A Transformer Architecture

A.1 Transformer Architecture

The pre-trained language model typically adopts a Transformer model [36]] as their backbone, which
is formed by stacking multiple transformer layers. The parameters of a transformer layer are located
in three sub-modules. The self-attention sub-layer captures the interactions between the s input

tokens’ hidden representations Hl(rf) € Rsx4
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where
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Then the output is followed by the fully connected feed-forward layer, which is typically composed
of two linear projections

HY = oHLW + b)WY + bl 20)

where W; € R¥¥dm b, € Rim Wy € R¥m*d b, € R? and generally d,,, > d. o(-) is an
activation function. Suppose we use a post-norm structure [31, 4 1], the final sublayer is a layernorm
sublayer to add normalize the hidden states

l
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H((,?t = LayerNorm(Hf(-fl)) =
where s(), b() € R?. Note that, for simplicity, we ignore the details of multi-head attention and skip
connections between sub-layers, as they do not introduce additional trainable parameters. From a
unified view, all sub-layers can be abstracted by a transformation over the sub-layers input,

Hoy = m(Hjp) (22)

B Details of Experiment Configurations

B.1 Details of experiments

We apply S®Delta to the datasets to multitask benchmarks GLUE [38]] and SuperGLUE [37] following
previous works. All datasets are downloaded from the HuggingFace Datasets [[19] library. Since the
test split of these datasets are held officially and invisible to the researchers, we randomly split off 2k
samples from the training set as validation set Dy, for large datasets(QQP, QNLI, ReCoRD, SST2,
MNLI), and use the remaining as the training set Dy,;,, and use the original validation set as the test
set Dyes. For other datasets, we randomly split the original validation set in half as the validation D,y
and the test set Dy, and use the training set as Dy.,;n. The same dataset is splited differently with
different random seeds. For each experiment setting, we repeat the experiment with 8 seeds. In all
experiments, the maximum sequence length is 128 for the tasks in GLUE and 256 for the tasks in
SuperGLUE. The batch size is 16 for SuperGLUE and 32 for GLUE. Especially, we set the maximum
sequence length to 512 and batch size to 8 for ReCoRD. We use T5jy¢e model(703M parameters) as
the backbone model and we freeze the pre-trained parameters in all experiments except finetuning.
We use AdamW as the optimizer with a linear learning rate decay schedule.

For S®Delta, following DARTS [22], we equally split the original training set Dy into two parts:
Ds for optimizing the parameters in DT modules, D, for optimizing the structural parameter. The
original validation set, is used to evaluate and save the search structure every I., steps. The searched
structure is retrained in the original training set Dy.;,, and evaluated in D,,;. We report the average
performances and standard deviations on the final Dy across 8 seeds.

B.2 Hyperparameters

We do pre-experiments on BoolQ and SST?2 using learning rates in {3e-5, 3e-4, 3e-3}, o learning rate
in {le-3, le-2, le-1, 1}, and 7 in {0.1, 0.3, 1} and select the learning rate of 3e-4, alpha learning rate
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Table 3: Specific parameters on different tasks.

Search Re-train
Batchsize Epoch Validation Steps | Batchsize Epoch Validation Steps
GLUE
CoLA 32 15 100 32 15 100
MNLI 32 1 200 32 3 500
MRPC 32 20 50 32 20 50
QNLI 32 4 200 32 4 200
QQP 32 1 200 32 3 500
SST2 32 5 150 32 5 150
STSB 32 40 100 32 40 100
SuperGLUE
BoolQ 16 15 200 16 15 200
CB 16 60 20 16 60 20
COPA 16 40 20 16 40 20
MultiRC 16 5 200 16 10 200
ReCoRD 8 1 200 8 1 200
RTE 16 20 50 16 40 50
WiC 16 20 100 16 20 100

Table 4: The metrics we used to evaluate the GLUE and SuperGLUE Benchmark.
Tasks Metric

