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ABSTRACT

In this work, we present a novel conformal prediction method for time-series,
which we call Kernel-based Optimally Weighted Conformal Prediction Intervals
(KOWCPI). Specifically, KOWCPI adapts the classic Reweighted Nadaraya-Watson
(RNW) estimator for quantile regression on dependent data and learns optimal
data-adaptive weights. Theoretically, we tackle the challenge of establishing a
conditional coverage guarantee for non-exchangeable data under strong mixing
conditions on the non-conformity scores. We demonstrate the superior performance
of KOWCPI on real time-series against state-of-the-art methods, where KOWCPI
achieves narrower confidence intervals without losing coverage.

1 INTRODUCTION

Conformal prediction, originated in Vovk et al. (1999; 2005), offers a robust framework explicitly
designed for reliable and distribution-free uncertainty quantification. Conformal prediction has
become increasingly recognized and adopted within the domains of machine learning and statistics
(Lei et al., 2013; Lei & Wasserman, 2014; Kim et al., 2020; Angelopoulos & Bates, 2023). Assuming
nothing beyond the exchangeability of data, conformal prediction excels in generating valid prediction
sets under any given significance level, irrespective of the underlying data distribution and model
assumptions. This capability makes it particularly valuable for uncertainty quantification in settings
characterized by diverse and complex models.

Going beyond the exchangeability assumption has been a research challenge, particularly as many
real-world datasets (such as time-series data) are inherently non-exchangeable. Tibshirani et al.
(2019) addresses situations where a feature distribution shifts between training and test data and
restores valid coverage through weighted quantiles based on the likelihood ratio of the distributions.
More recently, Barber et al. (2023) bounds the coverage gap using the total variation distance between
training and test data points and minimizes this gap using pre-specified data-independent weights.
However, it remains open to how to appropriately optimize the weights.

To advance conformal prediction for time series, we extend the prior sequential predictive approach
(Xu & Xie, 2023a;b) by incorporating nonparametric kernel regression into the quantile regression
method on non-conformity scores. A key challenge of adapting this method to time-series data lies
in selecting optimal weights to accommodate the dependent structure of the data. To ensure valid
coverage of prediction sets, it is crucial to select weights inside the quantile estimator so that it closely
approximates the true quantile of non-conformity scores.

In this paper, we introduce KOWCPI, which utilizes the Reweighted Nadaraya-Watson estimator (Hall
et al., 1999) to facilitate the selection of data-dependent optimal weights. This approach anticipates
that adaptive weights will enhance the robustness of uncertainty quantification, particularly when
the assumption of exchangeability is compromised. Our method also addresses the weight selection
issue in the weighted quantile method presented by Barber et al. (2023), as KOWCPI allows for the
calculation of weights in a data-driven manner without prior knowledge about the data.

In summary, our main contributions are:
∗Correspondence: yao.xie@isye.gatech.edu
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• We propose KOWCPI, a sequential time-series conformal prediction method that performs
nonparametric kernel quantile regression on non-conformity scores. In particular, KOWCPI
learns optimal data-driven weights used in the conditional quantiles.

• We prove the asymptotic conditional coverage guarantee of KOWCPI based on the classical
theory of nonparametric regression. We further obtain the marginal coverage gap of KOWCPI
using the general result for the weights on quantile for non-exchangeable data.

• We demonstrate the effectiveness of KOWCPI on real time-series data against state-of-the-art
baselines. Specifically, KOWCPI can achieve the narrowest width of prediction intervals
without losing marginal and approximate conditional (i.e., rolling) coverage empirically.

1.1 LITERATURE

RNW quantile regression In Hall et al. (1999), the Reweighted Nadaraya-Watson (RNW, often
referred to as Weighted or Adjusted Nadaraya-Watson) estimator was suggested as a method to
estimate the conditional distribution function from time-series data. This estimator extends the
renowned Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) by introducing an additional
adjustment to the weights, thus combining the favorable bias properties of the local linear estimator
with the benefit of being a distribution function by itself like the original Nadaraya-Watson estimator
(Hall et al., 1999; Yu & Jones, 1998). The theory of the regression quantile with the RNW estimator
has been further developed by Cai (2002). Furthermore, Cai (2002) and Salha (2006) demonstrated
that the RNW estimator is consistent under strongly mixing conditions, which are commonly observed
in time-series data. In this work, we adaptively utilize the RNW estimator within the conformal
prediction framework to construct sequential prediction intervals for time-series data, leveraging its
data-driven weights for quantile estimation and the weighted conformal approach.

Conformal prediction with weighted quantiles Approaches using quantile regression instead of
empirical quantiles in conformal prediction have been widespread (Romano et al., 2019; Kivaranovic
et al., 2020; Gibbs et al., 2023). These methods utilize various quantile regression techniques to
construct conformal prediction intervals, and the convergence to the oracle prediction width can be
shown under the consistency of the quantile regression function (Sesia & Candès, 2020). Another
recent work by Guan (2023) uses kernel weighting based on the distance between the test point
and data to perform localized conformal prediction, which further discusses the selection of kernels
and bandwidths. Recent work in this direction of utilizing the weighted quantiles, including Lee
et al. (2023), continues to be vibrant. As we will discuss later, our approach leverages techniques in
classical non-parametric statistics when constructing the weights.

Time-series conformal prediction There is a growing body of research on time-series conformal
prediction (Xu & Xie, 2021b; Gibbs & Candès, 2021). Various applications include financial markets
(Gibbs & Candès, 2021), anomaly detection (Xu & Xie, 2021a), and geological classification (Xu &
Xie, 2022). In particular, Gibbs & Candès (2021; 2024) sequentially construct prediction intervals
by updating the significance level α based on the mis-coverage rate. This approach has become
a major methodology for handling online, non-exchangeable data, leading to several subsequent
developments of adaptively updating the single-parameter threshold that determines the prediction
sets at each time step (Feldman et al., 2022; Auer et al., 2023; Bhatnagar et al., 2023; Zaffran et al.,
2022; Angelopoulos et al., 2023; Yang et al., 2024; Angelopoulos et al., 2024). On the other hand, Xu
& Xie (2023b); Xu et al. (2024) take a slightly different approach by conducting sequential quantile
regression using non-conformity scores. Our study aims to integrate non-parametric kernel estimation
for sequential quantile regression, addressing the weight selection issues identified by Barber et al.
(2023). Additionally, our research aligns with Guan (2023), particularly in utilizing a dissimilarity
measure between the test point and the past data.

2 PROBLEM SETUP

We begin by assuming that the observations of the random sequence (Xt, Yt) ∈ Rd ×R, t = 1, 2, . . .
are obtained sequentially. Notably, Xt may represent exogenous variables that aid in predicting Yt,
the historical values of Yt itself, or a combination of both. (In Appendix A, we expand our discussion
to include cases where the response Yt is multivariate.) A key aspect of our setup is that the data are
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non-exchangeable and exhibit dependencies, which are typical in time-series data where temporal or
sequential dependencies influence predictive dynamics.

Suppose we are given a pre-specified point predictor f̂ : Rd → R trained on a separate dataset or on
past data. This predictor f̂ maps a feature variable in Rd to a scalar point prediction for Yt. Given a
user-specified significance level α ∈ (0, 1), we use the initial T observations to construct prediction
intervals “Cα

t−1(Xt) for Yt in a sequential manner from t = T + 1 onwards.

Two key types of coverage targeted by prediction intervals are marginal coverage and conditional
coverage. Marginal coverage is defined as

P(Yt ∈ “Cα
t−1(Xt)) ≥ 1− α, (1)

which ensures that the true value Yt falls within the interval “Cα
t−1(Xt) at least 100(1− α)% of the

time, averaged over all instances. On the other hand, conditional coverage is defined as

P(Yt ∈ “Cα
t−1(Xt) | Xt) ≥ 1− α, (2)

which is a stronger guarantee ensuring that given each value of predictor Xt, the true value Yt falls
within the interval “Cα

t−1(Xt) at least 100(1− α)% of the time.

3 METHOD

In this section, we introduce our proposed method, KOWCPI (Kernel-based Optimally Weighted
Conformal Prediction Intervals), which embodies our approach to enhancing prediction accuracy and
robustness in the face of time-series data. We delve into the methodology and algorithm of KOWCPI
in-depth, highlighting how the Reweighted Nadaraya-Watson (RNW) estimator integrates with our
predictive framework.

