A Proofs of Theorem 1 and Corollary 1

A.1 Proofs

Proof of Theorem 1. Recall the differential inequality (28) below from Proposition 2:

$$-\frac{d}{dt}W_2(p_t, q_t) \le (L_f + L_s g^2)W_2(p_t, q_t) + g^2 b^{\frac{1}{2}}.$$

It can be solved by introducing the integrating factor,

$$I(t) := \exp\left(\int_0^t L_f(r) + L_s(r)g(r)^2 dr\right) \text{ where } b(t) := \mathbb{E}_{p_t} \left[\|\nabla \log p_t(x) - s_\theta(x,t)\|^2 \right].$$
(29)

As $\frac{d}{dt}I(t) = (L_f(t) + L_s(t)g(t)^2)I(t)$, the above inequality (28) can be written as

$$-\frac{d}{dt}\left\{I(t)W_2(p_t,q_t)\right\} \le g(t)^2 I(t)b(t)^{\frac{1}{2}}.$$

Integrating both sides from 0 to T, we obtain that

$$I(0)W_2(p_0, q_0) - I(T)W_2(p_T, q_T) \le \int_0^T g(t)^2 I(t)b(t)^{\frac{1}{2}} dt.$$

As I(0) = 1, we conclude that

$$W_2(p_0, q_0) \le \int_0^T g(t)^2 I(t) b(t)^{\frac{1}{2}} dt + I(T) W_2(p_T, q_T).$$
(30)

Proof of Corollary 1. Let

$$J_I(\theta) = \int_0^T g(t)^2 I(t) b(t)^{\frac{1}{2}} dt.$$
 (31)

Here, I(t) and $b(t) = \mathbb{E}_{p_t} \left[\|\nabla \log p_t(x) - s_\theta(x, t)\|^2 \right]$ are given in (29). The Cauchy-Schwarz inequality yields

$$J_{I}(\theta) \leq \left(\int_{0}^{T} 2g(t)^{4} I(t)^{2} \lambda(t)^{-1} dt\right)^{\frac{1}{2}} \left(\frac{1}{2} \int_{0}^{T} \lambda(t) b(t) dt\right)^{\frac{1}{2}}.$$
(32)

Since $\lambda = g^2$ and J_{SM} given in (5) satisfies

$$J_{SM}(\theta;\lambda) = \frac{1}{2} \int_0^T \lambda(t) \mathbb{E}_{p_t} \left[\|\nabla \log p_t(x) - s_\theta(x,t)\|_2^2 \right] dt = \frac{1}{2} \int_0^T \lambda(t) b(t) dt, \quad (33)$$

we conclude (34):

$$W_2(p_0, q_0) \le \sqrt{2\left(\int_0^T g(t)^2 I(t)^2 dt\right) J_{SM}} + I(T)W_2(p_T, q_T).$$

Remark 7. It is expected that the parallel results hold for weak solutions to (2) and (4) by using suitable approximations. This approach has been studied for the Wasserstein contraction property in [8, Section 6.2].

From (32) and (33) in the proof of Corollary 1, we obtain the following result for other choices of λ . **Corollary 4.** Let p_0 and q_0 be given in Theorem 1. Suppose that $g^4 I^2 \lambda^{-1}$ is integrable in [0, T]. Then the following inequality holds:

$$W_2(p_0, q_0) \le \sqrt{2\left(\int_0^T g(t)^4 I(t)^2 \lambda(t)^{-1} dt\right) J_{SM} + I(T) W_2(p_T, q_T)}.$$
(34)

A.2 Technical lemmas

Lemma 1. Let π_t be an optimal transport plan between p_t and q_t . Then, we have

$$\mathbb{E}_{\pi_t} \left[(x - y) \cdot (v[q_t](y) - v[p_t](x)) \right] \le W_2(p_t, q_t) \left\{ (L_f + L_s g^2) W_2(p_t, q_t) + g^2 b^{\frac{1}{2}} \right\}$$
(35)
where $b(t) := \mathbb{E}_{p_t} \left[\| \nabla \log p_t(x) - s_\theta(x, t) \|^2 \right].$

Proof. The left-hand side of (35) is given by

$$\mathbb{E}_{\pi_t} \left[(x - y) \cdot (v[q_t](y) - v[p_t](x)) \right] = \mathbb{E}_{\pi_t} \left[(x - y) \cdot (f(y, t) - f(x, t)) \right] + g^2 \mathbb{E}_{\pi_t} \left[(x - y) \cdot (\nabla \log p_t(x) - s_\theta(y, t)) \right] + \frac{g^2}{2} \mathbb{E}_{\pi_t} \left[(x - y) \cdot (\nabla \log q_t(y) - \nabla \log p_t(x)) \right].$$

In Lemma 2 below, we prove that the last term is less than or equal to zero.

