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A EXPERIMENTS

A.1 ALL EXPERIMENT RESULTS

Epigenetic Marks Prediction
H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT (3-mer) 74.15 42.07 48.49 42.95 31.34 28.92
DNABERT (4-mer) 73.03 41.88 48.03 41.06 30.66 25.31
DNABERT (5-mer) 73.40 40.68 48.29 40.65 30.67 27.10
DNABERT (6-mer) 73.10 40.06 47.25 41.44 32.27 27.81
NT-500M-human 69.67 33.55 44.14 37.15 30.87 24.06
NT-500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16
NT-2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87
NT-2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34

DNABERT-2 78.27 52.57 56.88 50.52 31.13 36.27
DNABERT-2∂ 80.17 57.42 61.90 53.00 39.89 41.20

Epigenetic Marks Prediction Promoter Detection
H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT (3-mer) 60.12 50.48 78.27 38.60 90.44 93.61 69.83
DNABERT (4-mer) 59.77 51.44 78.28 36.40 89.54 92.65 66.78
DNABERT (5-mer) 59.61 51.11 77.27 37.48 90.16 92.45 69.51
DNABERT (6-mer) 61.17 51.22 79.26 37.43 90.48 93.05 61.56
NT-500M-human 58.35 45.81 76.17 33.74 87.71 90.75 78.07
NT-500M-1000g 59.33 49.29 76.29 36.79 89.76 91.75 78.23
NT-2500M-1000g 61.20 52.36 79.76 41.46 90.95 93.07 75.80
NT-2500M-multi 64.70 56.01 81.67 49.13 91.01 94.00 79.43
DNABERT-2 67.39 55.63 80.71 50.43 86.77 94.27 71.59
DNABERT-2∂ 65.46 57.07 81.86 50.35 88.31 94.34 68.79

Transcription Factor Prediction (Human) Core Promoter Detection
0 1 2 3 4 all notata tata

DNABERT (3-mer) 67.95 70.90 60.51 53.03 69.76 70.92 69.82 78.15
DNABERT (4-mer) 67.90 73.05 59.52 50.37 71.23 69.00 70.04 74.25
DNABERT (5-mer) 66.97 69.98 59.03 52.95 69.26 69.48 69.81 76.79
DNABERT (6-mer) 66.84 70.14 61.03 51.89 70.97 68.90 70.47 76.06
NT-500M-human 61.59 66.75 53.58 42.95 60.81 63.45 64.82 71.34
NT-500M-1000g 63.64 70.17 52.73 45.24 62.82 66.70 67.17 73.52
NT-2500M-1000g 66.31 68.30 58.70 49.08 67.59 67.39 67.46 69.66
NT-2500M-multi 66.64 70.28 58.72 51.65 69.34 70.33 71.58 72.97

DNABERT-2 71.99 76.06 66.52 58.54 77.43 69.37 68.04 74.17
DNABERT-2∂ 69.12 71.87 62.96 55.35 74.94 67.50 69.53 76.18

Transcription Factor Prediction (Mouse) Virus Splice
0 1 2 3 4 Covid Reconstruct

DNABERT (3-mer) 42.31 79.10 69.90 55.40 41.97 62.23 84.14
DNABERT (4-mer) 49.42 79.95 72.62 51.79 44.13 59.87 84.05
DNABERT (5-mer) 42.45 79.32 62.22 49.92 40.34 50.46 84.02
DNABERT (6-mer) 44.42 78.94 71.44 44.89 42.48 55.50 84.07
NT-500M-human 31.04 75.04 61.67 29.17 29.27 50.82 79.71
NT-500M-1000g 39.26 75.49 64.70 33.07 34.01 52.06 80.97
NT-2500M-1000g 48.31 80.02 70.14 42.25 43.40 66.73 85.78
NT-2500M-multi 63.31 83.76 71.52 69.44 47.07 73.04 89.35
DNABERT-2 56.76 84.77 79.32 66.47 52.66 71.02 84.99
DNABERT-2∂ 64.23 86.28 81.28 73.49 50.80 68.49 85.93

Table 4: This table presents the performance of all the models on the GUE benchmark. ∂: perform
further pre-training on the training sets of the GUE benchmark.
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EMP TF-M CVC TF-H PD-tata PD-o CPD-tata CPD-o SSP
Epochs 3 1k 8 3 10 4 10 4 5

Table 5: The number of training steps we used for the following tasks: Epigenetic Marks Prediction (EMP),
Transcription Factor Prediction on the Human genome and the Mouse genome (TF-H and TF-M), Covid Variants
Classification (CVC), tata dataset of Promoter Detection (PD-tata), notata and all datasets of Promoter Detection
(PD-o), tata dataset of Core Promoter Detection (CPD-tata), notata and all datasets of Core Promoter Detection
(CPD-o), and Splice Site Prediction (SSP). In the task of Transcription Factor Prediction on the Mouse genome,
we train the model for 1000 steps on each dataset.

