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TECHNICAL APPENDIX
EMBODIED REFERRING EXPRESSION COMPREHEN-
SION THROUGH MULTIMODAL RESIDUAL LEARNING

Anonymous authors
Paper under double-blind review

A RESOURCES

• Refer360 dataset (processed) (49.71 GB):
https://bit.ly/refer360_dataset_processed

• Refer360 dataset (raw) (2572.36 GB):
https://bit.ly/refer360_dataset_raw

• Source code of Refer360 data collection system:
https://bit.ly/source_code_data_collection_system

• Source code of MuRes and baseline models (8.8 MB):
https://bit.ly/source_code_MuGuRu_and_baseline_models

• Trained model checkpoints of CLIP with MuRes for embodied referring expression
task (5.4 GB):
https://bit.ly/model_checkpoints

• Docker for training models (8.59 GB): We built a docker to facilitate easy reproducing of
our experimental settings and training environment. We cannot currently share the docker
hub link to maintain anonymity. We plan to share that docker link upon publication of the
paper. For this reason, we are sharing the singularity container built from the same docker
we used for our experimentation: https://bit.ly/multimodal-docker

B ADDITIONAL EXPERIMENTAL RESULTS: QUANTITATIVE ANALYSIS

We have performed a quantitative evaluation of the models by applying the ScienceQA (20) and
A-OKVQA (30) datasets for the visual-question answering tasks. We have analyzed the response of
VisualBERT with different variations of our proposed model, (MuRes), on multiple-choice question-
answering tasks. The responses from VisualBERT model variations are similar to the variation
presented in Table 1 from the manuscript (i.e., without residual, MuRes (V), MuRes (L), and MuRes
(V+L)).

Discussion: The model responses are presented in Fig. 1. These results suggest that augmenting
the VisualBERT model with MuRes improves responses for the visual question-answering task. For
instance, in Fig. 1 (a) [Q-A1], the VisualBERT model’s response to the question “Which continent
is highlighted?” alongside an image of a map shows that enhancing visual representations through
MuRes yields the correct answer (“Europe”). However, enhancing only the language representa-
tions through MuRes leads to an incorrect answer (“Asia”). This question necessitates a thorough
understanding of the spatial location of the highlighted region (“Europe”) on the map, explaining
why reinforcing the visual representations aids in improving the response. Conversely, in Fig.1 (a)
[Q-A3], enhancing either visual or language representations does not yield the most accurate answer
(“Transparent”) for the question: “Which property do these three objects have in common?”. Al-
though the responses with either Vision or Language in Fig.1 (a) [Q-A3] are not entirely inaccurate,
as the objects are somewhat shiny, only yhe model with both visual and language representations
reinforced correctly answers “Transparent”. Therefore, identifying which modalities to reinforce
thorough MuRes is a critical aspect of enhancing the model’s responses.
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(a) Qualitative analysis of multimodal model responses on ScienceQA dataset (20).

(b) Qualitative analysis of multimodal model responses on A-OKVQA dataset (30).

Figure 1: We evaluated VisualBERT with different variations of the multimodal guided residual (MuRes) on
the ScienceQA and A-OKVQA datasets. The results suggest that incorporating MuRes using guided residual
visual and/or language representations improves the performance of the visual question-answering task on both
datasets.

C DATA COLLECTION

C.1 DATA COLLECTION SYSTEM

Our data collection system integrates an Azure Kinect DK (1) a and a Pupil Smart Glass, also
known as the Pupil Invisible Eye Tracker (4). The Azure Kinect DK was mounted on an Ohmni
Telepresence robot (3), and the participants wore the Pupil Smart Glass to facilitate data collection
in real-world scenarios. An Alienware m15 R4 laptop powered by an i7-10870H RTX processor
served as the high-performance computing backbone. A Python-based application was developed to
facilitate coordination and synchronization among all system components. This application ensured
seamless operation and synchronized data collection from multiple sensors.

