Under review as a conference paper at ICLR 2021

SUPPLEMENTARY: SIMULTANEOUS MULTISCALE
SELF-DISTILLATION FOR DEEP METRIC LEARNING

A  MORE BENCHMARK & IMPLEMENTATION DETAILS

In this part, we report all relevant benchmark details omitted in the main document as well as further
implementation details.

A.1 BENCHMARKS

CUB200-2011 (Wah et al., 2011) contains 200 bird classes over 11,788 images, where the first and
last 100 classes with 5864/5924 images are used for training and testing, respectively.

CARS196 (Krause et al., 2013) contains 196 car classes and 16,185 images, where again the first
and last 98 classes with 8054/8131 images are used to create the training/testing split.

Stanford Online Products (SOP) (Oh Song et al., 2016) is build around 22,634 product classes over
120,053 images and contains a provided split: 11318 selected classes with 59551 images are used for
training, and 11316 classes with 60502 images for testing.

A.2 IMPLEMENTATION

We now provide further details regarding the training and testing setup utilized. For any study
except the comparison against the state-of-the-art (Table 2) which uses different backbones and
embedding dimensions, we follow the setup used by Roth et al. (2020b)": This includes a ResNet50
He et al. (2016) with frozen Batch-Normalization loffe & Szegedy (2015), normalization of the
output embeddings with dimensionality 128 and optimization with Adam Kingma & Ba (2015) using
a learning rate of 10~° and weight decay of 3 - 10—4. The input images are randomly resized and
cropped from the original image size to 224 x 224 for training. Further augmentation by random
horizontal flipping with p = 0.5 is applied. During testing, center crops of size 224 x 224 are used.
The batchsize is set to 112.

Training runs on CUB200-2011 and CARS196 are done over 150 epochs and 100 epochs for SOP for
all experiments without any learning rate scheduling, except for the state-of-the-art experiments (see
again 2). For the latter, we made use of slightly longer training to account for conservative learning
rate scheduling, which is similarly done across reference methods noted in tab. 2. Schedule and
decay values are determined over validation subset performances. All baseline DML objectives we
apply our self-distillation module S2SD on use the default parameters noted in Roth et al. (2020b)
with the single exception of Margin Loss on SOP, where we found class margins 8 = 0.9 to be more
beneficial for distillation than the default 8 = 1.2. This was done as changing from S = 1.2 to
£ = 0.9 had no notable impact on the baseline performance. Finally, similar to Kim et al. (2020), we
found a warmup epoch of all MLPs to improve convergence on SOP. Spectral decay computations in
§5.3 follow the setting described in Supp. D.

We implement everything in PyTorch (Paszke et al., 2017). Experiments are done on GPU servers
containing Nvidia Titan X, P100 and T4s, however memory usage never exceeds 12GB. Each result
is averaged over five seeds, and for the sake of reproducibilty and result validity, we report mean and
standard deviation, even though this is commonly neglected in DML literature.

'Repository: github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

15


github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

Under review as a conference paper at ICLR 2021

B BASELINE METHODS

This section provides a more detailed explanation of the DML baseline objectives we used alongside
our self-distillation module S2SD in the experimental section 4. For additional details, we refer to the
supplementary material in Roth et al. (2020b). For the mathematical notation, we refer to Section 3.1.
We use ¢ = f o ¢ to denote the feature network ¢ with embedding f, and 1); the embedding of a
sample x;. Finally, alongside the method descriptions we provide the used hyperparameters.

Margin Loss (Wu et al., 2017) builds on triplet/pair-based losses, but introduces both class-specific,
learnable boundaries { Bys }i=1...c (with number of classes C) between positive and negative pairs,
as well as distance-based sampling for negatives:

Lmargin = Z [m + (_1)]Iyi:yj (ﬁyq - d(wia wj))]-‘r )
z;,2;€EPpB
11
p(x;jlzi, yi # y;) = min (A, l:d(wiﬂpj)n_z(l - id(wia %)2)”23} ) (10)

where Pp denotes the available pairs in minibatch B, and n the embedding dimension. Throughout
this work, we use 5 = 1.2 except for S2SD on SOP, where we found 3 = 0.9 to work better without
changing the baseline performance. We set the learning rate for the class boundaries as 5 - 10~4, and
margin m = 0.2.