In what follows, we estimate the first two terms. First, using the Lipschitzness of f in space, we get

$$\mathbb{E}_{\pi_t} \left[(x - y) \cdot (f(y, t) - f(x, t)) \right] \le L_f \mathbb{E}_{\pi_t} \left[\|x - y\|^2 \right] = L_f W_2^2(p_t, q_t)$$

The last equality follows from the fact that π_t is an optimal plan between p_t and q_t .

Next, the second term $g^2 \mathbb{E}_{\pi_t} \left[(x - y) \cdot (\nabla \log p_t(x) - s_\theta(y, t)) \right]$ is the sum of the following two terms:

$$I_1 := g^2 \mathbb{E}_{\pi_t} \left[(x - y) \cdot (s_\theta(x, t) - s_\theta(y, t)) \right]$$

and

$$I_2 := g^2 \mathbb{E}_{\pi_t} \left[(x - y) \cdot (\nabla \log p_t(x) - s_\theta(x, t)) \right].$$

As shown above, the former one I_1 is bounded from above by $g^2 L_s W_2^2(p_t, q_t)$.

It suffices to find an upper bound on the latter one I_2 . By the Cauchy-Schwarz inequality, we have

$$I_2 \le g^2 \mathbb{E}_{\pi_t} \left[\|x - y\|^2 \right]^{\frac{1}{2}} \mathbb{E}_{\pi_t} \left[|\nabla \log p_t(x) - s_\theta(x, t)|^2 \right]^{\frac{1}{2}}.$$

As the marginals of π_t are p_t and q_t , it holds that

$$\mathbb{E}_{\pi_t}\left[\|\nabla \log p_t(x) - s_\theta(x,t)\|^2\right] = \mathbb{E}_{p_t}\left[\|\nabla \log p_t(x) - s_\theta(x,t)\|^2\right].$$

As a consequence, we conclude that

$$I_1 + I_2 \le g(t)^2 W_2(p_t, q_t) \left\{ L_s W_2(p_t, q_t) + b(t)^{\frac{1}{2}} \right\}$$

where $b(t) = \mathbb{E}_{p_t} \left[\|\nabla \log p_t(x) - s_\theta(x, t)\|^2 \right].$

Before proving the lemma below, let us recall some basic definitions from the theory of optimal transport. The Wasserstein distance defined in (7) has an equivalent formulation:

$$W_2(\mu,\nu) = \inf\left\{\int_{\mathbb{R}^d} \|x - T(x)\|^2 d\mu : T_{\#}\mu = \nu\right\}^{\frac{1}{2}}.$$
(36)

The optimizer of the above problem is called the optimal map from μ to ν . It is well known that there exists a convex function ϕ such that $T = \nabla \phi$.

Lemma 2. $\mathbb{E}_{\pi_t} \left[(x - y) \cdot (\nabla \log q_t(y) - \nabla \log p_t(x)) \right]$ is nonpositive.

Proof. Let T_t be an optimal transport map from p_t to q_t and a convex function ϕ_t satisfy $\nabla \phi_t = T_t$ for all $t \in [0, T]$. As in the proof of [7, Theorem 1], we have

$$\mathbb{E}_{\pi_t}\left[(x-y)\cdot(\nabla\log q_t(y)-\nabla\log p_t(x))\right] = -\mathbb{E}_{p_t}[\Delta\phi_t + \Delta\phi_t^*(\nabla\phi_t) - 2d]$$
(37)

where ϕ_t^* is a convex conjugate of ϕ_t . The convexity of ϕ_t yields that $\Delta \phi_t + \Delta \phi_t^* (\nabla \phi_t) - 2d$ and we conclude.

