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ABSTRACT

Self-supervised learning has recently gained growing interest in molecular mod-
eling for scientific tasks such as Al-assisted drug discovery. Current studies
consider leveraging both 2D and 3D molecular structures for representation learn-
ing. However, relying on straightforward alignment strategies that treat each
modality separately, these methods fail to exploit the intrinsic correlation between
2D and 3D representations that reflect the underlying structural characteristics
of molecules, and only perform coarse-grained molecule-level alignment. To de-
rive fine-grained alignment and promote structural molecule understanding, we
introduce an atomic-relation level "blend-then-predict" self-supervised learning
approach, MOLEBLEND, which first blends atom relations represented by differ-
ent modalities into one unified relation matrix for joint encoding, then recovers
modality-specific information for 2D and 3D structures individually. By treating
atom relationships as anchors, MOLEBLEND organically aligns and integrates visu-
ally dissimilar 2D and 3D modalities of the same molecule at fine-grained atomic
level, painting a more comprehensive depiction of each molecule. Extensive exper-
iments show that MOLEBLEND achieves state-of-the-art performance across major
2D/3D molecular benchmarks. We further provide theoretical insights from the
perspective of mutual-information maximization, demonstrating that our method
unifies contrastive, generative (cross-modality prediction) and mask-then-predict
(single-modality prediction) objectives into one single cohesive framework.

1 INTRODUCTION

Self-supervised learning has been successfully applied to molecular representation learning (Xia
et al.| [2023; (Chithrananda et al.}2020), where meaningful representations are extracted from a large
amount of unlabeled molecules. The learned representation can then be finetuned to support diverse
downstream molecular tasks. Early works design learning objectives based on a single modality (2D
topological graphs (Hu et al.,[2020; Rong et al.,2020; |You et al.| [2020)), or 3D spatial structures (Zaidi
et al.,|[2022; [Liu et al.,[2022a; Zhou et al., [2023)). Recently, multimodal molecular pretraining that
exploits both 2D and 3D modalities in a single framework (Liu et al.} 2022bj [Stirk et al.| [2022; Liu
et al.| 2023; Luo et al.| 2022} Zhu et al.| |2022) has emerged as an alternative solution.

Multimodal pretraining aims to align representations from different modalities. Most existing methods
naturally adopt two models (Figure[I|(a)) to encode 2D and 3D information separately (Liu et al.,
2022b; |Stark et al., 2022} [Liu et al., 2023). Contrastive learning is typically employed to attract
representations of 2D graphs with their corresponding 3D conformations of the same molecule, and
repulse those from different molecules. Another school of study is generative methods that bridge 2D
and 3D modalities via mutual prediction (Figure[T(a-b)), such as taking 2D graphs as input to predict
3D information, and vice versa (L1iu et al.l [2022b; [Zhu et al., 2022 |Liu et al., 2023]).
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Figure 1: Comparison on the process of input data. (a) (Liu et al., |2021a; Stirk et al., |2022; |[Liu
et al.;, 2023) and (b) (Zhu et al.| 2022) treat different modalities separately, while (c) (ours) blends
modalities as input and output. Same atoms (v1, ..., v6) are shared across modalities, while the
depictions of atom relationships (shortest path, edge type, 3D distance) are represented by different
matrices, which are blended into an integral input for unified pretraining with explicit alignment.

However, these approaches only align different modalities on a coarse-grained molecule-level. The
contrastive learning used in most existing methods has been proved to lack detailed structural under-
standing of the data (Yuksekgonul et al.| |2022; Xie et al.,2022), thus missing a deep comprehension
of the constituting atoms and relations, which plays a vital role in representing molecules (Schiitt;
et al., 2017} |Liu et al., | 2021b). Besides, all methods consider different modalities as independent
signals in each model and treat them as separate integral inputs (Figure[I[a-b). This practice divides
different modalities apart and ignores the underlying correlation between 2D and 3D modalities, only
realizing a rudimentary molecule-level alignment.

To derive a more fine-grained alignment and promote structural molecular understanding, a deeper
look into the atom-relation-level sub-structures is asked for. We observe that although appearing
visually distinct and residing in different high-dimensional spaces, 2D molecular graphs and 3D
spatial structures are intrinsically equivalent as they are essentially different manifestations of the
same atoms and their relationships. The differentiating factor of relationship appears as chemical
bond or shortest path distance in 2D graph, or 3D euclidean distance in 3D structure. Thus, pivoting
around atom relationship and explicitly leveraging the alignment between modalities to mutually
enhance both 2D and 3D representations can be a more natural and effective alignment strategy.

In this work, we introduce a relation-level multimodal pretraining method, MOLEBLEND, which
explicitly leverages the alignment of atom relations between 2D and 3D structures and blends input
signals from different modalities as one unified data structure to pre-train one single model (Fig-
ure[T|(c)). Specifically, MOLEBLEND consists of a two-stage blend-then-predict training procedure:
modality-blended encoding and modality-targeted prediction. During encoding, we blend different
depictions of atom relations from 2D and 3D views into one relation matrix. During prediction,
the model recovers missing 2D and 3D information as supervision signals. With such a relation-
level blending approach, multimodal molecular information is mingled within a unified model, and
fine-grained atom-relation alignment in the multimodal input space leads to a deeper structural under-
standing of molecular makeup. Extensive experiments demonstrate that MOLEBLEND outperforms
existing molecular modeling methods across a broad range of 2D and 3D benchmarks. We further
provide theoretical insights from the perspective of mutual-information maximization to validate the
proposed pretraining objective.

Our contributions are summarized as follows:
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* We propose to align molecule 2D and 3D modalities at atomic-relation level, and introduce
MOLEBLEND, a multimodal molecular pretraining method that explicitly utilizes the intrinsic
correlations between 2D and 3D representations in pretraining.

* Empirically, extensive evaluation demonstrates that MOLEBLEND achieves state-of-the-art perfor-
mance over diverse 2D and 3D tasks, verifying the effectiveness of relation-level alignment.

* Theoretically, we provide a decomposition analysis of our objective as an explanatory tool, for
better understanding of the proposed blend-then-predict learning objective.

