© ® N O O B~ W N =

9

20
21
22
23
24
25
26

27
28
29
30
31

A Benchmark on Directed Graph Representation
Learning in Hardware Designs

Haoyu Wang Yinan Huang Nan Wu Pan Li
Georgia Tech Georgia Tech George Washington University Georgia Tech

Abstract

To keep pace with the rapid advancements in design complexity within modern
computing systems, directed graph representation learning (DGRL) has become
crucial, particularly for encoding circuit netlists, computational graphs, and devel-
oping surrogate models for hardware performance prediction. However, DGRL
remains relatively unexplored, especially in the hardware domain, mainly due to
the lack of comprehensive and user-friendly benchmarks. This study presents a
novel benchmark comprising five hardware design datasets and 13 prediction tasks
spanning various levels of circuit abstraction. We evaluate 21 DGRL models, em-
ploying diverse graph neural networks and graph transformers (GTs) as backbones,
enhanced by positional encodings (PEs) tailored for directed graphs. Our results
highlight that bidirected (BI) message passing neural networks (MPNNs) and ro-
bust PEs significantly enhance model performance. Notably, the top-performing
models include PE-enhanced GTs interleaved with BI-MPNN layers and BI-Graph
Isomorphism Network, both surpassing baselines across the 13 tasks. Addition-
ally, our investigation into out-of-distribution (OOD) performance emphasizes the
urgent need to improve OOD generalization in DGRL models. This benchmark,
implemented with a modular codebase, streamlines the evaluation of DGRL models
for both hardware and ML practitionersm

1 Introduction

Directed graphs, where edges encode directional information, are widely utilized as data models in
various applications, including email communication [66,[70], financial transactions [25] 145} [124],
and supply chains [[65} 120} [132]. Notably, hardware designs can be represented as directed graphs,
such as circuit netlists [S1}131], control and data flow graphs [12} 30,145} [152]], or computational
graphs [107) [158], often exhibiting unique properties. These graph structures reflect restricted
connection patterns among circuit components or program operation units, with directed edges
encapsulating long-range directional and logical dependencies.

Recently, employing machine learning (ML) to assess the properties of hardware designs via their
directed graph representations has attracted significant attention [[12}[16}3349L155 175190} 107, 143].
Traditional simulation-based methods often require considerable time (hours or days) to achieve
the desired accuracy in assessing design quality [31}[144} 145l [162], substantially slowing down the
hardware development cycle due to repeated optimization-evaluation iterations. In contrast, ML

Emails: haoyu.wang @gatech.edu, panli@gatech.edu
'"Document for the toolbox is available at: https://benchmark-for-dgrl-in-hardwares,
readthedocs.io/en/latest/.

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

https://benchmark-for-dgrl-in-hardwares.readthedocs.io/en/latest/
https://benchmark-for-dgrl-in-hardwares.readthedocs.io/en/latest/

32
33
34
35

36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53

54
55
56
57
58

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75

76
77
78
79
80
81

models can serve as faster and more cost-effective surrogates for simulators, offering a balanced
alternative between simulation costs and prediction accuracy [8, [17, [18} 22,35} 163} 81} 196} (133} (141}
144]. Such an approach is promising to expedite hardware evaluation, especially given the rapid
growth of design complexity in modern electronics and computing systems [[118].

Despite the promising use cases, developing ML models for reliable predictions on directed graphs,
particularly within hardware design loops, is still in its early stages, largely due to the lack of
comprehensive and user-friendly benchmarks. Existing studies in the ML community have primarily
focused on undirected graphs, utilizing Graph Neural Networks (GNNs) [67, 130, [148] or Graph
Transformers (GTs) [[71,195, 1108, [153]]. Among the limited studies on directed graph representation
learning (DGRL) [46, [125] [126, [160], most have only evaluated their models for node/link-level
predictions on single graphs in domains such as web networks, or financial networks [54]. These
domains exhibit very different connection patterns compared to those in hardware design. To the best
of our knowledge, CODE2 in the Open Graph Benchmark (OGB) [56] is the only commonly used
benchmark that may share some similarities with hardware data. However, the graphs in CODE2 are
IRs of Python programs, which may not fully reflect the properties of data in hardware design loops.

Numerous DGRL models for hardware design tasks have been developed by domain experts. While
promising, hardware experts tend to incorporate domain-specific insights with off-the-shelf GNNs
(e.g., developing hierarchical GNNs to mimic circuit modules 33| [145] or encoding circuit fan-in
and fan-out in node features [10} [109} [128]), with limited common design principles investigated
in model development. In contrast, state-of-the-art (SOTA) DGRL techniques proposed by the ML
community lack thorough investigation in these tasks. These techniques potentially offer a more
general and effective manner of capturing data patterns that might be overlooked by domain experts.

Present Benchmark. This work addresses the aforementioned gaps by establishing a new benchmark
consisting of representative hardware design tasks and extensively evaluating various DGRL tech-
niques for these tasks. On one hand, the evaluation results facilitate the identification of commonly
useful principles for DGRL in hardware design. On the other hand, the ML community can leverage
this benchmark to further advance DGRL techniques.

Specifically, our benchmark collects five hardware design datasets encompassing a total of 13
prediction tasks. The data spans different levels of circuit abstraction, with graph sizes reaching
up to 400+ nodes per graph across 10k+ graphs for graph-level tasks, and up to 50k+ nodes per
graph for node-level tasks (see Fig.[I]and Table.[T). We also evaluate 21 DGRL models based on 8
GNN/GT backbones, combined with different message passing directions and various enhancements
using positional encodings (PEs) for directed graphs [46]. PEs are vectorized representations of node
positions in graphs and have been shown to improve the expressive power of GT/GNNs for undirected
graphs [57, 78] 1108 [134]. PEs for directed graphs are still under-explored [46], but we believe they
could be beneficial for hardware design tasks that involve long-range and logical dependencies.

Our extensive evaluations provide significant insights into DGRL for hardware design tasks. Firstly,
bidirected (BI) message passing neural networks (MPNNs) can substantially improve performance
for both pure GNN encoders and GT encoders that incorporate MPNN layers, such as GPS [108]].
Secondly, PEs, only when used stably [57,1134], can broadly enhance the performance of both GTs
and GNNs. This observation contrasts with findings from undirected graph studies, particularly in
molecule property prediction tasks, where even unstable uses of PEs may improve model perfor-
mance [36, 71} 78 [108]]. Thirdly, GTs with MPNN layers typically outperform pure GNNs on small
graphs but encounter scalability issues when applied to larger graphs.

With these insights, we identify two top-performing models: GTs with BI-MPNN layers (effective for
small graphs in the HLS and AMP datasets) and the BI-Graph Isomorphism Network (GIN) [[148]],
both enhanced by stable PEs. These models outperform all baselines originally designed by hardware
experts for corresponding tasks, across all 13 tasks. Notably, this work is the first to consider GTs with
BI-MPNN layers and using stable PEs in DGRL, so the above two models have novel architectures
essentially derived from our benchmarking effort.

82
83
84
85
86
87
88

89
90
91

92

93
94
95
96
97
98
99
100
101
102
103
104

105
106
107

109
110

High-level circuit abstraction .
(g.g.. behavior description) Prediction Task

Application: CG |— Latency on different platforms (CPU/GPU630/GPU640)
High-level Synthesis: HLS B Resource usage (LUT/DSP) and timing (CP)
Logic Synthesis: SR |— Functional unit identification (shared and root)

Physical Synthesis: TIME &= Hold/Setup slack

Operational Amplifiers: AMP & Circuit specifications (DC gain, PM, BW)

Low-level circuit
abstraction

Figure 1: Coverage of Datasets/Tasks.

Workload
deployment

Hardware
Design

Hardware
synthesis

High-level Synthesis Symbolic Reasoning Pre-routing Timing Prediction =~ Computational Graph ~ Operational Amplifiers
(HLS) [145 (SR) [141 (Time) [49 (CG) 1158 (AMP) 33
Type digital digital digital digital analog
Level graph node node graph graph
Target regression classification regression regression regression
Task LUT, DSp,cp node shared by MAJ and XOR, hold slack, CPU/GPU630/GPUG40 gain, PM, BW
root node of an adder setup slack
Evaluation Metric mse, 12 afccuracy,_f_l mse, 12 rmse, acc3, accl0 mse, rmse
recall, precision
In-Distribution CDFG 24-bit graph structure network structure stage3
Out-of-Distribution DFG 32, 36, 48- bit graph structure network structure stage2
Training Graph 16570 - 16570 1-1 7-7 5% - 10000 7223-7223
L _ average 95 4440 29839 218 9
#Train Nodes =, 474 4440 58676 430 16
. average 123 10348 41268 240 15
#Train Bdges = 636 10348 83225 487 36

Table 1: Statistics of selected datasets. In row ‘# Training graph’, we report ‘# Graph Structures - # Samples’. *:
in CG, there are only five unique CNN designs, yet the structure of graphs within each design may vary slightly.

Furthermore, recognizing that hardware design often encounters out-of-distribution (OOD) data in
production (e.g., from synthetic to real-world [145], before and after technology mapping [141]],
inference on different RISC-V CPUs [53]), for each dataset we evaluate the methods data with
distribution shift to simulate potential OOD challenges. We observe that while ML models perform
reasonably well on tasks (8 of 13) with diverse graph structures in the training dataset, they generally
suffer from OOD generalization issues on the remaining tasks. This finding highlights the urgent
need for future research to focus on improving the OOD generalization capabilities of DGRL models.

Lastly, our benchmark is implemented with a modular and user-friendly codebase, allowing hardware
practitioners to evaluate all 21 DGRL models for their tasks with data in a PyG-compatible format [42],
and allowing ML researchers to advance DGRL methods using the collected hardware design tasks.

2 Related Work

Graph Representation Learning as Powerful Surrogate Models. ML-based surrogate models
have been widely adopted in scientific fields [[102} [165] and recently extended in hardware design.
While graph-learning-based surrogate models for hardware design have already demonstrated effec-
tiveness [I10} [12, [16L 75186, 190} (109} 127, [128, [135] 1144} [145, [157]], several aspects warrant further
investigation. First, existing studies often rely on task-specific heuristics to encode circuit structural
information [10} 16,90} 96} (109} [128]], hindering the migration of model-design insights from one
task to an even closely related task. Second, the majority of these studies conduct message passing
of GNNs along edge directions, with few considering BI implementation [49, 55]], and there is an
absence of a comparative analysis of different DGRL approaches. Third, the designed models are
often trained and tested within similar data distributions [10} 55| [161]], lacking systematic OOD
evaluation for new or more complicated designs. Hence, it is imperative to establish a comprehensive
benchmark to compare different DGRL approaches for hardware design tasks.

Methods for DGRL. NN architectures for DGRL can be classified into three types: spatial GNNs,
spectral GNNs, and transformers. Spatial GNNs use graph topology as inductive bias, some employ
bidirected message passing for regular directed graphs [61} 169} 111} [138], others use asynchronous
message passing exclusively designed for directed acyclic graphs (DAGs) [34} 1123}, [159]. Spec-
tral GNNs generalize the ideas of Fourier transform and corresponding spectral convolution from
undirected to directed graphs [43} 144} 53] 168, 189, 99, 117} 1126\ [160]; Transformers with attention

111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130

131

132
133
134
135
136
137

138
139
140
141
142

143
144

145
146
147

148
149
150
151
152
153
154
155

157
158

mechanism reply on designing direction-aware PEs to capture directed graph topology. This bench-
mark is the first to consider combining transformers with MPNN layers for DGRL, extending the ideas
in [[108]. Regarding the choices of PEs, most studies are on undirected graphs [37} 157,78, |134]. For
directed graphs, the potential PEs are Laplacian eigenvectors of the undirected graphs by symmetriz-
ing the original directed ones [36], singular vectors of adjacency matrices [S9] and the eigenvectors
of Magnetic Laplacians [40, 41} |46l [116]. No previous investigate benefit for DGRL from stably
incorporating PE [57,[134], and we are the first to consider stable PEs for DGRL.

Existing Relevant Benchmarks. Dwivedi et al. [38] benchmark long-range reasoning of GNNs on
undirected graphs; PyGSD [54] benchmarks signed and directed graphs, while focusing on social or
financial networks. We also compare all the methods for directed unsigned graphs in PyGSD and
notice that the SOTA spectral method therein - MagNet [160] still works well on node-level tasks on a
single graph (SR), which shares some similar insights. The hardware community has released graph-
structured datasets from various development stages to assist surrogate model development, including
but not limited to NN workload performance [[107, [158]], CPU throughput [23] 94, [121]], resource
and timing in HLS [12] [145]], design quality in logic synthesis [27]], design rule checking in physical
synthesis [[19} 24, 49| [151]], and hardware security [156]. In addition to datasets, ProGraML [30]
introduces a graph-based representation of programs derived from compiler IRs (e.g., LLVM/XLA
IRs) for program synthesis and compiler optimization. Very recently, Google launched TPUgraph for
predicting the runtime of ML models based on their computational graphs on TPUs [[107]]. Our CG
dataset includes computational graphs of ML models, specifically on edge devices.

3 Datasets and Tasks

This section introduces the five datasets with thirteen tasks used in this benchmark. The datasets
cover both digital and analog hardware, considering different circuit abstraction levels, as illustrated
in Fig.[I] Table[T]displays the statistics of each dataset. Next, we briefly introduce the five datasets,
with details provided in Appendix. [D| Although these datasets are generated by existing studies,
we offer modular pre-processing interfaces to make them compatible with PyTorch Geometric and
user-friendly for integration with DGRL methods.

High-Level Synthesis (HLS) [145]: The HLS dataset collects IR graphs of C/C++ code after front-
end compilation [9], and provides post-implementation performance metrics on FPGA devices as
labels for each graph, which are obtained after hours of synthesis with Vitis [5] and implementation
with Vivado [6]. The labels to predict include resource usage, (i.e., look-up table (LUT) and digital
signal processor (DSP)), and the critical path timing (CP). See Appendix. for graph input details.

Significance: The HLS dataset is crucial for testing NNs’ ability to accurately predict post-
implementation metrics to accelerate design evaluation in the stage of HLS.

OOD Evaluation: For training and ID testing, we use control data flow graphs (CDFG) that integrate
control conditions with data dependencies, derived from general C/C++ code; As to OOD cases, we
use data flow graphs (DFG) derived from basic blocks, leading to distribution shifts.

Symbolic Reasoning (SR) [141]: The SR dataset collects bit-blasted Boolean networks (BNs)
(unstructured gate-level netlists), with node labels annotating high-level abstractions on local graph
structures, e.g., XOR functions, majority (MAJ) functions, and adders, generated by the logic
synthesis tool ABC [[15]. Each graph supports two tasks: root nodes of adders, and nodes shared by
XOR and MAJ functions. See Appendix. for detailed input encoding and label explanation.

Significance: Reasoning high-level abstractions from BNs has wide applications in improving
functional verification efficiency [29] and malicious logic identification [92]. GNN surrogate models
are anticipated to replace the conventional structural hashing and functional propagation [74,[119]
and boost the scalability with significant speedup. For graph ML, due to significant variation in the
size of gate-level netlists under different bit widths, SR is an ideal real-world application to evaluate
whether GNN designs can maintain performance amidst the shifts in graph scale.

159
160
161

162
163
164
165

166
167
168
169

170
171

172
173
174
175

176
177
178
179

180
181

182
183
184

186
187
188
189

190
191

192
193
194

195

196

197
198

200

201

202

204
205

OOD Evaluation: We use a 24-bit graph (4440 nodes) for training, and 32, 36, 48-bit graphs (up to
18096 nodes) for ID testing, derived from carry-save-array multipliers before technology mapping.
OOD testing data are multipliers after ASAP 7nm technology mapping [[149] with the same bits.

Pre-routing Timing Prediction (TIME) [49]: The TIME dataset collects real-world circuits with
OpenROAD [3] on SkyWater 130nm technology [4]. The goal is to predict slack values at timing
endpoints for each circuit design by using pre-routing information. Two tasks are considered: hold
slack and setup slack. Details are provided in Appendix.[D.3]

Significance: In physical synthesis, timing-driven placement demands accurate timing information,
which is only available after routing. Repetitive routing and static timing analysis provide accurate
timing but are prohibitively expensive. ML models that precisely learn routing behaviors and timing
computation flows are highly expected to improve the efficiency of placement and routing.

0OD Evaluation: We divide ID-OOD based on the difference in graph structures (e.g. ‘blabla’ and
‘xtea’ are different circuit designs, allocated into ID or OOD groups). See details in Appendix.

Computational Graph (CG) [158]: The CG dataset consists of computational graphs of convolu-
tional neural networks (CNNis) with inference latency on edge devices (i.e., Cortex A76 CPU, Adreno
630 GPU, Adreno 640 GPU) as labels. The CNNs have different operator types or configurations,
either manually designed or found by neural architecture search (NAS). Details are in Appendix.[D.4]

Significance: Accurately measuring the inference latency of DNNs is essential for high-performance
deployment on hardware platforms or efficient NAS [[110, [113]], which however is often costly.
ML-based predictors offer the potential for design exploration and scaling up to large-scale hardware
platforms.

0OOD Evaluation: We split ID-OOD with different graph structures. (e.g. ‘DenseNets’ and ‘ResNets’
are CNNs with different structures, allocated into different groups). See Appendix. for details.

Operational Amplifiers (AMP) [33]: AMP dataset contains 10, 000 distinct 2- or 3-stage operational
amplifiers (Op-Amps). Circuit specifications (i.e. DC gain, phase margin (PM), and bandwidth (BW))
as labels are extracted after simulation with Cadence Spectre [1]]. Details are in Appendix.[D.5]
Significance: Analog circuit design is less automated and requires more manual effort compared to
its digital counterpart. Mainstream approaches such as SPICE-based circuit synthesis and simula-
tion [131], are computationally expensive and time-consuming. If ML algorithms can approximate
the functional behavior and provide accurate estimates of circuit specifications, they may significantly
reduce design time by minimizing reliance on circuit simulation [7].

OOD Evaluation: For training and ID testing, we use 3-stage Op-Amps, which have three single-stage
Op-Amps in the main feed-forward path). For OOD evaluation, we use 2-stage Op-Amps.

Extensions Although the datasets cover different levels of circuit abstraction, there are additional
tasks in hardware design worth exploration with DGRL surrogates, as reviewed in Section 2] Our
modular benchmark framework allows for easy extension to accommodate new datasets.

4 Benchmark Design

4.1 Design Space for Directed Graph Representation Learning

In this section, we introduce the DGRL methods evaluated in this benchmark. Our evaluation focuses
on four design modules involving GNN backbones, message passing directions, transformer selection,
and PE incorporation, illustrated in Fig.[2] Different GNN backbones and transformer adoptions cover
10 methods in total with references in Tab.[2l We also consider their combinations with different
message-passing directions and various ways to use PEs, which overall gives 21 DGRL methods.

For GNNs, we consider 4 spectral methods, namely GCN [67]], DGCN [126]], DiGCN [125]] and
MagNet [160]], where the latter three are SOTA spectral GNNs specifically designed for DGRL [54];
For spatial GNNs, we take GIN [148]] and Graph Attention Network (GAT) [[130], which are the
most commonly used MPNN backbones for undirected graphs. We evaluate the combination of

206
207
208

210
211
212

213
214
215
216
217
218
219
220
221
222
223
224

225

226
227
228
229
230
231
232

234
235
236

237
238
239
240
241

242
243

! |} .
{ spectral ! H node PE (NPE) 1 Method layer—w1§e
H GCN ! E stable edge PE (EPE) etho type complexity
{ | DGEN | ! \Positional Encoding | GCN 7] spectral O(B|)
i | DiGCN | ! i MagNet [160] spectral O(|E))
i | MagNet | ! DGCN [126] spectral O(|E|)
/" (undirected) ' — ! e DiGCN [125] spectral O(|E))
! ! y spatia ' PRI h AU " :
' DI (directed) ! r P ~ GAT [130 spatial O(|E|)
[(Lijiiicz) "’65\ GAT J4-" ! Transformer | GIN(E) [148] spatial O(IE|)
i Message Passing | o GIN ¢! $ i Performer i EDGNN [o1] spatial O(|E)

\ Direction ; \\GNN Backbone -L\l‘ransformer Selection GPS-T [108] spatial+transformer ~ O(|V|? + | E|)
ST T TttttmTTttm o mmmmmmmmomeees GPS-P [26] spatial+transformer O(|V'| + | E])
. A . . TmD [46] transformer oV %)

Figure 2: The benchmark considers 21 combinations BLGINGE) *EFE(oow) spatial o(ED

of message passing direction, GNN backbone, trans- BI-GPS-T+EPE(mew) spatial+transformer O(|V|? + | E])
former selection and PE incorporation, covers 10 ex-
isting SOTA methods from graph ML community and Table 2: Existing methods and two top-
discovers 2 novel top-performing models (see Table. [2). performing methods highlighted at bottom.