CoLA Matthew’s Corr
SST-2 Accuracy
MRPC Fl

GLUE QQpP F1
STS-B Pearson Corr
MNLI Accuracy
QNLI Accuracy

BoolQ Accuracy

CB Accuracy

COPA Accuracy
SuperGLUE MultiRC  F1

ReCoRD F1
RTE Accuracy
WiC Accuracy

of 0.1, and 7 of 1 which perform the best. For 3, we set it to 1. The specific parameters on different
tasks are listed in Table[3] Specifically, for fine-tuning, we try learning rates in {3e-5, le-4, 3e-4} and
find that 3e-5 performs the best. We apply these hyperparameters to all baselines and the re-training
phase of our searched structure in Table[2]and Figure[2]and conduct no further hyperparameter-tuning.
Therefore, the comparison is fair despite that better performance might be achieved with dataset-
specific grid search. The metrics we used to evaluate the GLUE and SuperGLUE Benchmark are in
Table @

B.3 Computing Resources

We run all the experiments on NVIDIA V100 32GB GPUs.
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C Theoretical Issues about S3Delta

C.1 Binary Concrete Distribution

We use the Binary Concrete Distribution as a soft approximation to Bernoulli Distribution z ~ B(1, p),
where p is the probability of the sample being 1.

- 1 up )
z=oc|=log——F——|. (23)
(/5 (1 -u)(1—p)
The probability of Z > 0.5 is p, that is when we sample Z, we can use Z to determine 2’s value,
- up
p(z > 0.5 :p<>1>:pu>1—p =p. (24)
=09 =r{ Ty =y ( )

As 3 approaching 0, the Binary Concrete Distribution converges in distribution to the Bernoulli
distribution. For any constant 0 < ¢ < 1,

limgoP(Z<e)=1-p (25)
limg_o P(Z >1—¢€) =p, (26)

- d
Therefore Z — z.

C.2 Gradient of Global Shifted Sigmoid

In global shifted sigmoid function, we multiply a constant with value 1 to the shifted sigmoid to
enable a global comparison among the structural parameters of each DT module,

Di = NiD; 27
>_; Detach(p;)

Ai=——=1. 28
> 7 (28)

Though the value of p; is equal to the value of p;, The gradient using these two parameterization is
different, which result in different behaviour in the optimization of structural parameters.

Using p; as the parameterization function, the gradient to «; is

oL  0Op; 0L
6041‘ a 604,‘ 8]3,»’ (29)
while using p; as the parameterization function, the gradient is
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by
- ——— (34)
Z >k Pr Op;

serves as an adjustment from the global structural gradient to the local gradient. In a special case,

if the gradients to all p;, i.e., g—;, are equal, no gradient will be pass to the structural parameter c,
which is reasonable.

We conduct ablation studies on three datasets using the global shifted sigmoid p; (denoted by Global)
and the shifted sigmoid without global comparison p; (denoted by Local). Figure [§] proves the
correctness of the global shifted sigmoid parameterization.
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Global vs Local
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Figure 8: The performance difference between local and global shifted sigmoid.

Table 5: The computational resources in the searching phase and re-training phase, Computation
time, memory consumption, and the corresponding ratio between searching phase and re-training
phase are listed.

Time/min
Dataset | Search Re-train Ratio

RTE 148.6 30.0 5.0 27.7 16.6 1.7

Memory/GB
Search Re-train Ratio

STSB 139.3 26.3 53 28.9 10.6 2.7
CoLA 145.6 17.0 8.6 16.1 8.9 1.8

D Additional Results of Experiments

D.1 Efficiency of S®Delta

We report the detailed consumption of computational resources in S®>Delta . From Table we can
see that the searching time is approximately 5~9 times of a training time, which is acceptable due to
the large search space. Once a sparse structure is searched, the training and inference are as fast as or
faster than the other DT methods.

D.2 Heat maps of p; on Each Datasets

The heat maps of the p; on different datasets are presented in Figure[0] Most of the datasets follow
the similar trend in the activated positions. STSB and ReCoRD’s optimal solution is a bit different
from the others, which can be further investigated.

E Potential societal Impact

S3Delta focuses on developing a method to find the optimal sparse structure of DT modules. The
searching process takes longer time than a single training process, consuming more energy. However,
the searched structures are found to be highly transferable. Therefore, we can search for an approx-
imately optimal solution on a group of similar tasks and reuse the structure on other unseen tasks.
Consequently, S®Delta is environmental friendly. Another potential negative societal impact is the
malicious injection of DT modules, which will potentially harm the adaption performance of PTMs.
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Figure 9: Heat maps of p; on each datasets
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