Consider prediction for a univariate time series, Y1, Y2, . . .. We have predictors Xt given to us
at time t, t = 1, 2, . . ., which can depend on the past observations (Yt−1, Yt−2, . . .), and possibly
other exogeneous time series Zt. Given a pre-trained algorithm f̂ , we also have a sequence of
non-conformity scores indicating the accuracy of the prediction:

ε̂t = Yt − f̂(Xt), t = 1, 2, . . . .

We denote the collection of the past T non-conformity scores at time t > T as
Et = (ε̂t−1, . . . , ε̂t−T ),

We construct the prediction interval “Cα
t−1(Xt) with significance level α at time t > T as follows:“Cα

t−1(Xt) = [f̂(Xt) + q̂β∗(Et), f̂(Xt) + q̂1−α+β∗(Et)],
β∗ = argmin

β∈[0,α]

(q̂1−α+β(Et)− q̂β(Et)) . (3)

Here, q̂β is a quantile regression algorithm that returns an estimate of the β-quantile of the residuals,
which we will explain through this section. We consider asymmetrical confidence intervals to ensure
the tightest possible coverage.

3.1 REWEIGHTED NADARAYA-WATSON ESTIMATOR

The Reweighted Nadaraya-Watson (RNW) estimator is a general and popular method for quantile
regression for time series. Observe (X̃i, Ỹi), i = 1, . . . , n, where Ỹi ∈ R, and the predictors X̃i can
be p-dimensional. The goal is to predict the quantile P(Ỹ ≤ b|X̃), b ∈ R, given a test point X̃ using
training samples. The RNW estimator introduces adjustment weights on the predictors to ensure
consistent estimation. We define the probability-like adjustment weights pi(X̃), i = 1, . . . , n, by
maximizing the empirical log-likelihood

∑n
i=1 log pi(X̃), subject to pi(X̃) ≥ 0, and

n∑
i=1

pi(X̃) = 1, (4)

n∑
i=1

pi(X̃)(X̃i − X̃)Kh(X̃i − X̃) = 0. (5)
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The RNW estimate of the conditional CDF P(Ỹ ≤ b|X̃) is defined as follows:“F (b|X̃) =

n∑
i=1

Ŵi(X̃)1(Ỹi ≤ b), (6)

where the final weights Ŵi are given by

Ŵi(X̃) =
pi(X̃)Kh(X̃i − X̃)∑n
i=1 pi(X̃)Kh(X̃i − X̃)

, i = 1, . . . , n, (7)

computed as a weighted average of the adjustment weights pi based on the similarity between X̃ to
each sample X̃i measured by the kernel function K : Rp → R. Here, Kh(u) = h−pK(h−1u) for
u ∈ Rp. Any reasonable choice of kernel function is possible; however, to ensure the validity of our
theoretical results discussed in Section 4, the kernel should be nonnegative, bounded, continuous, and
possess compact support. An example is K(u) = k(∥u∥), where k : R → R is the Epanechnikov
kernel.

The primary computational burden of the RNW estimator lies in calculating the adjustment weights
pi. However, as Lemma 3.1 shows, this reduces to a simple one-dimensional convex minimization
problem, ensuring that the RNW estimator is not computationally intensive. This simplification
significantly alleviates the overall computational complexity. Furthermore, Lemma 3.1 serves as a
starting point for the proof of the asymptotic conditional coverage property of our algorithm, which
will be addressed in Appendix B.1.

Lemma 3.1 ((Hall et al., 1999; Cai, 2001)). The adjustment weights pi(X̃), i = 1, . . . , n, for the
RNW estimator are given as

pi(X̃) =
1

n

î
1 + λ([X̃i]1 − [X̃]1)Kh(X̃i − X̃)

ó−1
, (8)

where [X]1 denotes the first element of a vector X , and λ ∈ R is the minimizer of:

L(λ; X̃) = −
n∑

i=1

log{1 + λ([X̃i]1 − [X̃]1)Kh(X̃i − X̃)}. (9)

3.2 RNW FOR CONFORMAL PREDICTION

To perform the quantile regression for prediction interval construction at time t = T + 1, we use
a sliding window approach, breaking the past T residuals ET+1 = (ε̂T , . . . ε̂1) into n := (T − w)
overlapping segments of length w. We construct the predictors and responses to fit the RNW estimator
as follows:

Ỹi = ε̂i+w, X̃i = (ε̂i+w−1, . . . , ε̂i), i = 1, . . . , n.

With RNW estimator “F fitted on ((X̃i, Ỹi))
n
i=1, the conditional β-quantile estimator “Qβ is defined as“Qβ(X̃) := inf{ỹ ∈ R : “F (ỹ|X̃) ≥ β}. (10)

After time t = T + 1, we update Et by removing the oldest residual and adding the newest one,
then repeat the process (see Algorithm 1). In Section 4, we prove that due to the consistency of“Qβ , KOWCPI achieves asymptotic conditional coverage despite the significant temporal dependence
introduced by using overlapping segments of residuals.

Bandwidth selection. Estimating the theoretically optimal bandwidth that minimizes the asymptotic
mean-squared error requires additional derivative estimation, which significantly complicates the
problem. Consequently, similar to general non-parametric models, one can use cross-validation
to select the bandwidth. However, cross-validation can be computationally burdensome and may
deteriorate under dependent data (Fan et al., 1995). Therefore, we adapt the non-parametric AIC (Cai
& Tiwari, 2000), used for bandwidth selection in local linear estimators. This method is applicable
because the RNW estimator belongs to the class of linear smoother (Cai, 2002). Let S be a linear
smooth operator, with the (i, j)-th element given by Sij = Ŵj(X̃i) (Hastie, 1990). Recognizing that

4



Published as a conference paper at ICLR 2025

Ƹ𝜀1

Ƹ𝜀2
Ƹ𝜀3

Ƹ𝜀𝑤
Ƹ𝜀𝑡

Ƹ𝜀𝑡+𝑤−2

Ƹ𝜀𝑡+𝑤−1
Ƹ𝜀𝑡−1 ෨𝑌𝑡 = Ƹ𝜀𝑡+𝑤

෨𝑋𝑡 = ( Ƹ𝜀𝑡+𝑤−1, … , Ƹ𝜀𝑡)

෨𝑋𝑡−1 = ( Ƹ𝜀𝑡+𝑤−2, … , Ƹ𝜀𝑡−1)

time
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…

Figure 1: Illustration of KOWCPI, a sequential conformal prediction method. In the absence of
exchangeability in the data, as indicated by the empirical distribution of residuals and the PACF plot,
it is critical to consider the sequentially dependent structure of the data. In KOWCPI, non-conformity
score blocks are updated sequentially using a sliding window, which provides prediction intervals for
future scores through nonparametric quantile regression.

Algorithm 1 Kernel-based Optimally Weighted Conformal Prediction Intervals (KOWCPI)

Require: Training data (Xt, Yt), t = 1, . . . , T , pre-trained point predictor f̂ , target significance
level α ∈ (0, 1), window length w, non-conformity score block count n = T − w.

1: Compute prediction residuals for the training data: ε̂t = Yt − f̂(Xt), t = 1, . . . , T .
2: for t = T + 1, T + 2, . . . do
3: Update residual history Et = (ε̂t−1, . . . , ε̂t−T ).
4: Break Et into overlapping segments: X̃i = (ε̂t−T+i+w−2, . . . , ε̂t−T+i−1), i = 1, . . . , n+ 1.
5: Compute λ that minimizes L(·; X̃n+1) in equation 9.
6: Derive adjustment weights pi(X̃n+1), i = 1, . . . , n, and calculate final weights Ŵi(X̃n+1) in

equation 7.
7: Using Ỹi = ε̂t−T+i+w−1, i = 1, . . . , n, compute the quantile estimator “Qβ(X̃n+1) for

β ∈ [0, α].
8: Determine β∗ = argminβ∈[0,α]

“Q1−α+β(X̃n+1)− “Qβ(X̃n+1).

9: Return prediction interval “Cα
t−1(Xt) =

[
f̂(Xt)+ “Qβ∗(X̃n+1), f̂(Xt)+ “Q1−α+β∗(X̃n+1)

]
.

10: Obtain new residual ε̂t = Yt − f̂(Xt).
11: end for

the degree of freedom of the RNW smoother can be given as tr(SS⊤), we choose the bandwidth h
that minimizes

AICC(h) := log(RSS) +
n+ tr(SS⊤)

n− (tr(SS⊤) + 2)
, (11)

where RSS is the residual sum of squares.