B Further analysis of the upper bound

Proof of Corollary 2. Recall from Corollary 1 that

$$W_2(p_0, q_0) \le \sqrt{2\left(\int_0^T g(t)^2 I(t)^2 dt\right)} J_{SM} + I(T) W_2(p_T, q_T).$$
(38)

Based on the contraction property [8], we quantify the Wasserstein distance between p_T and ϕ .

$$W_2(p_T,\phi) \le \exp\left(-\int_0^T \frac{\beta(t)}{2} dt\right) W_2(p_0,\phi).$$
(39)

Using the above, the definition of I(t), and $q_T = \phi$, we conclude (19).

It worth noting that as a consequence of (39), $W_2(p_T, \phi)$ is small for an appropriate choice of T and $\beta(t)$.

B.1 Exponential convergence of h_t

For simplicity of notations, we define the norm in $L^2(\phi)$ as follows,

$$\|f\|_{L^{2}(\phi)} := \left(\int_{\mathbb{R}^{d}} f^{2} d\phi\right)^{\frac{1}{2}},\tag{40}$$

where ϕ is given in (18). In addition, assume that

$$\beta(t) > c > 0 \text{ for all } t \ge 0.$$
(41)

Lemma 3. Under the same setting as in Corollary 2, we have

$$\|h_t - 1\|_{L^2(\phi)} \le \exp\left(-\frac{\sigma^2 \lambda}{2} \int_0^T \beta(t) dt\right) \|h_0 - 1\|_{L^2(\phi)}.$$
(42)

where $h_t = p_t/\phi$ for some constant $\lambda > 0$. In particular, h_t exponentially converges to 1 in $L^2(\phi)$ for β satisfying (41).

For a constant function β , Lemma 3 is proven in [23]. For the sake of completeness, we provide the proof, which is a small modification of [23, Section 2].

Proof of Lemma 3. In our case, the equation (2) of p_t is given by

$$\partial_t p - \frac{\beta}{2} \left(\nabla \cdot (px) + \sigma^2 \Delta p \right) = 0, \ p(\cdot, 0) = p_0.$$
(43)

By direct computations, we obtain the equation of $h(x, t) = h_t(x)$ as follows:

$$\partial_t h - \frac{\beta}{2} \left(-\nabla h \cdot x + \sigma^2 \Delta h \right) = 0, \ h(\cdot, 0) = h_0.$$
(44)

We estimate $||h - 1||^2_{L^2(\phi)}$ by differentiating it with respect to time. Using the integration by parts and Poincaré inequality, we obtain that

$$\frac{d}{dt}\|h-1\|_{L^{2}(\phi)}^{2} = -\sigma^{2}\beta(t)\|\nabla h\|_{L^{2}(\phi)}^{2} \le -\sigma^{2}\lambda\beta(t)\|h-1\|_{L^{2}(\phi)}^{2}$$
(45)

This yields (42). Lastly, for β satisfying (41), $\|h_t - 1\|_{L^2(\phi)}^2 \leq \exp(-\sigma^2 \lambda ct) \|h_0 - 1\|_{L^2(\phi)}^2$. Thus, we conclude the exponential convergence of h to 1.

Remark 8. The convergence of h_t to 1 can be shown under more general assumption: $\beta > 0$ satisfying

$$\lim_{T \to \infty} \int_0^T \beta(t) dt = \infty.$$

Further analysis is plausible based on the techniques in the study of partial differential equations.

Remark 9. As p_t is given as the convolution between p_0 and the Gaussian distribution, it is smooth for t > 0. Therefore, h_t is also smooth, and the higher-order derivatives of h_t are all bounded. As a consequence, the above result combined with Gagliardo–Nirenberg interpolation inequality yield that the gradient of h, Dh, and the Hessian of h, D^2h , also converge to zero in $L^2(\phi)$.

Remark 10. Proving the uniform convergence of h, Dh, or D^2h requires an additional technical assumption that the support of h is bounded. Under the assumption, another interpolation inequality, Agmon's inequality, yields the desired uniform convergence result.

B.2 Estimation of *L_s*

In this subsection, we investigate the estimation of L_s . If J_{SM} is sufficiently small, then s_{θ} is close to $\nabla \log p_t$. We first investigate the one-sided Lipschitz constant of $\nabla \log p_t$.