2 RELATED WORK

Multimodal molecular pretraining (Liu et al., [2022bj [Stark et al.| 2022; [Zhu et al.} 2022} [Luo et al.,
2022; |L1u et al.} 2023) leverages both 2D and 3D information to learn molecular representations. It
bears a trade-off between cost and performance, as 3D information is vital for molecular property
prediction but 3D models tend to be resource-intensive during deployment. Most existing methods
utilize two separate models to encode 2D and 3D information (Liu et al., 2022b; Stark et al., [2022;
Liu et al.,[2023). Their pretraining methods mostly use contrastive learning (He et al.| 2020), which
treats 2D graphs with their corresponding 3D conformations as positive views and information from
different molecules as negative views for contrasting. Another pretraining method uses generative
models to predict one modality based on the input of another modality [Liu et al.| (2022bj}; |2023)). |[Zhu
et al.| (2022)) proposes to encode both 2D and 3D inputs within a single GNN model, but different
modalities are still treated as separate inputs. We instead propose to leverage atom relations as the
anchor to blend different modalities together as an integral input to a single model.

Masked auto-encoding (Vincent et al., 2008)) is a widely applied representation learning method (De
vlin et al.;|2019; |He et al., [2022) that removes a portion of the data and learns to predict the missing
content (mask-then-predict). Multimodal masking approaches in other multimodal learning areas
(e.g., BEiT-3 (Wang et al., [2022a)), UNITER (Chen et al., 2020b)) directly concatenate different
modalities into a sequence, then predict the masked tokens, without explicit alignment of modalities
in the input space. Different from them, MOLEBLEND blends together the elements of different
modalities in the input space with explicit alignment.

3 MULTIMODAL MOLECULAR PRETRAINING VIA BLENDING

Molecules are typically represented by either 2D molecular graph or 3D spatial structure. Despite their
distinct appearances, they depict a common underlying structure, i.e., atoms and their relationships
(e.g., shortest path distance and edge type in 2D molecular graph, and Euclidean distance in 3D
structure). Naturally, these representations should be unified organically, instead of treated separately
with different models, in order to learn the representation of complex chemical relations underneath.
We perform explicit relation-level alignment via blending for unifying modalities.

3.1 PROBLEM FORMULATION

A molecule M can be represented as a set of atoms V € R™*" along with their relationships
R € R*"*"™X" where n is the number of atoms, v and r are dimensions of atom and relation feature,
respectively. The nature of R can vary depending on the context. In the commonly used 2D graph
representation of molecules, R is represented by the chemical bonds £, which are the edges of the 2D
molecular graph. In 3D scenarios, R is defined as the relative Euclidean distance D between atoms.

To leverage both 2D and 3D representations, we adopt the shortest path distance Rpq and the edge
type encoding Regge Of molecular graph, as well as Euclidean distance Rgistance in 3D space, as
three different appearances of atom relations across 2D/3D modalities. And instead of treating
each modality separately with individual models, we blend the three representations into a single
matrix Ropgsp by randomly sampling each representation for each vector, following a pre-defined
multinomial distribution S. Our pre-training objective is to maximize the following likelihood:

max Eg P(Rspda 7zedgev Raistance |R2D&3D,57 V) (D

We employ the Transformer model (Vaswani et al.,|2017)) to parameterize our objective, capitalizing on
its ability to incorporate flexible atom relations in a fine-grained fashion through attention bias (Raffel
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Figure 2: Illustration of unified molecular representation learning process, consisting of two steps:
1) modality-blended encoding, which blends diverse atom relations together and injects it into the
self-attention module of Transformer for unified cross-modality encoding; 2) modality-targeted
prediction, where atom features encoded by Transformer are transformed into atom relations through
an outer product projection module, to recover the diverse relation depictions.
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et al., [2020; [Shaw et al.l 2018} Ke et al., 2021} Ying et al.l 2021). This choice is further supported by
recent research demonstrating that a single Transformer model can effectively process both 2D and
3D data (Luo et al., [2022).

Transformer Block The Transformer architecture is composed of a stack of identical blocks, each
containing a multi-head self-attention layer and a position-wise feed-forward network. Residual
connection (He et al.| |2016) and layer normalization (Ba et al.l 2016)) are applied to each layer.
Denote X! = [x!;xb;...;x!] as the input to the [-th block with the sequence length n, and each
vector z; € R? is the contextual representation of the atom at position i. d is the dimension of
the hidden representations. A Transformer block first computes the multi-head self-attention to
effectively aggregate the input sequence X':

Multi-Head(X) = Concat(heady, .. ., head;, )W )
where head; = Attention(XWiQ, XWX XWY) and h is the number of attention heads. wo

7
WE WY € R™Xdn WO ¢ R4*4 are learnable parameter matrices. The attention computation is
defined as:

. QK™
Attention(Q, K, V) = softmax A% 3)
Vd
Generally, given input X', the I-th block works as follows:
X! = LayerNorm (X' + Multi-Head(X")) “)
X'*! = LayerNorm (X' + GELU(X'W!)W}) 5)

where W! € R4*dr W) € R% %4, and d; is the intermediate size of the feed-forward layer.

3.2 LEARNING OBJECTIVE

To facilitate fine-grained alignment and organic integration of different depictions of atoms and their
relations across 2D/3D spaces, we design a new ‘blend-then-predict’ training paradigm that consists
of two steps: 1) modality-blended encoding that encodes a molecule with blended information from
different modalities; and 2) modality-targeted prediction that recovers the original 2D and 3D input.
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The pre-training process is illustrated in Figure 2] The core idea is to bind different modalities
together at a granular level by blending relations from multiple modalities into an integral input
from the get-go, to encourage the model to discover fundamental and unified relation representations
across heterogeneous forms.

Modality-blended Encoding Multimodal learning aims to learn the most essential representations
of data that possess inherent connections while appearing distinctive between different modalities.
In the context of molecules, atom relationships are the common attributes underpinning different
representations across 2D/3D modalities. This motivates us to leverage relations as anchors, to align
both modalities in a fine-grained manner that blends multimodalities from the very beginning.