Window length selection. To select the window length w, cross-validation can be employed. In
experiments, we chose w with the smallest average width that achieves a target coverage in the
validation set. Another approach is to use a weighted sum of the average under-coverage rate
and the average width obtained for a given w as the criterion. We note that the performance is
generally less sensitive to the choice of w across a broader range compared to the bandwidth h.
Additionally, in Appendix E, we introduce an adaptive window selection approach that enables w to
be determined in a data-driven manner, eliminating the need for hyperparameter tuning with minimal
loss in performance.
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4 THEORY

In this section, we introduce the theoretical properties of the RNW estimator, a quantile regression
method we use, and demonstrate in Theorem 4.9 that our KOWCPI asymptotically displays conditional
coverage under the strong mixing of residuals. It turns out that the asymptotic conditional coverage
gap can be derived from known results in the context of kernel quantile regression.

4.1 MARGINAL COVERAGE

We begin by bounding the marginal coverage gap of the KOWCPI method. The following result shows
the coverage gap using our weights, compared with the oracle weights; the results are established
using a similar strategy as in Tibshirani et al. (2019, Lemma 3):
Proposition 4.1 (Non-asymptotic marginal coverage gap). Denote by P the joint density of
(Ỹ1, . . . , Ỹn+1). Then, we have∣∣∣P ÄYT+1 ∈ “Cα

T (XT+1)
ä
− (1− α)

∣∣∣ ≤ 1

2

(
E
∥∥∥(W ∗)1:n − Ŵ

∥∥∥
1
+ EW ∗

n+1

)
+ 2E∆(X̃n+1) (12)

where ∆(X̃n+1) is the discrete gap defined in equation 17, and W ∗ is the vector of oracle weights
with each entry defined as

W ∗
i :=

∑
σ:σ(n+1)=i P(Ỹσ(1), . . . , Ỹσ(n+1))∑

σ P(Ỹσ(1), . . . , Ỹσ(n+1))
, i = 1, . . . , n+ 1, (oracle weights) (13)

and σ is a permutation on {1, . . . , n+ 1}.

The implication of Proposition 4.1 is that

• The “under-coverage” depends on the ℓ1-distance between the learned optimal weights and
oracle-optimal weights (that depends on the true joint distribution of data).

• Note that the oracle weights W ∗
t cannot be evaluated, because in principle, it requires

considering the (n+ 1)! possible shuffled observed residuals and their joint distributions.
• The form of the oracle weights W ∗

i from equation 13 offers an intuitive basis for algorithm
development: we can practically estimate the weights through quantile regression, utilizing
previously observed non-conformity scores.

4.2 CONDITIONAL COVERAGE

In this section, we derive the asymptotic conditional coverage property of KOWCPI. For this, we
introduce the assumptions necessary for the consistency of the RNW estimator. To account for the
dependency in the data, we assume the strong mixing of the residual process.

A stationary stochastic process {Vt}∞t=−∞ on a probability space with a probability measure P is said
to be strongly mixing (α-mixing) if a mixing coefficient α(τ) defined as

α(τ) = sup
A∈M0

−∞,B∈M∞
τ

|P(A ∩B)− P(A)P(B)|

satisfies α(τ) → 0 as τ → ∞, where Mt
s, −∞ ≤ s ≤ t ≤ ∞, denotes a σ-algebra generated by

{Vs, Vs+1, . . . , Vt}. The mixing coefficient α(τ) quantifies the asymptotic independence between
the past and future of the sequence {Vt}∞t=−∞.

Assumption 4.2 (Mixing of the process). The stationary process (Vi = (X̃i, Ỹi))
∞
i=1 is strongly

mixing with the mixing coefficient α(τ) = O(τ−(2+δ)) for some δ > 0.

We highlight that our strong mixing assumptions apply to the residuals, which is a far less restrictive
condition than assuming the original time series itself is strongly mixing. Even when the original
time series departs significantly from stationarity, the unobserved noises may still retain stationarity
and strong mixing properties. For instance, in a vector auto-regressive model with a time-dependent
drift, the noises are drawn from the identical distribution without serial correlation.
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Furthermore, the strong mixing property is widely regarded as a relatively weak condition and is com-
monly met by many time series models, making it a typical assumption in time-series analysis (Cai,
2002). For instance, both linear autoregressive models and the broader class of bilinear models satisfy
strong mixing conditions with exponentially decaying mixing coefficients under mild assumptions.
Similarly, ARCH processes and nonlinear additive autoregressive models with exogenous variables
are recognized for their stationary and strong mixing behavior (Masry & Tjøstheim, 1995; 1997).

Due to stationarity, the conditional CDF of the realized residual does not depend on the index i; thus,
denote

F (b|x̃) = P(Ỹi ≤ b|X̃i = x̃),

as the conditional CDF of the random variable Ỹi given X̃i = x̃. In addition, we introduce the
following notations:

• Let g(x̃) be the marginal density of X̃i at x̃. (Note that due to stationarity, we can have a
common marginal density.)

• Let g1,i, i ≥ 2 denote the joint density of X̃1 and X̃i.

The following assumptions (4.3-4.5) are common in nonparametric statistics, essential for attaining
desirable properties such as the consistency of an estimator (Tsybakov, 2009).
Assumption 4.3 (Smoothness of the conditional CDF and densities). For fixed ỹ ∈ R and x̃ ∈ Rw,

(i) 0 < F (ỹ|x̃) < 1.

(ii) F (ỹ|x̃) is twice continuously partially differentiable with respect to x̃.

(iii) g(x̃) > 0 and g(·) is continuous at x̃.

(iv) There exists M > 0 such that |g1,i(u, v)− g(u)g(v)| ≤ M for all u, v and i ≥ 2.

Regarding Assumption 4.3, we would like to remark that there is a negative result: without additional
assumptions about the distribution, it is impossible to construct finite-length prediction intervals that
satisfy conditional coverage (Lei & Wasserman, 2014; Vovk, 2012).
Assumption 4.4 (Regularity of the kernel function). The kernel K : Rw → R is a nonnegative,
bounded, continuous, and compactly supported density function satisfying

(i)
∫
Rw uK(u)du = 0,

(ii)
∫
Rw uu⊤K(u)du = µ2I for some µ2 ∈ (0,∞),

(iii)
∫
Rw K2(u)du = ν0 and

∫
Rw uu⊤K2(u)du = ν2I for some ν0, ν2 ∈ (0,∞).

Assumptions 4.4-(i), (ii), and (iii) are standard conditions (Wand & Jones, 1994) that require K
to be “symmetric” in a sense that that the weighting scheme relies solely on the distance between
the observation and the test point. For example, if K is isometric, i.e., K(u) = k(∥u∥) for some
univariate kernel function k : R → R, it can satisfy these conditions using widely adopted kernels
such as the Epanechnikov kernel.
Assumption 4.5 (Bandwidth selection). As n → ∞, the bandwidth h satisfies

h → 0, and nhw(1+2/δ) → ∞.

We note that Assumption 4.5 is met when selecting the (theoretically) optimal bandwidth h∗ ∼
n−1/(w+4), which minimizes the asymptotic mean squared error (AMSE) of the RNW estimator,
provided that δ > 1/2.

We prove the following proposition following a similar strategy as (Salha, 2006) by fixing several
technical details:
Proposition 4.6 (Consistency of the RNW estimator). Under Assumptions 4.2-4.5, given arbitrary x̃
and ỹ, as n → ∞,“F (ỹ|x̃)− F (ỹ|x̃) = 1

2
h2tr(D2

x̃(F (ỹ|x̃)))µ2 + op(h
2) +Op((nh

w)−1/2). (14)

where D2
x̃F (ỹ|x̃) denotes the Hessian of F (ỹ|x̃) with respect to x̃.

7



Published as a conference paper at ICLR 2025

This proposition implies pointwise convergence in probability of the RNW estimator, and since it is
the weighted empirical CDF, this pointwise convergence implies uniform convergence in probability
(Tucker, 1967, p.127-128). Consequently, we obtain the consistency of the conditional quantile
estimator in equation 10 to the true conditional quantile given as

Qβ(x̃) = inf{ỹ ∈ R : F (ỹ|x̃) ≥ β}.