Lemma 4. Under the same setting as in Corollary 2, $\nabla \log p_t$ satisfies the one-sided Lipschitz condition with a constant $(-\sigma^{-2} + \|D^2(\log h)\|_{\infty})$ i.e.,

$$(\nabla \log p_t(x) - \nabla \log p_t(y)) \cdot (x - y) \le (-\sigma^{-2} + \|D^2(\log h)\|_{\infty})\|x - y\|^2.$$
(46)

where $\|\cdot\|_{\infty}$ denotes the supremum of the matrix norm,

$$\|D^{2}(\log h)\|_{\infty} := \sup_{x \in \mathbb{R}^{d}} \|D^{2}(\log h(x))\| = \sup_{x, y \in \mathbb{R}^{d}, \|y\| \le 1} \|D^{2}(\log h(x))y\|.$$
(47)

Proof. From the definition of h_t , we have

$$\log p_t(x) = \log h_t(x) + \log \phi(x) = \log h_t(x) - \frac{x^2}{2\sigma^2} - c$$
(48)

for some constant c. As a consequence,

$$(\nabla \log p_t(x) - \nabla \log p_t(y)) \cdot (x - y) = (\nabla \log h_t(x) - \nabla \log h_t(y)) \cdot (x - y) - \sigma^{-2} ||x - y||^2.$$
(49)

To prove (46), it suffices to estimate $(\nabla \log h_t(x) - \nabla \log h_t(y)) \cdot (x - y)$. From the fundamental theorem of calculus, we have

$$(\nabla \log h_t(x) - \nabla \log h_t(y)) = \int_0^1 D^2(\log h_t)(sx + (1-s)y)ds \cdot (x-y).$$
(50)

Using $|z^{\top}D^2(\log h_t(w))z| \leq \|D^2(\log h)\|_{\infty}\|z\|^2$ for all $w, z \in \mathbb{R}^d$, we have

$$(\nabla \log h_t(x) - \nabla \log h_t(y)) \cdot (x - y) \le \|D^2(\log h_t)\|_{\infty} \|x - y\|^2$$
6).
$$\Box$$

and conclude (46).

Remark 11. Based on the similar relation as in (50), the difference between L_s and $-\sigma^{-2} + \|D^2(\log h)\|_{\infty}$ can be estimated. More precisely, we have $L_s(t) = (-\sigma^{-2} + \|D^2(\log h)\|_{\infty}) + \epsilon(t)$. Here, $\epsilon(t)$ depends on the difference between s_{θ} and $\nabla \log p_t$. Therefore, it is expected that the upper bound of $\int_0^T \epsilon(t) dt$ is given by J_{SM} under suitable regularity assumptions.

C Proofs of Theorem 2 and Corollary 3

For a given t, let

$$J_{SM}(\theta, t) := \frac{1}{2} \mathbb{E}_{p_t(x)}[\|s_\theta(x, t) - \nabla_x \log p_t(x)\|^2],$$
(52)

and

$$J_{DSM}(\theta, t) := \frac{1}{2} \mathbb{E}_{p_0(x(0))p_{0t}(x|x(0))} [\|s_\theta(x, t) - \nabla_x \log p_{0t}(x|x(0))\|^2].$$
(53)

Lemma 5. (Appendix in [36])

$$\mathbb{E}_{p_t(x)}[\nabla_x \log p_t(x)] = \mathbb{E}_{p_0(x(0))p_{0t}(x|x(0))}[\nabla_x \log p_{0t}(x|x(0))].$$
(54)

Proof of Theorem 2. From Lemma 5 in [36], we have

$$J_{SM}(\theta, t) = J_{DSM}(\theta, t) + \frac{1}{2} (\mathbb{E}_{p_t(x)} \left[\|\nabla_x \log p_t(x)\|^2 \right] - \mathbb{E}_{p_0(x(0))p_{0t}(x|x(0))} [\|\nabla_x \log p_{0t}(x|x(0))\|^2])$$
(55)