Regularized Margin Loss (Roth et al., 2020b) proposes a simple regularization scheme on the
margin loss that increases the number of directions of significant variance in the embedding space
by randomly exchanging a negative sample with a positive one with probability pswicch. For ResNet-
backbones, we use pgwiteh = 0.4 for CUB200, pswitch = 0.35 for CARS196 and pgyicch = 0.15 for SOP
as done in Roth et al. (2020b). For Inception-based backbones, we set pswitch = 0.15 for CUB200
and CARS196 and pgyitch = 0.3 for SOP.

Multisimilarity Loss Wang et al. (2019) incorporates more similarities into training by operating
directly on all positive and negative samples for an anchor x;, while also incorporating a sampling
operation that encourages the usage of harder training samples:

de(Yi, ;) de(tiyj) > minjep, de(Vs, 1) — €
d:(%]) = dC(wuwj) d6(¢z7wj> < manG/\fi dC(wuwk) + € (11)
otherwise

o

Loian = 3 3 | > logl1 + 3 exp(—a(dz(4i,1) ~ V)

iEB JEP: (12)

Y %log[l—k > exp(B(d: (Wi, k) — M)

i€B keN;

where d,. denotes the cosine similarity instead of the euclidean distance, and P; /A; the set of positives
and negatives for x; in the minibatch, respectively. We use the default values o = 2, 8 = 40, A = 0.5
and ¢ = 0.1.

C EVALUATION METRICS

The evaluation metrics used throughout this work are recall @ 1 (R@1), recall @ 2 (R@2) and
Normalized Mutual Information (NMI), capturing two distinct embedding space properties.

Recall @K, see e.g. in Jegou et al. (2011), especially Recall@1 and Recall @2, is the primary metric
used to compare the performance of DML methods and approaches, as it offers strong insights into

16



Under review as a conference paper at ICLR 2021

retrieval performances of the learned embedding spaces. Given the set of embedded samples 1); € ¥
with ¢; = ¢(x;) and ; € X, and the sorted set of k nearest neighbours for any sample ¢,

F¥ = minsort argmin A(¢a, @ (13)
@ d(¢a,") }'CX,]-‘|_kwfz€:]_— (9 61)

Recall@K is measured as

1 1 3z € Flsty, =y
Recall@K = —- ¢ 14
ecd || ;{ {0 otherwise 14

which evaluates how likely semantically corresponding pairs (as determined here by the labelling
y; € Y) will occur in a neighbourhood of size k.

Normalized Mutual Information (NMI), see Manning et al. (2010), evaluates the clustering quality
of the embedded samples ¥ (taken from &’). It is computed by first clustering with K cluster
centers, usually corresponding to the number of classes available, using a cluster method of choice
s.a. K-Means (Lloyd, 1982). This assigns each sample x; a cluster label/id w; based on the nearest
cluster centroid. With )y, = {i|w; = wy,} the set of samples with cluster label, 2 = {n; } X the set of
cluster sets, v, = {i|y; = yy} the set of samples with true label y; and T = {1} the set of class
label sets, the Normalized Mutual Information is given as

1(Q,7)
2. (H(Q) + H(Y))

with mutual information (-, -) and entropy H (-).