GCN, GIN and GAT with three different message-passing directions: a) ‘undirected’(-) treats directed
graphs as undirected, using the same NN parameters to perform message-passing along both forward
and reverse edge directions; b) ‘directed’(DI) only passes messages exclusively along the forward
edge directions; c) ‘bidirected’ (BI) performs message passing in both forward and reverse directions
with distinct parameters for either direction. The other GNNs (DGCN, DiGCN and MagNet) adopt
spectral convolution that inherently considers edge directions. The combination of ‘BI’ with spatial
GNN layers gives the state-of-the-art spatial GNNs for DGRL, i.e., EDGNN [61].

For GTs, we adopt the eigenvectors of the graph Magnetic Laplacian (MaglLAP) matrix as the PEs
of nodes [44,|116], as they are directional-aware. The MagLap matrix L, is a complex Hermitian
matrix with parameter ¢ € [0, 1) named potential, which is treated as a hyper-parameter in our
experiments. Note that when ¢ = 0, MagLap degenerates to the symmetric Laplacian matrix Lg as a
special case. See Appendix |B|for a brief review of MagLap. The GT with the MagLap PEs attached
to node features gives the SOTA GT model for DGRL, named TmD for brevity, proposed in [46]].
GPS [108]] is a GT model with MPNN layers [47, [52]] interleaving with transformer layers [[129],
originally proposed for undirected graphs. We extend GPS to directed graphs by using MaglLap
PEs for transformer layers and DI/BI message passing in its MPNN layers. Hence, GPS is also an
extension of TmD by incorporating MPNN layers. As transformers may not scale well on large
graphs, we evaluate vanilla transformer layers and their lower-rank approximation Performer [71]] for
efficient computation, named as GPS-T and GPS-P, respectively.

4.2 Stable Direction-aware Positional Encodings

Recent studies on undirected graphs
have demonstrated that models by NPE = [Re{V,},Im{V,}]

naively attaching PEs to node features EPE = p(Re{Vydiag(s1(\)) V{1, ..., Re{ Vydiag(rn (\) V' },
may suffer from an issue of instability Im{ Vg diag(x1 ()\))qu}v e Im{quiag(mm(/\))VJ})
because small changes in the graph

. . Table 3: Functions to obtain PEs. NPE directly concatenates the
structure may cause big changes in . .

¢ eigenvectors to node features. In contrast, before concatenating
PEs L57, 78,1134]]. We name this way pEg (g the edge features, EPE employs the permutation equivariant
of using PEs as node-PE (NPE). The functions s : R? — R? w.rt. eigenvalue permutations and per-
instability provably leads to undesired mutation equivariant function p : RIVI*IVIx2m _y RIVIX[VIxd
OOD generalization [57]. We think stably process the eigenvectors and eigenvalues, respectively.

this is also true for directed graphs and indeed observe the subpar model performance with NPE.

Therefore, besides NPE, we also consider a stable way of incorporating PEs for DGRL, namely ‘edge
PE’ (EPE), inspired by [134]. EPE was originally proposed for the undirected graph case. Specifically,
we use the smallest d eigenvalues \; € R? and their corresponding eigenvectors V, € ClVIXd from
L,. Then, we follow the equation in Tableto compute EPE € RIVIXIVIXd Then, in GTs, EPE, ,
is further added to the attention weight between nodes u and v as a bias term at each attention layer.

We note that PEs can also be used in more than GTs, to improve the expressive power of GNNs
(57,173,178 [153]]. We leverage this idea and enhance the GNN models for directed graphs with PEs.

244
245

246
247
248

249

250
251
252
253
254
255
256
257

259
260
261
262
263
264
265

266

267
268
269

270

271
272
273
274

275
276
277
278
279

Specifically, for the GNNs NPE will use NPE,, as extra node features of node v while EPE will use
EPE, , as extra edge features of edge uv if uv is an edge.

The incorporation with EPE helps discover a novel GT model for directed graphs, i.e., GT with
BI-MPNN layers enhanced by EPE, abbreviated as BI-GPS+EPE. We also make the first attempt to
combine GNNs with PEs for directed graphs, which yields the model BI-GIN(E)+EPE.

4.3 Hyer-Parameter Space and Tuning

For each combination of DGRL method in this benchmark, we perform automatic hyper-parameter
tuning with RAY [77]] adopting Tree-structured Parzen Estimator (TPE) [137]], a state-or-the-art
bayesian optimization algorithm. The hyper-parameter space involves searching batch size, learning
rate, number of backbone layers, dropout rate in MPNN and MLP layers, hidden dimension, and MLP
layer configurations. The detailed hyper-parameter space of each model is shown in Appendix.[E.2]
We auto-tune the hyper-parameters with seed 123 with 100 trial budgets and select the configuration
with the best validation performance. Then, the selected configuration is used for model training and
testing ten times with seeds 0 — 9 and the average is reported as the final performance.

5 Modular Toolbox

PyTorch Geometric Lib: GCN, GIN, GAT

PyGSD Lib: MagNet, DGCN, DiGCN

New/Customized GNN Backbones

i Yo
| [(-) undirected] {(nn di.ccncd} [(m) bvdixccncd] : !
. C

Auto-Tuning

Figure 3: Illustration of the directed graph representation learning (DGRL) toolbox.

We develop a highly modular toolbox involving designing, auto hyper-parameter tuning, and evalua-
tion for DGRL methods. The framework is shown in Fig. 3] The toolbox comes with the 21 DGRL
methods, allowing practitioners to evaluate them on any new task with data compatible with PyTorch
Geometric (PyG) [42]. This may be used even beyond hardware design applications. Users can
also customize new methods. Once the method is configured, auto hyper-parameter tuning can be
performed using RAY [77]. The toolbox also includes the above 5 datasets with 13 tasks that can be
used to develop new DGRL models. For details please refer to the official document for this toolbox.

6 Experiments

In this section, we first evaluate DGRL methods combining different GNN backbones, message
passing directions, transformer selection, and PE incorporation, across all 5 datasets and 13 tasks,
using in-distribution (ID) and out-of-distribution (OOD) testing data.

6.1 Main Results

The performances of the methods under all evaluation metrics for both in-distribution and out-of-
distribution testing across all 13 tasks are reported from Table. [[T]to Table. [33]in Appendix. We
summarize the averaged ranking with respect to all evaluation metrics given a task in Table.[d] The
details of ranking calculation is in Appendix. The results tell the following insights:

‘Bidirected’ (BI) message passing in the MPNN layers significantly boosts the models’ performance
on three GNN backbones (GCN, GIN, GAT) and one GT backbone (GPS-T): BI-GCN outperforms
GCN on 10 out of 13 tasks in both ID and OOD evaluations. Similarly, in ID/OOD evaluations,
BI-GIN outperforms GIN in 11/12 out of 13 tasks, BI-GAT outperforms GAT in 11/9 out of 13 tasks
and BI-GPS-T outperforms GPS-T in 5/5 out of 6 tasks, respectively.

280
281
282
283
284
285
286
287
288

290
291
292
293
294

295
296
297

299
300
301
302
303
304
305
306
307
308
309
310

Distribution | In-Distribution (ID) I Out-of-Distribution (OOD)
Dataset | HLS | AMP | SR | TIME | CG | HLS | AMP | SR | TIME | CG
Task [DSPLUT CP |gain PM BW |share root|hold setup|CPU GPU630 GPU640|[DSP LUT CP |gain PM BW [share root|hold setup|CPU GPU630 GPU640
DGCN [15.0 15.0 15.0{14.0 8.0 15.0[10.0 9.0(15.0 5.5 |13.0 15.0 14.0 ||15.0 14.0 15.0/14.0 3.0 15.0] 7.5 5.0|15.0 7.0 |13.3 11.7 11.2
DiGCN |12.0 14.0 13.0{12.0 9.0 14.0| 8.5 7.8 13.5 15.0(14.0 14.0 15.0 ||12.515.0 14.0/9.0 4.0 14.0{ 9.0 5.0|13.5 14.0|13.2 132 133

MagNet [7.0 7.0 10.5/8.0 11.0 8.0 11.0 11.5 4.7 7.0 7.0 10.5/3.0 120 80 3.5 88(9.0 7.0 42 82 73

BI-GCN |11.0 10.5 9.0 |5.0 140 6.0| 5.5 53|50 9.0 |123 123 123 ||11.0 12.5 8.0 4.8
6.0 3.5 5.0(8.01007.0]90 7.3

GIN |60 5.5 8.0]7.0 6.0 10.0/10.0 11.0 3.0 |50 33 8.3 .
DI-GIN 4.0 6.5/9.0 10.0 70| 6.5 d 57 8.0 3.3 7.0110.0 5.0 12.0/ 6.3 9.0

Spatial BI-GIN 5.0(3.0 40 3.0 4.7 4.5
GAT |85 9.0 6.5[6.0 15.0 5.0(13.8 13.5[10.5 11.5{9.0 9.0 8.7 9.0 9.0 55|7.0 15.0 6.0 (123 10.5

DI-GAT {10.0 10.5 10.5{10.012.0 9.0 | 11.8 10.0{13.5 10.0{10.0 10.0 10.0 {|10.0 12.5 11.0[11.0 6.0 100 11.3 10.0]
BI-GAT |9.0 8.0 [l 40 BBI11.0 40 63|65 75|80 53 7.0 8.0 8.0 9.8 8.5

GPS-T |40 3.0 25](13.0 7.0 e R I -- -- 50 6.0 9.5|13.0 8.0

DI-GPS-T| 5.0 5.5 4.0 5.0 e R I -- -- 30 5.0

BI-GPS-T| 3.0) S IR - 35 4560
Transformer

Spectral GCN |14.0 12.0 14.015.013.012.0{ 13.3 13.5/9.5 14.0|15.0 12.3 11.7 |]12.510.0 12.0{14.514.011.0/ 14.8 14.5] 7.5 10.5|12.7 12.7 11.5
DI-GCN |13.5 13.0 12.0/11.0/3.0 13.0{15.0 15.0{11.0 13.0{11.0 11.3 12.0 |{14.0 11.0 13.0{12.0 7.0 13.0{13.5 11.8(10.0 8.0 |11.2 115 122
132 113 125

62 51 13
62 107 105

GPS-P |-- -- --[-- -- --|55 120[65 4.0 |63 53 78 11380 75 |62 NEEEN 62
DIGPS-P| -- -~ --|-- -- --[65 40 75 27 57 -- 58 75/75 80|75 70 58
BI-GPS-P| - - .- --|78 75|80 55(47 60 = 43 | - - |68 EBI7S 80|85 52 |NEEE

Table 4: Average rankmg (1) of methods across datasets/tasks/metrlcs on ID and OOD data.

Distribution \ In-Distribution (ID) \ Out-of-Distribution (OOD)
Dataset ‘ HLS AMP SR TIME CG ‘ HLS AMP SR TIME CG
Task [DSPLUT CP |gain PM BW |share root|hold setup|CPU GPU630 GPU640|[DSP LUT CP |gain PM BW |share root|hold setup|CPU GPU630 GPU640

MagNet |14.5 11.0 14.5\12.0150120_\1101%0\22- 67 ||11.0 11.0 14.5[@MI16.012.0] 5.5 10.8/11.0 160|52 9.5 83
BI-GIN(E) 9.0 2.0 9.0[/6.0 6.0 6.0|48 6.8]25 2.0]6.0 7.5 3.5 6.0]4.0 13.0 50| 3.0 47 58 4.8
BI-GIN(E)+NPE| 5.0 4.0 5.0(5.0 13.0 50| 3.0 6.8|5.5 5.0 |83 5"5 9.0 4.0 70 80 7.0128 3.5 55 12.5] 6.0 6.0
BI-GIN(E)+EPE| 5.0 [l 5.0 | 9.0 10.0J5Hl 40 6.8 67 - 7.0 25]6.0 60 4.0 .
BI-GPS-T (NPE)| 4.5 55 45]2.0 2.0 70 .- - 40 7.0 8.0 90 20 65] -- --|-- --|--
BI-GPS-T+EPE .- - 1.5 35 -
Table 5: Comparlson of competmve methods 1nv01v1ng NPE and EPE The ranklng (i) is based on
all the 18 methods in TableE|plus BI-GIN(E)+NPE, BI-GIN(E)+EPE and BI-GPS-T+EPE.

As to the models, on datasets with small graphs (HLS and AMP), BI-GPS-T consistently delivers
excellent results, achieving top-3 performance in 5 out of 6 tasks on both ID and OOD testing
data. BI-GIN also demonstrates competitive performance on these datasets. However, for datasets
with larger graphs (SR, CG, and TIME), BI-GPS-T encounters a scalability issue. BI-GIN secures
top-three performance in 6 out of 7 tasks in both ID and OOD testing data. For the ‘shared’ and ‘root’
tasks from the SR dataset and the ‘CPU’ and ‘GPU630’ tasks from the CG dataset, MagNet [[160]
performs best in the ID setting. This is likely because training and testing are conducted on the same
graph structures for these specific datasets, reducing the need for significant generalization across
different graph structures. This scenario aligns well with the spectral filtering approach used by
MagNet. These observations match findings from previous studies on directed networks [[54} [160].
However, MagNet’s performance falters in OOD evaluations which ask for the ability to generalize
across different graph structures. GPS-P, despite its capability to handle large graphs, delivers only
mediocre performance overall. In conclusion, BI-GPS is well-suited for small (around one hundred
nodes) directed graphs. For larger graphs, BI-GIN is efficient and performs well. For tasks where the
training and testing data share the same graph structures, one may also attempt to adopt MagNet.

Comparing PE-enhanced methods: We further investigate the impact of different ways of using
PEs. We combine NPE or EPE with the top-performing models from the previous section and evaluate
BI-GIN+NPE, BI-GIN+EPE, and BI-GPS+EPE. Note that BI-GPS already utilizes NPE. We have
chosen not to consider adding PE to MagNet because MagNet only accepts 1-dimensional edge
weights, limiting its ability to leverage EPE. We provide a summary of the performance data from
Table[34]to Table [#3in Appendix [H.2]and report the average rankings of the methods for each task.
All 18 methods in Table[d] along with the 3 new combinations, are included in the ranking. We detail
the results of the most competitive methods in Table[5] For BI-GIN, EPE enhances its performance
on 10 out of 13 tasks in the in-distribution (ID) testing data and 11 tasks in the out-of-distribution
(OOD) testing data. Conversely, NPE only improves the performance of BI-GIN on 7 tasks in
the ID testing and 4 tasks in the OOD testing and performs unstable for the rest tasks. Notably,
EPE-enhanced BI-GIN surpasses MagNet on the CPU task in the CG dataset. For BI-GPS-T, EPE
improves its performance on all 6 tasks in both ID and OOD testing, while NPE does not yield
substantial improvements. This observation contrasts with previous work [[108]] on undirected graphs
for molecular property prediction. In conclusion, we find that incorporating PEs in a stable way as
EPE significantly boosts the performance of different models across the selected tasks and datasets.

311

312
313
314
315

316
317
318
319

321
322
323
324

326
327
328

329
330
331
332
333
334
335
336
337
338
339
340
341

342

343
344
345
346
347
348
349

350

352

353
354

dataset AMP [33] HLS [145] SR [141] CG [138] TIME [49]
(baseline’s name) (CKTGNN) (Hierarchical GNN) (GAMORA) (nn-meter) (Timer-GNN)
task | gain PM BW | dsp Tut cp | shared | cpu (average) | hold
metric | rmse| rmsel rmsel | msel mse) mse) | accuracy? | rmsel acc5t acclOf | 22t
Baseline 0.52 1.15 4.47 3.94 245 0.88 0.99 3.20 0.80 0.99 0.97
BI-GINE+EPE |0.51+£0.07 1.1440.00 4.20+0.13|2.13+£0.08 1.73£0.10 0.61+0.02| 0.99+0.00

2.79+0.14 0.86+0.02 0.99+0.01

0.99+0.00
BI-GPS-T+EPE |0.34+0.08 1.1540.00 3.79£0.11|2.13£0.15 1.962+0.13 0.60£0.01 --

Table 6: Comparison of BI-GIN+EPE and BI-GPS-T+EPE with baselines specific for each dataset.
6.2 Summary: The Recipe for DGRL

Through benchmarking various combinations within the design space, we have formulated a design
recipe for DGRL methods tailored for encoding hardware data: The use of ’bidirected’ (BI) message
passing and stable positional encodings (PE) can significantly enhance model performance. Therefore,
we recommend BI-GPS-T+EPE for encoding small graphs and BI-GIN+EPE for large graphs.

We further compare the two models’ performance with the baseline methods proposed by hardware
design practitioners specifically for the corresponding tasks in the original papers. Results are shown
in Table.[6] The comparison focuses on ID evaluation as for most of the tasks, the original studies
did not even report OOD evaluations. We follow the same data split as baseline methods for fair
comparison (see the details in Appendix [C). BI-GIN+EPE achieves results comparable to, or better
than, the baseline methods. BI-GPS+EPE achieves even better performance than BI-GIN+EPE for
small graphs. Note that the baseline methods for certain tasks may incorporate domain-specific
expert knowledge and additional data processing. For example, CKTGNN [33]] for the AMP dataset
modifies the graph structures into DAGs and employs an asynchronized message passing to mimic
the signal flow in these amplifiers; ‘timer-GNN’ [49] is tailored for the TIME dataset to mimic the
transmission rules of clock signals and designs a non-linear delay model (NLDM) along with a novel
module ‘cell library’. Such domain knowledge may further enhance BI-GPS+EPE and BI-GIN+EPE
for these specific tasks, which is left for future research.

Discussion on OQOD Evaluation: Despite BI-GPS-T+EPE and BI-GIN+EPE outperforming other
methods in OOD testing across all tasks, we cannot yet conclude that these methods are sufficiently
effective for practical OOD usage. In fact, making accurate predictions with OOD data in hardware
design remains a significant challenge. When the graph structures in training sets are sufficiently
diverse, such as in datasets with a large number of small graphs (e.g., AMP, HLS) or those with
abundant local structures (e.g., SR), BI-GIN+EPE and BI-GPS-T+EPE tend to maintain reasonably
good performance on OOD data. However, OOD generalization becomes challenging when the
diversity of graph structures in the training set is limited. For instance, in the TIME dataset, which
has a limited variety of graph structures for training and OOD testing data with entirely different
graph structures, both BI-GIN+EPE and BI-GPS-T+EPE perform worse than timer-GNN [49], which
integrates the knowledge of the physical structure of circuits (as shown in Table [21). We identify
ensuring OOD performance, especially when training sets lack sufficiently diversified graph structures,
as a key direction for future DGRL research.

7 Conclusions and Limitations

Through benchmarking 21 methods on in-distribution and out-of-distribution test sets across 13 tasks
and 5 datasets within the hardware design loop, we find bidirected (BI) message passing neural
networks can substantially improve the performance of both Graph Transformer (GT) encoders that
incorporate MPNN layers and pure GNN encoders. Positional Encodings (PEs), particularly when
used stably, can broadly enhance the performance of both GTs and GNNs. With these insights, we
identify two top-performing models: BI-GPS-T+EPE and BI-GIN+EPE, both of which outperform
the baseline models originally proposed for the corresponding tasks.