A.2 IMPLEMENTATION

We pre-train DNABERT-2 with the Masked Language Modeling (MLM) loss with a mask ratio of
15%. Notably, we independently mask every token instead of masking spans of continuous tokens
like Ji et al. (2021). We use a batch size of 4096 and a max sequence length of 128. We train the
model for 500000 steps using the AdamW (Loshchilov & Hutter, 2019) optimizer with �1 = 0.9,
�2 = 0.98, ✏ = 1e-6 and weight decay of 1e-5. The learning rate linearly increases from 0 to 5e-4
during the first 30000 steps while linearly decreasing to 0 in the last 470000 steps.

A.3 HYPERPARAMETERS

This section presents the hyperparameters we used in the fine-tuning stage on each model. Table 5
shows the number of training steps we used for each task. We use AdamW (Loshchilov & Hutter,
2019) as optimizer. We keep most of the other hyperparameters the same for all the models across
all the datasets, including a batch size of 32, a warmup step of 50, and a weight decay of 0.01. For
DNABERT and DNABERT-2, we perform standard fine-tuning with a learning rate of 3e-5, while
for the Nucleotide Transformers, we perform parameter efficient fine-tuning (PEFT) using Low-Rank
Adaptation (LoRA) with a learning rate of 1e-4, a LoRA alpha of 16, a LoRA dropout of 0.05, and a
LoRA r of 8. The hyperparameters are selected based on grid searches over commonly used ones
in preliminary experiments. The pre-training stage takes approximately 14 days using eight Nvidia
RTX 2080Ti GPUs. To train the model, we used the Transformers library (Wolf et al., 2020) and the
Composer library (Team, 2021).

A.4 PRELIMINARY EXPERIMENTS ON NUCLEOTIDE TRANSFORMER

Since there is no official fine-tuning code of Nucleotide Transformer (Dalla-Torre et al., 2023), we
use its open-sourced checkpoints in Huggingface Modelhub2 and train it with our code base using
LoRA. For a fair comparison with this model, in this section, we present preliminary experiments
that compare the results reported in their paper with the performance of this model under our
implementation. We select the epigenetic marks prediction task for benchmarking since it is the only
shared task among Dalla-Torre et al. (2023) and GUE. The task contains 10 datasets. For each dataset,
we randomly split it into training and test sets with a ratio of 9:1. As shown in Table 6, our LoRA
implementation leads to slightly better results than the results reported in the original paper, making
our comparison to the model fair and convincing despite the fact that we do not have access to its
official fine-tuning implementation.

2https://huggingface.co/InstaDeepAI
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H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3
500M-human* 72.00 37.00 45.00 36.00 27.00 24.00
500M-human 69.67 33.55 44.14 37.15 30.87 24.06

500M-1000g* 74.00 38.00 47.00 38.00 26.00 24.00
500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16

2500M-1000g* 75.00 45.00 53.00 42.00 28.00 31.00
2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87

2500M-multi* 79.00 54.00 62.00 54.00 32.00 41.00
2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34

H3K79me3 H3K9ac H4 H4ac Average
500M-human* 57.00 45.00 75.00 33.00 45.10
500M-human 58.35 45.81 76.17 33.74 45.35
500M-1000g* 56.00 48.00 76.00 34.00 46.10
500M-1000g 59.33 49.29 76.29 36.79 47.68
2500M-1000g* 57.00 49.00 79.00 41.00 50.00
2500M-1000g 61.20 52.36 79.76 41.46 50.86
2500M-multi* 62.00 55.00 81.00 49.00 56.90
2500M-multi 64.70 56.01 81.67 49.13 58.06

Table 6: This table presents the performance of the Nucleotide Transformer on ten datasets of
epigenetic marks prediction on the Yeast genome. As shown in the table, our implementation achieves
better performance than the results reported in the paper, indicating the fairness of comparison in our
experiments. *: Results taken from Dalla-Torre et al. (2023).