NMI(Q, T) =

15)

D GENERALIZATION METRICS

Embedding Space Density. Given sets of embeddings ¥, we first define the average inter-class

distance as 1

7Tinter(‘l}) =7 d(ﬂ’(\llyz)nu’(\llyk)) (16)
nter
Y, Yk Ik
which measures the average distances between groups of embeddings with respective classes y; and
Y, estimated by the respective class centers pi(+). Ziner denotes a normalization constant based on the
number of available classes. We also introduce the average intra-class distance as the mean distance

between samples within their respective class

1
7"—intra(\I’) = 7. Z Z d(¢w¢]) (17)
MR €Y ity €Wy, i

again with normalization constant Z,., and set of embeddings with class y;, ¥,,. Given these two
quantities, the embedding space density is then defined as

Tlintra (\Il )
71'imer(\IJ)
and effectively measured how densely samples and classes are grouped together. Roth et al. (2020b)

show that optimizing the DML problem while keeping the embedding space density high, i.e. without
aggressive clustering, encourages better generalization to unseen test classes.

Wralio(\Ij) = (18)

Spectral Decay. The spectral decay metric p(V) defines the KL-divergence between the (sorted)
spectrum of D singular values S3"¢"™" (obtained via Singular Value Decomposition (SVD)) and a
D-dimensional uniform distribution {/p, and is inversly related to the entropy of the embedding

space:
p(¥) = D, (U, Sy*™) 19)

It does not account for class distributions. Roth et al. (2020b) show that doing DML while encouraging
a high-entropy feature space notably benefits the generalization performance. In our experiments, we
disregard the first 10 singular vectors (out of 128) to highlight the feature diversity. This is important,
as we evaluate the spectral decay within the same objectives, which results in the first few singular
values to be highly similar.

17



Under review as a conference paper at ICLR 2021

(A) Target Dimensions & Multi-Branches (B) Feature Distillations 07 (C) Detached vs Non-Detached
0.67f | Y
R | 0.63 | I

0.66 |

0.65 0.65

Recall@1
Recall@1

0.63 0.63

—— [Basic
Be\:all@l
- =

= | Basic

=
=)
2]

0.62 =

MSDFA

) (=
Il
Q

Basic DSDA MSDA Basic Multi With earlier features Basic DSDA MSDA

Figure 4: Additional ablations. (A) Increasing target dimensions offers notable improvements. We opt for a
target dimension of 2048 due to slightly higher mean improvements. For multiple embedding branches (#B),
there seems to be an optimum at four branches. (B) Furthermore, feature distillation gives another notable boost.
However, this only holds for the globally averaged penultimate feature representation. When distilling more fine-
grained feature representations, performance degenerates (where #P denotes smaller pooling windows applied to
the penultimate feature representation). (C) We show that detached auxiliary branches for distillation are crucial
to higher improvements, as we want the reference embedding space to approximate the higher-dimensional one.

E ADDITIONAL EXPERIMENTS

This part extends the set of ablations experiments performed in section 5.4 in the main paper.

a. Detaching target spaces for distillation. We examine whether it is preferable to detach the
target embeddings from the distillation loss (see eq. 3), as we want the reference embedding space
to approximate the higher-dimensional relations. Similarly, we do not want the target embedding
networks g; to reduce high-dimensional to lower-dimensional relations to optimizer for the distillation
constraint. As can be seen in fig 4C, it is indeed the case that detaching the target embedding spaces
is notably beneficial for a stronger reference embedding, supporting the previous motivation.

b. Influence of varying target dimensions. As noted at the beginning of section 4, we set the target
dimension for dual self-distillation (DSD) to d = 2048, which we motivate through a small ablation
study in fig. 4A, with TD denoting the target dimension of choice. As can be seen, benefits plateau
when the target dimension reaches more than four times the reference dimension. However, to be
directly comparable to high-dimensional reference settings, we set d = 2048 as default.

c. Ablating multiple distillation scales. Going further, we extend the module with additional
embedding branches to the multiscale self-distillation approach (MSD), all operating in different,
but higher-than-reference dimension. As already shown in Figure 3B in the main paper, there is a
benefit of multiscale distillations by encouraging reusable sample relations. In this part, we motivate
the choice of four target branches (as noted in sec. 4). Looking at figure 4A, where B denotes
the number of additional target spaces, we can see a benefit in multiple additional target spaces of
ascending dimension. As the improvements saturate after B = 4, we simply set this as the default
value. However, the additional benefits of going to multiscale from dual distillation are not as high as
going from no to dual target space distillation, showcasing the general benefit of high-dimensional
concurrent self-distillation. Finally, we highlight that a multiscale approach slightly outperforms
a multibranch distillation setup (Fig. 4A, Multi-B) where each target branch has the same target
dimension of 2048 while introducing less additional parameters.