Limitations: Although the benchmark covers multiple stages in hardware design loop, there are other
tasks [[10L 119,123,194} 12111151} 1157]] that could be included in this benchmark as DGRL tasks. Given
technological advancements and the diversity of design tools, ensuring OOD performance remains an
urgent open problem in hardware design. Future research may involve high-quality data collection
[50, 160, 139, 1146/ [147] or the development of OOD-aware DGRL methods [82H84} [112].

355

356
357

358

359

360

362

363

364
365
366

367
368
369

370
371

372
373
374
375

376
377
378
379

380
381
382

383
384
385

386
387
388

389
390

391
392
393
394

395
396
397

References

[1] Cadence spectre simulation platform. https://www.cadence.com/en_US/home/tools/
custom-ic-analog-rf-design/circuit-simulation.htmll

[2] Opencores. https://opencores.org/.
[3] Openroad. https://github.com/The-0penROAD-Project/OpenROAD.
[4] Skywater. https://github.com/google/skywater-pdk.

[5] Vitis hls tool. https://www.xilinx.com/products/design-tools/vitis/
vitis-hls.html.

[6] Vivado. https://www.xilinx.com/products/design-tools/vivado.html.

[7]1 Engin Afacan, Nuno Louren¢o, Ricardo Martins, and Giinhan Diindar. Machine learning
techniques in analog/rf integrated circuit design, synthesis, layout, and test. Integration,
77:113-130, 2021.

[8] Abeer Al-Hyari, Hannah Szentimrey, Ahmed Shamli, Timothy Martin, Gary Grewal, and
Shawki Areibi. A deep learning framework to predict routability for fpga circuit placement.
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 14(3):1-28, 2021.

[9] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers Principles, Techniques &
Tools. pearson Education, 2007.

[10] Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mo-
hammad, Mahmoud Al-Qutayri, and Ozgur Sinanoglu. GNN-RE: Graph neural networks for
reverse engineering of gate-level netlists. /EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 1-1, 2021.

[11] Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mo-
hammad, Mahmoud Al-Qutayri, and Ozgur Sinanoglu. Gnn-re: Graph neural networks for
reverse engineering of gate-level netlists. /EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 41(8):2435-2448, 2021.

[12] Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, and Jason Cong.
Towards a comprehensive benchmark for high-level synthesis targeted to fpgas. Advances in
Neural Information Processing Systems, 36:45288-45299, 2023.

[13] Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu performance from cpu
runs using machine learning. In 2014 IEEE 26th International Symposium on Computer
Architecture and High Performance Computing, pages 254-261. IEEE, 2014.

[14] David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute
programs with instruction pointer attention graph neural networks. Advances in Neural
Information Processing Systems, 33:8626-8637, 2020.

[15] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.
In Proc. CAV. Springer, 2010.

[16] Tim Biicher, Lilas Alrahis, Guilherme Paim, Sergio Bampi, Ozgur Sinanoglu, and Hussam
Amrouch. Appgnn: Approximation-aware functional reverse engineering using graph neural
networks. In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, pages 1-9, 2022.

[17] Burcin Cakir and Sharad Malik. Reverse engineering digital ics through geometric embedding
of circuit graphs. ACM Transactions on Design Automation of Electronic Systems (TODAES),
23(4):1-19, 2018.

10

https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://opencores.org/
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/google/skywater-pdk
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vivado.html

398
399
400

401
402
403
404

405
406
407

408
409
410
411

412
413
414

415
416
417
418

419
420
421

422
423

424
425
426

427
428
429

430

431

432

434

435

437

438

440
441

[18] Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-
based automated analog circuit design with deep reinforcement learning. arXiv preprint
arXiv:2202.13185, 2022.

[19] Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet:
An open-source dataset for machine learning in vlsi cad applications with improved domain-
specific evaluation metric and learning strategies. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2023.

[20] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469-3489.
PMLR, 2022.

[21] Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evangeline FY Young.
Pros: A plug-in for routability optimization applied in the state-of-the-art commercial eda
tool using deep learning. In 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pages 1-8. IEEE, 2020.

[22] Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in
Neural Information Processing Systems, 31, 2018.

[23] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda, Eric Atkinson, Ondre;j
Sykora, Saman Amarasinghe, and Michael Carbin. Bhive: A benchmark suite and measurement
framework for validating x86-64 basic block performance models. In 2019 IEEE international
symposium on workload characterization (IISWC). IEEE, 2019.

[24] Vidya A Chhabria, Wenjing Jiang, Andrew B Kahng, Rongjian Liang, Haoxing Ren, Sachin S
Sapatnekar, and Bing-Yue Wu. Openroad and circuitops: Infrastructure for ml eda research
and education. In 2024 IEEE 42nd VLSI Test Symposium (VTS), pages 1-4. IEEE, 2024.

[25] Matteo Chinazzi and Giorgio Fagiolo. Systemic risk, contagion, and financial networks: A
survey. SSRN, 2015.

[26] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. 2020.

[27] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d:
A large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint
arXiv:2110.11292, 2021.

[28] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

[29] Maciej Ciesielski, Tiankai Su, Atif Yasin, and Cunxi Yu. Understanding algebraic rewriting
for arithmetic circuit verification: a bit-flow model. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(6):1346-1357, 2019.

[30] Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael O’Boyle, and
Hugh Leather. ProGraML: A Graph-based Program Representation for Data Flow Analysis
and Compiler Optimizations. In Thirty-eighth International Conference on Machine Learning
(ICML), 2021.

[31] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and Zhiru Zhang.
Fast and accurate estimation of quality of results in high-level synthesis with machine learn-
ing. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 129-132. IEEE, 2018.

11

442
443

444
445
446

447
448
449

450
451
452

453
454
455

457
458

459
460
461

462
463
464
465

466
467
468

469
470

471
472

473
474
475

476
477
478
479

480
481

482
483
484

(32]

(33]

[34]

(35]

(36]

(37]

[38

—_—

(39]

(40]

[41]

[42]

[43]

[44]

[45

—_

[40]

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations, 2019.

Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. Ckt-
gnn: Circuit graph neural network for electronic design automation. International Conference
on Learning Representations, 2023.

Zehao Dong, Muhan Zhang, Fuhai Li, and Yixin Chen. Pace: A parallelizable computation
encoder for directed acyclic graphs. In International Conference on Machine Learning, pages
5360-5377. PMLR, 2022.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcens. Advances in Neural Information Processing
Systems, 33:10480-10490, 2020.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1-48, 2023.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

Vijay Prakash Dwivedi, Ladislav RampaSek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

Hadi Esmaeilzadeh, Soroush Ghodrati, Andrew Kahng, Joon Kyung Kim, Sean Kinzer, Sayak
Kundu, Rohan Mahapatra, Susmita Dey Manasi, Sachin Sapatnekar, Zhiang Wang, et al. An
open-source ml-based full-stack optimization framework for machine learning accelerators.
ACM Transactions on Design Automation of Electronic Systems, 2023.

Michaél Fanuel, Carlos M Alaiz, Angela Fernandez, and Johan AK Suykens. Magnetic
eigenmaps for the visualization of directed networks. Applied and Computational Harmonic
Analysis, 44(1):189-199, 2018.

Michaél Fanuel, Carlos M Alaiz, and Johan AK Suykens. Magnetic eigenmaps for community
detection in directed networks. Physical Review E, 95(2):022302, 2017.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Enza Messina. Sigmanet: One
laplacian to rule them all. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 7568-7576, 2023.

Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki Aida. Graph
signal processing for directed graphs based on the hermitian laplacian. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Wiirzburg,
Germany, September 16-20, 2019, Proceedings, Part I, pages 447-463. Springer, 2020.

Douglas M Gale and Shachar Kariv. Financial networks. American Economic Review,
97(2):99-103, 2007.

Simon Geisler, Yujia Li, Daniel] Mankowitz, Ali Taylan Cemgil, Stephan Giinnemann, and

Cosmin Paduraru. Transformers meet directed graphs. In International Conference on Machine
Learning, pages 11144-11172. PMLR, 2023.

12

485
486
487

488
489
490

491
492
493

494
495
496
497

499

500

502
503
504

505
506
507
508

509
510
511

512
513
514

515
516
517

518
519

521
522

524
525
526
527
528

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pages 1263—1272. PMLR, 2017.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan
Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representa-
tions with data flow. International Conference on Learning Representations, 2020.

Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, David Z Pan, and Yibo Lin. A timing
engine inspired graph neural network model for pre-routing slack prediction. In Proceedings
of the 59th ACM/IEEE Design Automation Conference, pages 1207-1212, 2022.

Nitin Gupta, Shashank Mujumdar, Hima Patel, Satoshi Masuda, Naveen Panwar, Sambaran
Bandyopadhyay, Sameep Mehta, Shanmukha Guttula, Shazia Afzal, Ruhi Sharma Mittal, et al.
Data quality for machine learning tasks. In Proceedings of the 27th ACM SIGKDD conference
on knowledge discovery & data mining, pages 4040-4041, 2021.

Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer
Science & Business Media, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. Msgnn: A spectral
graph neural network based on a novel magnetic signed laplacian. In Learning on Graphs
Conference, pages 40—1. PMLR, 2022.

Yixuan He, Xitong Zhang, Junjie Huang, Benedek Rozemberczki, Mihai Cucuringu, and
Gesine Reinert. Pytorch geometric signed directed: A software package on graph neural
networks for signed and directed graphs. In Learning on Graphs Conference, pages 12—1.
PMLR, 2024.

Zhuolun He, Ziyi Wang, Chen Bai, Haoyu Yang, and Bei Yu. Graph learning-based arithmetic
block identification. In 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pages 1-8. IEEE, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka,
and Pan Li. On the stability of expressive positional encodings for graph neural networks.
International Conference on Learning Representations, 2024.

William Hughes, Sandeep Srinivasan, Rohit Suvarna, and Maithilee Kulkarni. Optimiz-
ing design verification using machine learning: Doing better than random. arXiv preprint
arXiv:1909.13168, 2019.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-
attention as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 655-665, 2022.

Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha
Guttula, Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and Vitobha Munigala.
Overview and importance of data quality for machine learning tasks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pages
3561-3562, 2020.

13

529
530
531

532
533
534

535
536
537

538
539
540

541
542

543
544
545

546
547

548
549

550
551
552

553
554
555

556
557
558

559
560
561

562
563
564

565
566

568

569
570
571
572

[61]

[62]

[63

[t}

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

Guillaume Jaume, An-phi Nguyen, Maria Rodriguez Martinez, Jean-Philippe Thiran, and
Maria Gabrani. edgnn: a simple and powerful gnn for directed labeled graphs. arXiv preprint
arXiv:1904.08745, 2019.

Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Stargazer: Automated regression-based
gpu design space exploration. In 2012 IEEE International Symposium on Performance Analysis
of Systems & Software, pages 2—13. IEEE, 2012.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy,
scalability, and performance of graph neural networks with roc. Proceedings of Machine
Learning and Systems, 2:187-198, 2020.

Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit
Sabne, and Mike Burrows. A learned performance model for tensor processing units. Proceed-
ings of Machine Learning and Systems, 3:387-400, 2021.

Arshinder Kaur, Arun Kanda, and SG Deshmukh. A graph theoretic approach for supply chain
coordination. international journal of logistics Systems and Management, 2(4):321-341, 2006.

Alexy Khrabrov and George Cybenko. Discovering influence in communication networks
using dynamic graph analysis. In 2010 IEEE Second International Conference on Social
Computing, pages 288-294. IEEE, 2010.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

Christian Koke and Daniel Cremers. Holonets: Spectral convolutions do extend to directed
graphs. In The Twelfth International Conference on Learning Representations, 2023.

Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie Lozano, and Naoki Abe. Di-
rected graph auto-encoders. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pages 7211-7219, 2022.

Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information pathways
in a social communication network. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 435—-443, 2008.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34:21618-21629, 2021.

Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor program
compilation made efficient. Advances in Neural Information Processing Systems, 33:14807—
14819, 2020.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances in
Neural Information Processing Systems, 33:4465-4478, 2020.

Wenchao Li, Adria Gascon, Pramod Subramanyan, Wei Yang Tan, Ashish Tiwari, Sharad
Malik, Natarajan Shankar, and Sanjit A Seshia. Wordrev: Finding word-level structures in a
sea of bit-level gates. In 2013 IEEE international symposium on hardware-oriented security
and trust (HOST), pages 67-74. IEEE, 2013.

Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin S
Sapatnekar, Ramesh Harjani, and Jiang Hu. A customized graph neural network model for
guiding analog ic placement. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1-9. IEEE, 2020.

14

573
574
575

577
578
579

580
581
582

583
584
585

586
587
588

589
590
591
592

593
594
595

596
597

598
599

600
601
602

603

605

606
607
608

609
610
611

612
613

614
615
616
617

[76]

[77]

(78]

[79]

(80]

(81]

[82]

[83]

[84]

[85]

[86]

(87]

(88]

[89]

(90]

Rongjian Liang, Hua Xiang, Diwesh Pandey, Lakshmi Reddy, Shyam Ramji, Gi-Joon Nam, and
Jiang Hu. Drc hotspot prediction at sub-10nm process nodes using customized convolutional
network. In Proceedings of the 2020 International Symposium on Physical Design, pages
135-142, 2020.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
International Conference on Learning Representations, 2022.

Ting-Ru Lin, Yunfan Li, Massoud Pedram, and Lizhong Chen. Design space exploration of
memory controller placement in throughput processors with deep learning. IEEE Computer
Architecture Letters, 18(1):51-54, 2019.

Zhe Lin, Jieru Zhao, Sharad Sinha, and Wei Zhang. Hl-pow: A learning-based power modeling
framework for high-level synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 574-580. IEEE, 2020.

Mingjie Liu, Walker J Turner, George F Kokai, Brucek Khailany, David Z Pan, and Haoxing
Ren. Parasitic-aware analog circuit sizing with graph neural networks and bayesian optimiza-
tion. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1372-1377. IEEE, 2021.

Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li.
Structural re-weighting improves graph domain adaptation. In International Conference on
Machine Learning, pages 21778-21793. PMLR, 2023.

Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain
adaptation. International Conference on Machine Learning, 2024.

Shuhan Liu and Kaize Ding. Beyond generalization: A survey of out-of-distribution adaptation
on graphs. arXiv preprint arXiv:2402.11153, 2024.

Daniel Lo, Taejoon Song, and G Edward Suh. Prediction-guided performance-energy trade-
off for interactive applications. In Proceedings of the 48th International Symposium on
Microarchitecture, pages 508-520. ACM, 2015.

Yi-Chen Lu, Siddhartha Nath, Sai Pentapati, and Sung Kyu Lim. Eco-gnn: Signoff power
prediction using graph neural networks with subgraph approximation. ACM Transactions on
Design Automation of Electronic Systems, 28(4):1-22, 2023.

Yi-Chen Lu, Sai Pentapati, and Sung Kyu Lim. Vlsi placement optimization using graph neural
networks. In Proceedings of the 34th Advances in Neural Information Processing Systems
(NeurIPS) Workshop on ML for Systems, Virtual, pages 6—12, 2020.

Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, and Sung Kyu Lim. Gan-place: Advancing
open source placers to commercial-quality using generative adversarial networks and transfer
learning. ACM Transactions on Design Automation of Electronic Systems, 29(2):1-17, 2024.

Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Jungi Jin, and Guangyong Chen. Spectral-based
graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019.

Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo, Karthikeyan Natara-
jan, and Bei Yu. High performance graph convolutional networks with applications in testability
analysis. In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1-6,
2019.

15

618
619
620

621
622
623

624
625
626
627
628

629
630
631

632
633
634

635
636
637

638
639
640

641
642

644

645

647

648
649
650
651

652
653
654

655
656
657

658
659
660

661

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. Proactive error prediction to
improve storage system reliability. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 391-402, 2017.

Alireza Mahzoon, Daniel Grof3e, and Rolf Drechsler. Revsca: Using reverse engineering to
bring light into backward rewriting for big and dirty multipliers. In Proceedings of the 56th
Annual Design Automation Conference 2019, pages 1-6, 2019.

Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi, Sai
Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh Rafatirad. Pyramid: Machine
learning framework to estimate the optimal timing and resource usage of a high-level synthesis
design. In 2019 29th International Conference on Field Programmable Logic and Applications
(FPL), pages 397-403. IEEE, 2019.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accu-
rate, portable and fast basic block throughput estimation using deep neural networks. In
International Conference on machine learning, pages 4505-4515. PMLR, 2019.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin
Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview
from architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207-212, 2021.

Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting a fresh
look at combinational logic synthesis. In Proceedings of the 43rd annual Design Automation
Conference, pages 532-535, 2006.

Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann. Caloree: Learning control
for predictable latency and low energy. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 184-198, 2018.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE data science workshop (DSW), pages
225-228. 1IEEE, 2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
46024609, 2019.

Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado. Machine learning methods
for predicting failures in hard drives: A multiple-instance application. Journal of Machine
Learning Research, 6(May):783-816, 2005.

Audrey Olivier, Michael D Shields, and Lori Graham-Brady. Bayesian neural networks for
uncertainty quantification in data-driven materials modeling. Computer methods in applied
mechanics and engineering, 386:114079, 2021.

Kenneth O’Neal, Philip Brisk, Emily Shriver, and Michael Kishinevsky. Halwpe: Hardware-
assisted light weight performance estimation for gpus. In 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1-6. IEEE, 2017.

The pandas development team. pandas-dev/pandas: Pandas, February 2020.

16

662
663
664
665

666
667
668
669

670
671
672

673
674
675

676
677
678

679
680
681

682
683

685
686
687

688
689
690

692
693

694
695
696

697
698

699
700
701

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K Mishra, Mahmut T
Kandemir, Onur Mutlu, and Chita R Das. Scheduling techniques for gpu architectures with
processing-in-memory capabilities. In Proceedings of the 2016 International Conference on
Farallel Architectures and Compilation, pages 31-44, 2016.

Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Michael Burrows,
Charith Mendis, and Bryan Perozzi. Tpugraphs: A performance prediction dataset on large
tensor computational graphs. Advances in Neural Information Processing Systems, 36, 2023.

Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501-14515, 2022.

Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. Paragraph: Layout para-
sitics and device parameter prediction using graph neural networks. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1-6. IEEE, 2020.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1-34, 2021.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Giinnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Learning on Graphs Conference, pages 25—1. PMLR, 2024.

Boshen Shi, Yongqing Wang, Fangda Guo, Bingbing Xu, Huawei Shen, and Xueqi
Cheng. Graph domain adaptation: Challenges, progress and prospects. arXiv preprint
arXiv:2402.00904, 2024.

Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, and Yingyan Lin. Nasa: Neural
architecture search and acceleration for hardware inspired hybrid networks. In Proceedings of
the 41st IEEE/ACM International Conference on Computer-Aided Design, pages 1-9, 2022.

Aebel Joe Shibu, Shilpa N, and Pratyush Kumar. Verlpy: Python library for verification
of digital designs with reinforcement learning. In Proceedings of the First International
Conference on AI-ML Systems, pages 1-7, 2021.

Brett Shook, Prateek Bhansali, Chandramouli Kashyap, Chirayu Amin, and Siddhartha Joshi.
Mlparest: Machine learning based parasitic estimation for custom circuit design. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1-6. IEEE, 2020.

MA Shubin. Discrete magnetic laplacian. Communications in mathematical physics,
164(2):259-275, 1994.

Rahul Singh, Abhishek Chakraborty, and BS Manoj. Graph fourier transform based on directed
laplacian. In 2016 International Conference on Signal Processing and Communications
(SPCOM), pages 1-5. IEEE, 2016.

IEEE Electronics Packaging Society. Heterogeneous integration roadmap. https://eps.
ieee.org/technology/heterogeneous-integration-roadmap.htmll

Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adria Gascon, Wei Yang Tan, Ashish
Tiwari, Natarajan Shankar, Sanjit A Seshia, and Sharad Malik. Reverse engineering digital
circuits using structural and functional analyses. IEEE Transactions on Emerging Topics in
Computing, 2(1):63-80, 2013.