B DATA

B.1 MULTI-SPECIES GENOME FOR PRE-TRAINING

Table 7 lists the 135 species in 7 categories that we randomly selected for genome foundation model
pre-training and presents the number of nucleotides we achieved from each species.

Category Species Num. of Nucleotides (M)

Fungi

Ceratobasidium 655.37
Claviceps Maximensis 329.79
Fusarium Annulatum 449.98
Melampsora 699.52
Metschnikowia 109.36
Mucor Saturninus 391.17
Penicillium Chermesinum 275.81
Saccharomyces Cerevisiae 121.54
Sporopachydermia Quercuum 155.71
Tranzscheliella Williamsii 184.77
Xylariales 399.96

Protozoa Phytophthora Sojae 792.65
Pythium Apiculatum 450.99

Mammalian

Bubalus Bubalis 28768.00
Camelus Dromedarius 19757.02
Human 31372.10
Macaca Assamensis 27593.76
Macaca Nigra 28217.13
Mus Musculus 26545.98

(Continued on next page)
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(Continued from previous page)

Category Species Nucleotides (M)
Peromyscus Californicus 24677.56

Invertebrate

Brachionus Rubens 1327.37
Ceroptres Masudai 12.95
Cotesia Typhae 1866.62
Croniades Pieria 3889.85
Drosophila Athabasca 1221.16
Emesis Russula 4848.08
Hydra Oligactis 12597.75
Meganola Albula 3604.25
Oscheius 383.21
Rutpela Maculata 20213.33

Anas Zonorhyncha 11697.08
Other Coregonus Clupeaformis 26824.02
Vertebrate Gnathonemus Longibarbis 7314.74

Myxocyprinus Asiaticus 23407.19
Rhipidura Dahli 10112.96

Bacteria

Aeromonas 47.33
Agrobacterium 97.22
Alcaligenaceae Bacterium 20.88
Aliivibrio 46.48
Alphaproteobacteria Bacterium 14.22
Amycolatopsis Antarctica 63.43
Anaerostipes Faecis 32.00
Arthrobacter 36.27
Atopobium 28.63
Bacillus Bc15 57.34
Bacillus Bs3 2021 43.51
Bacterium 7.54
Bacteroidetes Bacterium Qs 8.99
Breoghania Corrubedonensis 53.32
Caldicoprobacter Oshimai 27.25
Candidatus Cryptobacteroides Excrementipullorum 27.63
Candidatus Dadabacteria Bacterium Rbg Combo 11.49
Candidatus Dwaynia Gallinarum 16.82
Candidatus Falkowbacteria Bacterium 13.88
Candidatus Geothermincola Secundus 24.76
Candidatus Gottesmanbacteria Bacterium 11.08
Candidatus Nomurabacteria Bacterium Full 6.29
Candidatus Portnoybacteria Bacterium Big Fil Rev 8.17
Candidatus Regiella Insecticola 20.62
Candidatus Roizmanbacteria Bacterium Combo All 11.13
Candidatus Rokubacteria Bacterium 22.06
Candidatus Saccharibacteria Bacterium 6.55
Candidatus Staskawiczbacteria Bacterium Full 6.79
Christensenella 18.75
Clostridiaceae Bacterium 29.62
Clostridiales Bacterium 16.59
Clostridium Cag 505 21.26
Clostridium Mcc328 36.43
Clostridium Nexile 38.43
Clostridium Uba3521 25.99
Collinsella Urealyticum 19.45
Coprobacillus Cateniformis 38.38

(Continued on next page)
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Category Species Nucleotides (M)
Cyanobium 40.33
Dehalococcoidia Bacterium 17.59
Enterobacteriaceae Bacterium 41.46
Evtepia Gabavorous 24.94
Firmicutes Bacterium 36.66
Fulvivirga 65.24
Jeongeupia Chitinilytica 39.11
Legionella Endosymbiont Of Polyplax Serrata 5.30
Listeria Ilorinensis 30.31
Maribacter Cobaltidurans 46.40
Marinomonas 37.73
Mesorhizobium 65.15
Methyloceanibacter Caenitepidi 34.25
Microvirga 68.63
Mycolicibacter Engbaekii 45.21
Novosphingobium 46.18
Omnitrophica Wor Bacterium Rbg 12.52
Pantoea 43.14
Paraburkholderia Edwinii 82.99
Parerythrobacter Lutipelagi 30.98
Paulownia Witches Phytoplasma 8.92
Polaromonas Eurypsychrophila 41.61
Prevotella Ag 487 50 53 29.63