We adopt three appearances of relations across 2D and 3D modalities following (Luo et al.|
2022): shortest path distance, edge type, and 3D Euclidean distance. For each atom pair (1,7),
U represents the shortest path distance between atom ¢ and j. We encode the edge features
along the shortest path between ¢ and j as the edge encoding, \pgdge = % 25:1 w, e, where

(e1,ea,...,exn), e, € R are features of edges on the shortest path between i and j. w,, € R are
learnable parameters. Following (Zhou et al., [2023} |Luo et al.,|2022)), we encode Euclidean distances
of an atom pair (¢, j) with Gaussian Basis Kernel function (Schélkopf et al.l |1997):

\I]]Z)]islance = GELU(Cij ' W31D)W32Dv Cij = [ 1]7 sy %]T (7)
where A(d;~y, 5) = v - d+ f is the affine transformation with learnable parameters - and /3, and
G(d;p,0) = 21m exp (—ﬁ (d— u)2> is the Gaussian density function with parameters ¢ and o.

K is the number of Gaussian Basis kernels. W3, € REXK W2 € RE*1 are learnable parameters.
Wspp, YEdge, Ypistance denote the three relation matrices of all atom pairs, with the same shape n x n.

Different from existing works that separately feed one of these relations into different models, we
blend them together from the get-go and randomly mix them into one relation matrix, which is then fed
into one single model for molecule encoding. Specifically, we first define a multinomial distribution
S with a probability vector p = (p1, p2, p3). For each position (7, j) in the matrix, we draw a sample
5% € {1, 2,3} following the probability distribution p, then determine the corresponding element of
the blended matrix as follows:

i i i i 1 ifs¥ =k
1) _ ) ] ] —
Vipasp = Ysepl1 + Pegge L2 + ¥pigiance 13, Where 1 = {0 otherwise ®
, where each position (¢, j) randomly selects its element from one of the \Iléjl;D, \Ifglge, \I!f)jimnce. After

the process finishes, distinct relation manifestations (Wspp, Wrdgee, ¥pistance) across modalities are
blended into a single modality-blended matrix ¥ypg3p € R™*™ without overlapping sub-structures,
to represent the inter-atomic relations.

We inject this modality-blended relation W,pg3p into the self-attention module, which captures
pair-wise relations between inputs atoms, to provide complementary pair-wise information. This
practice is also similar to the relative positional encoding for Transformer (Raffel et al., [2020):
QK'
Vd

With modality-blending, we explicitly bind different modalities together at fine-grained relation level,
which will help the model better integrate and align modalities at fine-grained level.

Attention(Q, K, V) = softmax ( + \IJZD&3D> A% 9)

Modality-targeted Prediction The model recovers the full Rypq, Regge and Risance as its training
objectives. The intuition is, if the model can predict different types of atom relations, like shortest
path on the molecular graph or 3D Euclidean distance, given a single mixed representation, this
cross-modality representation must have captured some underlying integral molecular structure.

Specifically, after modality-blended encoding, we obtain contextual atom representations X +1 €
R"*4 encoded by an L-layer Transformer. We propose an outer product projection module to
transform the atom representations into n x n atom relations. The representations X**! are first
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linearly projected to a smaller dimension m = 32 with two independent Linear layers W;, W, €
R™*4 The outer products are computed upon the transformed representations, which are then
flattened and projected into the target space with a modality-targeted head Wyeaq € Re*™” | The
relation computation between the i-th and j-th atoms is formulated as follows:

0;; = G(WlXZL+1) ® G(WTX][-/+1)T c Rmxm (10)
Z;j = Whead * Flatten(oij) e R (11)

where G(-) = LayerNorm(GELU(-)). We now obtain the modality-targeted relation matrix Z €
R™*7>¢ where ¢ depends on the targeted task. The predictions of shortest path distance and edge
type are formulated as classification tasks, where c is the number of possible shortest path distance or
edge types. For predicting 3D distance, we formulate it as a 3-dimensional regression task, and the
regression targets are the relative Euclidean distances in 3D space.

Noisy Node as Regularization Noisy node (Godwin et al., [2022} [Zaidi et al.| [2022; [Luo et al.|
2022) incorporates an auxiliary loss for coordinate denoising in addition to the original objective,
which has been found effective in improving representation learning. We also adopt this practice as
an additional regularization term, by adding Gaussian noise to the input coordinates and requiring the
model to predict the added noise.

3.3 FINETUNING

The trained model can be finetuned to accept both 2D and 3D inputs for downstream tasks. For
scenarios where a large amount of 2D molecular graphs is available while 3D conformations are too
expensive to obtain, the model can take only 2D input to finetune the model. Formally, given shortest
path distance Rpq, edge type Regqe and atom types V as available 2D information, we define y»p as
the task target, K as the number of training samples, and ¢(-, -) as the loss function of the specific
training task. The 2D finetuning objective is then defined as:

K
1
Lo = 22 D0 (J (Rl Rbges V). ¥50) (2
k=1

When it comes to scenarios where 3D information is obtained, we propose to incorporate both 2D
and 3D information as model input, as generating 2D molecular graphs from 3D conformations is
free and can bring in useful information from 2D perspective. The multimodal input is injected into
the self-attention module that captures pair-wise relations:

KT
Attention(Q, K, V) = softmax (Q\/E + Uspp + WEdee + ‘I’Distance> \4 (13)
LXK
Lsp = K Z t (f(prdv Rfdge? Rgistancea Vk)v yécD) (14)
k=1

This practice is unique in utilizing information from multiple modalities for a single-modality task,
which is infeasible in previous 3D (Zaidi et al.; 2022 or multimodal methods with separate models
for different modalities (Liu et al.| [2022b; [Stark et al., [2022; [Liu et al., [2023). Empirically, we
find that the integration of 2D information helps improve performance. we hypothesize that: 1) 2D
information, such as chemical bond on a molecular graph, encodes domain experts’ prior knowledge
and provides references to 3D structure; 2) 3D structures obtained from computational simulations
can suffer from inevitable approximation errors (Luo et al.l 2022) which are avoided in our approach.

3.4 THEORETICAL INSIGHTS

In this section, we present a theoretical perspective from mutual information (MI) maximization for a
better understanding of the ‘blend-then-predict’ process. We demonstrate that this approach unifies
existing contrastive, generative (inter-modality prediction), and mask-then-predict (intra-modality
prediction) objectives within a single objective formulation.

For simplicity, we consider two relations, denoted as Rop = (@i;)nxn and R3p = (b;j)nxn. Their
elements are randomly partitioned into two parts, represented as Rop = [A41, As], Rsp = [B1, Ba),
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such that A; shares identical elements indexes with B;, ¢ € {1, 2}. The blended matrix is denoted as
Raopesp = [A1, Ba).

