landmark de-
tection. However, within a supervised training
paradigm, these detectors struggle to generalize
to non-human characters, resulting inaccurate re-
sults for portrait animation. To address this, we
propose an appearance-guided landmark match-
ing module that generalizes to any character to
generate precise landmarks. In addition, to cap-
ture the subtle movements in driving videos, we offer a coordinate-based landmark retargeting module.
Finally, a character animation model is employed as our base model to animate reference characters.
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Appearance-guided Landmark Matching. Tang et al. (2023); Hedlin et al. (2024); Luo et al. (2024)
demonstrate the strong semantic correspondence and generalization between diffusion features, where
simple feature matching can map the point p′ on the reference image Iref to a semantic similar
point p on the target image Itar. However, appearance discrepancies across different domains often
result in mismatches, as shown in Figure 4 (a), where the points on the left eye and right ear are
incorrectly matched. A natural solution is to inject prior appearance knowledge through inference
using a domain-specific diffusion model. As shown in Figure 4 (b), points are correctly matched
when inferred on an anime diffusion model.

Since fine-tuning a diffusion model for each reference image is costly, inspired by IP-Adapter (Ye
et al., 2023), we utilize image prompts to provide appearance guidance. Specifically, we treat the
reference image Iref and the target image Itar as image prompts, denoted as c′ref and c′tar. We then
apply the DDIM inversion process to obtain deterministic diffusion features fref and ftar from Iref
and Itar at time step t and the l-th layer of the U-Net:

ftar = Fl(ϵθ(z
t−1
tar , t− 1, c, c′ref )),

fref = Fl(ϵθ(z
t−1
ref , t− 1, c, c′tar)),

(3)

where zt−1
tar and zt−1

ref are iteratively sampled by Eq. 2 from z0tar = E(Itar) and z0ref = E(Iref ) using
the text prompt c =“a photo of a face” and the image prompts c′ref and c′tar, respectively. Fl denotes
the function that extracts the output feature at the l-th layer of the U-Net.

After obtaining the diffusion features fref ∈ R1×Cl×hl×wl and ftar ∈ R1×Cl×hl×wl , we upsample
them to f ′

ref ∈ R1×Cl×H×W and f ′
tar ∈ R1×Cl×H×W to match the resolutions of Iref and Itar. To

improve performance and stability, we construct the average feature of the i-th landmark point pitar
from k target images to match the corresponding point piref in the reference image, as follows:

piref = argmin
pref

dcos

1

k

k∑
j=1

f ′j
tar(p

j,i
tar), f

′
ref (pref )

 , (4)

where f ′(p) ∈ R1×Cl represents the diffusion feature vector at point p, dcos denotes the cosine
distance and pref refers to points in the reference feature map. Finally, we denote the matched
landmark points of the reference image as L0

ref = {piref | i = 1, . . . , N}, where N represents the
number of facial landmarks.

Appearance Gallery
eyes moutheyebrows nose

face 
boundary

… …… … …

Appearance 
Matching

Target ImagesReference

Figure 5: Illustration of our appearance gallery. We
output the closest domains for each reference image to
reduce the appearance discrepancy.

Appearance Gallery. We introduce an ap-
pearance gallery G = [Ge, Gm, Gn, Geb, Gfb],
which is a collection of five prior compo-
nents—eyes, mouth, nose, eyebrows, and face
boundary—across various domains, with each
domain containing k images. For a reference
image Iref , we reconstruct the target image as
Itar = [G∗

e, G
∗
m, G∗

n, G
∗
eb, G

∗
fb] by matching

Iref with the closest domain in the appearance
gallery G, thereby explicitly reducing the ap-
pearance discrepancy between the reference and
target images, as shown in Figure 5.

Coordinate-based Landmark Retargeting.
Currently, Niu et al. (2024); Wei et al. (2024);
Ma et al. (2024) utilize 3D Morphable Models
(3DMM) (Booth et al., 2016) to generate the
landmark sequence of the reference image by
applying 3D face parameters. However, 3DMM-
based methods often struggle to generalize to
non-human character faces due to the limited
number of high-quality 3D data and their inability to capture subtle expression movements (Retsinas
et al., 2024). As shown in Figure 6, the head shapes of the 3D face are not well aligned with the
input images, and subtle movements, such as eye closures, are absent in the i-th frame. Therefore,
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Figure 7: Qualitative comparison with SOTA portrait animation methods. Slash boxes represent that the method
has fail to generate animation for this character.

we propose a coordinate-based landmark retargeting module designed to generate a retargeted land-
mark sequence Lref that can stably capture the subtle movements from driving video based on
transformations in rectangular coordinate systems.