Bacteria Prevotella Uba3619 31.72
Prevotella Uba634 18.51
Prochlorococcus Ag-321-I09 3.29
Prochlorococcus Ag-363-B18 15.54
Prochlorococcus Ag-402-L19 11.17
Prochlorococcus Scb243 498N4 14.12
Providencia 41.89
Pseudomonas 35 E 8 63.56
Pseudomonas Bigb0408 59.52
Pseudomonas P867 62.01
Pseudomonas Promysalinigenes 50.47
Roseobacter 44.14
Salinicola Peritrichatus 46.19
Salmonella S096 02912 48.09
Salmonella Zj-F75 47.87
Sinorhizobium 65.53
Sodalis Ligni 63.85
Sphaerochaeta 28.61
Sphingobacterium 36.55
Sphingomonas Carotinifaciens 37.53
Sphingomonas Mesophila 22.91
Sporosarcina Jiandibaonis 36.30
Sporosarcina Ureilytica 34.37
Staphylococcus Gdq20D1P 28.50
Staphylococcus M0911 24.38
Streptococcus 22.18
Streptomyces 8401 88.39
Streptomyces Di166 88.71
Streptomyces Durbertensis 59.24
Streptomyces Neau-Yj-81 118.84
Streptomyces Rk74B 87.36
Thermopetrobacter 26.06

(Continued on next page)

17



Under review as a conference paper at ICLR 2024

(Continued from previous page)

Category Species Nucleotides (M)
Uncultured Kushneria 35.31
Uncultured Phascolarctobacterium 17.95
Uncultured Proteus 35.66

Bacteria Verrucomicrobiales Bacterium 3.15
Vibrio 41.47
Victivallis Lenta 55.45
Virgibacillus Salexigens 44.18
Xanthomonadales Bacterium 37.47

Table 7: Details statistics of the multi-species genome dataset for pre-training.

B.2 GENOME UNDERSTANDING EVALUATION (GUE)

Task Metric Datasets Train / Dev / Test

Core Promoter Detection mcc
tata 4904 / 613 / 613
notata 42452 / 5307 / 5307
all 47356 / 5920 / 5920

Promoter Detection mcc
tata 4904 / 613 / 613
notata 42452 / 5307 / 5307
all 47356 / 5920 / 5920

Transcription Factor mcc

wgEncodeEH000552 32378 / 1000 / 1000
wgEncodeEH000606 30672 / 1000 / 1000
wgEncodeEH001546 19000 / 1000 / 1000

Prediction (Human) wgEncodeEH001776 27294 / 1000 / 1000
wgEncodeEH002829 19000 / 1000 / 1000

Splice Site Prediction mcc reconstructed 36496 / 4562 / 4562

Transcription Factor mcc

Ch12Nrf2Iggrab 6478 / 810 / 810
Ch12Znf384hpa004051Iggrab 53952 / 6745 / 6745
MelJundIggrab 2620 / 328 / 328

prediction (Mouse) MelMafkDm2p5dStd 1904 / 239 / 239
MelNelfeIggrab 15064 / 1883 / 1883

Epigenetic Marks Prediction mcc

H3 11971 / 1497 / 1497
H3K14ac 26438 / 3305 / 3305
H3K36me3 27904 / 3488 / 3488
H3K4me1 25341 / 3168 / 3168
H3K4me2 24545 / 3069 / 3069
H3K4me3 29439 / 3680 / 3680
H3K79me3 23069 / 2884 / 2884
H3K9ac 22224 / 2779 / 2779
H4 11679 / 1461 / 1461
H4ac 27275 / 3410 / 3410

Virus f1 Covid variant classification 77669 / 7000 / 7000

Table 8: Statistics of tasks in the GUE benchmark, including the name and the number of training, validation,
and test samples in each dataset.