Proposition 3.1 (Mutual information Maximization) The training process with modality-blending
maximizes the lower bound of the following mutual information: EgI(Ag; Ay, Bo) + I(By; Ay, Ba).
The proof can be found in Appendix|B.2.4]

Proposition 3.2 (Mutual Information Decomposition) The mutual information 1(As; A1, Bs) +
1(By; Ay, Bs) can be decomposed into two components below. The first one corresponds to the

objectives of contrastive and generative approaches. The second component, the primary focus of
our research, represents the mask-then-predict objective (proof in Proposition|[B.1|in Appendix):

1
I(A2; A1, Ba) + I(Bi; A1, B2) =§[I(A1; B1) + I1(Az2; B2) + I(Ay; B1]B2) 4 1(Az; B2| A1)

contrastive and generative conditional contrastive and generative

(15)
1
+§[I(A1§A2) + I(Bi; Ba) + I(A1; A2| Ba) + I(B1; B2| A1)

mask-then-predict multimodal mask-then-predict

The first part of Equation [I5]corresponds to existing (conditional) contrastive and generative methods,
which aim to maximize the MI between two corresponding parts (A; with B;, i € {1,2}) across two
modalities (see Appendix and [B.2.3]for the detailed proof). The second part represents the
(multimodal) mask-then-predict objectives, focusing on maximizing the mutual information between
the masked and the remaining parts within a single modality (refer to Appendix [B.2.2]for details).

This decomposition illustrates that our objective unifies contrastive, generative (inter-modality pre-
diction), and mask-then-predict (intra-modality prediction) approaches within a single cohesive
blend-then-predict framework, from the perspective of MI maximization. Moreover, this approach
fosters enhanced cross-modal interaction with an innovative multimodal mask-then-predict target.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For pretraining, we use PCQM4Mv?2 dataset from the OGB Large-Scale Challenge (Hu
et al.,[2021), which includes 3.37 million molecules with both 2D graphs and 3D geometric structures.
To evaluate the versatility of MOLEBLEND, we carry out extensive experiments on 24 molecular tasks
with different data formats across three representative benchmarks: MoleculeNet (Wu et al.,2017)
(2D, 11 tasks), QM9 quantum properties (Ramakrishnan et al.,2014) (3D, 12 tasks), and PCQM4Mv2
humo-lumo gap (2D). Further details about these datasets can be found in the Appendix [C.1]

Baselines. We choose the most representative 2D and 3D pretraining baselines: AttrMask (Hu et al.}
2020), ContextPred (Hu et al.| 2020), InfoGraph (Sun et al.,|2020), MoIlCLR (Wang et al.} 2022b)),
GraphCL (You et al., [2020), GraphLoG (Xu et al.| 2021), MGSSL Zhang et al.|(2021)), as well as
recently published method Mole-BERT (Xia et al.| 2023) and GraphMAE (Hou et al.,2022)) as 2D
baselines. In addition, we adopt GraphM VP (Liu et al.| [2022b)), 3D InfoMax (Stirk et al., [2022),
UnifiedMol Zhu et al.| (2022)) and MoleculeSDE (Liu et al., 2023)) as multimodal baselines. As most
baselines adopt GNN as backbone, we further implement two close-related multimodal pretraining
baselines, 3D Infomax and GraphM VP, under the same Transformer backbone as we use, to fairly
compare the effectiveness of pretraining objective.

Backbone Model. Following (Ying et al., 2021;|Luo et al.,[2022)), we employ a 12-layer Transformer
of hidden size 768, with 32 attention heads. For pretraining, we use AdamW optimizer and set
(81, B2) t0 (0.9, 0.999) and peak learning rate to le-5. Batch size is 4096. We pretrain the model for
1 million steps with initial 100k steps as warm-up, after which learning rate decreases to zero with
cosine scheduler. The blending ratio p is 2:2:6, and the ablations on p can be found in Appedix [A.3]

4.2 EVALUATION ON 2D CAPABILITY

We evaluate MOLEBLEND on MoleculeNet, one of the most widely used benchmarks for 2D
molecular property prediction, which covers molecular properties ranging from quantum mechanics
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Table 1: Results on molecular property classification tasks (with 2D topology only). We report ROC-
AUC score (higher is better) under scaffold splitting. Transformer impl. represents implementation
under the same Transformer backbone as MOLEBLEND. Results in gray are evaluated under a
different protocol.

Pﬁ;{ﬁgh‘:g B"‘?;E:“e BBBP1 Tox211 ToxCastt SIDERT ClinTox+ MUVt HIV4 Bacet Avg?t
AttrMask (Hu et al.|[2020) GNN  65.042.3 748402 62.940.1 61.240.1 87.7+1.1 73.4+2.0 76.8+0.5 79.740.3 72.68
ContextPred (Hu et al.| 2020) GNN  65.740.6 74.240.0 62.5+0.3 62.240.5 77.2+0.8 75.3£1.5 77.140.8 76.0+£2.0 71.28
GraphCL (You et al.| 2020} GNN  69.7£0.6 73.940.6 624405 60.5£0.8 76.0+2.6 69.8+2.6 78.5+1.2 75.4+1.4 70.78
InfoGraph (Sun et al.| [2020) GNN  67.5+0.1 732404 63.740.5 59.940.3 76.5+1.0 74.1+£0.7 75.140.9 77.840.8 70.98
GROVER (Rong et al|2020)  Transformer 70.04+0.10 74.3£0.1 65.4£0.4 64.8+0.6 81.243.0 67.3+1.8 62.540.9 82.6+0.7 71.01
MOolICLR (Wang et al.|2022b) GNN  66.6£1.8 73.0£0.1 62.9£03 57.5£1.7 86.140.9 72.5+2.3 76.2+1.5 71.5+3.1 70.79
GraphLoG (Xu et al.[[2021) GNN 725408 757405 63.5£0.7 61.2+1.1 76.7+3.3 76.0+£1.1 77.8+0.8 83.5+1.2 73.40
MGSSL (Zhang et al.|[2021) GNN 697409 765403 64.1£0.7 61.8+£0.8 80.74+2.1 78.7+1.5 78.8+1.2 79.140.9 73.70
GraphMAE (Hou et al.|[2022) GNN 720406 75.540.6 64.14£0.3 60.3+1.1 82.3+1.2 76.3+£2.4 77.241.0 83.1+£0.9 73.85
Mole-BERT (Xia et al.| [2023) GNN  71.9+1.6 768405 64.3£02 62.8£1.1 78.9+3.0 78.6+1.8 78.2+0.8 80.8+1.4 74.04
3D InfoMax (Stirk et al|2022) ~ GNN  69.1£1.0 74.54£0.7 64.4+0.8 60.6+0.7 79.9+3.4 74.4+2.4 76.1+1.3 79.7+1.5 72.34
GraphMVP (Liu et al.|[2022b) GNN 685402 745404 62.7+0.1 62.3£1.6 79.042.5 75.0+£1.4 74.8+1.4 76.8+1.1 71.69
MoleculeSDE (Liu et al.|[2023) ~ GNN  71.840.7 76.8+0.3 65.0£0.2 60.8+0.3 87.0+£0.5 80.9+0.3 78.8£0.9 79.5+2.1 75.07
Transformer from scratch Transformer 69.44+1.1 74.24+0.3 62.6+0.3 65.84+0.3 90.3+0.9 71.3+0.8 76.24+0.6 79.5+0.2 73.66