d. Finer-grained feature distillation. As already shown in section 4 and again in figure 4B, we
see benefits of feature distillation, using the (globally averaged) normalized penultimate feature
space. It therefore makes sense to investigate the benefits of distilling even more fine-grained feature
representation. Defining P = [(3, 3), (1, 1), (2,2), (4, 1)] as the pooling window size applied to the
non-average penultimate feature representation, we investigate less compressed feature representation
space. As can be seen in fig. 4B, where P denotes the index to P, there appears to be no benefits in
distilling feature representations higher up the network.

e. Runtime comparison of base dimensionalities. We highlight relative retrieval times at different
base dimensionalities in Tab. 3 using faiss (Johnson et al., 2017) on a NVIDIA 1080Ti and a synthetic
set of N = 250000 embeddings of dimensionality d € [32,64, 128,256,512, 1024, 2048]. With
S2SD matching d = 64/128 to base dimensionalities d = 512/2048 (see §5.3), runtime can be
reduced by up to a magnitude.

Dimensionalityd | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
Runtime (s) | T.54£0.00 | 1.98£0.00 | 2.7120.00 | 435£0.00 | 7.38£0.01 | 13.83£0.02 | 27.21£0.17

Table 3: Sample retrieval times for 250000 embeddings with varying base dimensionalities.

18



29

50

51

53
54
55
56

57

59

60

Under review as a conference paper at ICLR 2021

F PSEUDO-CODE

To facilitate reproducibility, we provide pseudo-code based on PyTorch (Paszke et al., 2017).

import torch, torch.nn as nn, torch.nn.functional as F
from F import normalize as norm

nwn

Parameters:
self.base_criterion: base DML objective
self.trgt_criteria: list of DML objectives for target spaces
self.trgt_nets: Module list of auxiliary embedding MLPs
self.dist_gamma: distillation weight
self.it_before_feat_distill: iterations before feature distill

nwn

def forward(self, batch, labels, pre_batch, =*xkwargs):
Args:
batch: image embeddings, shape: bs x d
labels: image labels, shape: bs
pre_batch: penultimate network features, shape: bs x dx

wnun

bs, batch = len(batch), norm(batch, dim=-1)

### Compute ref. sample relations and loss on ref. embedding space
base_smat = batch.mm(batch.T)
base_loss = self.base_criterion(batch, labels, xxkwargs)

### Do global average pooling (and max. pool if wanted)
avg_pre_batch = nn.AdaptiveAvgPool2d(1l) (pre_batch) .view (bs,-1)
avg_pre_batch += nn.AdaptiveMaxPool2d(1l) (pre_batch) .view (bs,-1)

### Computing MSDA loss (Targets & Distillations)

dist_losses, trgt_losses = [], []

for trgt_crit,trgt_net in zip(self.trgt_criteria,self.trgt_nets):
trgt_batch = norm(trgt_net (avg_pre_batch),dim=-1)
trgt_loss = trgt_crit (trgt_batch, labels, xxkwargs)
trgt_smat = trgt_batch.mm(trgt_batch.T)

base_trgt_dist = self.kl_div(base_smat, trgt_smat.detach())
trgt_losses.append(trgt_loss)
dist_losses.append (base_trgt_dist)

### MSDA loss
multi_dist_loss = (base_loss+torch.stack (trgt_losses).mean()) /2.
multi_dist_loss += self.dist_gammaxtorch.stack (dist_losses) .mean ()

### Distillation of penultimate features —-> MSDFA

src_feat_dist = 0

if self.it_count>=self.it_before_feat distill:
n_avg_pre_batch = norm(avg_pre_batch, dim=-1).detach()
avg_feat_smat = n_avg_pre_batch.mm(n_avg_pre_batch.T)
src_feat_dist = self.kl _div(base_smat, avg_feat_smat.detach())