17

https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html

708
709
710

71
712
713

714
715
716
717

718
719

720
721

722
723
724

725
726

727
728
729

730
731
732

733
734
735

736
737

739

740
741

742
743
744
745

746
747
748

749
750
751

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

[134]

[135]

Amit Surana, Soundar Kumara*, Mark Greaves, and Usha Nandini Raghavan. Supply-chain
networks: a complex adaptive systems perspective. International Journal of Production
Research, 43(20):4235-4265, 2005.

Ondrej Sykora, Phitchaya Mangpo Phothilimthana, Charith Mendis, and Amir Yazdanbakhsh.
Granite: A graph neural network model for basic block throughput estimation. In 2022 IEEE
International Symposium on Workload Characterization (IISWC), pages 14-26. IEEE, 2022.

Aysa Fakheri Tabrizi, Logan Rakai, Nima Karimpour Darav, Ismail Bustany, Laleh Behjat,
Shuchang Xu, and Andrew Kennings. A machine learning framework to identify detailed rout-
ing short violations from a placed netlist. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1-6. IEEE, 2018.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International
Conference on Learning Representations, 2020.

Aviral Kumar Tiwari, Micheal Kofi Boachie, and Rangan Gupta. Network analysis of economic
and financial uncertainties in advanced economies: Evidence from graph-theory. 2021.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. Advances in neural information processing systems,

33:17907-17918, 2020.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv preprint arXiv:2004.13970, 2020.

Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. Accurate opera-
tion delay prediction for fpga hls using graph neural networks. In Proceedings of the 39th
International Conference on Computer-Aided Design, pages 1-9, 2020.

Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho, Charles
Sutton, et al. Learning semantic representations to verify hardware designs. Advances in
Neural Information Processing Systems, 34, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. International Conference on Learning Representa-
tions, 2018.

Andre Vladimirescu. The SPICE book. John Wiley & Sons, Inc., 1994.

Stephan M Wagner and Nikrouz Neshat. Assessing the vulnerability of supply chains using
graph theory. International journal of production economics, 126(1):121-129, 2010.

Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song
Han. Gen-1l circuit designer: Transferable transistor sizing with graph neural networks and
reinforcement learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages
1-6. IEEE, 2020.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional
encoding for more powerful graph neural networks. International Conference on Learning
Representations, 2022.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning
for combinatorial optimization with principled objective relaxation. Advances in Neural
Information Processing Systems, 35:31444-31458, 2022.

18

752
753

754
755

756
757
758

759
760
761

762
763
764

765

767

768
769
770

771
772

773
774
775

776
777
778

779
780
781

782
783

784
785

786
787

789
790
791
792

794
795

[136] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. EMNLP, 2021.

[137] Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components
and their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

[138] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans.
Neural predictor for neural architecture search. In European conference on computer vision,
pages 660—676. Springer, 2020.

[139] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality
challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 32(4):791-813,
2023.

[140] Nan Wu, Jiwon Lee, Yuan Xie, and Cong Hao. Lostin: Logic optimization via spatio-temporal
information with hybrid graph models. In 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 11-18. IEEE, 2022.

[141] Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning
based symbolic reasoning for large-scale boolean networks. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pages 1-6. IEEE, 2023.

[142] Nan Wu, Yingjie Li, Hang Yang, Hangiu Chen, Steve Dai, Cong Hao, Cunxi Yu, and Yuan Xie.
Survey of machine learning for software-assisted hardware design verification: Past, present,
and prospect. ACM Transactions on Design Automation of Electronic Systems, 2024.

[143] Nan Wu and Yuan Xie. A survey of machine learning for computer architecture and systems.
ACM Computing Surveys (CSUR), 55(3):1-39, 2022.

[144] Nan Wu, Yuan Xie, and Cong Hao. Ironman: Gnn-assisted design space exploration in
high-level synthesis via reinforcement learning. In Proceedings of the 2021 on Great Lakes
Symposium on VLSI, pages 39—44, 2021.

[145] Nan Wu, Hang Yang, Yuan Xie, Pan Li, and Cong Hao. High-level synthesis performance
prediction using gnns: Benchmarking, modeling, and advancing. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 49-54, 2022.

[146] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumuruganathan.
Zeroer: Entity resolution using zero labeled examples. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 1149-1164, 2020.

[147] Renzhi Wu, Prem Sakala, Peng Li, Xu Chu, and Yeye He. Demonstration of panda: a weakly
supervised entity matching system. Proceedings of the VLDB Endowment, 2021.

[148] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations, 2019.

[149] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric.
Standard cell library design and optimization methodology for asap7 pdk. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 999—-1004. IEEE, 2017.

[150] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang, Peng Li,
Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, et al. Improving service availability of cloud
systems by predicting disk error. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 481-494, 2018.

[151] Jiang Xun, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet
2.0: An advanced dataset for promoting machine learning innovations in realistic chip design
environment. In The Twelfth International Conference on Learning Representations, 2024.

19

796
797
798

799
800
801

802
803
804

805
806
807

808
809
810
811

812
813
814

822
823
824

825
826
827

828
829
830
831

832
833
834

835
836

838
839
840

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Hanchen Ye, Hyegang Jun, and Deming Chen. Hida: A hierarchical dataflow compiler for high-
level synthesis. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1, pages 215-230, 2024.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877-28888, 2021.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without
human knowledge. In Proceedings of the 55th Annual Design Automation Conference, pages
1-6, 2018.

Cunxi Yu and Wang Zhou. Decision making in synthesis cross technologies using Istms and
transfer learning. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for
CAD, pages 55-60, 2020.

Shih-Yuan Yu, Rozhin Yasaei, Qingrong Zhou, Tommy Nguyen, and Mohammad Abdullah
Al Faruque. Hw2vec: A graph learning tool for automating hardware security. In 2021 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pages 13-23.
IEEE, 2021.

Guo Zhang, Hao He, and Dina Katabi. Circuit-gnn: Graph neural networks for distributed
circuit design. In International conference on machine learning, pages 7364—7373. PMLR,
2019.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang, and Yunxin
Liu. Nn-meter: Towards accurate latency prediction of deep-learning model inference on
diverse edge devices. In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, pages 81-93, 2021.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A
variational autoencoder for directed acyclic graphs. Advances in neural information processing
systems, 32, 2019.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. Advances in neural information processing systems,
34:27003-27015, 2021.

Guangwei Zhao and Kaveh Shamsi. Graph neural network based netlist operator detection
under circuit rewriting. In Proceedings of the Great Lakes Symposium on VLSI 2022, pages
53-58, 2022.

Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. Comba: A
comprehensive model-based analysis framework for high level synthesis of real applications.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
430-437. IEEE, 2017.

Jieru Zhao, Tingyuan Liang, Sharad Sinha, and Wei Zhang. Machine learning based routing
congestion prediction in fpga high-level synthesis. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1130-1135. IEEE, 2019.

Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. Accurate phase-level cross-platform
power and performance estimation. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1-6. IEEE, 2016.

Yunxing Zuo, Mingde Qin, Chi Chen, Weike Ye, Xiangguo Li, Jian Luo, and Shyue Ping
Ong. Accelerating materials discovery with bayesian optimization and graph deep learning.
Materials Today, 51:126—135, 2021.

20

841

842
843
844
845

846

847
848

849

850
851
852

853

855
856
857
858
859
860

861
862

863

864

865

866
867

868
869

870
871

872

873
874
875

877
878
879
880
881
882
883
884
885
886

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , Oor
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.
* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes] See Section D]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Section

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

21

887

888

889
890
891
892
893
894
895
896
897

898
899
900
901

902
903
904
905
906

908
909
910
911
912
913

914
915

917
918
919
920
921
922

923
924
925
926
927
928
929
930
931

932
933
934
935
936

A More Related Work

In this section, we review the extensive previous studies that use ML-based surrogate models.

ML-based surrogate models have been widely used in hardware system design, such as predicting
energy/power consumption, latency, throughput, or reliability on CPUs [23} 79} 185} 194} 98| [121] [164],
GPUs [[13} 22162 [72} [103} [106]], tensor processing units (TPUs) [64} [107], and data centers [91,
1011 1150]. Similar trends are observed in quickly estimating quality-of-results of circuit designs in
EDA flows, spanning high-level synthesis (HLS) [[12} 180} 93\ 127} 135} 1144} {145, [152} [163]], logic
synthesis [140} 14111154} [155/[161]], physical synthesis [21}39}49L 76| 87,188,196l [122], analog circuit
designs [33| [75, 109} 115} [133} [157]], and design verification [58} 190} (114} [128| [142]. As circuits
can naturally be represented as directed graphs, the adoption of GNN-based surrogate models is
increasingly prominent. We discuss several examples for each of the aforementioned tasks as follows.

In CPU throughput estimation, Granite [[121]] adopts a GNN model to predict basic block throughput
on CPUs. Basic blocks are represented as graphs to capture the semantic relationships between
instructions and registers. A GNN model is then trained to learn expressive embeddings for each
basic block, followed by a decoder network to predict the throughput.

In HLS, many studies leverage the IR graphs generated by HLS front-ends. Ustun et al. [[127]
employs GNNS to predict the mapping from arithmetic operations in IR graphs to different resources
on FPGAs. IronMan [144] exploits GNNs to generate graph embeddings of IR graphs, which
serve as state representations in its reinforcement learning (RL-)based search engine to find the
Pareto curve between two types of computing resources on FPGAs. The same problem can also be
solved by carefully designing a GNN surrogate model as a continuous relaxation of the actual cost
model, allowing for a soft solution that can be decoded into the final discrete solution of resource
assignments [135]. In terms of HLS datasets, Wu et al. [[145]] develop an HLS dataset and benchmark
GNNs for predicting resource usage and timing, however, they enhance accuracy with domain-specific
information and do not explore message passing directions or the benefit from positional encoding.
Bai et al. [12] combine pre-trained language models [48,|136] and GNNss to predict the optimization
effects of different directives.

In logic synthesis or logic design, LOSTIN [140] employs a GNN to encode circuit graphs and an
LSTM to encode logic synthesis sequences, where the two embeddings are concatenated to predict
logic delay and area. To identify functional units from gate-level netlists, different GNN models
can be leveraged to classify sub-circuit functionality [[L 1], predict the functionality of approximate
circuits [[L6], analyze impacts of circuit rewriting on functional operator detection [161]], and predict
boundaries of arithmetic blocks [55]. Gamora [[141] leverages the message-passing mechanism in
GNN computation to imitate structural shape hashing and functional propagation in conventional
symbolic reasoning, achieving up to six orders of magnitude speedup compared to the logic synthesis
tool ABC in extracting adder trees from multipliers.

In physical synthesis, Mirhoseini et al. [96] combine GCN with deep RL to place macros (i.e.,
memory cells), after which standard cells are placed by a force-directed method. The GCN model
encodes the topological information of chip netlists to generate graph embeddings as the inputs
to the RL agent, as well as to provide proxy rewards to guide the search process. Lu et al. [87]
apply GraphSAGE [52] to circuit netlists to learn node representations that capture logical affinity.
These representations are grouped by a weighted K-means clustering to provide placement guidance,
informing the placer about which cells should be placed nearby in actual physical layouts. Guo
et al. [49] develop a hierarchical GNN with BI message passing to estimate post-routing timing
behaviors by using circuit placement results.

In hardware design verification, test point insertion is a common technique aimed at enhancing fault
coverage, which modifies target hardware designs by inserting extra control points or observation
points. Ma et al. [90] use GCNs to predict whether a node in hardware designs is easy or hard
to observe, based on which new observation points are inserted. To improve branch coverage,
Vasudevan et al. [[128] exploit IPA-GNN [14]] to predict the probability of current test parameters

22

937
938
939

940
941
942
943
944
945
946

947

948

949
950
951
952
953
954
955
956

957
958
959
960
961

963
964
965

966
967
968

969
970
971
972

973
974

975

976
977
978

covering specific cover points by characterizing RTL semantics and computation flows; new tests
targeting uncovered points are generated by maximizing the predicted probability with respect to test
parameters through gradient-based search.

In analog circuit design, by using circuit schemetics, CktGNN [33] employs a nested GNN to predict
analog circuit properties (i.e., gain, BW, PM) and reconstruct circuit topology. By using pre-layout
information, ParaGraph [109] builds a GNN model to predict layout-dependent parasitics and physical
device parameters; GCN-RL circuit designer [[133] combines RL with GCNs for automatic transistor
sizing. By using layout information, GNN surrogate models can predict the relative placement
quality of different designs [[75]], and other circuit properties, such as the electromagnetic properties
of high-frequency circuits [157].

B A Brief Review of Magnetic Laplacian and Positional Encodings for
Directed Graphs

Positional encodings (PE) for graphs are vectorized representations that can effectively describe
the global position of nodes (absolute PE) or relative position of node pairs (relative PE). They
provide crucial positional information and thus benefits many backbone models that is position-
agnostic. For instance, on undirected graphs, PE can provably alleviate the limited expressive power
of Message Passing Neural Networks [[73} 78] 100 [148]]; PE are also widely adopted in many graph
transformers to incorporate positional information and break the identicalness of nodes in attention
mechanism [20}[71, 108, [153]]. As a result, the design and use of PE become one of the most important
factors in building powerful graph encoders.

Likely, one can expect that direction-aware PE are also crucial when it comes to directed graph
encoders. “Direction-aware” implies that PE should be able to capture the directedness of graphs.
A notable example is Magnetic Laplacian PE [46], which adopts the eigenvectors of Magnetic
Laplacian as PE. Note that Magnetic Laplacian can encode the directedness via the sign of phase of
exp{+i2mq}. Besides, when ¢ = 0, Magnetic Laplacian reduces to normal symmetric Laplacian.
Thus, Magnetic Laplacian PE for directed graphs can be seen as a generalization of Laplacian PE for
undirected graphs, and the latter is known to enjoy many nice spectral properties [28] and be capable
to capture many undirected graph distances [71]]. Therefore, Magnetic Laplacian appears to be a
strong candidate for designing direction-aware PE. The definition is as follows:

Magnetic Laplacian (MaglLap) matrix is a Hermitian complex matrix defined by L, = I —
DY 2AqD*1/ 2 where D is the diagonalized degree matrix counting both in-degree and out-
degree, and A, refers to the complex matrix as follows:

exp{i2nq}, if (u,v) € &,
[Agluw = | exp{—i2mq}, if (v,u) € &, (1)
1, if (u,v),(v,u) €&,

with a parameter ¢ € [0, 1) called potential. Hermitian refers to the property that complex conjugate
Lg equals to L. It is also worth noticing that when ¢ = 0, MagLap L ,—, degenerates to the standard

symmetric Laplacian matrix L = I — D~'/2(A + AT)D~'/2 as a special case, where A is the
Adjacency matrix. See [44] for a comprehensive introduction to Magnetic Laplacian.

Note that it is worth mentioning that there are also other PE for directed graphs, such as SVD of
Adjacency matrix [59] and directed random walk [46].

C Data split when comparing with baselines in the original papers

When comparing with the baselines from original papers, for training and testing the proposed new
methods ‘BI-GINE+EPE’ and ‘BI-GPS+EPE’, we follow the dataset split of the original paper for
fair comparison.

23

979
980
981
982
983
984
985
986

988
989
990

991

992

993

995
996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1009

1010

In the AMP dataset, we follow [33] to merge the graphs with 2-stage and 3-stage Op-Amps together
into one dataset, we take the last 1000 graphs for test and the rest for training and validation. The
performance of baseline method cktGNN and the proposed new methods ‘BI-GINE+EPE’ and
‘BI-GPS+EPE’ are reported on such data split; for the HLS dataset, both the baseline method and the
proposed new methods are trained and tested on control data flow graphs (CDFG) only, following the
same data split ratio that randomly divide the data into training, validation and testing as described in
the original paper [[1435]]; in the SR dataset, both the baseline and the new methods are trained with
24-bit netlists and tested on 48-bit netlists, note that both the training and testing data are obtained
before technology mapping [141]]; for the CG dataset both the baselines and the proposed methods
are tested to predict the runtime of neural networks on the Cortex A76 CPU platform [[158]); for the
TIME dataset, we follow the dataset split in the original paper [49] and compare the results of the
baseline method and the new methods on the ID designs.

D Dataset Selection Details

License for the datasets and codes.

code implementation dataset license

HLS [145] MIT License MIT License
AMP [33] MIT License MIT License
SR [141]] The MIT License The MIT License
CG [158] MIT License MIT License
our benchmark CC BY-NC --

Table 7: License of the datasets and the toolbox implementation of this benchmark.

For detailed information of the license of each origin dataset, please refer to their original pa-
per/documents, the final interpretation regarding the five dataset’s licensing information rests with
the owner of the original paper. To the best of our knowledge, these hardware datasets contain no
personally identifiable information or offensive content.

Detailed Description of Evaluation Metrics

D.1 High-Level Synthesis (HLS) Dataset

After HLS front-end compilation, six node features are extracted, as summarized in Table@ Each
edge has two features, the edge type represented in integers, and a binary value indicating whether
this edge is a back edge. Each graph is labeled based on its post-implementation performance metrics,
which are synthesized by Vitis HLS [5]] and implemented by Vivado [6]]. Three metrics are used for
regression: DSP, LUT, and CP. The first two are integer numbers indicating the number of resources
used in the final implementation; the last one is CP timing in fractional number, determining the
maximum working frequency of FPGA. The DFG and CDFG datasets consists of 19,120 and 18,570
C programs, respectively. Figure] shows an example C program from the CDFG dataset, with the
corresponding control dataflow graph shown in Figure [5] More information can be found in the
original paper [145].

Feature Description Values
Node type General node type operation nodes, blocks, ports, misc
Bitwidth Bitwidth of the node 0~256, misc
Opcode type Opcode categories based on LLVM binary_unary, bitwise, memory, etc.
Opcode Opcode of the node load, add, xor, icmp, etc.
Is start of path Whether the node is the starting node of a path 0,1, misc
Cluster group Cluster number of the node -1~256, misc

Table 8: Node features and their example values.

24

1011

1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

1035

1036
1037
1038
1039
1040
1041
1042

1043
1044
1045

Figure 4: An example C program Figure 5: Control dataflow graph of the example pro-
from the CDFG dataset. gram in Figure [ZI_?}

D.2 Symbolic Reasoning (SR) Dataset

In this dataset, all the circuit designs are represented as and-inverter graphs (AIGs), a concise and
uniform representation of BNs consisting of inverters and two-input AND gates, which allows
rewriting, simulation, technology mapping, placement, and verification to share the same data
structure [97]. In an AIG, each node has at most two incoming edges; a node without incoming edges
is a primary input (PI); primary outputs (POs) are denoted by special output nodes; each internal
node represents a two-input AND function. Based on De Morgan’s laws, any combinational BN can
be converted into an AIG [[15]] in a fast and scalable manner.

For each node, there are three node features represented in binary values denoting node types and
Boolean functionality. The first node feature indicates whether this node is a PI/PO or intermediate
node (i.e., AND gate). The second and the third node features indicate whether each input edge is
inverted or not, such that AIGs can be represented as homogeneous graphs without additional edge
features.

This dataset aims to leverage graph learning based approaches to accelerate the adder tree extraction
in (integer) multiplier verification, which involves two reasoning steps [74, [119]: (1) detecting
XOR/MAIJ functions to construct adders, and then (2) identifying their boundaries. Thus, there are
two sets of node labels, i.e., two node-level classification tasks. One task provides labels specifying
whether a node (i.e., a gate) in the AIG belongs to MAJ, XOR, or is shared by both MAJ and XOR.
The other task provides labels specifying whether a node is the root node of an adder. These AIGs
and ground truth labels are generated by the logic synthesis tool ABC [15]. Figure[6]shows the AIG
of an 8-bit multiplier: the blue and red nodes are the root nodes of XOR functions, with the red nodes
directly connecting to the POs; the green nodes are the root nodes of MAJ functions. By pairing one
XOR function with one MAJ function sharing the same set of inputs, we can extract the adder tree,
which is shown in Figure[7] More information can be found in the original paper [141].