Reference 3D face 0-th frame 𝑖-th frame

G
ro

un
d
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M
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Figure 6: Visualizations of 3D face and retargeting results using
3DMM.

Our module consists of two stages,
which respectively retarget the global
motion of entire face and the lo-
cal motion of different facial parts
from driving sequence to reference
image. In the first stage, the global
motion from the 0-th to the m-th
driving frame is defined as the trans-
lation ∆Odri = Om

dri − O0
dri and

rotation ∆θdri = θmdri − θ0dri of
the corresponding global rectangular
coordinate systems (O0

dri, θ
0
dri) and

(Om
dri, θ

m
dri). Specifically, the global

rectangular coordinate system is con-
structed by the origin O and angle θ,
which are calculated from the endpoints of face boundary. Afterward, the global coordinate system
of reference image at m-th frame can be calculated from those of 0-th frame’s as follows:

Om
ref = O0

ref +∆Odri, θ
m
ref = θ0ref +∆θdri. (5)

Finally, we transfer the coordinates of the landmark points from (O0
ref , θ

0
ref ) to (Om

ref , θ
m
ref ), repre-

senting the global motion of the entire reference face.

In stage two, the local motion involves two processes: the relative motion and point motion, applied
to five facial parts: eyes, mouth, nose, eyebrows, and face boundary. The relative motion is similar
to the global motion, but the part-specific coordinate systems are calculated from the endpoints of
each part. Furthermore, to constrain each part within a reasonable facial range, we scale ∆Odri as
bref
bdri

∆Odri, where b represents the distance from the origin to the boundary of each part. Next, we

6



Published as a conference paper at ICLR 2025

model the point motion as follows:

pm,i
ref =

(
pm,i
dri [0]

p0,idri[0]
· p0,iref [0],

pm,i
dri [1]

p0,idri[1]
· p0,iref [1]

)
, (6)

where pm,i
ref and pm,i

dri represent the coordinates in the part-specific coordinate system for the m-th
frame and i-th point. This simple yet effective design enables us to capture both global and local,
obvious and subtle motions into landmark sequence Lref = {Lj

ref | j = 1, . . . ,M} for any character,
where M represents the number of video frames.

Character Animation Model. After obtaining the reference landmark sequence Lref , it can be
applied to any landmark-driven animation model to animate the character portrait. Specifically, Lref

is treated as an additional condition for the U-Net, either injected via a ControlNet-like structure (Niu
et al., 2024) or incorporated directly into the latent space (Hu, 2024; Wei et al., 2024). This enables
the model to precisely track the motion encoded in the landmark sequence while preserving the
character’s visual identity. Moreover, this flexible condition can be seamlessly extended to various
architectures, enhancing scalability across diverse animation tasks.

4 EXPERIMENTS

4.1 IMPLEMENT DETAIL

In this work, we employ MOFA-Video (Niu et al., 2024), a Stable Video Diffusion (Blattmann et al.,
2023a) (SVD)-based landmark-driven animation model, as our base character animation model. For
appearance-guided landmark matching, we utilize Stable Diffusion v1.5 along with the pre-trained
weights of IP-Adapter (Ye et al., 2023) to extract diffusion features from the images. Specifically,
we set the time step t = 301, the U-Net layer l = 6, and the number of target images k = 10.
Additionally, following MOFA-Video, we use N = 68 keypoints (Sagonas et al., 2016) as facial
landmarks and M = 64 frames for animation. More details are shown in Appendix.

Driving ResultReference

Figure 8: Visualizations of character animation from
non-human driving videos.

Evaluation Metrics. Following Xie et al.
(2024); Ma et al. (2024), we employ four met-
rics to evaluate identity similarity, high- and
low-level image quality and expression accu-
racy. Specifically, we utilize ArcFace score
(Deng et al., 2019a) that calculates average co-
sine similarity between source and generated
videos as identity similarity. We also employ
HyperIQA (Zhang et al., 2023b) and LAION
Aesthetic (Schuhmann et al., 2022) for evalu-
ating image quality from low- and high-level.
Moreover, we conduct the expression evaluation
following the steps of Point-Tracking in Mim-
icBench3.