Corollary 4.7. Under Assumptions 4.2-4.5, for every β ∈ (0, 1) and x̃, as n → ∞,“Qβ(x̃) → Qβ(x̃) in probability. (15)

As a direct consequence of Corollary 4.7, the asymptotic conditional coverage of KOWCPI is guaran-
teed by the consistency of the quantile estimator used in our sequential algorithm.

Corollary 4.8 (Asymptotic conditional coverage guarantee). Under Assumptions 4.2-4.5, for any
α ∈ (0, 1), as n → ∞,

P(Yt ∈ Ĉα
t−1(Xt)|Xt) → (1− α) in probability. (16)

Thus, employing quantile regression using the RNW estimator for prediction residuals derived from
the time-series data of continuous random variables, assuming strong mixing of these residuals,
KOWCPI can achieve approximate conditional coverage with a sufficient number of residuals utilized.

To further specify the rate of convergence, define the discrete gap

∆(X̃) := sup
β∈[0,1]

|“F (“Qβ(X̃)|X̃)− β| = max
i=1,...,n

Ŵi(X̃), (17)

introduced by the quantile estimator being the generalized inverse distribution function.

Theorem 4.9 (Conditional coverage gap). Under Assumptions 4.2-4.5, for any α ∈ (0, 1) and xt, as
n → ∞,∣∣∣P ÄYt ∈ “Cα

t−1(xt) | Xt = xt

ä
− (1− α)

∣∣∣ ≤ Op(h
2 + (nhw)−1/2) + 2∆(x̃n+1), (18)

where x̃n+1 is the realization of X̃n+1 given Xt = xt.

Given that the adjustment weights pi(x̃) uniformly concentrate to 1/n (Steikert, 2014), one can see
that the conditional coverage gap tends to zero, although its precise rate remains an open question.

5 EXPERIMENTS

In this section, we compare the performance of KOWCPI against state-of-the-art conformal prediction
baselines using real time-series data. Additional experimental results, not included in this section,
using both real and synthetic data, are provided in Appendices C and D. We aim to show that KOWCPI
can consistently reach valid coverage with the narrowest prediction intervals.

Dataset. We consider three real time series from different domains. The first ELEC2 data set (electric)
(Harries, 1999) tracks electricity usage and pricing in the states of New South Wales and Victoria in
Australia for every 30 minutes over a 2.5-year period in 1996–1999. The second renewable energy
data (solar) (Zhang et al., 2021) are from the National Solar Radiation Database and contain hourly
solar radiation data (measured in GHI) from Atlanta in 2018. The third wind speed data (wind) (Zhu
et al., 2021) are collected at wind farms operated by MISO in the US. The wind speed record was
updated every 15 minutes over a one-week period in September 2020.

Baselines. We consider Sequential Predictive Conformal Inference (SPCI) (Xu & Xie, 2023b), Ensem-
ble Prediction Interval (EnbPI) (Xu & Xie, 2023a), Adaptive Conformal Inference (ACI) (Gibbs &
Candès, 2021), Aggregated ACI (AgACI) (Zaffran et al., 2022), Fully Adaptive Conformal Inference
(FACI) (Gibbs & Candès, 2024), Scale-Free Online Gradient Descent (SF-OGD) (Orabona & Pál,
2018; Bhatnagar et al., 2023), Strongly Adaptive Online Conformal Prediction (SAOCP) (Bhatnagar
et al., 2023), and vanilla Split Conformal Prediction (SCP) (Vovk et al., 2005). Additionally, we
included a comparison where weights were derived from the original Nadaraya-Watson estimator
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Table 1: Empirical marginal coverage and average width across three real time-series datasets by
different methods. The target coverage is 1 − α = 0.9. The values in the bracket are standard
deviation across five independent trials.

Electric Wind Solar

Coverage Width Coverage Width Coverage Width

KOWCPI 0.90 (2.3e-3) 0.22 (1.5e-3) 0.91 (2.8e-3) 2.41 (3.2e-2) 0.90 (1.2e-3) 48.8 (9.4e-1)
Plain NW 0.89 (1.7e-3) 0.31 (2.2e-3) 0.95 (7.4e-3) 3.58 (1.0e-1) 0.41 (2.7e-3) 20.1 (1.8e+0)
SPCI 0.90 (1.1e-3) 0.29 (1.9e-3) 0.94 (1.0e-2) 2.61 (2.1e-2) 0.92 (1.7e-3) 84.2 (1.7e+0)
EnbPI 0.93 (3.4e-3) 0.36 (2.7e-3) 0.92 (2.3e-3) 5.25 (4.3e-2) 0.87 (1.1e-3) 106.0 (2.3e+0)
ACI 0.89 (0.0e-0) 0.32 (2.0e-3) 0.88 (0.0e-0) 8.26 (2.8e-2) 0.89 (1.0e-3) 143.9 (2.3e-1)
FACI 0.89 (2.5e-3) 0.28 (1.2e-3) 0.91 (3.2e-3) 7.77 (1.7e-1) 0.89 (0.0e-0) 141.9 (6.4e-1)
AgACI 0.91 (3.1e-3) 0.30 (2.3e-3) 0.88 (1.1e-2) 7.54 (1.2e-1) 0.90 (2.4e-3) 144.6 (1.4e+0)
SF-OGD 0.79 (5.8e-4) 0.25 (1.0e-3) 0.11 (2.6e-3) 0.29 (7.0e-4) 0.00 (0.0e-0) 0.50 (0.0e-0)
SAOCP 0.93 (6.1e-3) 0.33 (2.4e-3) 0.76 (1.1e-2) 4.00 (4.5e-2) 0.64 (1.9e-3) 33.5 (7.3e-2)
SCP 0.87 (2.8e-3) 0.30 (5.9e-4) 0.86 (3.2e-3) 8.20 (1.5e-2) 0.89 (1.0e-3) 142.0 (3.8e-1)

(Plain NW). For the implementation of ACI-related methods, we utilized the R package AdaptiveCon-
formal (https://github.com/herbps10/AdaptiveConformal). For SPCI and EnbPI,
we used the Python code from https://github.com/hamrel-cxu/SPCI-code.

Setup and evaluation metrics. In all comparisons, we use the random forest as the base point predictor
with the number of trees = 10. Every dataset is split in a 7:1:2 ratio for training the point predictor,
tuning the window length w and bandwidth h, and constructing prediction intervals, respectively. The
window length for each dataset is fixed and determined through cross-validation, while the bandwidth
is selected by minimizing the nonparametric AIC, as detailed in equation 11.

Besides examining marginal coverage and widths of prediction intervals on test data, we also focus
on rolling coverage, which is helpful in showing approximate conditional coverage at specific
time indices. Given a rolling window size m > 0, rolling coverage ”RCt at time t is defined as”RCt =

1
m

∑m
i=1 1{Yt−i+1 ∈ “Cα

t−i(Xt−i+1)}.
Results. The empirical marginal coverage and width results for all methods are summarized in Table
1. The results indicate that KOWCPI consistently achieves the 90% target coverage and maintains
the smallest average width compared to the alternative state-of-the-art methods. While all methods,
except SF-OGD, SAOCF, and Plain NW nearly achieve marginal coverage under target 1− α = 0.9,
KOWCPI produces the narrowest average width on all datasets. In terms of rolling results, we show in
Figures 2a and 2c that the coverage of KOWCPI intervals consistently centers around 90% throughout
the entire test phase. Additionally, Figure 2b shows that KOWCPI intervals are also significantly
narrower with a smaller variance than the baselines.

Lastly, Figure 2d depicts the weights Ŵ (in log scale) assigned by the RNW estimator at the first
time index of the test data. Notably, the most recent set of non-conformity scores (in terms of time
indices) is assigned the heaviest weights, which aligns intuitively as these are the most similar to
the first test datum in terms of temporal proximity. We believe that this heavy weighting of recent
residuals contributes significantly to KOWCPI’s performance. Datasets where KOWCPI demonstrates
significant superiority, such as the Solar dataset, typically exhibit active volatility changes. In these
cases, KOWCPI adapts quickly to changing conditions by leveraging the high weights assigned to
recent residuals. For instance, in Figure A.3, which visualizes the performance of KOWCPI, SPCI,
and ACI on the Solar dataset, KOWCPI dynamically adjusts its interval widths to reflect whether it
is in a high or low-volatility region. This adaptive behavior allows KOWCPI to avoid over-coverage
and maintain narrower average widths compared to methods like SPCI and ACI, which produce
intervals with relatively constant widths across all regions. At the same time, we acknowledge that
such fast-adapting behavior, avoiding conservative intervals, can occasionally lead to brief coverage
failures in some regions due to the aggressive adaptation to rapidly changing conditions.

