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ABSTRACT

We investigate the mechanism design problem faced by a principal who hires
multiple agents to gather and report costly information. Then, the principal exploits
the information to make an informed decision. We model this problem as a game,
where the principal announces a mechanism consisting in action recommendations
and a payment function, a.k.a. scoring rule. Then, each agent chooses an effort
level and receives partial information about an underlying state of nature based
on the effort. Finally, the agents report the information (possibly non-truthfully),
the principal takes a decision based on this information, and the agents are paid
according to the scoring rule. While previous work focuses on single-agent prob-
lems, we consider multi-agents settings. This poses the challenge of coordinating
the agents’ efforts and aggregating correlated information. Indeed, we show that
optimal mechanisms must correlate agents’ efforts, which introduces externalities
among the agents, and hence complex incentive compatibility constraints and
equilibrium selection problems. First, we design a polynomial-time algorithm
to find an optimal incentive compatible mechanism. Then, we study an online
problem, where the principal repeatedly interacts with a group of unknown agents.
We design a no-regret algorithm that provides Õ(T 2/3) regret with respect to an
optimal mechanism, matching the state-of-the-art bound for single-agent settings.

1 INTRODUCTION

Acquiring reliable information is crucial in any decision making problem. Often, decision makers
delegate the task of gathering information to other parties. In the classical information acquisition
scenario (Savage, 1971), a principal delegates a single agent to acquire information (Chen & Yu,
2021; Papireddygari & Waggoner, 2022; Li et al., 2022; Chen et al., 2023). However, in many
real-world scenarios, the principal may have multiple sources of information (Cacciamani et al.,
2023). Consider a portfolio manager that wants to learn the potential of a company to make an
informed investment. The manager could hire multiple analysts to conduct separate researches on the
same company, where each analyst spends effort to produce a report. The manager gains information
from the reports and decides whether or not to make the investment. To incentivize the analysts to
produce accurate reports, the manager designs a payment scheme that pays the analysts based on the
reports accuracy. Formally, this problems can be modeled as a game between a principal that wants
to acquire information about a stochastic state θ and a group of agents that receive information about
this state through signals whose accuracy depends on undertaken effort (effort levels are modeled
through different actions). The game goes as follows. First, the principal commits to a distribution
µ over action recommendations and payment function, a.k.a., scoring rule (Oesterheld & Conitzer,
2020; Neyman et al., 2021). Then, each agent i observes an action recommendation sampled from µ
and performs a costly action bi. Each agent receives a signal si from a joint probability distribution
P(i) (s|b, θ) and reports the signal (possibly non-truthfully) to the principal. Based on the reported
information, the principal makes a decision a ∈ A. Finally, the agents are paid according to the
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scoring rule. Our goal is twofold. First, we want to analyze the optimization problem of computing
optimal mechanisms, characterizing their properties and computational complexity. Moreover, we
study an online problem in which the principal does not have prior knowledge about the agents. Our
goal is to design online no-regret learning algorithms that repeatedly interacts with an unknown group
of agents maximizing the cumulative principal’s utility.1

Original contributions. We study the design of efficient algorithms for the multi-agent information
acquisition problem, with a focus on both the optimization problem and the online learning problem
arising when a principal interacts repeatedly with unknown agents. First, we assume that the principal
knows all the game parameters. We show that an optimal mechanism can be computed efficiently.
Our algorithm solves a quadratic optimization problem by providing a linear relaxation and then
recovers a solution to the original problem in polynomial time. Moreover, we characterize the settings
in which the optimal mechanism is correlated, i.e., each agent’s payment depends also on the signals
reported by other agents, and the settings in which the optimal mechanism is uncorrelated, i.e., each
agent’s payment depends only from her reported signal and the state of nature. Next, we consider the
online problem in which the principal does not know the game parameters and needs to learn them by
repeatedly interacting with the agents. We present an online algorithm that attains Õ(T 2/3) regret
with respect to an optimal mechanism, which matches the state-of-the-art bound for single-agent
settings (Chen et al., 2023). Our algorithm comprises three phases. In the first one, we estimate
the probability distribution over states of nature induced by the agents’ signals. Ensuring that the
estimations are sufficiently accurate is the main challenge in this phase. The required level of accuracy
depends on the specific instance and it is crucial for designing strictly-incentive compatible (IC)
scoring rules, which maintain truthfulness under uncertainty. In the second phase, the algorithm
estimates the differences among costs of the agents’ actions. To do so, we employ non-truthful
mechanisms, which require a non-trivial analysis of the agents’ behavior. Finally, the algorithm
commits to an approximately optimal strategy while ensuring truthfulness under uncertainty. We
achieve this goal by leveraging the estimations obtained in the previous phases. Specifically, we find
an approximately optimal and approximately IC mechanism by exploiting the estimations. Then, we
take a convex combination between this scoring rule and an ad-hoc strictly IC scoring rule to obtain
an IC mechanism.