D.3 Pre-routing Timing Prediction (TIME) Dataset

Similar to timing analysis tools, circuits in this dataset are represented as heterogeneous graphs
consisting of two types of edges: net edges and cell edges, with edge features shown in Table[9a] The
nodes in graphs denote pins in circuits, with features summarized in Table [9b] The TIME dataset
collects 21 real-world benchmark circuits from OpenCores [2] with OpenROAD [3]] on SkyWater
130nm technology [4] (i.e. blabla, usb_cdc_core, BM64, salsa20, aes128, aes192, aes256, wbqspi-
flash, cic_decimator, des, aes_cipher, picorv32a, zipdiv, genericfir, usb, jpeg_encoder, usbf_device,
xtea, spm, y_huff, and synth_ram). More information can be found in the original paper [49].

We select the slack prediction task in this dataset, including setup slack and hold slack. Slack values
are used by STA tools to identify paths that violate timing constraints, enabling further optimization
of placement and routing. Setup/hold slack is defined as the difference between the required arrival

25

1046
1047

1048
1049
1050
1051
1052

Figure 6: 8-bit multiplier in AIG.

Description Size Description Size
(Net edge) Distances along x/y direction 2 Is primary 1/O pin or not 1
(Cell edge) LUT is valid or no 8 Is fan-in or fan-out 1
(Cell) LUT indices 8x (T+7) Distance to the 4 die area boundaries 4
(Cell) LUT value matrices 8 X (7Tx7) Pin capacitance 4 (EL/RF)

(a) Edge features in the TIME dataset. For each cell
edge, 8 LUTs are used to model cell delay and slew
under four timing corner combinations (EL/RF).

(b) Pin (i.e., node) features in the TIME dataset.
EL/RF stands for early/late and rise/fall, i.e., the
four timing corner combinations in STA.

Table 9: Node and edge features for pre-routing timing prediction.

time (based on setup or hold time) and the actual arrival time of data/signals at timing endpoints,

making it a node-level regression task.

Figure 8] shows the most common timing path, register-to-register path. (1) For setup slack, the signal
should arrive earlier than the required arrival time (i.e., clock period - setup time). Setup time #equp
refers to the time before the clock edge that data must be stable. (2) For hold slack, the signal should
arrive later than the required hold time to ensure no impact on signals for the current clock edge.
Hold time #,04 refers to the time after the clock edge that data must be stable.

26

1053

1054
1055
1056

1057

1058
1059
1060
1061
1062
1063
1064

1065
1066
1067
1068

3
=
RS
S
| <D /
ST 1
4
1=I|ﬂlllliillllll
e
"l!;;fg!!!!!!!!!!!!&!!&"L!;:.i'!£fL!L R OO RO D D000
Figure 7: 8-bit multiplier with adders extracted.
Module Register R1 Register R2
i gy

o

— ' Q
Data captured

on thiT edge

Data launched
this edge
CLK

on thi
\ Clock period
Waveform
ad
3

o 1

jl
o
e+
)

——>
Lsetup § hold

Figure 8: Register-to-register timing path.

D.3.1 TIME Dataset Distribution Shift Definition

For training and ID testing, we take the designs ‘blabla’, ‘usb_cdc_core’, ‘wbqspiflash’,
‘cic_decimator’, ‘picorv32a’, ‘zipdiv’, ‘usb’. For OOD testing, we use ‘xtea’, ‘spm’, ‘y_huff’,
‘synth_ram’.

D.4 Computational Graph (CG) Dataset

This dataset includes (1) 12 state-of-the-art CNN models for the ImageNet2012 classification task
(i.e., AlexNet, VGG, DenseNet, ResNet, SqueezeNet, GoogleNet, MobileNetvl, MobileNetv2,
MobileNetv3, ShuffleNetv2, MnasNet, and ProxylessNas), each with 2,000 variants that differ in
output channel number and kernel size per layer, and (2) 2,000 models from NASBench201 [32]
with the highest test accuracy on CIFAR10, each featuring a unique set of edge connections. In total,
this dataset contains 26,000 models with different operators and configurations. Figure 9] shows an
example of the computational graph of a model in NASBench201.

Node features include input shape (5 dimensions), kernel/weight shape (padding to 4 dimensions),
strides (2 dimensions), and output shape (5 dimensions). Each computational graph is labeled with the
inference latency on three edge devices (i.e., Cortex A76 CPU, Adreno 630 GPU, Adreno 640 GPU).
There is no edge feature in this dataset. More information can be found in the original paper [[158]].

27

s
Placehylder CONV2D!

usedBatchNorm

Relu
Conv2D, .}

b Add,
@®. rusedsachvom @
Rélu

Conv2D

F.ﬁ;atchNarmg []

ConvaD Conv2D
@ !

Relu™_| —Q

FusedBatchNorm-®
> ad I

»- u
- Add —a FusedBatchNa‘
GigpdBatchNorm >
@cr rai @ @
Relu \ Relu Cony2D C9Nv2D
3 cghv2p \
FusedBatchNorm 3 @\ JusedBatchNorm
Relu Add,
Avgpool Conv2D f\ddi‘ ’
ComR ' Convan

FusedBatchNogad

FusedBatchNormRelu™, FusedBatchNor™d e A »- Rl g
9 7 ConvzD @ _\ Relu @)edBatchnoffd — add @
Add AdwisedBatchNorm Conv20tdnv2p@. | Cony, | dah Rell
@ d 20 Fudedsatcn Conv2p ! Add\ eu.
{ Relu \,
” Helu Relu
Rely | th?ﬁztchg‘c-rm g f S ¢ N oo
- elu z ~
Cony2 | Add /dsedBatchNorm Conv2Df ﬁsmEakth’“NsedBat(hNorm
UsedBatchNorrg e K FusedBatchNorm” @) \
“Ade & Relu i
‘,r AN Fuseds’al: QrAVT?d Conv2D Conv2D
el (_') . e ® w Relu FusedBatchNorm
/ \ ~Add
Relu N YRely ¥ CanvaDi)
Q @, % FusedBatchNg; Con2D“Y &\ > Q
Fisdsatch i 0 @ FuByBatchNany_RisedBatchiBAK Relu
Convap ohv2D S e A
G Relu Conv2(s’ Relu Felu Py
usedBatchNorm 1 Add Mean
Convab
usedBatchNorm “add - Q]
y o Fucedsattniorm $
@ Ao O @ Reshape
‘ Relu Relu ConvaD ¢
. " FC
Conv2D Add, AvgPool FusedBatchNorm
B Aqa comzo A
FusedBatchNor ¢ i ~\\' Canbzn
FusedBatciNegRron . —
relu @) \ Fusedet(thG‘) Add ool
Relu
Conv2D FusedBatchiiggn o o
Conv2D 5o
Relu Conv2D

Figure 9: Computational graph of an example NN model from NASBench201 [32].

1069 D.4.1 CG Dataset Distribution Shift Definition

1070 For training and ID testing, we take ‘DenseNets’, ‘MnasNets’, ‘MobileNetv2s’, ‘MobileNetv3s’,
1071 ‘nasbench201s’. For OOD testing, we select ‘Proxylessass’, ‘ResNets’, and ‘SqueezeNets’.

1072 D.5 Multi-Stage Amplifiers (AMP) Dataset

1073 This dataset focuses on predicting circuit specifications (e.g., DC gain, bandwidth (BW), phase
1074 margin (PM)) of 2/3-stage operational amplifiers (Op-Amps), which are simulated by the circuit
1075 simulator Cadence Spectre [1]]. A 2/3-stage Op-Amp consists of (1) two/three single-stage Op-Amps
1076 on the main feedforwoard path and (2) several feedback paths, with one example shown in the right
1077 part of Figure[T0} To make multi-stage Op-Amps more stable, feedforward and feedback paths are
1078 used to achieve different compensation schemes, each of which is implemented with a sub-circuit,
1079 e.g., single-stage Op-Amps, resistors, and capacitors. Due to the different topologies of single-stage
1080 Op-Amps and various compensation schemes, each sub-circuit is built as a subgraph. There are 24
1081 potential sub-circuits in the considered 2/3-stage Op-Amps:

1082 « Single R or C (@ in Figure[D3] 2 types).

1083 * R and C connected in parallel or serial (2 in Figure 2 types).

1084 * A single-stage Op-Amp (g,,,) with different polarities (positive, +g.,,, or negative, —g,,)
1085 and directions (feedforward or feedback) (3 in Figure 4 types).

1086 * A single-stage Op-Amp (g,,,) with R or C connected in parallel or serial (16 types). Note
1087 that we use the single-stage Op-Amp with feedforward direction and positive polarities as
1088 an example for @ in Figure

1089 Based on aforementioned formulation, node features include (1) subgraph type, (2) node type (e.g.,
1000 R, C, g,, with feedforward/feedback, primary input/output), and (3) value of the component. There
1001 is no edge feature. More information can be found in the original paper [33].

28

1092

1093

1094
1095
1096

1097

1098

1099
1100

1101

1102

1103

1104

Feedback path

o AMA~ - @ ﬁ
@ - —m— 'P“

R C R
C Stage 1 Stage 2 Stage 3
; N Feedforward path R
of>- - <k <t L > ‘
Feedforward Backward 3-stage Op-Amp I

= GND

Figure 10: Subgraph basis for operational amplifiers and an example 3-stage Op-Amp.

E Benchmark Design Details

E.1 Selected Backbone Functional

Here we list the functions we implemented for the selected GNN backbone layers, note that here we
show the forms of the backbone on undirected graphs, one may do slight modification by introducing
w(+) on the neighbor message aggregation to consider message passing control for directed graphs.

GIN: x{V =MLP | x[*"D 4 3~)
JEN(4)

is the for graphs without edge features,

GINE: x(" =MLP [x* "V + $~ ReLU{""V +eli™) 3)
JEN(3)
is used for graphs with edge features.

(k—1)
GON: x®) =T ST D (e, @
JjeN(u{i} 4/ d;d;
where 0 is the parameter to learn, for graphs with edge features e; ; is the processed edge weight, for
graphs without edge features e; ; is set as 1.

GAT: xl(-k) = k 1)9 x (k—1) —|— oz(k D Gtx§-k71), %)
JEN ()
where 6, 0; are parameters to learn, for graphs without edge features,

(k—1) _ exp (LeakyReLU (azesxgk*” n atTGtx;k’l)))

% , ©6)
o Zme]\/(i)u{i} exp (LeakyReLU (azesxgk_l) + a;"gtxgr’:—l)))
and for graphs with edge features,
(k1) _ exp (LeakyReLU (aTesx(.k_l) + aTgtx(,’“—l) + aTgee(’?—l))) o
iJ

> men(iyuli) €XP (LeakyReLU (aTH x* D 4 alg x4 ale egljnl))) ’
where ag, a; are learnable parameterized attention parameters.
Each GPS backbone layer is implemented as follows:
k - _ _
GPS : X' — MPNN(:—1 (x (=1 gk=1)
X ¥ = Global ATTn(* 1) (X (*~1) (8)
X® = MLP(X "D 4 X1y

29

1105
1106

1107
1108
1109

1110

1111
1112
1113

1114

1115

1116
1117
1118

1119

1120

1121
1122
1123

1124
1125

1126
1127

1128

where X, E denote node/edge features, we use GIN or GINE as the MPNN layer, and we use the
transformer as the global attention reasoning layer.

For DGCN [[126] and DiGCN [[125], we follow the implementation in PyGSD [54], please refer
to https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index,
html|for backbone implementation details.

Fk—l
MSGNN: x(* =0 | 3 vy x* "V 4 plt=b | ©)
i=1

where o is a complex version of Rectified Linear Unit defined by:

[z —m/2 <arg(z) <m/2
o(z) = {0 otherwise,

where arg(-) is the complex argument of z € C, F(*) denotes the number of channels in the k-th
layer, b is a bias vector with equal real and imaginary parts, Y denotes the convolution matrix defined
in Equation.(4) and (5) in [53].

E.2 Hyper-Parameter Space

batch size learning rate dropout rate hidden dimension* # of GNN layers # of MLP layers
DGCN {64, 128,256,512,1024} [5e-4,1e-2] {0,0.1,0.2,0.3} [96, 336] [3,8] [2,5]
DiGCN {64, 128, 256,512, 1024} [5e-4, le-2] {0,0.1,0.2, 0.3} [96, 336] [3,8] [2,5]
MagNet {64, 128,256,512, 1024} [5e-4, le-2] {0, 0.1,0.2,0.3} [96, 336] [3,8] [2,5]
GCN {64,128, 256,512, 1024} [le-4, le-2] {0,0.1,0.2,0.3} [96, 336] [3,8] [2,5]
GIN {64,128, 256,512, 1024} [le-4, le-2] {0,0.1,0.2,0.3} [96, 336] [3,8] [2,5]
GAT {64,128, 256,512, 1024} [le-4, le-2] {0,0.1,0.2,0.3} [96, 336] [3,8] [2,5]
GPS-T {64, 128, 256} [le-4, 1e-2] {0,0.1,0.2,0.3} [96, 288] [3,6] [2,5]
GPS-P {32, 64, 128, 256, 512} [le-4, 1e-2] {0,0.1,0.2,0.3} [96, 288] [3,6] [2,5]

Table 10: Hyper-parameter space for each backbone. *:hidden dimension slightly vary in each task.

F Hardware and Platform

All the experiments run on a server with an AMP EPYC 7763 64-Core Processor and 8 Nvidia
RTX6000 GPU cards. The codes run on frameworks based on PyTorch [[105]], PyTorch Geometric [42]],
PyTorch Geometrc Signed and Directed [54], RAY [77]].

G Implementation Details of Experiments

G.1 Ranking Calculation

In Table. @ and Table. [3] we report the average ranking of different combination of methods w.r.t. per
evaluation metrics for each task from each dataset. The calculation of the ranking can be expressed
as:

M
rank};” = ! i (10)
]V[t7n7
m=1

where Rfym denotes the ranking of the DGRL method k on task ¢ w.r.t. the m-th evaluation metric.
Mp denotes the number of tasks and metrics on dataset D.

For evaluation metric the larger the better, we adopt the ranking function from pandas [104]] with
parameter ascending = Flase and method = ‘max’.

For evaluation metrics the smaller the better, we use ascending = True and method = ‘min’.

30

https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index.html
https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index.html
https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index.html

1129

1130

1131

1132

1133

H

H.1

Detailed Experiment Results

Main Results: In-distribution and Out-of-distribution Performance
Method shared root
accuracy precision recall fl accuracy precision recall fl
GCN 0.879:0.013 0.669+0.141 0.653£0.125 0.62020.119 0.882+0.005 0.860£0.045 0.811+0.131 0.773£0.091
DI-GCN 0.633£0.000 0.3760.000 0.377£0.000 0.337£0.000 0.751+0.000 0.250+0.000 0.333£0.000 0.28520.000
BI-GCN 0.992+0.005 0.816£0.123 0.820£0.122 0.818+0.123 0.999+0.001 0.999£0.000 0.998+0.003 0.999+0.001
GIN 0.882+0.046 0.787+0.132 0.70420.191 0.68320.179 0.909+0.005 0.900£0.055 0.877£0.101 0.850+0.050
DI-GIN 0.999+0.000 0.749£0.000 0.749+0.000 0.749£0.000 0.999£0.000 0.999£0.000 0.999+0.000 0.999::0.000
BI-GIN 0.999+0.000 0.937+0.088 0.974£0.079 0.949£0.080 0.999+0.000 0.999+0.000 0.999£0.000 0.9990.000
GAT 0.88120.003 0.626£0.074 0.571+0.083 0.539£0.073 0.87740.007 0.821+0.074 0.825+0.126 0.78620.090
DI-GAT 0.885:0.060 0.679+0.033 0.682+0.034 0.674£0.036 0.981+0.005 0.985£0.009 0.956x0.012 0.970+0.008
BI-GAT 0.984+0.034 0.94120.108 0.939+0.108 0.940£0.108 0.998+0.002 0.996+0.006 0.998+0.003 0.997+0.004
GPS-P 0.895+0.002 0.899+0.031 0.845£0.066 0.829+0.051 0.893£0.002 0.888+0.047 0.837+0.121 0.8060.071
DI-GPS-P 0.999+0.000 0.749£0.000 0.74920.000 0.749£0.000 0.999+0.000 0.999+0.000 0.999£0.000 0.9990.000
BI-GPS-P 0.997+0.002 0.747+0.003 0.748+0.001 0.748£0.002 0.994+0.003 0.997+0.001 0.986£0.008 0.991%0.005
DGCN 0.975:0.000 0.73420.000 0.73020.000 0.732+0.000 0.991+0.000 0.989+0.003 0.984x0.003 0.9870.000
DiGCN 0.995:0.000 0.747+0.000 0.747+0.000 0.747+0.000 0.994:0.001 0.990+0.007 0.991x0.004 0.9910.004
MagNet 0.999+0.000 1.000£0.000 1.000+0.000 1.000£0.000 0.999+0.000 1.000£0.000 1.000£0.000 1.000+0.000
Table 11: ID performance on the SR dataset.
Method gain PM BW
mse rmse mse rmse mse rmse
GCN 1.262+1.682 0.993+0.554 13.598+30.906 2.618+2.736 35.230+£0.657 5.935+0.055
DI-GCN 0.337+0.002 0.580+0.002 1.243+0.014 1.115+0.006 36.302+0.245 6.025+0.020
BI-GCN 0.148+0.004 0.385%0.005 63.874+£194.025 3.862+7.375 22.947+1.022 4.789+0.105
GIN 0.166+0.029 0.406+0.034 1.266+0.034 1.125+0.015 28.259+10.648 5.244+0.894
DI-GIN 0.200+0.136 0.433+0.117 1.300+0.024 1.140£0.010 24.091£1.270 4.906+0.130
BI-GIN 0.137+£0.012 0.370+0.016 1.251+0.035 1.118+0.016 19.724+1.489 4.438+0.170
GAT 0.158+0.008 0.397+0.010 865.339+2684.901 11.663+28.466 22.770+1.045 4.770+0.111
DI-GAT 0.205+0.006 0.453+0.007 1.562+0.840 1.223+0.268 26.855+2.928 5.175+0.284
BI-GAT 0.138+0.007 0.372+0.010 1.213+0.055 1.101£0.024 30.333+£13.386 5.409+1.088
GPS-T 0.405+£0.022 0.636+0.017 1.277+£0.072 1.129+0.031 16.758+0.754 4.092+0.093
DI-GPS-T 0.122+0.009 0.349+0.013 1.259+0.044 1.121+0.019 16.600+£0.877 4.073+0.107
BI-GPS-T 0.122+0.007 0.349+0.010 1.212+0.058 1.100£0.026 20.475+8.853 4.456+0.825
DGCN 0.567+0.004 0.753%0.003 1.292+0.000 1.13620.000 54.256+0.257 7.365+0.017
DiGCN 0.367+0.009 0.606+0.007 1.294+0.011 1.137+0.005 52.375£0.276 7.237+0.019
MagNet 0.185+0.008 0.431+0.009 1.315+0.082 1.146£0.035 24.800+£2.834 4.972+0.283
Table 12: ID performance on the AMP dataset.
Method DSP LUT CP
mse R2 mse R2 mse R2
GCN 12.700£0.324 0.877+0.004 4.909+0.123 0.647+0.021 0.713+£0.037 0.829+0.012
DI-GCN 12.591+0.312 0.877+£0.003 4.998+0.114 0.643+0.013 0.692+0.013 0.837+0.004
BI-GCN 10.285+0.336 0.902+0.004 4.311+£0.149 0.732+0.010 0.665+0.025 0.847+0.007
GINE 2.707£0.133 0.975+0.001 2.172+0.108 0.861+£0.008 0.653+0.014 0.849+0.003
DI-GINE = 2.312+0.172 0.97940.001 2.145+0.158 0.863£0.011 0.645+0.022 0.851+0.007
BI-GINE 2.137£0.076 0.981+0.000 1.759+0.087 0.892+0.005 0.629+0.020 0.855+0.005
GAT 4.680+£0.264 0.957£0.002 3.267+0.142 0.778+0.011 0.643+0.012 0.850+0.004
DI-GAT 7.697+0.238 0.926+0.002 4.188+0.226 0.685+0.031 0.677+0.051 0.840+0.014
BI-GAT 4.718+0.532 0.957+0.004 3.028+0.143 0.801+0.016 0.590+0.011 0.863%0.006
GPS 2.444+0.207 0.978+0.002 2.114+0.153 0.872+0.011 0.621+0.028 0.858+0.010
DI-GPS 2.51740.180 0.977+0.001 2.306+0.224 0.862+0.015 0.625+0.028 0.856+0.007
BI-GPS 2.442+0.303 0.979+0.002 2.112+0.216 0.873+0.014 0.621£0.018 0.859+0.009
DGCN 19.614+1.151 0.816x0.010 7.988+2.512 0.333+0.256 1.127+0.049 0.706+0.014
DiGCN 12.125+0.204 0.885+0.003 5.683+0.638 0.527+0.092 0.704+0.019 0.836%0.004
MagNet 4.375+£0.452 0.961+£0.003 2.381+0.175 0.848+0.015 0.684+0.045 0.843+0.014

Table 13: ID performance on the HLS dataset.