In Appendix C.1, we show additional comparisons of KOWCPI against the baselines on the other two
datasets in terms of rolling results. See Appendices C.2 and D for additional experimental results
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(a) Rolling coverage (boxplot) (b) Width of prediction intervals (boxplot)

(c) Rolling coverage over prediction time indices (d) log
Ä
Ŵi

ä
by the time lag

Figure 2: Comparison of empirical rolling coverage and width on the electric dataset by different
methods in (a) rolling coverage; (b) widths of intervals, (c) rolling coverage over time, and (d) an
instance of computed final weights. The target coverage is 90%. In (a), the red dotted line is the
target coverage and in (b), the blue dotted line is the median width of KOWCPI.

using a wider variety of real and synthetic datasets, where we consistently observe the coverage
validity of KOWCPI while yielding the shortest intervals on average.

6 CONCLUSION

In this paper, we introduced KOWCPI, a method to sequentially construct prediction intervals for
time-series data. By incorporating the classical Reweighted Nadaraya-Watson estimator into the
weighted conformal prediction framework, KOWCPI effectively adapts to the dependent structure
of time-series data by utilizing data-driven adaptive weights. Our theoretical contributions include
providing theoretical guarantees for the asymptotic conditional coverage of KOWCPI under strong
mixing conditions and bounding the marginal and conditional coverage gaps. Empirical validation on
real-world time-series datasets demonstrated the effectiveness of KOWCPI compared to state-of-the-
art methods, achieving narrower prediction intervals without compromising empirical coverage.

Future work could explore adaptive window selection, where the size of the non-conformity score
batch is adjusted dynamically to capture shifts in the underlying distribution. A preliminary implemen-
tation of this approach is discussed in Appendix E, showcasing its potential to improve flexibility and
adaptability in practice. Additionally, the natural compatibility of kernel regression with multivariate
data can be leveraged to expand the utility of KOWCPI for multivariate time-series data, as detailed in
Appendix A. There is also potential for improving theoretical guarantees and practical performance
by designing alternative non-conformity scores.
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A MULTIVARIATE TIME SERIES

In the main text, our discussion has centered on cases where the response variables Yt are scalars.
Here, we explore the natural extension of our methodology to handle scenarios with multivariate
responses. This extension requires defining multivariate quantiles, introducing a multivariate version
of the RNW estimator for estimating these quantiles (Salha, 2006), and adapting our KOWCPI method
for multivariate responses.

Multivariate conditional quantiles Consider a strongly mixing stationary process ((X̃i, Ỹi))
∞
i=1,

which is a realization of random variable (X̃, Ỹ ) ∈ Rp × Rs. Following Abdous & Theodorescu
(1992), we first define a pseudo-norm function ∥·∥2,α : Rs → R for α ∈ (0, 1) as

∥v∥2,α =

∥∥∥∥Å |v1|+ (2α− 1)

2
, . . . ,

|vs|+ (2α− 1)

2

ã∥∥∥∥
2

,

for v ∈ Rs, where ∥·∥2 is the Euclidean norm on Rs. Let

Hα(θ, x̃) := E[∥Ỹ − θ∥2,α − ∥Ỹ ∥2,α | X̃ = x̃].

Definition A.1 (Multivariate conditional quantile (Abdous & Theodorescu, 1992)). Define a multi-
variate conditional α-quantile θα(x̃) for α ∈ (0, 1) as

θα(x̃) = argmin
θ∈Rs

Hα(θ, x̃). (A.1)

Remark A.2 (Compatibility with univariate quantile function). For a scalar Ỹ ∈ R, its conditional
quantile given X̃ = x̃ is

θα(x̃) = argmin
θ∈R

E
î
∥Ỹ − θ∥2,α | X̃ = x̃

ó
= argmin

θ∈R
E
î
|Ỹ − θ|+ (2α− 1)(Ỹ − θ) | X̃ = x̃

ó
= argmin

θ∈R
E((Ỹ − θ)(α− 1(Ỹ ≤ θ)) | X̃ = x̃)

= Qα(x̃),

for any α ∈ (0, 1). Thus, Definition A.1 is consistent with the univariate case.

Multivariate RNW estimator Following the definition in equation 6, we obtain the RNW estimator
for multivariate responses as “F (ỹ|x̃) =

∑n
i=1 W ( X̃i−x̃

h )1(Ỹi ≤ ỹ)∑n
i=1 W ( X̃i−x̃

h )
, (A.2)

where, according to equation 7 and equation 8,

W (u) =
K(u)

1 + λu1K(u)
,

for u = (u1, . . . , up)
⊤. Now, let Wh(u) = h−pW (h−1u), and define an estimator for Hα(θ, x) as“Hα(θ, x̃) :=

∫
Rs

(∥ỹ − θ∥2,α − ∥ỹ∥2,α)“F (dỹ|x̃) =
∑n

i=1 Wh(X̃i − x̃)
Ä
∥Ỹi − θ∥2,α − ∥Ỹi∥2,α

ä
∑n

i=1 Wh(X̃i − x̃)
,

and consequently the RNW conditional quantile estimator θ̂α as

θ̂α(x̃) := argmin
θ∈Rp

Ĥα(θ, x̃) = argmin
θ∈Rp

n∑
i=1

Wh(X̃i − x̃)(∥Ỹi − θ∥2,α − ∥Ỹi∥2,α). (A.3)
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Multivariate KOWCPI Suppose we are sequentially observing (Xt, Yt) ∈ Rd × Rs, t = 1, 2, . . ..
Based on the construction of the multivariate version of the RNW estimator, we can extend our
KOWCPI approach to multivariate responses in the same manner as described in Algorithm 1, with
multivariate residuals

ε̂t = Yt − f̂(Xt) ∈ Rs,

as non-conformity scores. This adaptation allows for the application of our methodology to a broader
range of data scenarios involving dependent data with multivariate response variables, which were
similarly studied in (Xu et al., 2024; Sun & Yu, 2024; Stankevičiūtė et al., 2021).

B PROOFS

The following lemma is adapted from the proof of Lemma 1 of Tibshirani et al. (2019); however, we
do not assume exchangeability.

Lemma B.1 (Weights on quantile for non-exchangeable data). Given a sequence of random variables
{V1, . . . , Vn+1} with joint density P and a sequence of observations {v1, . . . , vn+1}. Define the
event

E = {{V1, . . . , Vn+1} = {v1, . . . , vn+1}}.

Then we have for i = 1, . . . , n+ 1,

P{Vn+1 = vi|E} =

∑
σ:σ(n+1)=i P(vσ(1), . . . , vσ(n+1))∑

σ P(vσ(1), . . . , vσ(n+1))
∈ [0, 1].

Note that when the residuals are exchangeable, W ∗
i = 1/(n+ 1), as also observed in Tibshirani et al.

(2019). Now we prove Proposition 4.1.

Proof of Proposition 4.1. The proof assumes that Ỹi, for i = 1, . . . , n+ 1, are almost surely distinct.
However, the proof remains valid, albeit with more complex notations involving multisets, if this is
not the case. Denote by Quantileβ(Q) the β-quantile of the distribution Q on R, and by δa the point
mass distribution at a ∈ R. Define the event E = {{Ỹ1, . . . , Ỹn+1} = {v1, . . . , vn+1}}. Then, by
the tower property, we have

P(YT+1 ∈ “Cα
T (XT+1))

= E(P(YT+1 ∈ “Cα
T (XT+1) | E))

= E

[
P

(
Quantileβ∗

(
n∑

i=1

Ŵiδvi

)
≤ Ỹn+1 ≤ Quantile1−α+β∗

(
n∑

i=1

Ŵiδvi

)∣∣∣∣∣E
)]

= E

[
PV∼PW∗

(
Quantileβ∗

(
n∑

i=1

Ŵiδvi

)
≤ V ≤ Quantile1−α+β∗

(
n∑

i=1

Ŵiδvi

))]
,

where PW∗
=
∑n+1

i=1 W ∗
i δvi , and in the last line, we have used the result from Lemma B.1,

Ỹn+1|E ∼ PW∗
.