3D InfoMax (Transformer impl.) Transformer 70.4+1.0 75.5+£0.5 63.1+0.7 64.1+0.1 89.8+1.2 72.8+1.0 74.94+0.3 80.7+0.6 73.91
GraphMVP (Transformer impl.) Transformer 71.5£1.3 76.1+0.9 64.3£0.6 64.7+0.7 89.9+0.9 74.9+1.2 76.0+0.6 81.5+1.2 74.86
MOLEBLEND Transformer 73.0+0.8 77.8+0.8 66.1+0.0 64.9+0.3 87.6+0.7 77.24+2.3 79.0+0.8 83.7t1.4 76.16

and physical chemistry to biophysics and physiology. We use the scaffold split (Wu et al.l 2017), and
report the mean and standard deviation of results of 3 random seeds.

Table [I] presents the ROC-AUC scores for all compared methods on eight classification tasks.
Remarkably, MOLEBLEND achieves state-of-the-art performance in 5 out of 8 tasks, with significant
margins in some cases (e.g., 83.7 v.s. 81.5 on Bace). Note that all other multimodal methods (3D
Infomax (Stark et al.l[2022), GraphMVP (Liu et al.,|2022b), MoleculeSDE (Liu et al.|[2023)) utilize
two separate modality-specific models, with contrastive learning as one of their objectives. In contrast,
MOLEBLEND models molecules in a unified manner, and perform 2D and 3D alignment in a fine-
grained relation-level, demonstrating superior performance. MOLEBLEND also outperforms all 2D
baselines (upper section of the table), demonstrating that incorporating 3D information helps improve
the prediction of molecular properties. Table [ summarizes the performance of different methods on
three regression tasks of MoleculeNet, which substantiates the superiority of MOLEBLEND.

4.3 EVALUATION ON 3D CAPABILITY

We use QM9 (Ramakrishnan et al.| 2014) dataset to evaluate the effectiveness of MOLEBLEND
on 3D tasks. QMY is a quantum chemistry benchmark with 134K small organic molecules. It
contains 12 tasks, covering the energetic, electronic and thermodynamic properties of molecules.
Following (Tholke & Fabritiis| [2022)), we randomly split 10,000 and 10,831 molecules as validation
and test set, and use the remaining molecules for finetuning. Results are presented in Table
evaluated on MAE metric (lower is better). MOLEBLEND achieves state-of-the-art performance

Table 2: Results on QM9 datasets. Mean Absolute Error (MAE, lower is better) is reported.

Pﬁ;{ﬁg‘;gg Alpha | Gap | HOMO | LUMO | Mu] Cv| G298 | H298 | R2| U298 | UO| Zpve |
Distance Prediction (Liu et al.|[2022a) 0.065 45.87 27.61 2334 0.031 0.033 14.83 1581 0248 1507 1501 1.837
3D InfoGraph (Liu et al.|[2022a) 0.062 4596 2929  24.60 0.028 0.030 1393 1397 0133 13.55 1347 1.644
3D InfoMax (Stirk et al.| 2022) 0.057 4209 2590  21.60 0.028 0.030 1373 13.62 0.141 13.81 1330 1.670
GraphMVP (Liu et al.| [2022b) 0.056 4199 2575 2158 0.027 0.029 1343 1331 0.136 13.03 13.07 1.609
MoleculeSDE (Liu et al.|2023) 0.054 4177 2574 2141 0.026 0028 13.07 12.05 0.151 12.54 12.04 1.587
MOLEBLEND 0.060 3475 2147 1923 0.037 0.031 1244 1197 0417 12.02 11.82 1.580
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Table 3: Ablation studies on pretraining objectives. The best and second best results are marked by
bold and underlined.

Pﬁgﬁg‘&;‘g BBBP 1 Tox21 1 ToxCast t SIDER 1 ClinTox + MUV 1 HIV 1 Bace { U298 ] U0
Noisy-Node 63.50 7625 6548 6371 8328  78.80 79.13 82.72 1431 13.80
Blend-then-Predict 71.59  75.61 6593  64.58  90.82 7681 79.74 83.53 1456 15.35
MOLEBLEND 73.00 7782 6614 6490  87.62 7723 79.01 83.66 12.02 11.82

among multimodal methods on 8 out of 12 tasks, some of which with a large margin (e.g., Gap,
HOMO, LUMO), demonstrating the strong capability of our model for 3D tasks.

4.4 ABLATION STUDIES

Pretraining Objectives Table [3[studies the effect of different pretraining objectives: noisy-node,
blend-then-predict, and blend-then-predict with noisy-node as regularization (MOLEBLEND). We
observe that in most tasks, combining blend-
then-predict and noisy-node yields better repre-
sentations. In 2D scenarios, we find that blend-
then-predict outperforms noisy-node on 5 out
of 8 tasks studied, demonstrating its strong ~ SPDmask  68.95 8064 7559 62.82
ability to process 2D inputs. While on 3D ~ Edgemask  69.02  81.97  76.01 63.81
tasks (U298 and UO0), blend-then-predict typ- ~ 3D mask  67.60 8035 75.65 63.28
ically performs worse than noisy-node. This ~_Blending  71.68 8341  76.58 65.46
is because noisy-node is a pure 3D denoising

task, which makes it more suitable for 3D tasks.