31

1134

1135

1136

Method

shared

root

accuracy precision recall f1 accuracy precision recall f1
GCN 0510:0.021 02830014 03280018 0.292#0.016 0.569+0.056 0.364:0.069 0.317+0.038 0.321+0.038
DI-GCN 0.553#£0.000 0.318+0.000 0.374+0.000 0.301£0.000 0.741+0.000 0.247+0.000 0.333+£0.000 0.283+0.000
BI-GCN 0.671£0.045 0.489+0.035 0.563+0.045 0.513+£0.037 0.651+0.054 0.512+0.057 0.514+0.064 0.505+0.062
GIN 0.677+£0.039 0.414+0.034 0.395+0.064 0.371+0.067 0.743+£0.008 0.646+0.084 0.378+0.027 0.367+0.045
DI-GIN 0.62120.027 0.449£0.047 0.462£0.024 0.44120.026 0.729£0.010 0.475:0.047 0.390£0.079 0.3710.082
BI-GIN 0.712+£0.024 0.514£0.040 0.561+0.071 0.500+0.049 0.773+£0.018 0.592+0.070 0.502+0.051 0.515+0.054
GAT 0.583+0.118 0.341+£0.062 0.383+0.071 0.343+0.079 0.633+£0.088 0.456+0.065 0.435+0.043 0.408+0.055
DI-GAT 0.547+0.061 0.384+0.032 0.453+£0.072 0.394+0.038 0.642+0.041 0.431£0.062 0.474+0.061 0.437+0.058
BI-GAT 0.554+0.078 0.416+0.069 0.450+0.080 0.397+£0.072 0.632+0.046 0.483+0.066 0.477+0.065 0.461+0.061
GPS-P 0.670+£0.059 0.407+0.055 0.454+0.056 0.404+0.047 0.659+0.040 0.395+0.056 0.410+0.045 0.385+0.037
DI-GPS-P 0.651£0.059 0.421+£0.053 0.499£0.056 0.441£0.050 0.665£0.077 0.441£0.059 0.509+0.088 0.450+0.065
BI-GPS-P 0.651£0.057 0.417+0.040 0.482+0.040 0.435+0.045 0.671+0.023 0.491+0.020 0.578+0.049 0.507+0.029
DGCN 0.628+0.009 0.497+£0.028 0.391+0.043 0.400+0.045 0.709+£0.020 0.511+0.035 0.495+0.024 0.498+0.028
DiGCN 0.470+0.094 0.432+0.031 0.493+0.040 0.396+0.056 0.726+0.016 0.505+0.023 0.501+0.013 0.497+0.017
MagNet 0.703+£0.040 0.445+0.047 0.499+0.052 0.463+£0.046 0.683+0.032 0.457+0.057 0.413+£0.045 0.413+0.043

Table 14: OOD performance on the SR dataset.
Method gain pm bw

mse rmse mse rmse mse rmse
GCN 0.877+£1.063 0.856+0.399 101.444+308.123 4.82349.320 42.921+£0.993 6.551+0.075
DI-GCN 0.451+0.015 0.671+0.011 1.412+0.012 1.188+0.005 46.374+£0.590 6.809+0.043
BI-GCN 0.270+0.036 0.519+0.033 21.490+58.748 2.861+£3.844 30.004+2.192 5.474+0.201
GIN 0.337£0.041 0.580+0.034 1.436+0.053 1.198+£0.022 34.398+11.114 5.806+0.852
DI-GIN 0.356+0.071 0.594+0.055 1.379+0.015 1.174£0.006 44.154+12.707 6.584+0.941
BI-GIN 0.2934£0.026 0.541+0.024 1.419+0.046 1.191£0.019 25.822+1.977 5.078+0.190
GAT 0.330+£0.032 0.574+0.027 567.911%£1750.531 9.859+22.869 30.155+1.879 5.489+0.169
DI-GAT 0.412+0.035 0.641+0.027 1.406+0.078 1.185+£0.032 41.750+£10.476 6.421+£0.753
BI-GAT 0.198+0.012 0.445+0.014 1.348+0.052 1.160£0.022 41.008+13.522 6.336+0.976
GPS-T 0.508+0.059 0.712+0.041 1.415+0.061 1.189+0.025 21.815+1.973 4.666+0.206
DI-GPS-T 0.301£0.012 0.549+0.011 1.447+0.037 1.202+0.015 22.161£1.355 4.705+0.144
BI-GPS-T 0.314+0.030 0.560+0.027 1.315+0.050 1.146+£0.021 26.607+10.277 5.087+0.897
DGCN 0.77240.046 0.878+0.025 1.364+0.000 1.168+0.000 69.019+£1.345 8.307+0.081
DiGCN 0.345+0.014 0.587+0.012 1.377+0.021 1.173+£0.009 59.337+0.659 7.703+0.042
MagNet 0.285+0.065 0.531+0.059 1.608+0.127 1.267+£0.051 36.505+2.749 6.038+0.227

Table 15: OOD performance on the AMP dataset.
Method DSP LUT CP

mse R2 mse R2 mse R2
GCN 10.817+£0.284 0.878+0.006 0.440+0.084 0.879+0.022 0.559+0.033 0.784+0.014
DI-GCN 11.101+£0.468 0.873£0.006 0.454+0.128 0.863+0.053 0.593+£0.009 0.774+0.006
BI-GCN 9.996+0.319 0.884+0.007 0.627+0.158 0.857+0.026 0.514+£0.019 0.803+0.013
GINE 3.720+0.154 0.961+£0.001 0.129+0.042 0.966+0.009 0.491+£0.017 0.809+0.008
DI-GINE 3.194+0.122 0.967+0.001 0.118+0.022 0.968+0.005 0.513+0.025 0.804+0.015
BI-GINE 3.24440.102 0.966+0.001 0.110+£0.029 0.971£0.007 0.476+0.027 0.815+0.011
GAT 5.440+£0.271 0.941+0.003 0.368+0.054 0.900+£0.015 0.496+0.019 0.809+0.007
DI-GAT 8.927+0.355 0.895+0.005 0.456+0.135 0.856+£0.040 0.551+0.034 0.784+0.015
BI-GAT 5.418+0.305 0.942+0.003 0.218+0.054 0.938+0.023 0.466+0.026 0.821+0.013
GPS 3.343+0.147 0.966+0.001 0.145+0.026 0.962+0.007 0.543+0.124 0.793+0.024
DI-GPS 3.210+0.146 0.967+0.001 0.139+0.032 0.964+0.008 0.461+0.016 0.820+0.014
BI-GPS 3.2094£0.263 0.967+0.001 0.133+£0.027 0.968+0.006 0.496+0.017 0.812+0.016
DGCN 20.220+1.474 0.756+0.024 0.647+0.228 0.797+£0.095 1.159+0.093 0.519+0.028
DIiGCN 10.922+0.353 0.880+0.004 0.665+0.257 0.758+0.098 0.613+£0.022 0.770+0.011
MagNet 5.048+0.499 0.947+0.004 0.168+0.049 0.955+0.012 0.557+0.053 0.793+0.024

Table 16: OOD performance on the HLS dataset.

32

Method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
GCN 9.263+1.994 2.888+0.576 0.382+0.266 0.684+0.151 8.796+£1.773 8.796+1.773 0.501+0.076 3.278+0.318
DI-GCN 13.008+£5.156 2.764+0.347 0.504+0.245 0.594+0.293 10.166+2.557 10.166+2.557 0.622+0.087 4.058+0.892
BI-GCN 0.731+0.143 1.308+0.559 0.091+0.044 0.069+0.027 1.447+0.198 1.447+0.198 0.093+0.058 0.575+0.108
GINE 0.183+0.023 0.073£0.014 0.027+0.005 0.009+£0.003 0.549+0.033 0.549+0.033 0.024+0.005 0.125+0.008
DI-GINE 1.133+0.156 0.166+0.041 0.147+0.041 0.048+0.024 1.361+0.398 1.361+0.398 0.123+0.051 0.439+0.048
BI-GINE 0.142+0.014 0.111+0.083 0.023+0.006 0.010+0.005 0.574+0.041 0.574+0.041 0.032+0.013 0.132+0.012
1137 GAT 17.032£16.149 3.128+0.521 0.477£0.603 0.393£0.219 6.910£3.546 6.910£3.546 0.448+0.296 4.204+3.054
DI-GAT 61.647+17.523 3.359+0.563 1.728+0.436 0.756+0.270 14.218+3.930 14.218+3.930 0.746+0.155 12.295+3.179
BI-GAT 1.311+0.435 1.291£0.466 0.213+0.104 0.221£0.059 2.065+0.507 2.065+0.507 0.258+0.078 0.787+0.112
GPS-P 0.415+0.091 1.846+£0.170 0.204+0.055 0.140+0.064 2.308+0.084 2.308+0.084 0.078+0.017 0.772+0.036
DI-GPS-P 0.334+0.091 0.283+0.110 0.160+0.049 0.105+0.029 1.973+0.093 1.973£0.093 0.051+0.011 0.440+0.028
BI-GPS-P 3.469+0.531 1.786+0.606 0.389+0.251 0.283+0.412 3.908+0.344 3.908+0.344 0.172+0.169 1.544+0.294
DGCN 104.383+0.123 4.278+0.152 2.314+0.032 1.262+0.045 19.884+0.203 19.884+0.203 1.586+0.073 19.933+0.049
DiGCN 47.858+14.097 4.134+0.429 1.725+0.426 1.011+0.324 13.460£1.900 13.460£1.900 1.086+0.306 10.547+2.441
MagNet 12.326+£5.494 3.738+0.707 0.576+0.159 0.569+0.302 5.715+1.130 5.715+1.130 0.539+£0.239 3.459+0.782
Table 17: ID performance with ‘mse’ metric on the Time dataset to predict hold slack.
Method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
GCN 0.910+0.019 -0.312+0.262 0.826+0.120 0.358+0.142 0.460+0.108 0.905+0.029 0.539+0.070 0.526+0.045
DI-GCN 0.873£0.050 -0.255+0.157 0.771x0.110 0.442+0.275 0.376+0.156 0.835+0.070 0.428+0.079 0.496+0.056
BI-GCN 0.992+0.001 0.405+0.254 0.958+0.020 0.935+0.025 0.911x0.012 0.937+0.011 0.914+0.053 0.865+0.047
GINE 0.998+0.000 0.966+0.006 0.987+0.002 0.991+0.003 0.966+0.002 0.997+0.001 0.977+0.004 0.983+0.001
DI-GINE 0.988+0.001 0.924+0.018 0.933+0.018 0.954+0.022 0.916+0.024 0.978+0.002 0.886+0.047 0.940+0.007
BI-GINE 0.99840.000 0.949+0.037 0.989+0.002 0.990+0.005 0.964+0.002 0.993+£0.005 0.970+£0.012 0.979+0.006
GAT 0.834+0.156 -0.421+0.236 0.784+0.272 0.630£0.205 0.575+0.217 0.772+#0.230 0.588+0.271 0.537+0.168
1138 DI-GAT 0.401£0.170 -0.526+0.255 0.218+0.197 0.290+0.253 0.12740.241 0.209+0.165 0.314+0.142 0.147+0.143
BI-GAT 0.987+0.004 0.413x0.212 0.903+0.047 0.792+0.055 0.873+0.031 0.966+0.017 ~ 0.762+0.072 0.814+0.033
GPS-P 0.996+0.000 0.020+0.090 0.881+0.032 0.907+0.042 0.839+0.005 0.903+0.024 0.925+0.016 0.782+0.014
DI-GPS-P 0.996+0.000 0.856+0.055 0.941+0.018 0.881+0.033 0.857+0.006 0.951+0.028 0.927+0.016 0.916+0.017
BI-GPS-P 0.968+0.004 0.052+0.321 0.773+0.146 0.814+0.270 0.727+0.023 0.812+0.178 0.837+0.159 0.712+0.136
DGCN -0.013£0.001 -0.943+0.069 -0.046+0.014 -0.183+0.042 -0.220+0.012 -0.276+0.026 -0.455+0.067 -0.305+0.029
DiGCN 0.535+0.136 -0.877+0.195 0.219+£0.192 0.050+0.304 0.173+0.116 0.002+0.239 0.003+0.280 0.015+0.169
MagNet 0.880+£0.053 -0.698+0.321 0.739+0.071 0.465+0.283 0.649+£0.069 0.836+0.080 0.505+£0.220 0.482+0.055
Timer-inspired GNN 0.9616 0.9751 0.9721 0.9840 0.9688 0.9753 0.9784 0.9736
Table 18: ID performance with ‘R2’ metric on the Time dataset to predict hold slack.
Method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
GCN 127.555+9.301 17.551+1.646 34.125+1.436 1.399+0.128 126.288+10.077 28.960£1.970 17.849£1.509 50.532£1.053
DI-GCN 99.699+13.849 18.302+5.510 30.164+2.874 2.984+4.527 135.526+16.281 26.859+5.355 15.223+4.432 46.965+2.204
BI-GCN 104.062+11.187 12.867+1.746 27.941+1.197 4.693+0.572 102.680+9.184 20.688+1.020 6.033+2.329 39.852+2.405
GINE 24.911£9.848 2.819+0.801 8.012+3.029 1.233£0.360 31.441£2.463 3.379£1.141 2.211+0.517 10.572+2.027
DI-GINE 25.642+6.938 2.207+0.586 7.105+2.835 1.823+0.632 21.690+1.080 4.088+1.363 1.785+0.315 9.191+1.564
BI-GINE 21.108+6.326 1.690£0.510 4.484+1.648 1.079£0.778 23.207+5.134 3.160+2.036 2.69542.925 8.203x1.720
1139 GAT 105.449+39.675 13.554+3.935 32.138+2.692 3.416£1.475 116.730+16.637 25.274+2.653 7.188+2.344 43.393+3.497
DI-GAT 94.262+14.843 14.390+2.879 44.365+4.951 2.265+1.418 94.71246.261 25.569+3.563 7.875+3.932 40.491£1.637
BI-GAT 68.198+12.533 14.929+2.209 21.334+2.564 3.263+0.779 76.571£9.852 19.570+1.516 4.016%1.470 29.697+2.690
GPS-P 71.180£7.296 6.017+0.951 19.114£3.978 2.786+0.931 40.219£2.599 21.280+5.284 1.974+0.394 23.224+2.482
DI-GPS-P 76.600+6.188 6.559+2.542 22.725+1.503 15.529+9.577 39.5562.732 23.99543.420 4.789+1.457 27.107+0.881
BI-GPS-P 79.395+9.864 6.205£1.437 21.067+5.043 4.882+1.370 39.426+3.651 26.285+4.810 3.748+0.912 25.858+2.168
DGCN 84.413+11.949 5.364+1.023 21.575+3.178 4.393+2.014 40.81043.904 27.617+4.680 3.125£1.675 26.757+1.564
DiGCN 1790.553£1159.661 68.846+£51.069 86.761+47.732 33.962+17.288 546.052+1206.931 73.563+40.920 52.554+32.869 378.899+320.555
MagNet 106.479+18.775 7.917+0.623 25.831+1.098 11.474+0.993 131.028+12.043 15.074+0.966 4.877+0.662 43.24042.216
Table 19: ID performance with ‘R2’ metric on the Time dataset to predict setup slack.
Method blabla usb_cdc_core whbgspiflash cic_decimator picorv32a zipdiv usb average
GCN -1.030+0.148 -4.397+0.506 -0.219+0.051 0.180+0.075 -2489+0.278 -0.971%0.134 -4.437+0.459 -1.909+0.150
DI-GCN -0.586+0.220 -4.628+1.694 -0.077+0.102 -0.747%2.650 -2.744+0.449 -0.828+0.364 -3.637+1.350 -1.892+0.254
BI-GCN -0.656+0.178 -2.956+0.537 0.001+0.042 -1.747+0.335 -1.837+0.253 -0.408+0.069 -0.837+0.709 -1.206+0.144
GINE 0.603+0.156 0.132+0.246 0.713+0.108 0.278+0.211 0.13120.068 0.769+0.077 0.326+0.157 0.422+0.078
DI-GINE 0.591£0.110 0.321+0.180 0.746+0.101 -0.067+0.370 0.400+0.029 0.721£0.092 0.456+0.096 0.45240.055
BI-GINE 0.664+0.100 0.480+0.157 0.839+0.058 0.367+0.455 0.358+0.141 0.784+0.138 0.178+0.891 0.524+0.183
1140 GAT -0.678+0.631 -3.168+1.210 -0.148+0.096 -1.000+0.863 -2.22540.459 -0.720+0.180 -1.189+0.714 -1.304+0.175
DI-GAT -0.500+0.236 -3.425+0.885 -0.585+0.176 -0.326+0.830 -1.617+0.173 -0.740+0.242 -1.399+1.197 -1.22740.120
BI-GAT -0.085+0.199 -3.591+0.679 0.237+0.091 -0.910+0.456 -1.115+£0.272 -0.332+0.103 -0.223+0.447 -0.860+0.174
GPS-P -0.091+0.111 -0.121+0.177 0.010£0.205 -0.313+0.439 0.034+0.062 -0.056+0.262 0.207+0.158 -0.047£0.151
DI-GPS-P -0.071+0.086 -0.339+0.519 -0.076+0.071 -6.422+4.577 -0.052+0.072 -0.208+0.172 -0.591+0.484 -1.108+0.654
BI-GPS-P -0.217£0.151 -0.156+0.267 -0.090+0.261 -1.302+0.645 0.053+0.087 -0.304+0.238 -0.504+0.366 -0.360£0.168
DGCN -0.294+0.183 0.000£0.190 -0.116+0.164 -1.071+£0.949 0.020£0.093 -0.370£0.232 -0.254+0.672 -0.298+0.243
DiiGCN ~ -27.500£18.458 -20.171£15.704 -2.100£1.705 -18.882+10.121 -14.088+33.349 -4.007+2.785 -15.008£10.012 -14.537+8.681
MagNet -0.69420.298 -1.434+0.191 0.076+0.039 -5.717+0.581 -2.620+0.332 -0.026+0.065 -0.485+0.201 -1.557+0.090
Table 20: ID performance with ‘R2’ metric on the Time dataset to predict setup slack.
hold setup
Xxtea synth_ram Xtea synth_ram
Method mse 2 mse Y 2 mse 2 mse Y 2
GCN 6.745+0.853 -0.062+0.134 7.511£1.387 -1.030+0.375 117.599+4.681 -2.963+0.157 509.769+16.052 -984.202+31.023
DI-GCN 7.010£0.592 -0.104+0.093 9.764+2.355 -1.640+0.636 116.332+16.048 -2.920+0.540 418.819+24.262 -808.427+46.890
BI-GCN 5.675+0.784 0.105+0.123 2.446+0.255 0.338+0.069 100.915+4.158 -2.401+0.140 371.644+10.433 -717.255+20.164
GINE 4.446+1.623 0.29940.255 2.482£1.650 0.328+0.446 62.927+28.904 -1.120£0.974 1341.500£430.261 -2591.639+831.541
DI-GINE 3.075+0.887 0.515£0.139 9.545+4.222 -1.581%1.141 61.694+6.981 -1.079+0.235 612.807+101.175 -1183.337£195.535
BI-GINE 2.11620.486 0.666+0.076 1.314£1.197 0.644+0.323 83.775£17.953 -1.823+0.605 498.357+239.343 -962.146+462.565
1141 GAT 7.446x1.012 -0.173%0.159 7.741+1.932 -1.093+0.522 96.486+7.970 -2.251+0.268 347.589+30.441 -670.765+58.833
DI-GAT 10.106+£0.961 -0.592+0.151 11.260+1.237 -2.044+£0.334 122.242+11.986 -3.120£0.403 375.266+18.144 -724.255+35.066
BI-GAT 5.699+1.155 0.101£0.181 2.683+0.927 0.274£0.250 78.499+6.022 -1.645+0.202 463.886+29.786 -895.527+57.565
GPS-P 7.24130.520 -0.140+0.082 5.487+1.351 -0.48320.365 124.375x114.416 -3.191£3.856 82.559+46.321 -158.557+89.522
DI-GPS-P 6.847+0.879 -0.078+0.138 6.704£5.834 -0.812+1.577 412.567+168.322 -12.905+5.673 72.483+66.727 -139.085+128.960
BI-GPS-P 7.284£0.676 -0.147x0.106 4.192£1.584 -0.133+0.428 69.680+21.461 -1.348+0.723 572.724492.117 -1105.870+178.030
DGCN 13.362+0.281 -1.105+0.044 13.303+0.332 -2.597£0.089 66.196+22.392 -1.231+0.754 539.409+140.777 -1041.484+272.073
DiGCN 11.603£1.166 -0.828+0.183 10.983+1.244 -1.969+0.336 250.774%175.035 -7.452+5.899 889.065+290.158 -1717.245£560.771
MagNet 8.757+1.044 -0.379+0.164 5.321£1.637 -0.439+0.442 93389+2.734 -2.147+0.092 425.460+18.451 -821.263+35.659
Timer-inspired GNN - 0.9135 - 0.8656 - -

Table 21: OOD performance on the TIME dataset.

