
Supplementary Materials

S1 Details of Protein Modifications and Domain Annotations

Table S1: Summary of protein modifications and domain annotations in the DAVIS dataset

Protein Modification / Domain Note

ABL1

E255K-phosphorylated The phosphorylation site is Tyr393 [1].
F317I –
F317I-phosphorylated The phosphorylation site is Tyr393 [1].
F317L –
F317L-phosphorylated The phosphorylation site is Tyr393 [1].
H396P –
H396P-phosphorylated The phosphorylation site is Tyr393 [1].
M351T-phosphorylated The phosphorylation site is Tyr393 [1].
Q252H –
Q252H-phosphorylated The phosphorylation site is Tyr393 [1].
T315I –
T315I-phosphorylated The phosphorylation site is Tyr393 [1].
Y253F-phosphorylated The phosphorylation site is Tyr393 [1].
Wild-type-phosphorylated The phosphorylation site is Tyr393 [1].

BRAF V600E –

CDK4
CDK4-cyclinD1 CDK4-cyclinD1 complex
CDK4-cyclinD3 CDK4-cyclinD3 complex

EGFR

E746A750del –
G719C –
G719S –
L747E749del, A750P –
L747E752del, P753S –
L747E751del, Sins –
L858R –
L858R, T790M –
L861Q –
S752I759del –
T790M –

FGFR3 G697C –

FLT3

D835H –
D835Y –
ITD VDFREYEYDH insertion between Y591 and V592 [1]
K663Q –
N841I –
R834Q –

GCN2 Kinase domain 2, S808G residues 590–1001 in UniProt Q9P2K8

JAK1
JH1 domain catalytic residues 875-1153 in UniProt P23458 [2]
JH2 domain pseudokinase residues 583-855 in UniProt P23458 [2]

JAK2 JH1 domain catalytic residues 849-1124 in UniProt O60674 [2]
JAK3 JH1 domain catalytic residues 822-1111 in UniProt P52333 [2]

KIT

A829P –
D816H –
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Protein Modification Note

D816V –
L576P –
V559D –
V559D, T670I –
V559D, V654A –

LRRK2 G2019S –

MET
M1250T –
Y1235D –

PIK3CA

C420R –
E542K –
E545A –
E545K –
H1047L –
H1047Y –
I800L –
M1043I –
Q546K –

RET
M918T -
V804L –
V804M –

RPS6KA4
Kinase domain 1 N-terminal residues 33-301 in UniProt O75676
Kinase domain 2 C-terminal residues 411-674 in UniProt O75676

RPS6KA5
Kinase domain 1 N-terminal residues 49-318 in UniProt O75582
Kinase domain 2 C-terminal residues 426-687 in UniProt O75582

RSK1
Kinase domain 1 N-terminal residues 62-321 in UniProt Q15418
Kinase domain 2 C-terminal residues 418-675 in UniProt Q15418

RSK2 Kinase domain 1 N-terminal residues 68-327 in UniProt P51812

RSK3
Kinase domain 1 N-terminal residues 59-318 in UniProt Q15349
Kinase domain 2 C-terminal residues 415-672 in UniProt Q15349

RSK4
Kinase domain 1 N-terminal residues 73-330 in UniProt Q9UK32
Kinase domain 2 C-terminal residues 426-683 in UniProt Q9UK32

TYK2
JH1 domain catalytic residues 897-1176 in UniProt P29597 [2]
JH2 domain pseudokinase residues 589-875 in UniProt P29597 [2]

S2 Binding Affinity Distribution

The DAVIS dataset contains 31,824 protein–ligand binding affinity measurements (442 proteins × 72 ligands).
It is well known for its pronounced imbalance in binding affinity distribution: approximately 70% of protein–
ligand pairs have Kd values capped at 10 µM (pKd set to 5), leading to an overrepresentation of lower-affinity
interactions [3]. The uncapped binding affinity distribution for all pairs is shown in Fig. S1(a). Among these, wild-
type protein–ligand pairs include 20,126 capped measurements, with the corresponding uncapped distribution
shown in Fig. S1(b). Modified protein–ligand pairs include 2,274 capped measurements, with the uncapped
distribution shown in Fig. S1(c).
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Figure S1: Distribution of uncapped binding affinity (pKd) for (a) all protein–ligand pairs, (b) wild-type
proteins, and (c) modified proteins

S3 Binding Affinity Alternation

To systematically evaluate how different protein modifications affect binding affinity, we performed a quantitative
analysis and visualized the results as a heatmap (Fig. S2). The heatmap shows the magnitude of binding affinity
changes induced by modifications across ABL1, BRAF, EGFR, FGFR3, FLT3, KIT, LRRK2, MET, PIK3CA,
and RET. GCN2 has modified variants in the dataset, but its wild-type form is missing; therefore, affinity changes
for GCN2 are not calculable and are excluded. The affinity change is defined as