Table 4: Ablation studies on blending vs masking.

Method BBBP1 BACE{ Tox211 ToxCast?

Blending vs Single-modality Mask-then-Predict Table[d]studies the effect of multimodal blending
compared to single-modality mask-then-predict (SPD, Edge, and 3D mask). We trained all models for
200K steps, keeping all settings consistent except for the learning objective. The results demonstrate
that modality blending achieves better performance over modality-specific mask-then-predict.

Finetuning Settings When 3D molecular informa- Taple 5: Ablation studies on fintuning set-
tion is provided, we propose to incorporate both 2D (jngg of 3D tasks.

topological and 3D structural information into the
model, as generating 2D molecular graphs from 3D Finetune

conformations is computationally inexpensive. Table 3] Settings Alpha | HOMO |- Mu |
demonstrates that the inclusion of 2D information leads 3D 0.066 2362 0042
to a noticeable improvement in performance. We hy-

pothesize that this is due to the fact that 2D information SD+2D  0.060 2147 0037
encodes chemical bond and connectivity on a molecular
graph, which is grounded in prior knowledge of domain experts and contains valuable references
to 3D structure. Note that this practice is a unique advantage of MOLEBLEND, as we pretrain with
both 2D and 3D information blended as one single input into a unified model, which is not feasible in
previous multimodal methods that utilize two distinct models for 2D and 3D modalities.

5 CONCLUSION

We propose MOLEBLEND, a novel relation-level self-supervised learning method for unified molecu-
lar modeling that organically integrates 2D and 3D modalities in a fine-grained manner. By treating
atom relations as the anchor, we blend different modalities into an integral input for pretraining,
which overcomes the limitations of existing approaches that distinguish 2D and 3D modalities as
independent signals. Extensive experimental results reveal that MOLEBLEND achieves state-of-the-art
performance on a wide range of 2D and 3D benchmarks, demonstrating the superiority of fine-grained
alignment of different modalities.
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A EXPERIMENTS

A.1 BASELINE RESULTS

The baseline results of GraphM VP [Liu et al.| (2021a), MoleSDE [Liu et al.| (2023)), GraphCL |You
et al.| (2020), GraphMAE [Hou et al.| (2022), GraphLoG (Xu et al., 2021), MGSSL (Zhang et al.|
2021)) are from their own paper. Results of AttrMask (Hu et al.,[2020), ContextPred (Hu et al.| [2020),
InfoGraph Sun et al.|(2020), MolCLR [Wang et al.| (2022b)) are from MoleculeSDE |Liu et al.| (2023).
Results of MoleBERT (Xia et al.,[2023)), 3D Infomax |Stark et al.| (2022)) are from MoleBERT. The
results of GROVER [Rong et al.| (2020) are from Uni-Mol Zhou et al.| (2023).

A.2 MOLNET REGRESSION TASK

Table [6] presents the performance of different methods on three regression tasks of MoleculeNet.
In all these tasks, MOLEBLEND achieves state-of-the-art performance, further substantiating the
superiority of unified fine-grained molecular modeling.

Table 6: Results on molecular property prediction regression tasks (with 2D topology only). We
report RMSE (lower is better) for each task.

Pre-training Methods ESOL | FreeSolv | Lipo |

AttrMask (Hu et al., [2020) 1.11240.048 - 0.730+0.004
ContextPred (Hu et al., [2020) 1.196+0.037 - 0.702+0.020
GROVER, s (Rong et al.|[2020) | 0.9834+0.090 2.176+£0.052 0.817+0.008
MolCLR (Wang et al., [2022b)) 1.271£0.040 2.594+0.249 0.69140.004
3D InfoMax (Stirk et al.,|2022) 0.894+0.028 2.337+0.227 0.695+0.012
GraphM VP (Liu et al., [2022b)) 1.02940.033 - 0.681+0.010
MOLEBLEND 0.831+0.026 1.910+0.163 0.638+0.004

A.3 ABLATIONS ON BLENDING RATIO

Table[7] presents ablations on the relation blending ratio, showing that model performance is robust to
the random ratio of multinomial distribution. In these experiments, we trained all models for 200K
steps, maintaining other settings unchanged (e.g., learning rate consistent), with the exception of the
blending ratio.

Furthermore, we have observed that a higher 3D distance ratio (referring to the bottom three rows in
the table) sometimes performs better than lower ratio (top row of 4:4:2 ratio). This suggests that the
inclusion of 3D information is potentially more important for enhancing the model’s understanding
of molecular properties. However, it is worth noting that the disparity in performance between these
ratios is relatively minor.

Table 7: Ablations on the blending ratio.

SPD:Edge:3D (p) BBBP{1 BACE1 Tox211 ToxCastt Lipod
4:4:2 72.25 82.17 76.23 66.70 0.7544
3:3:4 72.34 82.47 77.19 66.16 0.7505
2:2:6 72.52 82.89 76.15 66.58 0.7511
1:1:8 72.45 82.43 76.46 66.57 0.7478
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B THEORETICAL ANALYSIS

In the following sections, we follow common notations(Cover & Thomas| [1991)), using uppercase
letters to represent random variables and lowercase letters to represent samples of the random
variables.

B.1 MISSING PROOFS

Lemma B.1 (Chain rule of mutual information(Cover & Thomas,|[1991))
I(X1,X5;Y) =I1(X1;Y) + I(X2; Y| X7) (16)

Proof

p(z2,ylz1) ]
p(z2|z1)p(y|z1)

p(z1,y)  plza, ylz:) ]

p(z1)p(y) p(z2lz1)p(ylz:)
p (T
p(

I(X1;Y) + I(X2;Y[X1) = Ep(a, ) [ log p(@ ; ?))} +E

( p(T1,22,Y) [

log

P(ﬂclvﬂf%y)[

17
X 7y)p(x27yax1) ( )

(

y)p(x2, 21)p(y, ©1)
p(x% Y, ‘Tl) ]
p(y)p(z2, 21)

Proposition B.1 (Mutual Information Decomposition) The blend-and-predict method is maximiz-
ing the lower bound of the mutual information target below, which can be further divided into two
parts.