C.1.1 SENSOR SPECIFICATIONS

Azure Kinect provides a multitude of sensory data, including visual, depth, infrared (IR), skeletal
tracking, and inertial measurement unit (IMU) data. In addition, pupil glass offers visual (RGB),
IR, gaze tracking, and gesture recognition capabilities. The Pupil Invisible Eye Tracker is a state-
of-the-art device with a range of features designed to capture precise and accurate eye-tracking data.
The participants in our study were equipped with the Pupil Smart Glass and an Android smartphone,
which recorded their eye-tracking data. The data is subsequently transmitted to the Pupil Cloud via
the Pupil Invisible Android application. This seamless hardware and software integration ensures
efficient and reliable data collection and transmission. The specifications of the Azure Kinect DK
and Pupil Eye Tracker sensors are listed in Table 3 and 4.
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Table 1: Comparison of the embodied referring expression datasets. Most of the existing VQA and EQA
datasets do not contain nonverbal gestures (NV), multiple verbal (V) perspectives (MP), and outdoor scene data
samples. ‡Embodied (E) interactions refer to humans interacting using multimodal expressions. †Embodied
interactions refer to an agent navigating in an environment. ⋆Sythetic Environment.

Datasets V NV E MV Views
Exo Ego

PointAt (29) ✗ ✓ ✓ ✗ ✓ ✗
ReferAt (28) ✓ ✓ ✓ ✗ ✓ ✗
IPO (31) ✗ ✓ ✓ ✗ ✓ ✗
IMHF (32) ✗ ✓ ✓ ✗ ✓ ✗
RefIt (16) ✓ ✗ ✗ ✗ ✓ ✗
RefCOCO (36) ✓ ✗ ✗ ✗ ✓ ✗
RefCOCO+ (36) ✓ ✗ ✗ ✗ ✓ ✗
RefCOCOg (22) ✓ ✗ ✗ ✗ ✓ ✗
Flickr30k (26) ✓ ✗ ✗ ✗ ✓ ✗
GuessWhat? (9) ✓ ✗ ✗ ✗ ✓ ✗
Cops-Ref (7) ✓ ✗ ✗ ✗ ✓ ✗
CLEVR-Ref+ (19) ✓ ✗ ✗ ✗ ✓ ✗
DAQUAR (21) ✓ ✗ ✗ ✗ ✓ ✗
FM-IQA (10) ✓ ✗ ✗ ✗ ✓ ✗
Visual Madlibs (35) ✓ ✗ ✗ ✗ ✓ ✗
Visual Genome (17) ✓ ✗ ✗ ✗ ✓ ✗
DVQA (15) ✓ ✗ ✗ ✗ ✓ ✗
VQA (COCO) (5) ✓ ✗ ✗ ✗ ✓ ✗
VQA (Abs.) (5) ✓ ✗ ✗ ✗ ✓ ✗
Visual 7W (37) ✓ ✗ ✗ ✗ ✓ ✗
KB-VQA (34) ✓ ✗ ✗ ✗ ✓ ✗
FBQA (33) ✓ ✗ ✗ ✗ ✓ ✗
VQA-MED (12) ✓ ✗ ✗ ✗ ✓ ✗
DocVQA (23) ✓ ✗ ✗ ✗ ✓ ✗
YouRefIt (6) ✓ ✓ ✓ ✗ ✓ ✗
GRiD-3D (18) ✓ ✗ ✗ ✗ ✓ ✗
EQA † (8) ✓ ✗ ✗ ✗ ✓ ✗
MT-EQA † (8) ✓ ✗ ✗ ✗ ✓ ✗
CAESAR-L (14) ✓ ✓ ✓ ✓ ✓ ✓
CAESAR-XL (14) ✓ ✓ ✓ ✓ ✓ ✓
EQA-MX (13) ✓ ✓ ✓ ✓ ✓ ✓
Refer360 ✓ ✓ ✓ ✓ ✓ ✓