∆pKd = A(pmi
j , lk)−A(pwi , lk)

A key limitation of the DAVIS dataset is that binding affinity measurements (Kd) are capped at values
above 10µM. As a result, we categorized modification-induced changes in binding affinity into four groups, as
summarized in Table. S2 (1) WT-uncapped & modification-uncapped: both wild-type and modified proteins
have Kd values below 10µM. The affinity changes are precisely trackable, and ∆pKd reflects the exact magnitude
of change. The distribution of these changes is shown in Fig. S3(a) (2) WT-capped & modification-uncapped:
wild-type is capped (Kd > 10 µM), while the modified protein is not. This indicates an increase in affinity due
to the modification. However, since the wild-type value is unknown beyond the threshold, ∆pKd only represents
a lower bound of the actual change.The distribution is shown in Fig. S3(b) (3) WT-uncapped & modification-
capped: modified protein is capped, while the wild-type is not. This suggests a decrease in affinity, but again,
∆pKd captures only the minimum possible magnitude, making the true change untrackable. The distribution is
shown in Fig. S3(c) (4) WT-capped & modification-capped: both wild-type and modified proteins have capped
affinities. In this case, the exact change in binding affinity is completely untrackable, and ∆pKd = 0
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Figure S2: Heatmap of magnitude of binding affinity change. Colors from blue to red represent either
the exact magnitude or the lower bound of the change, while light green indicates untrackable changes.

Table S2: Binding affinity summary between wild-type and modified proteins. ✓ indicates a protein-
ligand pair with Kd < 10 µM, while ✗ indicates Kd > 10 µM.

WT Modification #

✓ ✓ 1601
✗ ✓ 134
✓ ✗ 157
✗ ✗ 2068

Figure S3: Distribution of magnitude of trackable binding affinity alternation. (a) Both wild-type and
modified proteins have Kd values below 10µM. The affinity changes are precisely trackable. (b) Wild-
type is capped (Kd > 10 µM), while the modified protein is not. (c) Modified protein is capped, while
the wild-type is not.
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S4 Input preprocessing

For the all benchmarks, the protein kinase domain is exclusively selected for each kinase protein. If domain
annotations are absent in the DAVIS dataset, we utilize domain information from the UniProt database [4].
Phosphorylation events are not accounted for in docking-free methods due to their intrinsic input constraints;
however, phosphorylated protein structures used as inputs for the FDA model are predicted using AlphaFold3 [5].
Similarly, AlphaFold3 is employed to predict structures of other modified proteins, whereas wild-type protein
structures are directly sourced from the AlphaFold Protein Structure Database [6]. For the CDK4-cyclinD1 and
CDK4-cyclinD3 complexes, amino acid sequences of both components are concatenated for docking-free model
inputs, whereas their 3D structures are predicted using AlphaFold3 for the FDA model.

S5 Benchmark Models

We include 7 models (5 docking free-based models and 2 docking-based model) in the benchmarks.

DeepDTA DeepDTA [7] takes drug SMILES strings and protein amino acid sequences as input. It uses two
parallel 1D CNNs to extract features from the drug and protein sequences, respectively. These features are then
concatenated and passed through fully connected layers to predict the binding affinity. Our implementation is
based on the code available at https://github.com/KSUN63/DeepDTA-Pytorch.

AttentionDTA AttentionDTA [8] takes SMILES strings and protein sequences as input but enhances Deep-
DTA by adding attention mechanisms. After initial feature extraction using 1D CNNs for both inputs, multi-head
attention layers are applied to focus on important regions in the sequences. Our implementation is based on the
code available at https://github.com/zhaoqichang/AttentionDTA_TCBB.

GraphDTA GraphDTA [9] represents the drug as a molecular graph (with atoms as nodes and bonds as
edges, derived from the SMILES) and the protein as a sequence. A graph neural network (GCN and GAT) is
used to process the drug graph, while a CNN processes the protein sequence. The learned representations are
concatenated and passed to fully connected layers for affinity prediction. Our implementation is based on the
code available at https://github.com/thinng/GraphDTA.

DGraphDTA DGraphDTA [10] encodes both the drug and the protein as graphs: drugs from molecular
structures (via SMILES) and proteins from predicted contact maps. It applies GCNs to each graph separately,
then combines the learned representations to predict the binding affinity. Our implementation is based on the
code available at https://github.com/595693085/DGraphDTA.

MGraphDTA MGraphDTA [11] processes drug molecules as graphs and proteins as amino acid sequences. It
employs a deep, multiscale graph neural network architecture with stacked GNN layers and dense skip connections
to capture hierarchical structural features of the drug. Protein sequences are processed via 1D CNNs. The fused
representations are used to predict binding affinity. Our implementation is based on the code available at
https://github.com/guaguabujianle/MGraphDTA.