= Ep(wl,zz,y)[

= Ep(ay,22.9) [ 108 = I(X1,X2;Y)

I(Ag;Al,BQ) —|— I(Bl;Al,Bg)

1
=3 [I(Ay; By) + I(Ag; By) + I(Ay; By|By) + I(Ag; Ba| Ar)]+ (18)

1

Proof Firstly, we provide the decomposition of first term in equation i.e. I(Ag; Ay, By). By
using Lemma[B.1|and letting X1 = Ay, Xo = By and Y = A, we have

I(AQ,Al,Bg) :I<A1,A2)+I(A2,BQ|A1) (19)
Again use Lemma[B.1|and let X, = By, X5 = Ay andY = Ay, then we have
I(AQ;Al,BQ) = I(BQ,AQ) + I(AQ;A1|BQ). (20)

From equation[I9 and equation[20] we have

I(As; Ay, Ba) = 5 [1(As; As) + I(As; Bol Ay) + (B Ao) + (A 41| B)). @)
Similarly, we apply Lemma[B.|to decompose the second term in equation[I8}

I(By; A1, Bg) = %[1(31;141) + I(Ba; Ba|Ay) + I(By; Ba) + I(Bi; Ay By)]. (22)
End of proof.

B.2 MUTUAL INFORMATION AND SELF-SUPERVISED LEARNING TASKS

A core objective of machine learning is to learn effective data representations. Many methods attempt
to To achieve this goal through maximizing mutual information (MI), e.g. InfoMax principle (Linsker,
1988)) and information bottleneck principle (Tishby et al., [2000). Unfortunately, estimating MI is
intractable in general (McAllester & Stratos, 2020). Therefore, many works resort to optimize the
upper or lower bound of MI (Alemi et al.| 20165 [Poole et al.l 2019} Ni et al., [2022)

In the field of self-supervised learning (SSL), there are two widely used methods for acquiring
meaningful representations: contrastive methods and predictive (generative) methods. Recently, it
has been discovered that these two methods are closely linked to the maximization of lower-bound
mutual information (MI) targets. A summary of these relationships is presented below.
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B.2.1 CONTRASTIVE OBJECTIVE

Contrastive learning (CL) (Chen et al.,[2020a) learn representations that are similar between positive
pairs while distinct between negative pairs. From the perspective of mutual information maximization,
CL actually maximizes the mutual information between the representations of positive pairs. The
InfoNCE loss (Oord et al.,|2018; [Kong et al.,[2019) is given by:

f(2,y)

E n = —E x 10 ~ ., =< 23

InfoNCE () [ 108 ey f7) (23)

where (z,y) is a positive pair, ) is the sample set containing the positive sample y and |Y| — 1

negative samples of z, f(-,-) characterizes the similarity between the two input variables. (Oord

et al.| [2018) proved that minimizing the InfoNCE loss is maximizing a lower bound of the following
mutual information: _

I(X3Y) 2 log|YV| = LinfoncE- (24)

Denote v, and vy as two views of the input and hyg is the representation function. Deﬁne T = he $v1
and y = hgy(vy) as representations of the two views and the similarity function f(x,y) = exp(x
contrastive learning is optimizing the following InfoNCE loss (Arora et al., [2019))

exp(hg(v1)"ho(vy)) ]
exp(ho(v1)Tho(vy)) + 32, exp(ho(vr)Tho(vy )"

where vj is the positive sample, v, is negative samples. Accordingly, minimizing the CL loss is
maximizing the lower bound of I(hg(v1), hg(v2)) w.r.t. the representation function.

LC’L = 7Ep(v1 vi vy [log (25)

B.2.2 PREDICTIVE OBJECTIVE (MASK-THEN-PREDICT)

The mask-then-predict task (Devlin et al.,[2018) are revealed to maximize the mutual information
between the representations of the context and the masked tokens (Kong et al.l[2019). A lower bound
of this MI can be derived in the form of a predictive loss:

I(X;Y) = H(Y) = H(Y|X) > —H(Y|X)
= Ep(ay [logp(ylz)] > Epay [loga(ylz)].

The last inequation holds by applying the Jensen inequation E, ) |log Q(ylg”)}

o) p(ylz)
log Ep(a,y) [Z(zu)] =0.

Denote « = hy(c) and y = hy(m) as representations of the context ¢ and the masked token m to
be predicted. g, is the predictive model. This predictive objective Ey (¢ ) [10g g¢(ho(m)|hg (C%]
corresponds to the training objective of a mask-then-predict task. Therefore, according to equation
mask-then-predict task maximizes the lower bound of the MI between representations of the context
and the masked tokens, i.e.

I(he(C), h(M)) > Epcm) [ 1og gy (ho(m)|he(c))]. (27

(26)

B.2.3 GENERATIVE OBJECTIVE

(Liu et al., 2022b) conducts cross-modal pretraining by generating representations of one modality
from the other. Utilizing equation [26]and the symmetry of mutual information, we can derive a lower
bound of MI in the form of a mutual generative loss:

1
I(X;Y) 2 5 Ep(ag[loga(ylz) + logq(aly)]- (28)
Denote v; and vy as two views of the input. hy is the representation function and g, is the predictive
model. In equatlonn 28] let © = hg(v1) and y = hy(v2), then we can derive that learning to generate

the representation of one view from the other corresponds to maximize the lower bound of mutual
information between the representations of the two views:

I(ho(V1), ho(V2)) = QEp(vlm)[IOgQ¢1(he(Ul)|he(v2))+10gq¢s2(he(v2)|h9(vl))]- (29)
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B.2.4 MODALITY BLENDING

We next present an theoretical understanding of multimodal blend-then-predict. For simplicity,
we consider two relations, denoted as Rop = (@i )nxn and Rap = (bi;)nxn. Their elements
are randomly partitioned into two parts by random partition variable S, represented as Rop =
[A1, As], R3p = [B1, Ba], such that A; shares identical elements indexes with B;, i € {1,2}. The
blended matrix is denoted as Ropsasp = [A1, Bz]. Our objective is to predict the two full modalities
from the blended relations:

S8 F5 Bpas a3,0,02)[108 4, (ho(a2) o (a1), ho(b2)) +log g, (o (br)lho(ar), ho(b2))], (30)
where hyg is the representation extractor, gy, and g4, are predictive head that recovers Rop and Rap.
Utilizing the result from equation[27] the blend-then-predict objective aims to maximize the lower
bound of mutual information presented below:

EsI(ho(Az2); ho(A1), ho(Bz2)) + I(he(B1); he(A1), he(Bz)). (31

From the mutual information decomposition in Proposition the objective in equation[31]can be
divided into two parts.