Character Benchmark. To comprehensively
evaluate the effectiveness and generalization
ability of portrait animation methods towards
characters, we build CharacBench that comprises 46 characters from various domains, such as
animals, emojis, toys and anime characters. Characters in CharacBench are collected from Internet
by following the guideline of ensuring that the characters do not resemble human facial features as
much as possible. Moreover, we consider videos of human head from RAVDESS (Livingstone &
Russo, 2018) as our driving videos.

4.2 COMPARISON WITH SOTA METHODS

Qualitative Results. We compare proposed FaceShot with SOTA portrait animation methods,
including MOFA-Video (Niu et al., 2024), X-Portrait (Xie et al., 2024), FaceVid2Vid (Wang et al.,

3https://github.com/open-mmlab/MimicBench
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Table 1: Quantitative comparison between FaceShot and other SOTA methods on CharacBench. The best result
is marked in bold, and the second-best performance is highlighted in underline. Symbol * indicates that there
are some failure cases in these methods, we report the values of these methods only for reference.

Methods Metrics User Preference
ArcFace ↑ HyperIQA ↑ Aesthetic ↑ Point-Tracking ↓ Motion ↑ Identity ↑ Overall ↑

FaceVid2Vid 0.525 33.721 4.267 6.944 3.58 3.83 4.52
FADM 0.633 39.402 4.522 6.993 1.93 2.04 1.96

X-Portrait 0.490 52.357 4.754 7.301 1.47 1.63 1.57
Follow Your Emoji 0.612 52.056 4.906 6.960 6.91 6.67 6.74

AniPortrait* 0.634 55.951 4.928 6.367 5.84 5.64 5.39
MegActor* 0.613 40.191 4.855 7.183 6.53 6.75 6.26

LivePortrait* 0.893 53.587 5.092 7.474 7.33 7.08 7.11
MOFA-Video 0.695 52.272 4.952 14.985 3.27 3.04 3.18

FaceShot 0.848 53.723 5.036 6.935 8.14 8.32 8.27

2021), FADM (Zeng et al., 2023), Follow Your Emoji (Ma et al., 2024), LivePortrait (Guo et al.,
2024), and MegActor (Yang et al., 2024). Visual comparisons are presented in Figure 7, where fail
indicates that the method was unable to generate animation for the character. As AniPortrait (Wei
et al., 2024) fails with most non-human characters, we only provide its quantitative results. We
observe that most methods such as MOFA-Video, X-Portrait, FaceVid2Vid and Follow Your Emoji,
are influenced by the human prior in the driving video, resulting in human facial features appearing
on character faces. In contrast, FaceShot effectively preserves the identity of reference characters
through precise landmarks provided by our proposed appearance-guided landmark matching module.
Furthermore, while most methods struggle to retarget the motions like eye closure and mouth opening,
our coordinated-based landmark retargeting module enables FaceShot to capture subtle movements.

Beyond its effective character animation capability, FaceShot can also animate reference characters
from non-human driving videos, extending the application of portrait animation from human-related
videos to any video as shown in Fig. 8. This demonstrates its potential for open-domain portrait
animations.

Uni-PoseFaceShot STAR DIFT

Figure 9: The visualizations of landmarks detection on differ-
ent characters in CharacBench using DIFT, STAR, Uni-Pose and
FaceShot.

Quantitative Results. We conduct a
quantitative comparison on the met-
rics mentioned in Section 4.1. Please
note that some methods, such as Live-
Portrait, MegActor, and AniPortrait,
fail to generate animations for certain
characters when they are unable to de-
tect the face. Therefore, for a fair com-
parison, we report the failure rate for
these methods as follows: AniPortrait
(39.13%), MegActor (36.50%), and
LivePortrait (16.67%), and we calcu-
late their metric values on success-
ful characters only for reference pur-
poses. Based on Table 1, FaceShot
demonstrates significantly superior
performance across various metrics compared to other methods on CharacBench. Specifically,
FaceShot achieves the highest score in terms of ArcFace (0.848), demonstrating the effectiveness of
the precise landmarks generated by the appearance-guided landmark matching module in preserving
facial identity. FaceShot achieves superior HyperIQA (53.723) and Aesthetic (5.036) scores, indicat-
ing better image quality. Additionally, the coordinate-based landmark retargeting module contributes
to the competitive point tracking score (6.935), highlighting its ability to handle motion effectively.
It is important to note that our method has achieved significant improvements across all metrics
compared to the base method, MOFA-Video, further demonstrating the effectiveness of our proposed
FaceShot.