C.1.2 DATA COLLECTION APPLICATION

We developed a Python application to coordinate and synchronize the various components of our
data collection system. This application played a central role, ensuring seamless integration and
synchronized data capture from multiple sensors. We collected camera video feeds, time-series data
from the inertial measurement unit (IMU) and skeleton joint positions, and session metadata using
this system. We utilized the pyKinectAzure (11) python library to interface with the Azure Kinect
SDK sensor, while the Pupil Labs’ Real-time Python API (27) facilitated communication with the
Pupil Eye camera. Participants stood before the Ohmin robot, issuing verbal commands and non-
verbal gestures to reference physical objects. An RGB camera on the Azure Kinect device contin-
uously captured visual data, providing a third-person view of the participants’ referencing gestures.
Additionally, the Kinect’s depth and infrared sensors recorded supplementary data streams, enrich-
ing the external perspective of the interactions. The system also leveraged the Kinect’s infrared
sensor to collect infrared data and the Azure Kinect Body Tracking SDK (24) to capture the 3D co-
ordinates and orientations of 32 skeletal joints. Simultaneously, the Kinect’s microphone recorded
the participants’ verbal instructions. Complementing this external viewpoint, the Pupil Invisible
Eye Tracker provided an egocentric visual stream from the participants’ perspectives. Combining
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Table 2: Comparison of the embodied referring expression datasets. Most of the existing VQA and EQA
datasets do not contain nonverbal gestures (NV), multiple verbal (V) perspectives (MP), and outdoor scene data
samples. ‡Embodied (E) interactions refer to humans interacting using multimodal expressions. †Embodied
interactions refer to an agent navigating in an environment. ⋆Sythetic Environment.

Datasets No. of
Images

No. of
Samples

Object
Categories

Avg.
Words∗

PointAt (29) 220 220 28 -
ReferAt (28) 242 242 28 -
IPO (31) 278 278 10 -
IMHF (32) 1716 1716 28 -
RefIt (16) 19,894 130,525 238 3.61
RefCOCO (36) 19,994 142,209 80 3.61
RefCOCO+ (36) 19,992 141,564 80 3.53
RefCOCOg (22) 26,711 104,560 80 8.43
Flickr30k (26) 31,783 158,280 44,518 -
GuessWhat? (9) 66,537 155,280 - -
Cops-Ref (7) 75,299 148,712 508 14.40
CLEVR-Ref+ (19) 99,992 998,743 3 22.40
DAQUAR (21) 1449 124,68 37 11.5
FM-IQA (10) 157,392 316,193 - 7.38
Visual Madlibs (35) 107,38 360,001 - 6.9
Visual Genome (17) 108,000 1,445,332 37 5.7
DVQA (15) 300,000 3,487,194 - -
VQA (COCO) (5) 204,721 614,163 80 6.2
VQA (Abs.) (5) 50,000 150,000 100 6.2
Visual 7W (37) 47,300 327,939 36,579 6.9
KB-VQA (34) 700 5826 23 6.8
FBQA (33) 2190 5826 32 9.5
VQA-MED (12) 2866 6413 - -
DocVQA (23) 12,767 50,000 - -
YouRefIt (6) 497,348 4,195 395 3.73
GRiD-3D (18) 8,000 445,000 28 -
EQA † (8) 5,000 5,000 50 -
MT-EQA † (8) 19,287 19,287 61 -
CAESAR-L (14) 11,617,626 124,412 61 5.56
CAESAR-XL (14) 841,620 1,367,305 80 5.32
EQA-MX (13) 750,849 8,243,893 52 11.45
Refer360 2,472,939 28,736 75 11.45

these exocentric and egocentric data sources gave the system a comprehensive understanding of
human-robot interactions.

We stored the Azure Kinect recordings and the corresponding keystroke event times locally as MP4
and JSON files, respectively. For the Pupil eye tracker, the recordings of the participants’ ego view
and keystroke events were saved in the Pupil Cloud using the Pupil Lab Android app and Pupil API,
respectively.

C.1.3 TIME-BASED SYNCHRONIZATION

One of the significant challenges we faced was synchronizing the various data streams captured
by different devices. To address this, we implemented a time-based synchronization method that
recorded the UNIX timestamps of different data capture events and data streams, enabling syn-
chronization during post-processing. This synchronization is crucial for aligning the data streams
captured from different devices. Our approach involved recording the timestamp at the start and end
of each interaction and the timestamp of the event when the participant pointed to an object (i.e.,
canonical events). This was achieved using our Python-based system, which is operated by individ-
uals recording the data collection sessions. We utilized different keystrokes on a standard keyboard
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grey ceramic bowl, foam miniature football, wireless computer mouse, wooden box, blue
cupholders, plastic water bottle, keyboard, green plastic cup, white plastic basket, basketball,
white plastic cup, flower vase, clorox wipe container, paper towel roll, mountain dew bottle,
picture frame, TV remote, grey plastic basket, black metal water bottle, coffee cup with lid,
transformers robot, pepsi bottle, egg carton, TV screen, blue plastic box, pringles box, grey
dustbin, light green open plastic box with handle, tripod, white three-level plastic box, card-
board box, sunglasses, yellow lego box, mouthwash, pink plastic cup, white tumbler, white
desk fan, blue plastic container with lid and handle, salsa jar, nutella jar, pink dustbin, black
kickball, table tennis ball container, blue plastic water bottle, black desk clock, screwdriver,
blue magazine, shoe rack, bicycle, pupil labs glasses box, microwave, frying pan, blue couch,
wooden chair, white rope, kitchen sink, white fridge, iron stand, allen wrench set, white trash
can, black dresser, light stand, desk lamp, black office chair, silver rice cooker, black stand-
ing fan, wooden table, white pillow, white air conditioning unit, grey sweatshirt, banana, grey
laundry drying rack, grey apartment mailboxes, white fence, surge protector.