### Total S2SD training objective

total_loss = multi_distill_loss + self.dist_gammaxsrc_feat_dist
self.it_count+=1

return total_loss

def kl_div(self, A, B, T=1):
log_p_ A = F.log_softmax (A/self.T, dim=-1)
p_B = F.softmax (B/self.T, dim=-1)
kl_d = F.kl_div(log_p_A, p_B,reduction='sum’)+T*x2/A.size (0)
return kl_d

Listing 1: PyTorch Implementation for S2SD.

19



Under review as a conference paper at ICLR 2021

G DETAILED EVALUATION RESULTS

This table contains all method ablations for a fair evaluation as used in Section 5.2 and Table 1.

Table 4: Detailed Comparison of Recall@ I and NMI performances against well performing DML
objectives examined in section 5.2. This is the complete version to table 1. All results are computed
over 5-run averages. (*) For Margin Loss and SOP, we found 5 = 0.9 to give better distillation results
without notably influencing baseline performance.

Benchmarks— CUB200-2011 CARS196 SOP
Approaches | | R@1 | NMI | R@l | NMI || R@l | NMI
Margin(*) 63.09 £ 0.46]68.21 £ 0.331]79.86 + 0.33|67.36 + 0.34||78.43 - 0.07/90.40 £ 0.03
+DSD 65.11 = 0.18(69.65 £ 0.44{|83.19 + 0.18(69.28 + 0.56|79.05 £+ 0.12|90.52 £+ 0.18
+ DSDA 65.77 £ 0.55/69.85 £ 0.25(83.92 4 0.08(69.95 4 0.21||77.78 4= 0.15/90.29 4 0.08
+MSD 66.13 £ 0.34|70.83 £ 0.27|83.63 &+ 0.31{69.80 & 0.36|79.26 4= 0.15|90.60 & 0.10
+ MSDA 66.14 = 0.32(70.82 £ 0.18|{84.31 & 0.12(70.17 & 0.30(|78.04 = 0.11|90.45 £+ 0.05
+ MSDF 67.58 +0.32(71,47 £ 0.19(|85.55 £ 0.23|71.68 & 0.54(|79.63 £ 0.14|90.70 & 0.09
+ MSDFA 67.21 £0.23|71.43 £ 0.2586.45 + 0.35(71.46 & 0.24||78.82 4= 0.09|90.49 £ 0.06
R-Margin 64.93 £ 0.42]68.36 £+ 0.321]82.37 + 0.13|68.66 + 0.47||77.58 = 0.1190.42 4 0.03
+DSD 66.58 = 0.08|70.03 £ 0.41{|84.64 + 0.16(70.87 & 0.18||77.86 = 0.10|90.50 £ 0.03
+ DSDA 67.11 £ 0.43|70.39 4= 0.48 ||84.32 4+ 0.36|70.85 £+ 0.16||77.79 == 0.11{90.37 + 0.04
+MSD 66.81 +0.27|70.47 £ 0.16 ||85.01 = 0.10(71.67 & 0.40(|78.00 &= 0.06|90.47 & 0.04
+ MSDA 67.31 £0.41|71.01 £0.24(|85.34 & 0.17|71.85 & 0.20(|77.93 = 0.06/90.29 £ 0.08
+ MSDF 68.12 £+ 0.30|71.80 = 0.33||85.78 4+ 0.22(72.24 £+ 0.31||78.57 4= 0.09(90.58 &+ 0.02
+ MSDFA 68.58 +0.26|71.64 £ 0.40(|86.81 + 0.35|71.48 4 0.29(|78.00 £+ 0.11{90.41 4+ 0.02
Multisimilarity|62.80 4+ 0.70|68.55 + 0.38||81.68 £ 0.19|69.43 & 0.38]|77.99 + 0.09/90.00 + 0.02
+DSD 65.57 = 0.26|70.08 £ 0.33(|83.51 & 0.20(70.30 & 0.05(|78.23 4= 0.04|90.08 £ 0.04
+ DSDA 66.60 £ 0.43|70.74 4= 0.40 ||84.42 4 0.28(70.36 £ 0.34||77.92 - 0.12(89.99 + 0.04
+MSD 65.80 = 0.16{70.53 £ 0.01{|83.98 + 0.10(71.34 4+ 0.09||78.42 4 0.09|90.09 £ 0.03
+ MSDA 66.96 £ 0.36|70.77 £ 0.05||85.04 = 0.14(71.09 & 0.23||77.98 = 0.05/90.02 £ 0.04
+ MSDF 67.04 £0.29|71.87 £ 0.19|85.69 4+ 0.19|72.77 £ 0.13||78.59 4= 0.08{90.09 + 0.06
+ MSDFA 67.68 = 0.29|71.40 £ 0.21(|85.89 &+ 0.15(71.45 4+ 0.26|78.07 4= 0.06|89.88 - 0.10