Denote the weighted empirical distributions based on Ŵ = Ŵ (X̃n+1) as

P
”W =

n∑
i=1

Ŵiδvi .
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This gives the marginal coverage gap as∣∣∣P(Yn+1 ∈ “Cα
n (Xn+1))− (1− α)

∣∣∣
≤ E

[∣∣∣∣∣PV∼PW∗

(
Quantileβ∗

(
n∑

i=1

Ŵiδvi

)
≤ V ≤ Quantile1−α+β∗

(
n∑

i=1

Ŵiδvi

))

− P
V∼P Ŵ

(
Quantileβ∗

(
n∑

i=1

Ŵiδvi

)
≤ V ≤ Quantile1−α+β∗

(
n∑

i=1

Ŵiδvi

))∣∣∣∣∣
]

+ E

∣∣∣∣∣PV∼P Ŵ

(
Quantileβ∗

(
n∑

i=1

Ŵiδvi

)
≤ V ≤ Quantile1−α+β∗

(
n∑

i=1

Ŵiδvi

))
− (1− α)

∣∣∣∣∣
≤ E[dTV(P

W∗
, P
”W )]

+ E
∣∣∣“F (“Q1−α+β∗(X̃n+1)

∣∣∣X̃n+1

)
− (1− α+ β∗)

∣∣∣+ E
∣∣∣“F (“Qβ∗(X̃n+1)

∣∣∣X̃n+1

)
− β∗

∣∣∣
≤ 1

2
E∥(W ∗)1:n − Ŵ∥1 +

1

2
EW ∗

n+1 + 2E max
i=1,...,n

Ŵi(X̃n+1),

where we denote by dTV(·, ·) the total variation distance between probability measures, and the
second inequality is due to the definition of the total variation distance.

B.1 PROOF OF ASYMPTOTIC CONDITIONAL COVERAGE OF KOWCPI (COROLLARY 4.8 AND
THEOREM 4.9)

In deriving the asymptotic conditional coverage property of KOWCPI, the consistency of the RNW
estimator plays a crucial role. Therefore, we first introduce the proof of Proposition 4.6, which
discusses the consistency of the CDF estimator. Corollary 4.7, which states the consistency of the
quantile estimator, is a natural consequence of Proposition 4.6 and leads us to the proof for our main
results, Corollary 4.8 and Theorem 4.9. Proof of Proposition 4.6 adopts the similar strategy as Salha
(2006) and Cai (2002).

To prove Proposition 4.6, it is essential to first understand the nature of the adjustment weight pi(x̃).
Thus, Lemma 3.1 is not only crucial for the practical implementation of the RNW estimator but also
indispensable in the proof process of Proposition 4.6.

Proof of Lemma 3.1. For display purposes, denote [X]1 as X1. By equation 5, we have that
n∑

i=1

pi(x̃)(X̃i1 − x̃1)Kh(X̃i − x̃) = 0. (A.4)

Let

L(λ1, λ2, p1(x̃), . . . , pn(x̃))

=

n∑
i=1

log pi(x̃) + λ1

(
1−

n∑
i=1

pi(x̃)

)
+ λ2

n∑
i=1

pi(x̃)(X̃i1 − x̃1)Kh(X̃i − x̃),

where λ1, λ2 ∈ R are the Lagrange multipliers. From ∂L/∂pi(x̃) = 0 for i = 1, . . . , n, we get

p−1
i (x̃)− λ1 + λ2(X̃i1 − x̃1)Kh(X̃i − x̃) = 0,

Since pi(x̃)’s sum up to 1 as in equation 4, letting λ = −λ2/λ1, we have

pi(x̃) =
[1 + λ(X̃i1 − x̃1)Kh(X̃i − x̃)]−1∑n
j=1[1 + λ(X̃j1 − x̃1)Kh(X̃j − x̃)]−1

.

Using equation 4 again with equation A.4, this gives

n∑
j=1

î
1 + λ(X̃j1 − x̃1)Kh(X̃j − x̃)

ó−1
= n

(
n∑

i=1

pi(x̃)[1 + λ(X̃i1 − x̃1)Kh(X̃i − x̃)]

)−1

= n,
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and therefore equation 8 holds. With equation 5, this gives

0 =

n∑
i=1

(X̃i1 − x̃1)Kh(X̃i − x̃)

1 + λ(X̃i1 − x̃1)Kh(X̃i − x̃)
= −∂L(γ; x̃)

∂γ

∣∣∣∣
λ

.

Note that ∂2L(γ;x̃)
∂γ2 ≥ 0, implying that L(·; x̃) is indeed a convex function.

Lemma B.2. Under the assumptions of Proposition 4.6, define

c(x̃) =

∂g(x̃)
∂x̃1

µ2

g(x̃)ν2
.

Then,
λ = hw · c(x̃)(1 + op(1)) = Op(h

w). (A.5)

Proof. Let
Si = (X̃i1 − x̃1)Kh(X̃i − x̃).

Then, by Assumption 4.4, Si is bounded above by some constant C1. Let

Sk =
1

n

n∑
i=1

(Si)
k,

for k = 1, 2. Then, from equation A.4, we have

0 =
1

n

n∑
i=1

(1 + λSi)
−1Si ≥ |λ|

∣∣∣∣∣ 1n
n∑

i=1

S2
i (1 + λSi)

−1

∣∣∣∣∣− ∣∣∣S1
∣∣∣ ≥ |λ|(1 + C1|λ|)−1S2 −

∣∣∣S1
∣∣∣,

which gives

|λ| ≤

∣∣∣S1
∣∣∣

S2 − C1

∣∣∣S1
∣∣∣ .

Using the Taylor expansion (Wand & Jones, 1994), we obtain that

ES1 =

∫
Rw

(u1 − x̃1)Kh(u− x̃)g(u)du

= h

∫
Rw

u1K(u)g(x̃+ hu)du

= h

∫
Rw

u1K(u)

(
g(x̃) + h

w∑
j=1

uj
∂g(x̃)

∂x̃j

)
du+ o(h2)

= h2

ß
∂g(x̃)

∂x̃1
µ2 + op(1)

™
,

where the last equation comes from Assumptions 4.4-(i) and (ii). With a similar argument, we can
derive that

ES2 =

∫
Rw

(u1 − x̃1)
2K2

h(u− x̃)g(u)du = h−w+2 {g(x̃)ν2 + op(h)} ,

using Assumption 4.4-(iii). Therefore, we obtain equation A.5.

Decomposing “F (ỹ|x̃)− F (ỹ|x̃) in bias and variance terms, we get“F (ỹ|x̃)− F (ỹ|x̃)

=

∑n
i=1 pi(x̃)Kh(X̃i − x̃){1(Ỹi < ỹ)− F (ỹ|x̃)}∑n

i=1 pi(x̃)Kh(X̃i − x̃)

=

∑n
i=1 pi(x̃)Kh(X̃i − x̃)δi +

∑n
i=1 pi(x̃)Kh(X̃i − x̃){F (ỹ|X̃i)− F (ỹ|x̃)}∑n

i=1 pi(x̃)Kh(X̃i − x̃)
,

(A.6)
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where δi = 1(Ỹt ≤ ỹ)− F (ỹ|X̃i). Note that E[δi] = 0 due to the tower property. Now, let

bi(x̃) = bi(X̃i, x̃) :=
î
1 + hw · c(x̃)(X̃i1 − x̃1)Kh(X̃i − x̃)

ó−1
.