Note that

$$\begin{split} & \mathbb{E}_{p_{t}(x)} \left[\| \nabla_{x} \log p_{t}(x) \|^{2} \right] - \mathbb{E}_{p_{0}(x(0))p_{0t}(x|x(0))} [\| \nabla_{x} \log p_{0t}(x|x(0)) \|^{2}] \\ &= \mathbb{E}_{p_{t}(x)} [(\nabla_{x} \log p_{t}(x))^{\top} (\nabla_{x} \log p_{t}(x))] \\ &- \mathbb{E}_{p_{0}(x(0))} [\mathbb{E}_{p_{0t}(x|x(0))} [(\nabla_{x} \log p_{0t}(x|x(0)))^{\top} (\nabla_{x} \log p_{0t}(x|x(0)))|x(0)]] \\ &= \operatorname{Var} [(\nabla_{x} \log p_{t}(x))^{\top}] - \mathbb{E} [\operatorname{Var} [(\nabla_{x} \log p_{0t}(x|x(0)))^{\top}]|x(0)] \\ &+ (\mathbb{E}_{p_{t}(x)} [\nabla_{x} \log p_{t}(x)])^{\top} (\mathbb{E}_{p_{t}(x)} [\nabla_{x} \log p_{0t}(x|x(0))]^{\top}]|x(0)] \\ &- \mathbb{E}_{p_{0}(x(0))} [(\mathbb{E}_{p_{0t}(x|x(0))} [\nabla_{x} \log p_{0t}(x|x(0))|x(0)])^{\top} (\mathbb{E}_{p_{0t}(x|x(0))} [\nabla_{x} \log p_{0t}(x|x(0))|x(0)])] \\ &\leq (\mathbb{E}_{p_{t}(x)} [\nabla_{x} \log p_{t}(x)])^{\top} (\mathbb{E}_{p_{t}(x)} [\nabla_{x} \log p_{t}(x)]) \\ &- \mathbb{E}_{p_{0}(x(0))} [(\mathbb{E}_{p_{0t}(x|x(0))} [\nabla_{x} \log p_{0t}(x|x(0))|x(0)])^{\top} (\mathbb{E}_{p_{0t}(x|x(0))} [\nabla_{x} \log p_{0t}(x|x(0))|x(0)])] \\ &\qquad (56) \end{split}$$

where the inequality comes from the law of total variance and our condition:

$$\operatorname{Var}[(\nabla_x \log p_t(x))^\top] - \mathbb{E}[\operatorname{Var}[(\nabla_x \log p_{0t}(x|x(0)))^\top|x(0)]]$$

=
$$\operatorname{Var}[\mathbb{E}[(\nabla_x \log p_{0t}(x|x(0)))^\top|x(0)]]$$

= 0. (57)

Then, we have

$$\begin{aligned} & (\mathbb{E}_{p_{t}(x)}[\nabla_{x}\log p_{t}(x)])^{\top}(\mathbb{E}_{p_{t}(x)}[\nabla_{x}\log p_{t}(x)]) \\ & -\mathbb{E}_{p_{0}(x(0))}[(\mathbb{E}_{p_{0t}(x|x(0))}[\nabla_{x}\log p_{0t}(x|x(0))|x(0)])^{\top}(\mathbb{E}_{p_{0t}(x|x(0))}[\nabla_{x}\log p_{0t}(x|x(0))|x(0)])] \\ & \leq (\mathbb{E}_{p_{t}(x)}[\nabla_{x}\log p_{t}(x)])^{\top}(\mathbb{E}_{p_{t}(x)}[\nabla_{x}\log p_{t}(x)]) \\ & -(\mathbb{E}_{p_{0}(x(0))}\mathbb{E}_{p_{0t}(x|x(0))}[\nabla_{x}\log p_{0t}(x|x(0))|x(0)])^{\top}(\mathbb{E}_{p_{0}(x(0))}\mathbb{E}_{p_{0t}(x|x(0))}[\nabla_{x}\log p_{0t}(x|x(0))|x(0)])] \\ & = (\mathbb{E}_{p_{t}(x)}[\nabla_{x}\log p_{t}(x)] - \mathbb{E}_{p_{0}(x(0))}\mathbb{E}_{p_{0t}(x|x(0))}[\nabla_{x}\log p_{0t}(x|x(0))|x(0)])^{\top} \\ & (\mathbb{E}_{p_{t}(x)}[\nabla_{x}\log p_{t}(x)] + \mathbb{E}_{p_{0}(x(0))}\mathbb{E}_{p_{0t}(x|x(0))}[\nabla_{x}\log p_{0t}(x|x(0))|x(0)]) \\ & = 0, \end{aligned}$$

$$\tag{58}$$

where first inequality comes from Jensen's inequality, and the last equality comes from eq. (54).

Recall that $J_{SM}(\theta, \lambda) = \int_0^T \lambda(t) J_{SM}(\theta, t) dt$ and $J_{DSM}(\theta, \lambda) = \int_0^T \lambda(t) J_{DSM}(\theta, t) dt$, $\lambda(t) > 0$, we have that $J_{DSM} \ge J_{SM}$. Plugging it in eq. (34), we can get eq. (22).