20



Under review as a conference paper at ICLR 2021

H EVALUATION RESULTS USING MAP@R

This table measures performance of methods investigated in Table 1 using the mAP@R(@ 1000)
metric used in Roth et al. (2020b). The results here coincide with those measured using Recall@1.
This comes at no surprise, as both metrics are strongly correlated when measuring the performance
of Deep Metric Learning methods (Roth et al., 2020b).

Table 5: Detailed Comparison of mAP@R (as used in Roth et al. (2020b) and Musgrave et al. (2020)
and based on the formulation used in Roth et al. (2020b)) against well performing DML objectives
examined in section 5.2.. All results are computed over 5-run averages. (*) For Margin Loss and SOP,
we found 8 = 0.9 to give better distillation results without notably influencing baseline performance.
Bold denotes best results per objective and dataset. Bluebold denotes best performance per dataset.

Benchmarks— CUB200-2011 CARS196 SOP

Approaches | | mAP [ mAP [ mAP

Margin(*) 32.63 £ 0.40 || 32.50 &= 0.28 || 46.90 £ 0.16
+DSD 33.85£0.38 || 34.01 £ 0.39 || 47.39 £+ 0.18
+ MSD 34.79 £ 0.35 || 34.64 £0.31 || 48.17 £ 0.07
+ MSDF 35.68 +0.29 || 35.26 £+ 0.41 ||48.24 + 0.10
+ MSDFA 35.98 +£0.23(/35.98 4+ 0.40({ 47.04 £ 0.26
R-Margin 33.38 = 0.27 || 34.57 £ 0.30 || 46.02 4+ 0.14
+ DSD 34.46 +0.30 || 35.12 +£0.22 ([ 46.20 £ 0.19
+ MSD 35.11 +0.41 || 35.78 £0.40 || 46.59 £ 0.16
+ MSDF 35.99 +0.36 || 37.32 +£0.40 ||47.08 + 0.17
+ MSDFA 36.25 +£0.37(|37.67 4 0.35|| 46.71 & 0.16
Multisimilarity| 30.92 + 0.49 || 31.92 £ 0.44 || 46.23 4 0.08
+ DSD 33.20 £ 0.34 || 33.67 £0.27{| 46.21 = 0.15
+MSD 34.00 £0.35 || 34.67 £0.26 || 46.45 £ 0.11
+ MSDF 35.16 = 0.32 |[35.52 +£0.51{|46.52 £ 0.17
+ MSDFA 35.35 +£0.24 || 35.13 +-0.35 || 45.39 = 0.28

I DETAILED ABLATION RESULTS

Detailed values to the ablation experiments done in section 5.4 and E.

Table 6: Experiment: Comparison of concurrent self-distillation against standard 2-stage distillation.
This table also shows that training without distillation (Joint) or training in high dimension while
learning a detached low-dimensional embedding layer (Concur.) does not benefit performance notably.
See fig. 3A. All results are computed over 5-run averages.