33

Method densenets mnasnets mobilenetv2s mobilenetv3s nasbench201s average

GCN 43.042£1.663 7.764+0.775 30.222+0.817 5.981+1.454 2.134+0.772 17.828+0.802
DI-GCN 41.241+0.336 6.704+0.183 29.457+0.389 5.275+#0.262 1.129+0.426 16.761+0.151
BI-GCN 41.271x1.729 8.054+0.399 29.473+0.399 5.365+0.159 2.114+0.731 17.256+0.238

GIN 7.694+0.442 1.833+£0.187 3.535%0.343 1.491x0.343 0.617+0.216 3.034+0.172
DI-GIN 9.894+0.450 1.943#£0.116 3.395+£0.293 1.157+0.118 0.748+0.118 3.427+0.129
BI-GIN 7.615+£0.247 1.901x0.151 3.339+0.172 1.177£0.160 0.493+0.069 2.905+0.098

GAT 1427244836 4.160+0.460 8.733+0.936 3.227+0.456 0.577+0.071 6.194+1.242

1142 DI-GAT 21.741+2.897 3.850+0.418 11.801+1.780 3.640+0.582 1.820+0.159 8.571+0.900
BI-GAT 9.32240.535 2.371£0.469 4.957+0.497 1.723+x0.481 0.498+0.086 3.774+0.262

GPS-P 7.080£0.302 2.125+£0.294 3.951£0.289 1.692+0.395 0.723+0.197 3.114+0.132
DI-GPS-P 6.821+£0.223 2.016+£0.226 3.265+0.494 1.337+0.618 0.620+0.372 2.812+0.257
BI-GPS-P 6.863+0.265 1.971+0.222 3.794+0.311 1.399+0.361 0.618+0.260 2.929+0.149

DGCN 41.386+0.878 6.651+0.253 30.312+0.307 4.591+0.310 2.101+0.211 17.008£0.152
DiGCN 42.506x0.745 7.203+0.137 30.941+0.426 5.263x0.468 1.879+0.558 17.558+0.169
MagNet 7.368+£0.189 1.910£0.152 3.015£0.280 1.290+0.315 0.514+0.166 ~ 2.819+0.177

nn-meter 7.1 3.19 3.25 2.03 0.44 3.20
Table 22: ID performance on the CG dataset on device ‘Cortex A76 CPU’ with ‘rmse’ metric.
Method densenets mnasnets mobilenetv3s mobilenetvds nasbench202s average

GCN 0.217£0.034 0.267+0.033 0.118+0.026 ~ 0.239+0.090 0.290+0.183 0.226+0.037
DI-GCN 0.222+0.010 0.289+0.022 0.101+0.014 0.264+0.023 0.530+0.184 0.281+0.037
BI-GCN 0.245+0.038 0.269+0.012 0.111+0.022 0.287+£0.010 0.272#0.152 0.236+0.031

GIN 0.876+0.028 0.863+0.054 0.680+0.050 0.723+0.078 0.716+0.190 0.771+0.052
DI-GIN 0.764+0.025 0.835+0.040 0.693%£0.050 0.805+0.060 0.626+0.114 0.744+0.021
BI-GIN 0.892+0.020 0.842+0.047 0.681+0.033 0.861+0.053 0.858+0.059 0.826+0.024

GAT 0.662+0.107 0.456+0.067 0.359+0.032 0.476+0.060 0.786+0.056 0.547+0.050

1143 DI-GAT 0.466+0.053 0.540£0.062 0.273x£0.046 0.375+0.046 0.343+0.077 0.399+0.029
BI-GAT 0.808+0.034 0.746+0.077 0.511+0.065 0.689+0.116 0.844+0.091 0.719+0.051

GPS-P 0.904£0.019 0.809+0.051 0.650+0.041 0.666+0.126 ~ 0.697+0.173 0.745+0.057

DI-GPS-P 0.933£0.018 0.831+0.071 0.735%0.038 0.796+0.234 0.750+0.271 0.808+0.104

BI-GPS-P 0.922+0.020 0.836+0.048 0.666+0.051 0.738+0.141 0.750+£0.215 0.782+0.072

DGCN 0.188+£0.017 0.320£0.019 0.105+0.022 0.294+0.042 0.269+0.042 0.235+0.009
DiGCN 0.199+0.025 0.289+0.035 0.085+0.014 0.288+0.042 0.309+0.111 0.233+0.017
MagNet 0.896+0.012 0.835+0.060 0.730+0.048 0.830+0.113 0.851+0.108 0.828+0.062

nn-meter 0.931 0.824 0.676 0.738 0.824 0.798
Table 23: ID performance on the CG dataset on device ‘Cortex A76 CPU’ with ‘acc5’ metric.

Method densenets mnasnets mobilenetv4s mobilenetvSs nasbench203s average

GCN 0.434+0.041 0.511+0.042 0.222+0.031 0.453+0.122 0.515+0.233 0.426+0.053
DI-GCN 0.446+0.023 0.571+0.023 0.193+0.021 0.476+0.032 0.818+0.158 0.501+0.031
BI-GCN 0.481+0.025 0.483+0.026 0.243+£0.018 0.536+0.029 0.517+0.199 0.451+0.037

GIN 0.998+0.004 0.997+0.004 0.936+0.024 0.941+0.044 0.972+0.035 0.968+0.016
DI-GIN 0.984+0.013 0.999+0.003 0.965+£0.019 0.982+0.018 0.956+0.025 0.977+0.008

BI-GIN 1.000£0.000 0.996+0.005 0.952+0.018 0.991+0.017 0.994+0.012 0.986+0.007

GAT 0.924+0.091 0.808+0.039 0.645+0.063 0.730+0.060 0.973+0.017 0.816+0.036

1144 DI-GAT 0.757£0.055 0.828+0.054 0.532+0.050 0.650+0.075 0.625+0.071 0.678+0.036
BI-GAT 0.993+£0.009 0.977+0.034 0.821+0.057 0.937+0.081 0.994£0.007 0.944+0.026

GPS-P 1.000+0.000 0.996+0.006 0.918+0.033 0.901+£0.080 0.928+0.085 0.949+0.034

DI-GPS-P 0.999+0.003 0.997+0.004 0.974+0.018 0.949+0.117 0.940£0.154 0.971+0.055

BI-GPS-P 0.999+0.003 0.998+0.004 0.938+0.021 0.922+0.085 0.953#£0.078 0.962+0.030

DGCN 0.409+0.015 0.568+0.021 0.204+0.020 0.538+0.027 0.504+0.076 0.444+0.010
DiGCN 0.390+0.017 0.543+0.017 0.186+0.022 0.522+0.044 0.582+0.156 0.444+0.029
MagNet 1.000£0.000 0.996+0.005 0.973x0.028 0.983+0.031 0.988+0.019 0.988+0.015

nn-meter 0.999 0.992 0.977 0.990 0.999 0.991
Table 24: ID performance on the CG dataset on device ‘Cortex A76 CPU’ with ‘acc10’ metric.

Method proxylessnass resnets

rmse accS acclO rmse accS acclO

GCN 38.016+£9.318 0.130+0.018 0.237+0.040 529.239£19.212 0.012+0.007 0.017+0.009
DI-GCN 33.581+1.016 0.143+0.019 0.264+0.016 517.553+4.419 0.010+0.002 0.020+0.003
BI-GCN 38.612+2.911 0.112+0.010 0.224+0.007 524.188+11.204 0.008+0.009 0.016+0.011

GIN 18.768+4.710 0.156+0.069 0.333+0.123 326.443+37.550 0.059+0.024 0.112+0.038
DI-GIN 10.742+0.876 0.306+0.021 0.566+0.051 455.235%£16.044 0.032+0.010 0.073£0.012
BI-GIN 11.097+2.002 0.329+0.061 0.589+0.096 362.930£29.676 0.046+0.015 0.087+0.013

1145 GAT 20.289+4.934 0.208+0.059 0.396+0.090 467.151+29.254 0.012+0.017 0.025+0.026
DI-GAT 19.306+3.641 0.192£0.043 0.386+0.063 386.181+44.349 0.033+0.023 0.069+0.030

BI-GAT 14.833+4.066 0.237+0.070 0.471£0.132 472.310£24.953 0.019+0.011 0.036+0.014

GPS-P 11.952+2.043 0.275+0.078 0.527+£0.104 473.207+15.942 0.013+0.007 0.023£0.011

DI-GPS-P 10.122+0.911 0.293£0.038 0.588+0.075 490.252+11.336 0.005+0.005 0.012+0.009

BI-GPS-P 12.188+1.565 0.249+0.054 0.506+0.074 475.745+14.259 0.005+0.009 0.015+0.012

DGCN 28.038+1.707 0.123+0.016 0.274+0.015 535.961£5.274 0.003+0.005 0.007+0.007

DiGCN 26.308+1.739 0.138+0.017 0.287+0.022 542.416+5.718 0.001+0.002 0.005+0.004

MagNet 9.282+1.321 0.433+0.069 0.725+0.055 483.296+9.749 0.015+0.010 0.024+0.017

nn-meter 3.18 0.846 1.00 7.19 0.845 0.999
Table 25: OOD performance on the CG dataset on device ‘Cortex A76 CPU’.

34

Method densenets mnasnets mobilenetv3ds mobilenetvds nasbench202s average
GCN 6.330£0.099 1.192£0.035 5.075%0.054 0.811+0.034 0.110+0.029 2.704+0.016
DI-GCN 6.226+0.061 1.165+0.029 5.088+0.035 0.795+0.032 0.128+0.036 2.681+0.013
BI-GCN 6.233+0.140 1.173+0.094 4.091+0.158 0.867+0.098 0.411+0.118 2.555+0.052
GIN 0.514£0.056 0.133£0.021 0.322+£0.064 0.110£0.017 0.079£0.020 ~ 0.231£0.025
DI-GIN 0.909+£0.064 0.176x0.017 0.385£0.036 0.156x0.029 0.250£0.022 0.375£0.019
BI-GIN 0.554+0.038 0.158+0.016 0.357+0.037 0.142+0.021 0.116+0.033 0.265+0.013
GAT 1.74240.302 0.446+0.079 1.329+0.245 0.349+0.081 0.132+0.050 0.800£0.102
DI-GAT 1.904£0.173 0.531£0.087 1.810x0.414 0.481+0.068 0.497+0.022 1.044+0.133
BI-GAT 0.854+0.057 0.192+0.048 0.510£0.094 0.169+£0.035 0.080+£0.020 0.361+0.039
GPS-P 0.313£0.021 0.131x0.015 0.286+0.035 0.104£0.013 0.069£0.025 0.181x0.009
DI-GPS-P 0.320£0.020 0.149+0.019 0.321£0.081 0.147£0.029 0.186+0.134 0.225+0.032
BI-GPS-P 0.486+0.062 0.197+0.039 0.508+0.117 0.174+0.047 0.124£0.072 0.298+0.054
DGCN 6.695+0.428 1.267+0.101 5.396+0.050 0.817£0.200 0.614+£0.079 2.958+0.074
DiiGCN 6.298+0.165 1.344+0.106 5.508+0.185 0.919+0.107 0.549+0.174 2.924+0.083
MagNet 0.478+0.032 0.120+0.015 0.230£0.017 0.106£0.008 0.060£0.008 0.199+0.008

Table 26: ID performance on the CG dataset on device ‘Adreno 630 GPU’ with ‘rmse’ metric.

Method densenets mnasnets mobilenetv3s mobilenetvds nasbench202s average
GCN 0.325+0.032 0.383+0.019 0.119+£0.015 0.410+£0.035 0.943+0.052 0.435+0.013
DI-GCN 0.351+0.014 0.404+0.023 0.127+0.031 0.442+0.047 0.910£0.076 0.447+0.020
BI-GCN 0.354+0.030 0.410£0.040 0.164+£0.031 0.424+0.038 0.485+0.100 0.367+0.028
GIN 1.000£0.000 1.000£0.000 0.956+0.032 1.000£0.000 0.994+0.009 0.990+0.007
DI-GIN 0.986+0.014 1.000+0.000 0.916£0.023 0.997+£0.006 0.703+0.062 0.920+0.009
BI-GIN 1.000+0.000 1.000+0.000 0.917+0.016 0.991+0.012 0.945+0.057 0.970+0.012
GAT 0.872+0.054 0.864+0.068 0.515+£0.070 0.862+0.065 0.907+0.131 0.804+0.050
DI-GAT 0.839+£0.049 0.790+0.073 0.344+0.085 0.768+0.047 0.466+0.052 0.641+0.046
BI-GAT 0.989+0.005 0.992+0.013 0.829+0.049 0.993+0.012 0.994+0.009 0.959+0.011
GPS-P 1.000+0.000 1.000+£0.000 0.966+0.021 1.000+0.000 0.994+0.015 0.992+0.005
DI-GPS-P 1.000+£0.000 1.000+0.000 0.927+0.064 0.976+0.049 0.749+0.351 0.930+0.068
BI-GPS-P 1.000+0.000 0.995+0.005 0.861+0.043 0.972+0.043 0.892+0.156 0.944+0.045
DGCN 0.290+0.019 0.403+0.037 0.114+£0.020 0.471+0.113 0.302+0.074 0.316+0.038
DiiGCN 0.302+0.028 0.432+0.042 0.118+0.022 0.441+0.054 0.363+0.146 0.331+0.031
MagNet 1.000+0.000 1.000+0.000 0.978+0.011 1.000£0.000 0.999+0.003 0.995+0.002

Table 27: ID performance on the CG dataset on device ‘Adreno 630 GPU’ with ‘acc5’ metric.

Method densenets mnasnets mobilenetvds mobilenetvds nasbench202s average
GCN 0.608+0.017 0.716+0.022 0.227+0.018 0.780+0.048 0.998+0.004 0.665+0.009
DI-GCN 0.614+0.014 0.741+0.021 0.225+0.015 0.792+0.048 0.992+0.013 0.672+0.013
BI-GCN 0.629+0.028 0.772+0.048 0.312+0.029 0.747+0.086 0.789+0.088 0.650+0.037
GIN 1.000+£0.000 1.000+£0.000 0.994+0.007 1.000+0.000 1.000+0.000 0.999+0.001
DI-GIN 1.000£0.000 1.000£0.000 0.994+0.005 1.000£0.000 0.904+0.010 0.979+0.002
BI-GIN 1.000+0.000 1.000+0.000 0.993+0.006 1.000+0.000 0.980+0.024 0.994+0.004
GAT 0.989+0.017 0.992+0.013 0.802+0.079 0.989+0.018 0.993+0.018 0.953+0.024
DI-GAT 0.991£0.005 0.980+0.020 0.630+0.106 0.962+0.014 0.715+0.033 0.855+0.029
BI-GAT 1.000+0.000 1.000+0.000 0.985+0.012 1.000£0.000 1.000+0.000 0.997+0.002
GPS-P 1.000+£0.000 1.000£0.000 0.998+0.006 1.000+0.000 1.000+0.000 0.999+0.001
DI-GPS-P 1.000+£0.000 1.000+0.000 0.988+0.021 1.000+0.000 0.947+0.157 0.986+0.030
BI-GPS-P 1.000+£0.000 1.000£0.000 0.990+£0.010 0.998+0.003 0.961+0.059 0.990+0.012
DGCN 0.564+0.022 0.708+0.031 0.200+0.016 ~ 0.781+0.103 0.611£0.099 0.573+0.041
DiiGCN 0.597+0.017 0.721+0.031 0.220+£0.033 0.724+0.088 0.613+0.197 0.575+0.054
MagNet 1.000+0.000 1.000+0.000 1.000£0.000 1.000£0.000 1.000£0.000 1.000+0.000

Table 28: ID performance on the CG dataset on device ‘Adreno 630 GPU’ with ‘acc10’ metric.

roxylessnass resnets

Method rmse 5 ZCCS accl0 rmse acc5 accl0
GCN 6.517+£0.386 0.150+0.019 0.275+0.017 111.019+1.367 0.006+0.005 0.015+0.007
DI-GCN 6.135+0.149 0.154+0.021 0.305+0.014 111.631+1.095 0.007+£0.005 0.012+0.006
BI-GCN 5.314+0.297 0.150+0.013 0.294+0.023 98.142+2.642 0.002+0.004 0.006+0.003
GIN 3.252+0.272 0.279+£0.046 0.512+0.024 90.353+£5.675 0.030+0.012 0.066+0.017
DI-GIN 3.121+0.549 0.271£0.076 0.514+0.079 109.263+2.076 0.028+0.013 0.057+0.011
BI-GIN 3.307+0.184 0.306+0.044 0.538+0.020 99.362+2.257 0.030+0.017 0.053+0.020
1149 GAT 3.082+0.419 0.252+0.065 0.479+0.084 95.114£5.394 0.011+£0.014 0.025+0.030
DI-GAT 3.982+0.341 0.172+0.019 0.355+0.027 92.21249.020 0.035+0.019 0.072+0.029
BI-GAT 3.461+0.376 0.265+0.038 0.476+0.059 109.787+1.405 0.003+0.005 0.005+0.009
GPS-P 2.554+0.146 0.304+0.068 0.639+0.022 104.410+1.863 0.010+0.005 0.019+0.006
DI-GPS-P 2.515+0.148 0.270+£0.070 0.614+0.061 105.275+2.238 0.006+0.010 0.009+0.013
BI-GPS-P 2.793#0.261 0.281+0.064 0.542+0.091 104.383+3.367 0.009+0.007 0.018+0.011
DGCN 5.794+0.249 0.160+0.012 0.293+0.026 116.229+1.179 0.006+0.006 0.017+0.010
DiGCN 6.042+0.906 0.140£0.023 0.271+0.043 117.250+1.149 0.006£0.005 0.013+0.008
MagNet 3.120+0.409 0.434+0.077 0.599+0.070 109.707+2.288 0.001+£0.002 0.003+0.003

Table 29: OOD performance on the CG dataset on device ‘Adreno 630 GPU’.