User Preference. Additionally, we randomly selected 15 case examples and enlisted 20 volunteers
to evaluate each method across three key dimensions: Motion, Identity, and Overall User Satisfac-
tion. Volunteers ranked the animations based on these criteria, ensuring a fair and comprehensive
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comparison between the methods. As shown in Table 1, FaceShot achieves the highest scores in
Motion, Identity, and Overall categories, demonstrating its robust animation capabilities across
diverse characters and driving videos.

4.3 ABLATION STUDIES

Appearance-guided Landmark Matching. To evaluate the effectiveness of our appearance-guided
landmark matching module, we compare it with SOTA unsupervised algorithm DIFT (Tang et al.,
2023) and supervised algorithms Uni-Pose (Yang et al., 2023) and STAR (Zhou et al., 2023)
on CharacBench. Specifically, we recruited volunteers to annotate the landmarks of images in
CharacBench as ground-truth values for calculating the corresponding Normalized Mean Error
(NME) value.

Table 2: Albation studies of our appearance-guided landmark matching module with supervised SOTA methods
Uni-Pose and STAR and unsupervised method DIFT on CharacBench. Best result is marked in bold, and the
second-best performance is highlighted in underline.

Methods NME ↓ ArcFace ↑ HyperIQA ↑ Aesthetic ↑

STAR 24.530 52.849 0.829 4.989
Uni-Pose 13.731 53.685 0.851 5.025

DIFT 11.448 53.506 0.843 5.023
FaceShot 8.569 53.723 0.848 5.036

As illustrated in Table 2, FaceShot achieves the lowest NME on CharacBench. The visual landmark
results are shown in Figure 9, FaceShot accurately detects the landmarks on the non-human characters,
whereas others fail to match the positions of the eyes and mouth. Furthermore, we observe that
Faceshot also achieves the best scores in Table 2, highlighting the necessity of precise landmarks of
landmark-driven portrait animation models.

FreeNetFaceShotDriving Everything’s
Talking

Deep3D

0
-t
h
fr
am
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𝑖-
th
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Figure 10: Visual results of landmark retargeting between FaceShot and other
methods.

Coordinate-based Land-
mark Retargeting. To
evaluate the effectiveness
of our landmark retargeting
module, we provide a com-
parison with SOTA land-
mark retargeting methods,
including Deep3D (3DMM)
(Deng et al., 2019b), Ever-
thing’s Talking (Song et al.,
2021b) and FreeNet (Zhang
et al., 2020), where Ever-
thing’s Talking models the
Bézier Curve as the mo-
tion controller and FreeNet
trains a parameterized network for retargeting.

Table 3: Albation studies of coordinate-based landmark retargeting module with SOTA methods Deep3D,
Everthing’s Talking and FreeNet. Best result is marked in bold.

Metric FaceShot Deep3D Everthing’s
Talking FreeNet

Point-
Tracking ↓ 6.935 8.282 8.382 8.272

As shown in Figure 10, due to the precision loss of fitting a Bezier curve, Everthing’s Talking always
generates the inaccurate retargeting. FreeNet and 3DMM have strict requirements for the distribution
facial features, making it unable to adapt to non-human characters. In contrast, our module can
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precisely capture the subtle motion such as mouth opening, eye closure, and global face movement.
Additionally, FaceShot also achieves the lowest point-tracking score in Table 3, demonstrating its
effectiveness in capturing the consistent face movements.

AniPortraitDriving w/ FaceShotReference

Figure 11: Visual results of AniPortrait with or without FaceShot
as a plugin to generate animation results.

As a Plugin. Experiments in Section
4.2 have demonstrated that FaceShot
can significantly improve the perfor-
mance of the landmark-driven method
MOFA-Video (Niu et al., 2024). To
further verify its effectiveness as a
plugin for landmark-driven anima-
tion models, we input the reposed
landmark sequences generated by
FaceShot into AniPortrait’s (Wei et al.,
2024) pipeline. As shown in Figure
11, inaccurate landmarks in original
AniPortrait often result in distortions,
producing results that resemble real
humans. In contrast, FaceShot can
provide precise and robust landmarks for characters, leading to harmonious and stable animation
results.