Experiment || Setting | R@1

Best Teacher (d=1024) 66.04 +0.17
Base Student (d=128) 62.70 + 0.53
Distill Student (d=128) 63.89 +0.14
Concur. Student (d=128) | 63.08 £ 0.42
Distillation Joint Student (d=128) 62.93 + 0.22

DSD (d=128) 65.57 = 0.26
DSDA (d=128) 66.51 £0.18
MSDA (d=128) 66.96 £ 0.36

MSDFA (d=128) 67.68 £ 0.29

21



Under review as a conference paper at ICLR 2021

Table 7: Experiment: Benefit of self-distillation across embedding dimensionalities. These results go
along with 3B. All results are computed over 5-run averages.

Experiment I Setting | R@1 | Setting R@1
Base (d=16) 48.18 £0.54 MSD (d=256) 66.90 + 0.11
Basic (d=32) | 54.54 +0.42 | MSD (d=512) | 67.07 « 0.02
Basic (d=64) 59.31 +0.26 MSD (d=1024) 66.69 + 0.11
Basic (d=128) | 62.70 +0.53 | MSD (d=2048) | 66.68 « 0.18
Basic (d=256) 64.39 £ 0.30 MSDA (d=16) 51.57 £ 0.39
Basic (d=512) | 65.95+0.19 | MSDA (d=32) | 61.55+ 0.23
Basic (d=1024) | 66.04 +0.17 MSDA (d=64) 64.94 + 0.50
Basic (d=2048) | 66.03 = 0.20 MSDA (d=128) 66.96 £ 0.36
DSD (d=16) 49.92 £ 0.09 MSDA (d=256) 67.63 £0.34
DSD (d=32) 59.75 £ 0.78 MSDA (d=512) 67.76 £ 0.26
DSD (d=64) 62.75£0.15 | MSDA (d=1024) 67.79 £0.10
DSD (d=128) 65.57 £0.26 | MSDA (d=2048) | 67.33 £0.09
DSD (d=256) 66.34 £0.07 MSDF (d=16) 51.99 £+ 0.57
Embeddine Dimensionalit DSD (d=512) 66.89 £ 0.15 MSDF (d=32) 61.61 +0.41
& y DSD (d=1024) 66.57 £0.11 MSDF (d=64) 65.31 £ 0.23
DSD (d=2048) 66.54 £ 0.28 MSDF (d=128) 66.66 + 0.29
DSDA (d=16) 50.77 £ 0.71 MSDF (d=256) 67.47 +0.11
DSDA (d=32) 60.13 £ 0.45 MSDF (d=512) 67.59 £ 0.03
DSDA (d=64) 63.84 £0.36 | MSDF (d=1024) 67.40 £0.15
DSDA (d=128) 66.51 £0.18 MSDF (d=2048) 67.01 £0.35
DSDA (d=256) 67.13 £0.24 MSDFA (d=16) 52.96 £+ 0.44
DSDA (d=512) 67.54 £0.24 MSDFA (d=32) 61.98 £+ 0.36
DSDA (d=1024) | 67.27 £ 0.22 MSDFA (d=64) 65.19 + 0.40
DSDA (d=2048) | 67.33 £0.30 | MSDFA (d=128) 67.68 £ 0.29
MSD (d=16) 50.51 +0.21 | MSDFA (d=256) | 68.48 +0.28
MSD (d=32) 60.00 £ 0.28 | MSDFA (d=512) 69.06 £ 0.14
MSD (d=64) 63.74 £0.24 | MSDFA (d=1024) | 69.08 £ 0.22
MSD (d=128) 65.80 £0.16 | MSDFA (d=2048) | 69.29 £ 0.35

Table 8: Experiment: Methods of distillation between reference and target embedding spaces. See fig.

3C. Used Method: DSDA. All results are computed over 5-run averages.