Folding-Docking-Affinity Folding-Docking-Affinity [12] uses protein sequences and drug molecular SMILES
as input. The model operates in three stages: first, it predicts the 3D structure of the protein (e.g., via Al-
phaFold [5, 13]); second, it docks the drug molecule onto the predicted protein structure to generate a 3D
complex through DiffDock [14]; third, it uses the 3D conformation of the protein-ligand complex as input to
predict binding affinity through GIGN [15]. Notably, in our implementation, we ensemble five affinity predictors,
and the final output is the mean of their predictions. Our implementation is based on the code available at
https://github.com/ZhiGroup/FDA.

Boltz-2 Boltz-2 [16] is an open-source biomolecular foundation model that jointly predicts protein–ligand
complex structures and binding affinities. In our runs, we follow the default affinity-inference settings: we
generate 5 affinity diffusion samples, each with 200 reverse-diffusion steps; we then rank the resulting complexes
by the protein–ligand pair ipTM score and feed the top-ranked pose to the affinity module. Our implementation
is based on the code available at https://github.com/jwohlwend/boltz.
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S6 Model Training Details

Table S3: Training hyperparameter settings for docking free-based models and Folding-Docking-Affinity
(docking-based) used in Augmented Dataset Prediction and Wild-Type to Modification Generalization
benchmarks.

Hyperparameter Docking free-based models Folding-Docking-Affinity

Optimizer Adam Adam
Learning rate 5e-4 5e-4
Weight decay – 1e-6
Batch size 64 128
Max epochs 1,000 1,000
Early stopping patience 100 100

Table S4: Fine-tuning hyperparameter settings for docking free-based models and Folding-Docking-
Affinity (docking-based) used in Few-Shot Modification Generalization.

Same-ligand, different-modifications

Hyperparameter Docking free-based models Folding-Docking-Affinity

Optimizer Adam Adam
Learning rate 5e-4 5e-3
Weight decay – 1e-6
Batch size len(training set) len(training set)
Number of epochs 30 30

Same-modification, different-ligands

Optimizer Adam Adam
Learning rate 1e-4 1e-4
Weight decay – 1e-6
Batch size len(training set) len(training set)
Number of epochs 10 10

S7 Metrics for Model Evaluation

We introduce two baseline methods for the same-ligand, different-modifications and same-modification, different-
ligands settings: Wild-type ground truth (yWT), which uses the ground truth binding affinity of the wild-type
protein–ligand pair to predict that of the modified pairs, and wild-type prediction (ŷWT), which uses the model-
predicted affinity of the wild-type pair instead. We use both baselines to compute evaluation metrics—MSE, Rp,
and C-index—for comparison with the predictions on the modified pairs. The following is the calculation details:

S7.1 Same-ligand, different-modifications

MSE(y, yWT) =
1

n

n∑
j=1

(A(pwi , lk)−A(pmi
j , lk))

2

where the ground-truth binding affinity of the wild-type kinase–ligand pair, A(pwi , lk), is used to compute
Mean Squared Error, denoted as MSE(y, yWT).

MSE(y, ŷWT) =
1

n

n∑
j=1

(f(pwi , lk)−A(pmi
j , lk))

2

where the model-predicted binding affinity for the wild-type kinase–ligand pair, f(pwi , lk), is used to compute
Mean Squared Error, denoted as MSE(y, ŷWT).

MSE =
1

n

n∑
j=1

(f(pmi
j , lk)−A(pmi

j , lk))
2

where the model-predicted binding affinity for the modified kinase–ligand pairs, f(pmi
j , lk), is used to compute

Mean Squared Error, denoted as MSE.
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Rp =

∑n
j=1(f(p

mi
j , lk)− f(pmi

j , lk))(A(pmi
j , lk)−A(pmi

j , lk))√∑n
j=1(f(p

mi
j , lk)− f(pmi

j , lk))2
√∑n

j=1(A(pmi
j , lk)−A(pmi

j , lk))2

where the model-predicted binding affinity, f(pmi
j , lk), and ground-truth binding affinity, A(pmi

j , lk), for the
modified kinase–ligand pairs are used to compute Pearson correlation coefficient, Rp.

C-index =

∑
r ̸=s I(A(pmi

r , lk) > A(pmi
s , lk)) · I(f(pmi

r , lk) > f(pmi
s , lk)) + 0.5 · I(f(pmi

r , lk) = f(pmi
s , lk))∑

r ̸=s I(A(pmi
r , lk) > A(pmi

s , lk))

where the model-predicted binding affinity, f(pmi
r/s, lk), and ground-truth binding affinity, A(pmi

r/s, lk), for the

modified kinase–ligand pairs are used to compute C-index. I(·) is denoted as an indicator function that returns
1 if the condition is true and 0 otherwise

S7.2 Same-modification, different-ligands

MSE(y, yWT) =
1

n

n∑
k=1

(A(pwi , lk)−A(pmi
j , lk))

2

where the ground-truth binding affinity of the wild-type kinase–ligand pairs, A(pwi , lk), is used to compute
Mean Squared Error.