Figure 2: Objects in Refer360 Dataset

Table 3: Azure Kinect DK Sensor Specifications

Sensor Specification
RGB Camera Highest Resolution: 3840× 2160 px @ 30 fps
Depth Camera Method: Time-of-Flight, Highest Resolution: 640× 576 px @ 30 fps
Motion Sensor LSM6DSMUS IMU (accelerometer & gyroscope), Sampling Rate: 1.6 Hz
Microphone USB audio 2.0, Channels: 7, Sensitivity: −22 dBFS (94 dB SPL, 1 kHz),

SNR: > 65 dB, Acoustic Overload Point: 116 dB

Table 4: Pupil Invisible Eye Tracker Specifications

Sensor Specification
Eye Cameras 200 Hz @ 192× 192 px, IR illumination
Scene Camera 30 Hz @ 1088× 1080 px, 82◦ × 82◦ FOV

to denote different events. The ”Space” key was pressed at the start and end of an interaction, while
the ”G” key was pressed to identify the canonical event of an interaction. The canonical event indi-
cates when the participant points to an object using gaze or pointing gestures. Specifically, the ”G”
keystroke event time was used to identify the canonical frame, i.e., the frame where the participant
actually pointed to an object. When the participant used cues other than pointing, such as gaze, the
”G” key was pressed when the gaze event occurred. The ”Space” keystroke event time was used to
identify the start and end of an interaction, thereby facilitating the segmentation of interactions. The
”Q” key was used to terminate a session.

The corresponding UNIX timestamp for these keystroke events was recorded for both the Azure
Kinect and Pupil Lab Eye Tracker. This enabled us to synchronize the data streams from these
two devices during post-processing. Though the time-based synchronization method is utilized to
synchronize between the Azure Kinect Sensor and Pupil Eye Tracker, it is designed to be extensible.
For example, our system can be expanded to incorporate multiple Azure Kinect devices to capture
multiple views of the participant during interaction rather than just the ego and exo views.

C.1.4 DATA COLLECTION ENVIRONMENT

The Refer360 dataset aims to study real-world human-robot interactions in which a human pro-
vides object-referencing instructions to robots across diverse environments, ranging from controlled
laboratory setups to outdoor locations. Refer360 contains embodied interaction data from lab and
outside-lab environments. The outside lab refers to settings outside controlled lab settings, such
as homes, outdoor locations, etc. While choosing objects, we prioritize those usually available in
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these environments. Our dataset contains 75 objects from the aforementioned environments, and a
complete list of objects is given in Fig. 2.

C.2 DATA COLLECTION PROTOCOL AND PROCEDURE

[ht]

Figure 3: Demographic Survey

The data collection process began with a com-
prehensive introduction to the system, the pur-
pose of the dataset, and the protocol to be fol-
lowed during collection. Before participating in
the data collection sessions, subjects completed
a demographic survey.

Each session involved subjects providing em-
bodied instructions that referenced objects in
their surroundings, using both language and
nonverbal gestures (gaze and pointing ges-
tures). The ultimate goal of this dataset is to
enhance social robots’ ability to interpret ob-
ject referencing instructions accurately. This
involves uniquely identifying the object, which
requires extracting the object’s location and
other attributes from the instruction. This task
is challenging as humans often use diverse for-
mats when providing verbal instructions, and
these instructions may sometimes lack the nec-
essary features for object identification. In-
corporating nonverbal cues, such as pointing
or referencing the object in relation to an-
other object, can significantly improve the ef-
ficiency of interpreting object referencing in-
structions. Furthermore, object referencing in-
structions can be given from multiple perspec-
tives, such as the subject’s or the robot’s per-
spective, which must be resolved for accurate
object comprehension.