5 CONCLUSION

In this paper, we introduced FaceShot, a training-free portrait animation framework that animates
any character from any driven video. By leveraging semantic correspondence in latent diffusion
model features, FaceShot addresses the limitations of existing landmark-driven methods, enabling
precise landmark matching and landmark retargeting. This powerful capability not only extends
the application of portrait animation beyond traditional boundaries but also enhances the realism
and consistency of animations in landmark-driven models. FaceShot is also compatible with any
landmark-driven animation model as a plugin. Additionally, experimental results on CharacBench, a
benchmark featuring diverse characters, demonstrate that FaceShot consistently outperforms current
SOTA methods.

Future Work. Although FaceShot shows strong performance, future work could focus on enhancing
appearance-guided landmark matching by refining semantic feature extraction from latent diffusion
models, particularly for complex facial geometries. Furthermore, parameterizing landmark retargeting
could offer more precise control over facial expressions, improving the adaptability of FaceShot
across diverse character types and styles.

ETHICS STATEMENT

In developing FaceShot, a training-free portrait animation framework that animates any characters
from any driven video, we are dedicated to upholding ethical standards and promoting responsible AI
use. We acknowledge potential risks, such as deepfake misuse or unauthorized media manipulation,
and stress the importance of applying this technology in ways that respect privacy, consent, and
individual rights. Our code will be publicly released to encourage responsible use in areas like
entertainment and education, while discouraging unethical practices, including misinformation and
harassment. We also advocate for continued research on safeguards and detection mechanisms to
prevent misuse and ensure adherence to ethical guidelines and legal frameworks.
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APPENDIX

A IMPLEMENTATION DETAILS

In FaceShot, we use a single H800 to generate animation results. And we have included a total of 46
images and 24 driving videos in CharacBench, with each video consisting of 110 to 127 frames. All
videos (.mp4) and images (.jpg) are processed into a resolution of 512×512. Following MOFA-Video,
for human face and driving video, we utilized Facial Alignment Network (FAN) implemented in
facexlib as our annotating algorithm to detect the landmarks. And for non-human characters, we
perform manual annotating as even the SOTA face landmark detection methods still fail on these
characters.

B METHODS

Appearance Matching in Appearance Gallery. As mentioned in Section 3.2, the purpose of the
appearance gallery is to reduce appearance discrepancies by matching the reference image to the
closest target domain. In detail, the reference image is first cropped into five facial parts i.e., eyes,
mouth, nose, eyebrows and face boundary as:

Iref = [Iref,e, Iref,m, Iref,n, Iref,eb, Iref,fb],

each facial part includes a specific number of landmarks, as listed in the Table 4:

Table 4: Specific landmark number for each facial part.

eyes mouth nose eyebrows face boundary
12 20 9 10 17

Next, each part is matched to the closest target domain in the appearance gallery by calculating the
average CLIP image score:

G∗
p = argmax

j∈D
CLIP-S(Iref,p,

1

k

k∑
i=1

Ij,itar,p),

where p ∈ {e,m, n, eb, fb} and D represents the domains in part p, k denotes the number of target
images in given domain and CLIP-S denotes the clip image score. Finally, the target images are
formulated as Itar = [G∗

e, G
∗
m, G∗

n, G
∗
eb, G

∗
fb].

Face Boundary

Eyebrow

Nose

Eye

Mouth(inner)

Mouth(outer)

Figure 12: Illustration of the endpoints in each part,
marked with a red circle.

Settings in Landmark Retargeting. The angle
and the origin of the rectangular coordinate sys-
tem are calculated using two endpoints pe1 and
pe2 as follows:

O =

(
pe1 [0] + pe2 [0]

2
,
pe1 [1] + pe2 [1]

2

)
,

θ = arctan
(
pe2 [1]− pe1 [1]

pe2 [0]− pe1 [0]

)
.

And the indices of the endpoints within each
part of every frame are fixed, as illustrated in
the Figure 12. For better understanding of our
coordinate-based landmark retargeting module,
we provide an illustration of this module in Fig-
ure 13.

C EXPERIMENTS

Choices of Time Step t and Layer l. To extract the diffusion feature that best fits facial instances,
we conduct detailed experiments on the selection of time steps t and layer l of U-Net. Specifically,
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Figure 13: Illustration of our coordinate-based landmark retargeting module. Specifically, our module consists
of two stages: global motion and local motion retargeting, which aim to capture global and local positional
changes of the entire face and individual facial parts separately.

we test different combinations of t and l on 300W (Sagonas et al., 2016), a widely used facial dataset,
and report NME as the quantitative result. As shown in Figure 14, we achieve the best NME value
when t = 301 and l = 6, which are used as the basic settings of our paper.