Then, by Lemma B.2, we have that

pi(x̃) = n−1bi(x̃)(1 + op(1)). (A.7)

Define the approximations for the terms in the decomposition presented in equation A.6:

J1 = n−1/2hw/2
n∑

i=1

bi(x̃)δiKh(X̃i − x̃),

J2 = n−1
n∑

i=1

¶
F (ỹ|X̃i)− F (ỹ|x̃)

©
bi(x̃)Kh(X̃i − x̃),

J3 = n−1
n∑

i=1

bi(x̃)Kh(X̃i − x̃),

so that “F (ỹ|x̃)− F (ỹ|x̃) = {(nhw)−1/2J1 + J2}J−1
3 {1 + op(1)}. (A.8)

Therefore, we will derive Proposition 4.6 by controlling the terms J1, J2 and J3.
Lemma B.3. Under the assumptions of Proposition 4.6,

J1 = Op(1). (A.9)

Proof. Let
ξi = hw/2bi(x̃)δiKh(X̃i − x̃),

so that J1 = n−1/2
∑n

i=1 ξi. Since E(δi|X̃i) = 0, we have that E(ξi) = E(E(ξi|X̃i)) = 0, and thus

EJ1 = 0. (A.10)

Also, due to the stationarity of X̃i, we have that

Var(J1) = Eξ2i +

n∑
i=2

Å
1− i− 1

n

ã
Cov(ξ1, ξi). (A.11)

By Assumption 4.4, we have that limn→∞ bi(x̃) = 1, which gives E(bi) = 1 + op(1). Therefore,
through expansion, we have

Eξ2i = hwE
î
E
î
b2i (x̃)K

2
h(X̃i − x̃)δ2i | X̃i

óó
= hwE

î
b2i (x̃)K

2
h(X̃i − x̃)F (ỹ|X̃i)(1− F (ỹ|X̃i))

ó
=
[
(K2)h ∗ {b2i (·, x̃)F (ỹ|·)(1− F (ỹ|·))g(·)}

]
(x̃)

= ν0F (ỹ|x̃)(1− F (ỹ|x̃))g(x̃) + op(1),

where ∗ in the third line is the convolution operator. To control the second term in the right-hand side
of equation A.11, we borrow the idea of Masry (1986). Choose dn = O(h− w

1+δ/2 ) and decompose

n∑
i=2

Å
1− i− 1

n

ã
Cov(ξ1, ξi) =

dn∑
i=2

Å
1− i− 1

n

ã
Cov(ξ1, ξi) +

n∑
i=dn+1

Å
1− i− 1

n

ã
Cov(ξ1, ξi).

We have that |bi(x̃)δi| ≤ C2 for some constant C2. By Assumption 4.3-(iv), we obtain

|Cov(ξ1, ξi)| =
∣∣∣∣∫

Rw

∫
Rw

ξ1ξig1,i(u, v)dudv −
∫
Rw

ξ1g(u)du

∫
Rw

ξig(v)dv

∣∣∣∣
≤ C2

2h
w

∫
Rw

∫
Rw

K(u)K(v)|g1,i(x̃− hu, x̃− hv)− g(x̃− hu)g(x̃− hv)|dudv

≤ C2
2Mhw,
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so that
dn∑
i=2

Å
1− i− 1

n

ã
Cov(ξ1, ξi) = Op(dnh

w) = op(1).

By Assumption 4.4, we have ∥(X̃i − x̃)Kh(X̃i − x̃)∥ ≤ C3, so that |ξi| ≤ Ch−w/2. Then, by
Theorem 17.2.1 of Ibragimov et al. (1971), we have that

|Cov(ξ1, ξi)| ≤ Ch−wα(i− 1).

Thus, we get
n∑

i=dn+1

Å
1− i− 1

n

ã
Cov(ξ1, ξi) ≤ Ch−w

∑
i≥dn

α(i) ≤ Ch−wd−1−δ
n = o(1).

Therefore, we obtain
J1 = EJ1 +Op

(»
Var(J1)

)
= Op(1). (A.12)

Lemma B.4. Under the assumptions of Proposition 4.6,

J2 =
1

2
h2µ2tr(D2

x̃F (ỹ|x̃))g(x̃) + op(h
2), (A.13)

J3 = g(x̃) + op(1). (A.14)

Proof. By Assumption 1, equation 4 and equation 5, we have through expansion that

J2 = (2n)−1
n∑

i=1

(X̃i − x̃)⊤(D2
x̃F (ỹ|x̃))(X̃i − x̃)bi(x̃)Kh(X̃i − x̃) + op(h

2).

Since

E[(X̃i − x̃)⊤D2
x̃F (ỹ|x̃)(X̃i − x̃)bi(x̃)Kh(X̃i − x̃)]

= tr(D2
x̃F (ỹ|x̃)E[(X̃i − x̃)(X̃i − x̃)⊤bi(x̃)Kh(X̃i − x̃)])

= h2µ2g(x̃)tr(D2
x̃F (ỹ|x̃)) + op(h

2),

we have
J2 =

1

2
h2µ2tr(D2

x̃F (ỹ|x̃))g(x̃) + op(h
2). (A.15)

Finally, by applying the expansion argument routinely, we get

J3 = g(x̃) + op(1). (A.16)

Proof of Proposition 4.6 (Cai, 2002; Salha, 2006). Combining Lemmas B.3 and B.4 with equa-
tion A.8, Assumption 4.5 gives the result.

Proof of Corollary 4.7 (Cai, 2002). Given x̃, Proposition 4.6 implies uniform convergence of “F (·|x̃)
to F (·|x̃) in probability (Tucker, 1967, p.127-128) since F (·|x̃) is a CDF. That is,

sup
ỹ∈R

∣∣∣“F (ỹ|x̃)− F (ỹ|x̃)
∣∣∣→ 0 in probability.

Given ε > 0, let δ = δ(ε) := min{β − F (Qβ(x̃) − ε|x̃), F (Qβ(x̃) + ε|x̃) − β}. Note that δ > 0
due to the uniqueness of the quantile. We have

P
(∣∣∣“Qβ(x̃)−Qβ(x̃)

∣∣∣ > ε
)
≤ P

(∣∣∣F (“Qβ(x̃)|x̃)− β
∣∣∣ > δ

)
≤ P
Ç
sup
ỹ∈R

∣∣∣“F (ỹ|x̃)− F (ỹ|x̃)
∣∣∣ > δ

å
.

The uniform convergence of “F (·|x̃) in probability gives the result.
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Proof of Corollary 4.8. From the definition of Ĉα
t−1 in equation 3, we have

P
(
Yt ∈ Ĉα

t−1(Xt)
∣∣∣Xt

)
= P

(
Ỹn+1 ∈

î“Qβ∗(X̃n+1), “Q1−α+β∗(X̃n+1)
ó ∣∣∣ X̃n+1

)
= F

(“Q1−α+β∗(X̃n+1)
∣∣∣X̃n+1

)
− F

(“Qβ∗(X̃n+1)
∣∣∣X̃n+1

)
.

By Theorem 4.7, we have the consistency of “Qβ for all β ∈ (0, 1). On that, the continuous mapping
theorem and Assumption 4.3 gives

F
(“Q1−α+β∗(X̃n+1)

∣∣∣X̃n+1

)
− F

(“Qβ∗(X̃n+1)
∣∣∣X̃n+1

)
→ F

(
Q1−α+β∗(X̃n+1)

∣∣∣X̃n+1

)
− F

(
Qβ∗(X̃n+1)

∣∣∣X̃n+1

)
= 1− α,

where the convergence is in probability.

Proof of Theorem 4.9. From the definition of “Cα
t−1 in equation 3, we have∣∣∣P(Yt ∈ “Cα

t−1(x)
∣∣∣Xt = x

)
− (1− α)

∣∣∣
=
∣∣∣P(Ỹn+1 ∈

î“Qβ∗(x̃), “Q1−α+β∗(x̃)
ó ∣∣∣ X̃n+1 = x̃

)
− (1− α)

∣∣∣
=
∣∣∣F (“Q1−α+β∗(x̃)

∣∣∣X̃n+1 = x̃
)
− F

(“Qβ∗(x̃)
∣∣∣X̃n+1 = x̃

)
− (1− α)

∣∣∣
≤
∣∣∣“F (“Q1−α+β∗(x̃)

∣∣∣X̃n+1 = x̃
)
− (1− α+ β∗)

∣∣∣+ ∣∣∣“F (“Qβ∗(x̃)
∣∣∣X̃n+1 = x̃

)
− β∗

∣∣∣
+
∣∣∣F (“Q1−α+β∗(x̃)

∣∣∣X̃n+1 = x̃
)
− “F (“Q1−α+β∗(x̃)

∣∣∣X̃n+1 = x̃
)∣∣∣

+
∣∣∣F (“Qβ∗(x̃)

∣∣∣X̃n+1 = x̃
)
− “F (“Qβ∗(x̃)

∣∣∣X̃n+1 = x̃
)∣∣∣

≤ 2∆(x̃) +Op((nh
w)−1/2 + h2),

where the last inequality comes from equation A.8 and the definition of the discrete gap ∆.