The proposed benchmark Genome Understanding Evaluation (GUE) contains 28 datasets of 7
biological important genome analysis tasks for 4 different species. To comprehensively evaluate
the genome foundation models in modeling variable-length sequences, we select tasks with input
lengths ranging from 70 to 1000. Table 8 presents the details statistics of each evaluation dataset.
The following tasks are included in the GUE benchmark.

Promoter detection (Human) focuses on identifying (proximal) promoter regions, crucial se-
quences in the human genome responsible for instigating transcription. As many primary regulatory
elements are located in this region, accurately detecting these sites is instrumental in advancing
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our grasp of gene regulation mechanisms and pinpointing the genomic underpinnings of numerous
diseases. The dataset is divided twofold, TATA and non-TATA, based on whether a TATA box motif
is present in the sequence. We extract -249 +50 bp around the transcription start site (TSS) from
TATA and non-TATA promoters downloaded from Eukaryotic Promoter Database (EPDnew) (Dreos
et al., 2013) and use it as our promoter class. Meanwhile, we construct the non-promoter class with
equal-sized randomly selected sequences outside of promoter regions but with TATA motif (TATA
non-promoters) or randomly substituted sequences (non-TATA, non-promoters). We also combine
the TATA and non-TATA datasets to obtain a combined dataset named all.

Core promoter detection (Human) is similar to proximal promoter detection with a focus on
predicting the core promoter region only, the central region closest to the TSS and start codon. A
much shorter context window (center -34 +35 bp around TSS) is provided, making this a more
challenging task than proximal promoter prediction.

Transcription factor binding site prediction (Human) predicts binding sites of transcription
factors (TF), the key proteins that regulate gene expression in the human genome. Their accurate
prediction is key to deciphering complex genetic interactions and identifying potential targets for
gene therapies. We accessed the legacy 690 ENCODE ChIP-seq experiments (Consortium et al.,
2012) via the UCSC genome browser, which encompasses 161 TF binding profiles in 91 human cell
lines. We extracted a 101-bp region around the center of each peak as TFBS class and nonoverlapping
sequences with the same length and GC content as non-TFBS class. Finally, we randomly select 5
datasets out of a subset of 690 that we curated by heuristically filtering out tasks that are either too
trivial (e.g., over 0.95 F1) or too challenging (e.g., less than 0.50 F1) for existing language models.

Splice site prediction (Human) predicts splice donor and acceptor sites, which are the exact
locations in the human genome where alternative splicing occurs. This prediction is crucial to
understanding protein diversity and the implications of aberrant splicing in genetic disorders. The
dataset (Wang et al., 2019) consists of 400-bp-long sequences extracted from Ensembl GRCh38
human reference genome. As suggested by Ji et al. (2021), existing models can achieve almost perfect
performance on the original dataset, containing 10,000 splice donors, acceptors, and non-splice
site sequences, which is overly optimistic on detecting non-canonical sites in reality. As such, we
reconstruct the dataset by iteratively adding adversarial examples (unseen false positive predictions
in hold-out set) in order to make this task more challenging.

Transcription factor binding site prediction (Mouse) predicts the binding site of transcription
factors on mouse genomes. Similar to human binding site data, we obtain mouse ENCODE ChIP-seq
data (Stamatoyannopoulos et al., 2012), which is the largest available collection on the UCSC genome
browser (n=78). This time, the negative examples are created using dinucleotide shuffling while
preserving relative frequencies, while all other settings stay the same as the human TFBS prediction
dataset. We also randomly select 5 datasets out of the 78 datasets using the same process described
above.

Epigenetic marks prediction (Yeast) predicts epigenetic marks in yeast, modifications on the
genetic material that influence gene expression without altering the DNA sequence. Precise pre-
diction of these marks aids in elucidating the role of epigenetics in yeast. We download the 10
datasets from http://www.jaist.ac.jp/~tran/nucleosome/members.htm and ran-
domly split each dataset into training, validation, and test sets with a ratio of 8:1:1.

Covid variant prediction (Virus) aims to predict the variant type of the SARS_CoV_2 virus based
on 1000-length genome sequences. We download the genomes from the EpiCoV database (Khare
et al., 2021) of the Global Initiative on Sharing Avian Influenza Data (GISAID). We consider 9 types
of SARS_CoV_2 variants, including Alpha, Beta, Delta, Eta, Gamma, Iota, Kappa, Lambda and
Zeta.
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