1146

1147

1148

35

Method densenets mnasnets mobilenetv3ds mobilenetv4s nasbench202s average
GCN 4.754+0.087 1.141+0.032 4.717+0.039 0.820+0.042 0.184+0.075 2.323+0.026
DI-GCN 4.899+0.188 1.159+0.064 4.869+0.179 0.834+0.070 0.162+£0.102 2.385+0.084
BI-GCN 4.712+0.095 1.150+0.061 3.834+0.104 0.887+0.142 0.364+0.116 2.190+0.042
GIN 0.847+£0.089 0.249+0.176 0.518+0.161 0.216+0.076 ~ 0.539+0.511 0.474+0.103
DI-GIN 0.639+0.034 0.119+0.013 0.303+0.019 0.102+0.023 0.050+0.010 0.243+0.011
BI-GIN 0.310+£0.022 0.100+0.011 0.231+0.015 0.099+0.028 0.039+0.013 0.156+0.011
1150 GAT 1.630+£0.299 0.441+0.088 1.585+0.311 0.388+0.052 0.131+0.081 0.835+0.127
DI-GAT 1.763+0.174 0.576+0.097 1.589+0.162 0.513+0.087 0.429+0.049 0.974+0.077
BI-GAT 0.830+0.082 0.269+0.026 0.834+0.114 0.264+0.030 0.062+0.020 0.452+0.032
GPS-P 0.303+£0.035 0.132+0.020 0.335+0.043 0.112+0.026 0.106+0.062 0.197+0.015
DI-GPS-P 0.316+0.030 0.145+0.020 0.332+0.042 0.110+0.009 0.060+0.032 0.193+0.018
BI-GPS-P 0.296+0.012 0.118+0.016 0.303+0.049 0.083+0.011 0.108+0.071 0.182+0.026
DGCN 4.903+0.105 1.162+0.047 5.048+0.030 0.756+0.060 0.409+0.045 2.456+0.032
DiiGCN 4.807+0.174 1.274+0.118 5.139+0.174 0.834+0.091 0.470+0.075 2.505+0.094
MagNet 0.583+0.051 0.155+0.019 0.337+0.042 0.150+0.029 0.074+0.031 0.260+0.019
Table 30: ID performance on the CG dataset on device ‘Adreno 640 GPU’ with ‘rmse’

Method densenets mnasnets mobilenetv3ds mobilenetv4s nasbench202s average
GCN 0.367£0.014 0.381+0.024 0.133+0.020 0.422+0.034 0.678+0.320 0.396+0.066
DI-GCN 0.357+£0.016 0.416+0.035 0.139+0.029 0.450+0.047 0.782+0.272 0.429+0.059
BI-GCN 0.412+0.040 0.447+0.038 0.178+£0.024 0.422+0.084 0.383+0.180 0.368+0.050
GIN 0.986+0.009 0.951+0.124 0.806+0.103 0.943+0.081 0.515+0.409 0.840+0.095
DI-GIN 0.999+0.003 1.000£0.000 0.962+0.023 1.000+£0.000 0.997+0.006 0.991+0.004
BI-GIN 1.000£0.000 1.000+0.000 0.983+0.006 0.999+0.003 1.000+0.000 0.996+0.001
151 GAT 0.846+0.057 0.861+0.075 0.427+0.064 0.821+0.069 0.830+0.287 0.757+0.078
DI-GAT 0.836+0.042 0.744+0.080 0.373+£0.053 0.674+0.101 0.424+0.058 0.610+0.047
BI-GAT 0.990+0.006 0.981+0.015 0.671+0.047 0.926+0.038 0.989+0.009 0.911+0.014
GPS-P 1.000£0.000 1.000£0.000 0.938+0.038 1.000+0.000 0.890+0.234 0.965+0.049
DI-GPS-P 1.000+0.000 1.000+0.000 0.950+£0.032 0.998+0.006 0.994+0.018 0.988+0.009
BI-GPS-P 1.000+0.000 1.000+0.000 0.960+0.043 1.000£0.000 0.876+0.196 0.967+0.047
DGCN 0.343+0.020 0.409+0.028 0.122+0.022 0.510+0.077 0.441+0.088 0.365+0.017
DiiGCN 0.343+0.031 0.415+0.036 0.116+£0.017 0.456+0.080 0.383+0.092 0.342+0.028
MagNet 0.999+0.003 0.999+0.003 0.922+0.028 0.990+0.014 0.966+0.054 0.975+0.016

metric.

Table 31: ID performance on the CG dataset on device ‘Adreno 640 GPU’ with ‘acc5’ metric.

Method densenets mnasnets mobilenetv3ds mobilenetvds nasbench202s average
GCN 0.694+0.011 0.747+0.018 0.249+0.013 0.768+0.061 0.957+0.090 0.683+0.024
DI-GCN 0.684+0.027 0.717+0.023 0.257+0.037 0.728+0.068 0.941+0.128 0.665+0.032
BI-GCN 0.704+0.022 0.757+0.047 0.346+0.031 0.715+0.107 0.712+0.178 0.646+0.054
GIN 1.000+£0.000 1.000+0.000 0.959+0.048 0.997+0.006 0.635+0.396 0.918+0.076
DI-GIN 1.000+0.000 1.000£0.000 0.999+0.003 1.000+0.000 1.000+0.000 0.999+0.000
BI-GIN 1.000+0.000 1.000+0.000 1.000£0.000 1.000+0.000 1.000+0.000 1.000+0.000
1152 GAT 0.992+0.010 0.991+0.014 0.701+£0.104 0.985+0.009 0.985+0.038 0.930+0.026
DI-GAT 0.984+0.015 0.956+0.032 0.669+0.051 0.949+0.043 0.675+0.055 0.846+0.028
BI-GAT 1.000+£0.000 1.000£0.000 0.926+0.020 0.999+0.003 1.000+£0.000 0.985+0.004
GPS-P 1.000+£0.000 1.000+0.000 0.998+0.004 1.000+0.000 0.990+0.022 0.997+0.005
DI-GPS-P 1.000+0.000 1.000+0.000 0.999+0.003 1.000+0.000 1.000+0.000 0.999+0.000
BI-GPS-P 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 0.986+0.023 0.997+0.004
DGCN 0.664+0.024 0.722+0.024 0.231+0.022 0.800+0.061 0.699+0.082 0.623+0.026
DiiGCN 0.662+0.031 0.703+0.027 0.218+0.030 0.745+0.067 0.617+0.114 0.589+0.031
MagNet 1.000+£0.000 1.000+0.000 0.994+0.007 1.000+£0.000 0.999+0.003 0.998+0.001

Table 32: ID performance on the CG dataset on device ‘Adreno 640 GPU’ with ‘acc10’

Method proxylessnass resnets
rmse acc5 acclO rmse accS accl0

GCN 5.600+0.162 0.169+0.018 0.303+0.018 82.509+1.149 0.006+0.004 0.011+0.004
DI-GCN 6.163+0.463 0.145+0.013 0.283+0.022 82.785+1.409 0.007+0.004 0.015+0.004
BI-GCN 5.039+0.203 0.147+0.012 0.279+0.021 70.904+1.024 0.001+0.002 0.003+0.004
GIN 3.704+0.383 0.267+0.057 0.488+0.069 65.961£7.773 0.029+0.014 0.067+0.027
DI-GIN 3.672+0.328 0.249+0.028 0.461+0.044 62.820+4.603 0.038+0.008 0.078+0.017
1153 BI-GIN 3.326+0.218 0.285+0.031 0.535+0.042 69.651+£5.469 0.037+0.010 0.067+0.016
GAT 3.646+£0.751 0.212+0.058 0.408+0.089 66.092+7.723 0.018+0.012 0.039+0.029
DI-GAT 4.893+0.580 0.155+0.031 0.312+0.048 69.358+4.897 0.022+0.012 0.047+0.022
BI-GAT 3.666+0.544 0.246+0.057 0.453+0.080 76.832+4.857 0.000+0.001 0.001+0.003
GPS-P 2.789+0.093 0.293+0.086 0.627+0.021 74.002+1.594 0.006+0.005 0.011+0.006
DI-GPS-P 2.883+0.134 0.303+0.053 0.605+0.038 76.163+2.222 0.006+0.004 0.016+0.011
BI-GPS-P 2.747+0.101 0.283+0.063 0.653+0.020 72.210+0.404 0.011+0.002 0.020+0.005
DGCN 4.985+0.157 0.160+0.016 0.300+£0.018 85.713+1.394 0.007+0.007 0.011+0.009
DIiGCN 5.362+0.645 0.148+0.012 0.299+0.020 86.605+0.664 0.003+0.003 0.004+0.005
MagNet 3.309+0.187 0.431+£0.030 0.594+0.043 77.379+£1.987 0.004+0.006 0.005+0.008

Table 33: OOD performance on the CG dataset on device ‘Adreno 640 GPU’.

36

metric.

1154
1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

H.2 Comparison between NPE and EPE

gain PM BW
mse rmse mse rmse mse rmse

BI-GIN+NPE 0.135%£0.009 0.367+0.012 1.296+0.024 1.138+0.010 19.215+1.044 4.382+0.117
BI-GINE+EPE 0.149+0.009 0.386+0.012 1.283+0.033 1.132+0.014 17.399+0.644 4.170+0.076

BI-GPS+NPE 0.122+0.007 0.349+0.010 1.212+0.058 1.100+£0.026 20.475+8.853 4.456+0.825
BI-GPS+EPE 0.115+0.008 0.339+0.011 1.206+0.090 1.097+0.040 18.153+2.235 4.253+0.256

Table 34: NPE v.s. EPE on ID data on the AMP dataset.
dsp lut cp

Method

method mse r2 mse 2 mse 12

BI-GINE+NPE 2.508+0.183 0.977+0.001 1.983+0.078 0.879+0.006 0.617+0.026 0.858+0.004
BI-GINE+EPE 2.127+0.085 0.981+0.000 1.729+0.096 0.895+0.007 0.607+0.022 0.857+0.007

BI-GPS+NPE 2.442+0.303 0.979+0.002 2.112+0.216 0.873+0.014 0.621+0.018 0.859+0.009
BI-GPS+EPE 2.133+£0.148 0.981+0.001 1.957+0.125 0.883+0.011 0.602+0.017 0.861+0.007

Table 35: NPE v.s. EPE on ID data on the HLS dataset.

shared root
accuracy precision recall f1 accuracy precision recall f1
BI-GIN+NPE 0.999£0.000 0.987£0.039 0.999£0.000 0.991£0.026 0.999+0.000 0.999+0.000 0.999+0.000 0.999+0.000
BI-GIN+EPE 0.999+0.001 0.974+0.079 0.974+0.078 0.974+0.079 0.999£0.000 0.999+0.000 0.999+0.000 0.999+0.000

Table 36: NPE v.s. EPE on ID data on the SR dataset.

method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
BI-GINE+NPE 0.449+0.106 0.327+0.161 0.162+0.051 0.063+0.025 2.006+0.115 0.107+0.080 0.049+0.018 0.452+0.040

hold rmse BI-GINE+EPE 0.181+0.059 0.021+0.008 0.031+0.006 0.010+0.003 0.652+0.070 0.026+0.011 0.014+0.002 0.134+0.012
hold R2 BI-GINE+NPE 0.995+0.001 0.834+0.081 0.940+0.018 0.928+0.028 0.855+0.008 0.970+£0.022 0.928+0.026 0.921+0.018
BI-GINE+EPE 0.998+0.000 0.988+0.004 0.981+0.003 0.993+0.002 0.954+0.004 0.993+0.002 0.986+0.002 0.985+0.001
BI-GINE+NPE 55.889+2.928 5.481+1.416 13.006+2.716 2.438+0.606 34.429+2.865 12.805+4.583 1.728+0.331 17.968+1.206
SCWPIMSE By GINE+EPE 15.1342.195 132740747 2.718+1297 0.966:0.877 17.996:3.227 6.436:5.416 0.885:0.317 6.494x1.449
setup R2 BI-GINE+NPE 0.142+0.044 -0.021+£0.264 0.326+0.140 -0.149+0.285 0.173+0.068 0.364+0.227 0.306+0.132 0.163+0.093
P BI-GINE+EPE 0.767+0.033 0.752+0.139 0.859+0.067 0.544+0.413 0.567+0.077 0.680+0.268 0.644+0.127 0.688+0.091
Table 37: NPE v.s. EPE on ID data on the TIME dataset.
Method densenets mnasnets mobilenetv2s mobilenetv3ds nasbench201s average

BI-GIN+NPE 7.734+0.602 2.053+0.235 3.788+0.424 1.590+0.371 0.725+0.173 3.178+0.168
CPUIMSE BIGINE+EPE 7.550£0.291 1.728+0.224 3.064£0.326 1.17620.155 0.4190.033 2.788+0.147
cp1 20C5 BI-GIN+NPE 0.893+0.014 0.821+0.056 0.653+0.052 0.705+0.153 0.545+0.351 0.723%0.104
pu BIGINE+EPE 0.907+0.017 0.873+0.042 0.76620.041 0.861+0.036 0.901+0.029 0.861+0.019
epu acel0 BI-GIN+NPE 0.999+0.003 0.994+0.006 0.940£0.025 0.907+£0.066 0.940+0.060 0.956+0.028
P BIGINE+EPE 1.000£0.000 0.999+0.003 0.969+0.023 0.994+0.009 0.999+0.003 0.992+0.006
1630 rmse BIFGIN+NPE 0.440£0.020 0.112£0.009 0.2540.019 0.0990.014 0.056+0.006 ~ 0.192+0.006
ep BIGINE+EPE 0.293+0.024 0.109+0.020 0.272+0.035 0.092+0.021 0.073+0.027 0.1680.009
1630 accs BI-GIN+NPE 1.000+0.000 1.000+0.000 0.974+0.015 1.000%0.000 1.000+0.000 0.994+0.003
&p BIGINE+EPE 1.000£0.000 1.000+0.000 0.968+0.026 1.000£0.000 0.978+0.052 0.989+0.010
630 acclo BI-GINANPE 1.000£0.000 1.000+0.000 1.000:0.000 1.000+0.000 1.000+0.000 1.000::0.000
EPULIVACCIV BIGINE+EPE 1.000£0.000 1.000£0.000 0.999:0.003 1.000£0.000 1.000£0.000 0.999+0.000
1640 rmse BIGIN+NPE 0.355+0.031 0.146x0.017 0.289+0.024 0.157+0.031 ~ 0.071£0.018 0.2040.009
&p °® BIGINE+EPE 0.343+0.028 0.089+0.011 0.245:+0.027 0.093+0.016 0.04620.018 0.163+0.010
BI-GIN+NPE 1.000£0.000 1.000£0.000 0.971+0.015 0.949+0.081 0.986+0.012 0.981%0.016

gpu640 acc5

BIGINE+EPE 1.000+£0.000 1.000+£0.000 0.987+0.013 1.000£0.000 1.000+£0.000 0.997+0.002

BI-GIN+NPE 1.000£0.000 1.000+0.000 0.996+0.005 1.000£0.000 0.999+0.003 0.999+0.001
BIGINE+EPE 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000

Table 38: NPE v.s. EPE on ID data on the CG dataset.

gpu640 accl0

37

1168

1169

1170

171

1172

1173

1174

1175

1176

1177

1178

Method gain PM BW
mse rmse mse rmse mse rmse

BI-GIN+NPE 0.303+£0.046 0.549+0.042 1.379+0.027 1.174+£0.011 25.967£1.646 5.093%0.161
BI-GINE+EPE 0.302+£0.037 0.549+0.033 1.373+0.005 1.171+0.002 22.339+1.413 4.724+0.150

BI-GPS+NPE 0.314+0.030 0.560+0.027 1.315+0.050 1.146+0.021 26.607+10.277 5.087+0.897
BI-GPS+EPE 0.302£0.071 0.546+0.060 1.314+0.143 1.126+0.060 21.815+1.973 4.666x0.206

Table 39: NPE v.s. EPE on OOD data on the AMP dataset.

dsp lut cp

method mse 12 mse 2 mse 12

BI-GINE+NPE 3.434+0.238 0.964+0.002 0.113£0.019 0.971+0.004 0.450+0.013 0.830+0.008
BI-GINE+EPE 3.243%+0.098 0.966+0.000 0.102+0.019 0.973+0.005 0.452+0.022 0.823+0.011

BI-GPS+NPE 3.209+0.263 0.967+0.001 0.133+0.027 0.968+0.006 0.496+0.017 0.812+0.016
BI-GPS+EPE 3.205+0.026 0.968+0.001 0.102+0.017 0.972+0.003 0.474+0.017 0.830+0.006

Table 40: NPE v.s. EPE on OOD data on the HLS dataset.

shared root

accuracy precision recall fl accuracy precision recall fl

BI-GIN+NPE 0.7124#0.027 0.510+0.103 0.591+0.021 0.502+0.032 0.696+0.057 0.556+0.066 0.616+0.072 0.567+0.068
BI-GINE+EPE 0.725+0.037 0.510+0.059 0.604+0.030 0.530+0.038 0.747+0.035 0.569+0.113 0.508+0.080 0.520+0.090

Table 41: NPE v.s. EPE on OOD data on the SR dataset.

Method xtea synth_ram
mse 2 mse r2
hold BI-GINE+NPE 6.936+0.914 -0.092+0.144 0.743+0.313 0.798+0.084
BI-GINE+-EPE 2.074+0.474 0.673+0.074 0.617+0.906 0.832+0.245

setu BI-GINE+NPE 98.690+55.964 -2.326+1.886 629.630£107.437 -1215.849+207.638
P BI.GINE+-EPE 59.401+13.573 -1.002+0.457 619.030+136.176 -1195.363+263.179

Table 42: NPE v.s. EPE on OOD data on the TIME dataset.

Method proxylessnass resnets

rmse accS accl0 rmse accS accl0

cpu BI-GIN+NPE 15.045+5.642 0.264+0.138 0.487+0.199 388.079+36.250 0.041+£0.014 0.073+0.024
BI-GINE+EPE 11.049+0.909 0.310+0.024 0.588+0.049 381.432+28.102 0.036+0.009 0.072+0.016

gpu630 BI-GIN+NPE 2.843+0.289 0.277+0.031 0.538+0.055 97.056+7.138 0.034+0.012 0.065+0.020
BI-GINE+EPE = 2.947+0.239 0.370£0.082 0.595+0.051 108.959+2.594 0.020+0.011 0.033+0.018

gpu640 BI-GIN+NPE 3.591+0.286 0.303£0.062 0.549+0.050 76.590+4.263 0.024+0.009 0.048+0.011
BI-GINE+EPE 3.419+0.266 0.295+0.034 0.525+0.050 68.530+3.603 0.037+0.020 0.065+0.023

Table 43: NPE v.s. EPE on OOD data on the CG dataset.

38

	Introduction
	Related Work
	Datasets and Tasks
	Benchmark Design
	Design Space for Directed Graph Representation Learning
	Stable Direction-aware Positional Encodings
	Hyer-Parameter Space and Tuning

	Modular Toolbox
	Experiments
	Main Results
	Summary: The Recipe for DGRL

	Conclusions and Limitations
	More Related Work
	A Brief Review of Magnetic Laplacian and Positional Encodings for Directed Graphs
	Data split when comparing with baselines in the original papers
	Dataset Selection Details
	High-Level Synthesis (HLS) Dataset
	Symbolic Reasoning (SR) Dataset
	Pre-routing Timing Prediction (TIME) Dataset
	TIME Dataset Distribution Shift Definition

	Computational Graph (CG) Dataset
	CG Dataset Distribution Shift Definition

	Multi-Stage Amplifiers (AMP) Dataset

	Benchmark Design Details
	Selected Backbone Functional
	Hyper-Parameter Space

	Hardware and Platform
	Implementation Details of Experiments
	Ranking Calculation

	Detailed Experiment Results
	Main Results: In-distribution and Out-of-distribution Performance
	Comparison between NPE and EPE