C ADDITIONAL REAL DATA EXPERIMENTS

C.1 WIND/SOLAR DATA EXPERIMENT RESULTS

We provide a more detailed description of the results for the solar and wind datasets introduced
in Section 5. Figures A.1 and A.2 illustrate the rolling coverage and interval width results for the
solar and wind datasets, respectively. As described in Section 5, KOWCPI consistently achieves the
narrowest intervals while maintaining valid coverage. For qualitative explanations, we also include
Figure A.3 that demonstrates the performance of KOWCPI, SPCI, and ACI on the Solar dataset.

C.2 AAPL DAILY STOCK PRICE

We compare KOWCPIwith baseline methods using Apple’s daily closing stock price data from January
1, 2020, to December 12, 2022. This publicly available dataset can be accessed on Kaggle (https:
//www.kaggle.com/datasets/paultimothymooney/stock-market-data). The
goal is to construct confidence intervals for the daily closing prices. The first 80% of the data
is used for training, with the remaining 20% reserved for evaluation. We can observe from Table A.1
that KOWCPI attains the narrowest interval.

D SYNTHETIC DATA ANALYSIS

D.1 HETEROSKEDASTIC MIXTURE MODEL

To evaluate the robustness of KOWCPI under heteroskedastic conditions, we conduct simulations
using a heteroskedastic mixture model. This model incorporates an AR(1) component, a GARCH(1,1)
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(a) Rolling coverage (boxplot) (b) Width of prediction intervals (boxplot)

(c) Rolling coverage over prediction time indices

Figure A.1: Rolling coverage and width comparison on the solar dataset by different methods.

Table A.1: Empirical marginal coverage and interval widths for confidence intervals of AAPL closing
prices, with a target coverage of 90%. Standard deviations are calculated under three independent
trials.

Coverage Width

KOWCPI 0.912 (2.3e-3) 15.74 (1.2e-1)
SPCI 0.952 (3.3e-3) 19.39 (2.3e-1)
EnbPI 0.912 (8.7e-3) 38.67 (1.5e-1)
ACI 0.871 (1.7e-3) 44.84 (8.7e-2)
FACI 0.891 (5.2e-3) 43.93 (1.7e-1)
AgACI 0.878 (1.1e-2) 43.19 (2.6e-1)
SAOCP 0.619 (7.1e-4) 17.90 (4.3e-2)
SCP 0.796 (2.0e-3) 36.60 (1.0e-1)

structure for time-varying variance, and an additional small Gaussian noise term. The model is defined
as

Yt = 0.8Yt−1 + σtϵt + ξt,

σ2
t = 0.1 + 0.3Y 2

t−1 + 0.6σ2
t−1,

ϵt
iid∼ N(0, 1), ξt

iid∼ N(0, 0.12).
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(a) Rolling coverage (boxplot) (b) Width of prediction intervals (boxplot)

(c) Rolling coverage over prediction time indices

Figure A.2: Rolling coverage and width comparison on the wind dataset by different methods.

This mixture model generates irregular, large volatility bursts, as evidenced in the simulated sam-
ple paths. Such extreme variations make conformal prediction challenging, as they require rapid
adaptation to maintain valid coverage while avoiding overly wide intervals.

We simulate five independent paths of the model and evaluate the performance of KOWCPI against
baseline methods, with a target coverage of 90%. Unlike methods such as SPCI and SAOCP, which
often overreact to volatility changes by producing excessively wide intervals and struggle to recover
quickly after a burst, KOWCPI effectively adapts to these changes using its adaptive weighting
mechanism. The results for each sample path are summarized in Table A.2.

D.2 NONSTATIONARY TIME SERIES

We also consider a model with strong seasonality, clearly representing non-stationarity:

Yt = log(t′) sin

Å
2πt′

12

ã
(|β⊤Xt|+ |β⊤Xt|2 + |β⊤Xt|3)1/4 + ϵt,

where t′ = mod(t, 12) introduces a seasonal component with a 12-period cycle, and Xt =
[Yt−100, . . . , Yt−1]

⊤ represents features of lagged values. The noise term ϵt follows an AR(1)
process, given by ϵt = 0.6ϵt−1 + ξt , with ξt ∼ N(0, 1). Table A.3 demonstrates that KOWCPI
performs best in general among methods that achieve valid coverage of 90%. As KOWCPI actively
leverages reweighting to assign higher weights to recent residuals, it demonstrates the ability to
quickly adapt to changes in volatility.
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(a) KOWCPI

(b) SPCI

(c) ACI

Figure A.3: Comparison of prediction intervals generated by KOWCPI, SPCI, and ACI on the Solar
dataset.
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Table A.2: Empirical marginal coverage and interval widths from simulations using a heteroskedastic
mixture model, with a target coverage of 90%. Here, C and W denote the empirical marginal coverage
and average interval width, respectively.

Path 1 Path 2 Path 3 Path 4 Path 5

C W C W C W C W C W

KOWCPI 0.91 4.61 0.89 5.57 0.90 11.44 0.93 8.84e3 0.92 23.09
SPCI 0.99 8.68 0.89 5.85 0.97 18.46 0.90 8.53e3 1.00 99.22
EnbPI 0.93 5.47 0.87 5.56 0.91 15.60 0.91 9.14e3 0.96 74.62
ACI 0.93 5.21 0.92 6.99 0.92 14.11 0.89 1.79e4 0.95 27.84
FACI 0.92 5.11 0.92 7.10 0.92 13.75 0.89 1.88e4 0.92 24.28
AgACI 0.93 5.20 0.91 6.83 0.93 13.17 0.88 1.58e4 0.92 25.83
SAOCP 0.79 3.58 0.82 4.62 0.72 7.39 0 36.1 0.67 10.87
SCP 0.93 5.17 0.91 6.73 0.93 14.19 0.84 1.06e4 0.97 29.23

Table A.3: Empirical marginal coverage and interval widths from nonstationary time-series simula-
tions, with a target coverage of 90%. Standard deviations are calculated under five independent trials.

Coverage Width

KOWCPI 0.90 (1.2e-3) 11.41 (2.3e-2)
SPCI 0.91 (2.7e-3) 11.73 (3.1e-2)
EnbPI 0.86 (1.2e-2) 10.45 (1.8e-2)
ACI 0.90 (1.1e-3) 12.57 (8.7e-3)
FACI 0.90 (4.1e-3) 12.65 (1.2e-2)
AgACI 0.90 (2.2e-3) 12.71 (1.4e-2)
SAOCP 0.82 (9.4e-4) 8.89 (3.2e-3)
SCP 0.90 (2.8e-3) 12.50 (4.1e-2)

E ADAPTIVE WINDOW LENGTH SELECTION

In this section, we explore an adaptive selection of w, where w is no longer treated as a fixed
hyperparameter but is instead dynamically adjusted for each time step. In KOWCPI, the window
length w originally serves as a hyperparameter that requires tuning. To alleviate the burden of manual
tuning and introduce a more data-driven approach, we implement an adaptive selection process for w
based on a two-sample test on the residual distributions.

At each time step t, we compare the distributions two blocks of residuals using the two-sample
Kolmogorov-Smirnov test: One block contains the most recent w residuals (ε̂t−1, . . . , ε̂t−w), and
another block consists of the w residuals immediately preceding, (ε̂t−w−1, . . . , ε̂t−2w). We then
select the smallest w for which the p-value drops below, e.g., 0.01.

While this is a simple preliminary approach, it allows for a data-driven and adaptive selection of
w without requiring additional hyperparameter tuning. Through experiments on the real data, we
have confirmed that this method achieves comparable performance to w values pre-selected by
cross-validation (See Table A.4). Figure A.4 illustrates how the chosen window size changes over
time on the Wind dataset.
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Table A.4: Comparison of KOWCPI on real datasets using pre-fixed window lengths selected by
cross-validation versus adaptive window selection based on the two-sample KS test. Target coverage
is 90%, and standard deviation is derived across five independent trials.

Electric Wind Solar

Coverage Width Coverage Width Coverage Width

Fixed w 0.90 (2.3e-3) 0.23 (1.5e-3) 0.91 (2.8e-3) 2.41 (3.2e-2) 0.90 (1.2e-3) 48.8 (9.4e-1)
Adaptive w 0.92 (3.0e-3) 0.22 (1.3e-3) 0.90 (4.4e-3) 2.44 (2.7e-2) 0.90 (1.3e-3) 50.6 (1.1e+0)

Figure A.4: Dynamic adjustment of the window size (w) for each prediction step on the Wind dataset,
using the adaptive selection process based on the two-sample KS test.
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