The participants were given the flexibility to
choose any perspective (subject, robot, or neu-
tral) when providing instructions. This approach allowed us to diversify our dataset by including
object-referencing instructions with varied spatial referencing and perspectives. For instance, an
object could be referenced in relation to another object, such as ”The black box on top of the brown
table.” The object reference in the verbal instruction could be from the subject’s perspective, e.g.,
”The couch to my right,” or it could be from the robot’s perspective, e.g., ”The lamp to your left.”

Figure 4: Post-Task Survey

We had two distinct data collection conditions:
constrained and unconstrained. In the con-
strained condition, subjects were briefed on the
format of instructions and how they could em-
ploy various modalities (verbal and nonverbal)
to make the interaction as natural as possible.
We also suggested that participants use both
verbal and nonverbal gestures to describe an ob-
ject. In the unconstrained condition, we did not
suggest whether to use verbal or nonverbal ges-
tures to describe an object. We instructed the
participant to describe an object to the robot.
This allowed us to capture natural human instincts when providing instructions. This approach also
helped eliminate biases that might be introduced by pre-guidance on the format of the instructions,
allowing subjects to be flexible in their instruction delivery.
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Each subject participated in multiple sessions, each lasting approximately one hour. During each
session, the subject performed several interactions. Using our data collection system, we recorded
the subject’s ego view, exo view, IMU, skeleton, and audio data stream for each session. Upon
completion of the sessions, subjects were asked to complete a post-task survey and sign a consent
form to permit the release of the dataset. The University’s IRB approved the study. The demographic
and post-task surveys are presented in Figure3 and 4.

C.3 DATASET PROCESSING

� Refer360 dataset processed
� subject id

� session id
� interaction iD

audio.mp3
transcription.txt

� videos
� rgb

exo.mp4
ego.mp4

� depth
exo.mp4

� ir
exo.mp4

� images
� rgb

exo.jpg
ego.jpg

� depth
exo.jpg

� ir
exo.jpg

acceleration.json
gyro.json
skeleton.json

Figure 5: Refer360 dataset folder structure.

The developed Python-based application gener-
ated an Azure Kinect video file in MP4 format
for each session. The MP4 file contains three
data streams from Azure Kinect’s camera sen-
sor: RGB, Depth, and Infrared. Separate JSON
files contain the IMU and skeleton joints’ time
series data and relevant session metadata. We
utilized the FFmpeg (2) library to extract the
Kinect video streams into separate MP4 files
and the recording audio as an MP3 file. The
IMU time series was split into two different
files for the accelerometer and gyroscope read-
ings. For each session, the Pupil eye tracker
also generated one video file in MP4 format and
saved it to the pupil cloud.

The major challenge of data post-processing
was segmenting the interactions and synchro-
nizing the Azure Kinect and Pupil lab data.
For the segmentation of each interaction from
Azure Kinect data streams, we look into that
interaction’s start and end time. We also iden-
tify the canonical frames, i.e., frames where
the subject points precisely to the object. We
split each interaction and canonical frame us-
ing the FFmpeg library. Next, we searched
the corresponding Pupil recording for the Azure
Kinect recording from the pupil cloud using
Python Pupil Cloud API. For this purpose, we
used the recording-start timestamp saved in the
metadata file to find the matching Pupil record-
ing in the pupil cloud. After downloading the
Pupil video, we employed the same procedure
as Azure Kinect recording to split the interac-
tions and canonical frames at the timestamps
recorded during data collection. Finally, we utilized the OpenAI whisper (25) library to transcribe
Kinect audio data to the corresponding text. Note that we manually verified the synchronization and
segmentation with five human experts whom the IRB approved. Subsequently, the dataset underwent
annotation by human annotators sourced from an external company specializing in data annotation
services, ensuring accuracy and reliability.

Our dataset contains several data collection sessions and after data post-processing results in each
session’s folder structure shown in Figure 5. Here, transcription.txt is the text transcription of au-
dio.mp3. In the subfolders in Videos and Framess, exo.mp4 and ego.mp4 refer to the videos from
the Azure Kinect SDK camera and Pupil Eye Camera, respectively.
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