1
ES{i[I(AU Bq) + I(Ag; Bo) +1(A1; B1|Bs) + I(Ag; Ba|Av)]

contrastive and generative conditional contrastive and generative

(32)
1
+§[I(A1; Ag) + I(B1; B2) + I(A1; As|Bo) + I(By; Ba|A1)]}

mask-then-predict multimodal mask-then-predict

The first part of Equation [32]corresponds to existing (conditional) contrastive and generative methods,
which aim to maximize the mutual information between two corresponding parts (A; with B;,
1 € {1,2}) across two modalities . The second part represents the (multimodal) mask-then-predict
objectives, focusing on maximizing the mutual information between the masked and the remaining
parts within a single modality.

This decomposition demonstrates that our objective unifies contrastive, generative (inter-modality
prediction), and mask-then-predict (intra-modality prediction) approaches within a single cohesive
blend-then-predict framework, from the perspective of mutual information maximization. Moreover,
this approach fosters enhanced cross-modal interaction by introducing an innovative multimodal
mask-then-predict target.

C EXPERIMENTAL DETAILS

C.1 DATASETS DETAILS

MoleculeNet (Wu et al.,[2017) 11 datasets are used to evaluate model performance on 2D tasks:

* BBBP: The blood-brain barrier penetration dataset, aims at modeling and predicting the
barrier permeability.

» Tox21: This dataset (“Toxicology in the 21st Century”) contains qualitative toxicity mea-
surements for 8014 compounds on 12 different targets, including nuclear receptors and
stress response pathways.

» ToxCast: ToxCast is another data collection providing toxicology data for a large library
of compounds based on in vitro high-throughput screening, including qualitative results of
over 600 experiments on 8615 compounds.

* SIDER: The Side Effect Resource (SIDER) is a database of marketed drugs and adverse
drug reactions (ADR), grouped into 27 system organ classes.

* ClinTox: The ClinTox dataset compares drugs approved by the FDA and drugs that have
failed clinical trials for toxicity reasons. The dataset includes two classification tasks for
1491 drug compounds with known chemical structures: (1) clinical trial toxicity (or absence
of toxicity) and (2) FDA approval status.
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Table 9:
SIDER,

Table 8: Hyperparameters setup for pretraining.

Hyperparameter Value
Max learning rate le-5
Min learning rate 0
Learning rate schedule cosine
Optimizer Adam
Adam betas (0.9, 0.999)
Batch size 4096
Training steps 1,000,000
Warmup steps 100,000
Weight Decay 0.0
num. of layers 12
num. of attention heads 32
embedding dim 768
num. of 3D Gaussian kernel 128

Search space for MoleculeNet tasks. Small datasets: BBBP, BACE, ClinTox, Tox21, Toxcast,
ESOL FreeSolv, Lipo. Large datasets: MUV.

Hyperparameter Small Large HIV

Learning rate [1e-6, 1e-4] [le-6, 1e-4] [le6, le-4]
Batch size {32,64,128,256} {128,256} {128,256}
Epochs {40, 60, 80, 100} {20, 40} {2,5,10}
Weight Decay [1e-7, 1e-3] [le-7, 1e-3] [le-7, 1e-3]

MUYV: The Maximum Unbiased Validation (MUYV) group is another benchmark dataset
selected from PubChem BioAssay by applying a refined nearest neighbor analysis, con-
taining 17 challenging tasks for around 90,000 compounds and is specifically designed for
validation of virtual screening techniques.

HIV: The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS An-
tiviral Screen, which tested the ability to inhibit HIV replication for over 40,000 compounds.

BACE: The BACE dataset provides qualitative binding results for a set of inhibitors of
human f-secretase 1. 1522 compounds with their 2D structures and binary labels are
collected, built as a classification task.

ESOL: ESOL is a small dataset consisting of water solubility data for 1128 compounds.

FreeSolv: The Free Solvation Database provides experimental and calculated hydration free
energy of small molecules in water.

Lipo: Lipophilicity is an important feature of drug molecules that affects both membrane
permeability and solubility. This dataset provides experimental results of octanol/water
distribution coefficient (logD at pH 7.4) of 4200 compounds.

QM9 (Ramakrishnan et al., 2014) QM9 is a quantum chemistry benchmark consisting of 134k
stable small organic molecules, corresponding to the subset of all 133,885 species out of the GDB-17
chemical universe of 166 billion organic molecules. The molecules in QM9 contains up to 9 heavy
atoms. Each molecule is associated with 12 targets covering its geometric, energetic, electronic, and
thermodynamic properties, which are calculated by density functional theory (DFT).

C.2 HYPERPARAMETERS

Hyperparameters for pretraining and finetuning on MoleculeNet and QM9 benchmarks are presented
in Table[8] Table9]and Table[I0} repectively.
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Table 10: Hyperparameters for QM9 finetuning.

Hyperparameter QM9
Peak Learning rate le-4
End Learning rate le-9
Batch size 128
Warmup Steps 60,000
Max Steps 600,000
Weight Decay 0.0

Table 11: Ablation studies on fintuning settings of 2D tasks.

F‘Sﬁtt:‘;lg“s‘g BBBP{ Tox211 ToxCast? ClinTox]? Bace]? ESOL] FreeSolv| Lipo /|
2D 73.0 77.8 66.1 87.6 837  0.831 1910  0.638
2D + 3D 71.8 76.8 67.4 90.9 843 0874 1.824 0.636

D ABLATION STUDIES

D.1 2D TASKS WITH 3D INFORMATION

Since our model is pretrained to predict both 2D and 3D information, for 2D tasks, we consider
utilizing the 3D information predicted by our model as supplementary information (2D + 3D in
Table[TT)). We observe that both settings achieve comparable performance across various tasks. This
may be due to the 2D and 3D spaces have been well aligned and 3D knowledge is implicit injected
into the model, allowing it to achieve satisfactory results even with only 2D information provided.
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