Figure 14: Heatmap of NME values for time
step t and layer l of the U-Net.

Choice of Target Number k. As mentioned in Section 3.2,
we use the averaged diffusion feature at the i-th point of k
target images to improve matching performance. We eval-
uate different values of k = 1, 5, 10, 15, 50, 1000 on the
300W dataset and report the NME in Table 5. Results indi-
cate that increasing k significantly improves performance
when k ≤ 10. However, for k > 10, the time cost in-
creases exponentially with diminishing performance gains.
Based on this observation, we set k = 10 for our exper-
iments. Please note that this analysis is solely aimed at
determining the number of target images. However, the
features of the target images will be pre-stored as local
data, which is not considered additional time overhead
during inference.

3DMM Modeling. Following our base model MOFA-
Video, we adopt Deep3D (Deng et al., 2019b) as the
3DMM method in Figure 6. Deep3D employs a deep
network to predict 3D coefficients (coeff) at each frame of
driven videos, instead of iterative fitting. Additionally, we
provide the 3D modeling results of DECA (Feng et al., 2021), Deep3D and 3DDFAv2 (Guo et al.,
2020) on non-human characters and driven videos in Figure 15. Our observations reveal that none
of these 3DMM methods can accurately generate precise 3D models of non-human characters or
capture subtle movements in driven sequences, such as eye closure.

Visualization of Appearance Guidance. We provide the cosine similarity distribution during
inference. As depicted in Figure 16, with prior appearance knowledge, the similarity between
reference points and unrelated target points becomes smaller, reducing the probability of mismatching.
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Figure 15: Modeling results of different 3DMM methods.

Figure 17: Visual results of landmarks on
human faces.
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Figure 18: Self and cross identity driving
results on HDTF.
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Figure 16: Cosine similarity distribution with
or without appearance guidance.

Human Evaluations. To evaluate the effectiveness of
FaceShot on human faces, we first provide the visual land-
mark results on 300W in Figure 17.

Furthermore, we present the animation results for self-
identity and cross-identity driving on traditional facial
video datasets HDTF (Zhang et al., 2021) in Figure 18.
FaceShot perform well on these real human faces, showing
its robustness.

Time Efficiency. We present a time analysis of each step
in FaceShot for processing varying numbers of frames on
a single H800 GPU, as shown in the Table 6:

• Driving Detection: Detecting the landmark sequence of the driving video using the landmark
detector from MOFA-Video. The detector used is FAN from facexlib.

• Landmark Matching: Detecting the target image landmarks using the appearance-guided
landmark matching module. The time cost of landmark matching remains almost identical
regardless of the number of frames because the matching is required only once for the target
image, irrespective of the number of frames in the driving video. The 0.8-second time
includes both the DDIM inversion and the argmin operation in Eq. 4.

• Landmark Retargeting: Retargeting landmark motion using coordinate-based landmark
retargeting module. As no model parameters are required, our retargeting modules can
generate precise landmark sequences with very low time cost.

Table 5: Experiments on the number k of target images. Best NME result is marked in bold.

Metric 1 5 10 15 50 1000
NME↓ 12.801 7.009 6.343 6.267 6.252 6.104

Table 6: Time analysis of each step in FaceShot for processing varying numbers of frames.

frames Driving
Detection

Landmark
Matching

Landmark
Retargeting

50 1.817(s) 0.860(s) 0.382(s)
100 3.562(s) 0.858(s) 0.751(s)

In conclusion, FaceShot introduces only a 119ms additional time overhead when used as a plugin for
MOFA-Video (for 50 frames). This minimal time cost is negligible compared to the inference time of
diffusion-based models (approximately 80 seconds for 50 frames). As shown in Table 7, FaceShot
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achieves the low time cost among diffusion-based methods, including AniPortrait, FADM, Follow
Your Emoji, MegActor, X-Portrait, and MOFA-Video.

Table 7: Time analysis SOTA methods inference on 50 frames. Symbol ∗ represents GAN-based method.

Methods Time Methods Time
FaceVid2Vid∗ 4.308(s) MegActor 174.189(s)
LivePortrait∗ 4.321(s) X-Portrait 132.702(s)
AniPortrait 99.977(s) MOFA-Video 79.421(s)

FADM 88.368(s) FaceShot 79.540(s)
Follow Your Emoji 112.830(s)
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