MSE(y, ŷWT) =
1

n

n∑
k=1

(f(pwi , lk)−A(pmi
j , lk))

2

where the model-predicted binding affinity for the wild-type kinase–ligand pairs, f(pwi , lk), is used to compute
Mean Squared Error.

MSE =
1

n

n∑
k=1

(f(pmi
j , lk)−A(pmi

j , lk))
2

where the model-predicted binding affinity for the modified kinase–ligand pairs, f(pmi
j , lk), is used to compute

Mean Squared Error.

Rp(y, yWT) =

∑n
k=1(A(pwi , lk)−A(pwi , lk))(A(pmi

j , lk)−A(pmi
j , lk))√∑n

k=1(A(pwi , lk)−A(pwi , lk))2
√∑n

k=1(A(pmi
j , lk)−A(pmi

j , lk))2

where the ground-truth binding affinity, A(pwi , lk), for the wild-type kinase–ligand pairs and the ground-
truth binding affinity, A(pmi

j , lk), for the modified kinase–ligand pairs are used to compute Pearson correlation
coefficient.

Rp(y, ŷWT) =

∑n
k=1(f(p

wi , lk)− f(pwi , lk))(A(pmi
j , lk)−A(pmi

j , lk))√∑n
k=1(f(p

wi , lk)− f(pwi , lk))2
√∑n

k=1(A(pmi
j , lk)−A(pmi

j , lk))2

where the model-predicted binding affinity, f(pwi , lk), for the wild-type kinase–ligand pairs and the ground-
truth binding affinity, A(pmi

j , lk), for the modified kinase–ligand pairs are used to compute Pearson correlation
coefficient.

Rp =

∑n
k=1(f(p

mi
j , lk)− f(pmi

j , lk))(A(pmi
j , lk)−A(pmi

j , lk))√∑n
k=1(f(p

mi
j , lk)− f(pmi

j , lk))2
√∑n

k=1(A(pmi
j , lk)−A(pmi

j , lk))2

where the model-predicted binding affinity, f(pmi
j , lk), and ground-truth binding affinity, A(pmi

j , lk), for the
modified kinase–ligand pairs are used to compute Pearson correlation coefficient, Rp.

C-index(y, yWT) =

∑
r ̸=s I(A(pmi

j , lr) > A(pmi
j , ls)) · I(A(pwi , lr) > A(pwi , ls)) + 0.5 · I(A(pwi , lr) = A(pwi , ls))∑

r ̸=s I(A(pmi
j , lr) > A(pmi

j , ls))

where the ground-truth binding affinity, A(pwi , lr/s), for the wild-type kinase–ligand pairs and the ground-
truth binding affinity, A(pmi

j , lr/s), for the modified kinase–ligand pairs are used to compute concordance index.

C-index(y, ŷWT) =

∑
r ̸=s I(A(pmi

j , lr) > A(pmi
j , ls)) · I(f(pwi , lr) > f(pwi , ls)) + 0.5 · I(f(pwi , lr) = f(pwi , ls))∑

r ̸=s I(A(pmi
j , lr) > A(pmi

j , ls))
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where the model-predicted binding affinity, f(pwi , lr/s), for the wild-type kinase–ligand pairs and the ground-
truth binding affinity, A(pmi

j , lr/s), for the modified kinase–ligand pairs are used to compute concordance index.

C-index =

∑
r ̸=s I(A(pmi

j , lr) > A(pmi
j , ls)) · I(f(pmi

j , lr) > f(pmi
j , ls)) + 0.5 · I(f(pmi

j , lr) = f(pmi
j , ls))∑

r ̸=s I(A(pmi
j , lr) > A(pmi

j , ls))

where the model-predicted binding affinity, f(pmi
j , lr/s), and ground-truth binding affinity, A(pmi

j , lr/s), for the
modified kinase–ligand pairs are used to compute concordance index.

S8 Supplementary figures

Figure S4: A case of the Wild-Type to Modification Generalization benchmark: Same-ligand, different-
modifications — Staurosporine binding to various EGFR protein variants.

Figure S5: A case of the Wild-Type to Modification Generalization benchmark: Same-modification,
different-ligands — the EGFR(L858R, T790M) variant interacting with multiple ligands.
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Figure S6: A case of the Wild-Type to Modification Generalization benchmark: Same-modification,
different-ligands — the EGFR(G719C) variant interacting with multiple ligands.
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