Experiment || Setting | R@1
R-KL 66.51 = 0.18
Cos 65.73 £ 0.27
Eucl 65.61 +0.28
Distillation Methods KL-Full 65.91 +0.32
KL-Mean | 64.00 & 0.55
Basic 62.70 £+ 0.53

Table 9: Experiment: Structure of the secondary branch. More specifically, this table contains specific
values used in fig. 3D. Used Method: DSDA. All results are computed over 5-run averages.

Experiment || Setting | R@1
2 Layers | 66.51 £ 0.18
3 Layers | 66.03 £ 0.29
Secondary Branch Structure || 4 Layers | 65.76 £ 0.65
Linear 65.28 £0.48
Basic 62.70 + 0.53

22



Under review as a conference paper at ICLR 2021

Table 10: Experiment: Different distillation hierarchies. See fig. 3E. Used Method: MSDA. All
results are computed over 5-run averages.

Experiment || Setting | R@1
Basic 62.70 £ 0.53
o . . Straight | 66.96 + 0.36
Distillation Hierarchies Fully 65.58 & 0.46
Stacked | 65.21 +0.25

Table 11: Experiment: Influence of distillation weight ~y. See fig. 3F. Used Method: DSD. All results
are computed over 5-run averages.

Experiment || Setting | R@1 CUB200 | R@1 CARS196 | R@1 SOP
0.0 62.70 £ 0.53 81.32 £0.36 77.78 £ 0.06
0.2 62.85 £ 0.41 81.65 £ 0.40 78.22 +£0.07
1.0 62.92 +£0.16 81.92 £ 0.51 78.71 £ 0.10
5.0 63.88 £0.19 82.96 £0.10 79.05 £ 0.12
Weight Ablation 20.0 65.43 £ 0.21 83.50 £ 0.35 78.72+0.10
50.0 65.57 £ 0.26 83.51 £0.33 78.10 £0.13
250.0 65.04 £ 0.33 82.25 £+ 0.62 77.41 +0.12
1000.0 | 63.32 £0.36 77.00 = 0.66 77.01 £ 0.08
2000.0 62.76 £ 0.31 72.72+0.85 76.37 +0.11
5000.0 | 62.05 £ 0.62 70.90 + 0.97 75.42 +0.20

Table 12: Experiment: Evaluation target dimensions and levels of multiscale distillation. See fig. 4A.
All results are computed over 5-run averages.

Experiment [ Setting | R@1
Basic 62.70 £0.53
DSDA, TD=256 | 64.82 £+ 0.18
Target Dimensionalities DSDA, TD=512 66.44 + 0.31
DSDA, TD=1024 | 66.25 + 0.26
DSDA, TD=2048 | 66.51 +0.18
MSDA, #B=2 66.76 £ 0.23
. T MSDA, #B=4 66.96 £+ 0.36
MultiScale distillation MSDA. #B=8 66.72 + 0.25
MSDA, #B=16 66.59 £ 0.20

Table 13: Experiment: Is it beneficial to distill more fine-grained features? See fig. 4B. All results
are computed over 5-run averages.

Experiment I Setting | R@1
Basic 62.70 £0.53
MSDA 66.96 £ 0.36
MSDFA 67.68 £0.29
Earlier Features MSDFA, #P=1 | 66.13 & 0.22
MSDFA, #P=2 | 65.49 +0.12
MSDFA, #P=3 | 66.22 + 0.24
MSDFA, #P=4 | 65.96 4+ 0.04

Table 14: Experiment: Is it necessary to detach auxiliary branches for distillation? See fig. 4C. All
results are computed over 5-run averages.

Experiment I Setting R@1
Basic 62.70 £ 0.53
DSDA, Detached 66.51 +0.18
Branch Detaching || DSDA, Non-Detach | 65.08 +0.23
MSDA, Detached | 66.96 £ 0.36
MSDA, No-Detach | 65.34 & 0.07

23



	More Benchmark & Implementation Details
	Benchmarks
	Implementation

	Baseline Methods
	Evaluation Metrics
	Generalization Metrics
	Additional Experiments
	Pseudo-Code
	Detailed Evaluation Results
	Evaluation Results using mAP@R
	Detailed Ablation Results