Proof of Corollary 3. We have $p_{0t}(x|x(0)) = \mathcal{N}(\sqrt{\bar{\alpha}_t}x(0), (1-\bar{\alpha}_t)I)$ where $\bar{\alpha}_t = \prod_{r=1}^t (1-\beta_t)$, which can be inferred from $p(x(t)|x(t-1)) = \mathcal{N}(\sqrt{1-\beta_t}x(t-1), \beta_t I)$.

Thus we can show that $\mathbb{E}[\nabla_x \log p_{0t}(x|x(0))^\top | x(0)]$ is constant with respect to x(0): recall $p_{0t}(x|x(0)) = \mathcal{N}(\sqrt{\bar{\alpha}_t}x(0), (1 - \bar{\alpha}_t)I)$, we have $\nabla_x \log p_{0t}(x|x(0)) = -((1 - \bar{\alpha}_t)I)^{-1}(x(t) - \sqrt{\bar{\alpha}_t}x(0))$, which is a linear function of $x(t) - \sqrt{\bar{\alpha}_t}x(0)$. Using the Gaussian density function, we have:

$$\int p_{0t}(x|x(0))\nabla_x \log p_{0t}(x|x(0))dx = 0,$$
(59)

As a result, $\operatorname{Var}[\mathbb{E}[(\nabla_x \log p_{0t}(x|x(0)))^\top | x(0)]] = 0$, which satisfies the condition of eq. (21) in Theorem 2.

Note that here the assumption of f and g is only a sufficient condition for $\operatorname{Var}[\mathbb{E}[(\nabla_x \log p_{0t}(x|x(0)))^\top | x(0)]] = 0$. In fact, any conditional distribution p_{0t} that satisfies $\operatorname{Var}[\mathbb{E}[(\nabla_x \log p_{0t}(x|x(0)))^\top | x(0)]] = 0$ can lead to the same conclusion. \Box

Figure 5: Two-sided and one-sided Lipschitzness.

D One-sided Lipschitzness

For an arbitrary Lipschitz function $F : \mathbb{R}^d \to \mathbb{R}^d$, the Cauchy-Schwarz inequality yields that

$$(F(x) - F(y)) \cdot (x - y) \le ||F(x) - F(y)|| ||x - y|| \le L ||x - y||^2$$
(60)

where L is the Lipschitz constant of F. Therefore, all Lipschitz function satisfies the one-sided Lipschitz condition:

$$(F(x) - F(y)) \cdot (x - y) \le L ||x - y||^2.$$
(61)

As pointed out earlier in Section 3.2, the one-sided Lipschitz constant is not necessarily to be positive. For instance, if F(x) = -ax + b for a > 0 and $b \in \mathbb{R}^d$, then -a < 0 can be the one-sided Lipschitz constant of F while its Lipschitz constant is a > 0. Figure 5 visualizes this.

Note that two-sided Lipschitzness is a subset of one-sided Lipschitzness. See Figure 6 as an example.

Figure 6: A function could be one-sided Lipschitz but not two-sided.

E Full plot of $L_s(t)$ when T = 100

See Fig. 7b.

Figure 7: Plots of $L_s(t)$, T = 100.

F Numerical results on J_{DSM} upper-bounding J_{SM} in DDPM

To verify $J_{SM} \leq J_{DSM}$ in (22) for DDPM, we adopt the same datasets as in Fig 1, and the same training and evaluation settings in Section 4.1.

Moreover, to estimate J_{SM} numerically, we estimate $p_t(x)$ by performing Gaussian kernel density estimation with bandwidth = 0.05 on sampled data. $\nabla_x p_t(x)$ is estimated by central difference approximation with interval = 0.01. The resulting plots of J_{DSM} and J_{SM} are shown in Fig 8, which shows that J_{DSM} is an upper bound of J_{SM} in DDPM during training, where p_0 is the dataset, and q_0 is the generated data distribution at the convergence of training.

Figure 8: J_{SM} and J_{DSM} during training. The datasets are the same as 2D datasets in Fig 1. The training curves are obtained via training DDPM with modification of J_{DSM} loss.

G Log-log plots with weight decay

See Fig. 9.

Figure 9: Log-log plots for different weight decay coefficients. As the weight decay coefficient increases, the theoretical upper bound is approaching the empirical one.