2 PRELIMINARIES

Game model. We investigate games between a principal and a set N = [n] of n agents2. We
assume that n is constant.3. Each agent i ∈ N can choose an action b from a set Bi of k actions, each
one with a cost ci(b) specified by a cost function ci : Bi → [0, 1]. For i ∈ N and bi, b′i ∈ Bi, we
let Ci(bi, b

′
i) = Ci(bi) − ci(b′i). We denote the set of all possible action profiles as B := ×i∈NBi

and the set of all possible action profiles excluding agent i’s action as B−i = ×j ̸=iBj . Given b ∈ B,
we denote as b−i ∈ B−i the tuple obtained from b by removing element bi relative to agent i. The
interaction model we consider is enhanced with a pre-play round of communication between the
principal and the agents in which the principal can privately recommend to each agent which action
to take. 4 After each agent takes an action bi ∈ Bi (not necessarily equal to the action recommended
by the principal), a state of nature θ is sampled from a finite set Θ = {θ1, . . . , θm} according to a
prior p ∈ ∆(Θ).5 The state of nature is observed neither by the principal nor by the agents. Instead,
depending on the action profile b ∈ B chosen by all the agents, each agent i observes a signal si
drawn from a finite l-dimensional set Si. The signal profile received by the principal is denoted
as s = (s1, ..., sn). The set of all possible signal profiles is S = ×iSi. Moreover, the set of all
possible signal profiles excluding agent i’s signal is denoted as S−i = ×j ̸=iSj . Given a signal profile
s ∈ S, we let s−i ∈ S−i the signal profile obtained from si by removing signal si. The signal
profile and the state of nature are sampled according to a joint probability distribution that depends

1For space constraints, we defer a discussion on the related works to Appendix A.
2In this work, for any n ∈ N>0, we use [n] = {1, .., n} to denote the set of the first n natural numbers.
3This avoids computational issues related to the exponential-size representation of the problem instance.

Most of our results continue to hold for arbitrary n.
4In Section 4, we show that optimal mechanisms correlate the agents’ efforts and hence this step is funda-

mental to maximize the principal’s utility.
5In this work, given a finite set Z , we denote as ∆(Z) the |Z|-dimensional probability simplex.
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on the agent’s action profile P (s, θ|b) := p[θ]P (s|θ, b). The marginal signal probability of agent i is
defined as P(i) (si|b, θ) :=

∑
s′∈S:s′i=si

P (s|b, θ), where we use the superscript (i) to explicit that
we are considering the probability with which agent i receives signal si ∈ Si. We assume that the
information received by each agent i is independent from the actions taken by other agents6, i.e.,

P(i) (si|b, θ) := P(i) (si|bi, θ) ∀i ∈ N , ∀si ∈ Si, ∀b ∈ B,∀θ ∈ Θ.

Notice that this does not exclude that the signals received by the agents are correlated. Moreover, we
denote as P(i) (si|bi) :=

∑
θ p(θ)P(i) (si|bi, θ) the probability with which agent i observes signal si

after the agent played action bi. Finally, we denote with P(i) (θ|bi, si) the probability of state θ in the
posterior induced to agent i ∈ N by signal si ∈ Si and action bi ∈ Bi. In our model, the agents can
communicate a signal observation (possibly lying and communicating a signal s′i different than the
signal si actually received) to the principal, which can pay the agents to reward their communication.
After receiving a signal profile s′ from the agents, the principal chooses an action a from a finite set
A = {a1, ..., ad} and receives utility u(a, θ) ∈ [0, 1].

Mechanisms. A mechanism for the principal must specify three different components: (i) a
recommendation policy µ that determines which actions are recommended to the agents, (ii) a
payment scheme γ = (γ1, ...,γn) – also called scoring rule – specifying how each agent will be
paid, and (iii) an action policy π encoding which action the principal chooses as a function of the
received signal profile and the recommended actions. In this work we are interested in the class of
correlated mechanisms, in which the payment received by agent i depends on the whole action profile
b recommended to the agents and on the whole signal profile s received by the principal, as well as
on the state of nature θ. The set of correlated mechanisms is denoted as C. Formally,

C := {(µ,γ,π) | µ ∈ ∆(B), γi : B × S ×Θ→ [0,M ]∀i ∈ N , π : B × S → ∆(A)} ,
where M is a parameter that limits the principal’s budget. 7 When the principal uses mechanism
(µ,γ,π), the action profile recommended is b ∈ B, the signal profile reported is s ∈ S and the state
of nature is θ, the payment received by agent i is γi[b, s, θ], while π[b, s, a] denotes the probability
with which the principal plays action a ∈ A.

Optimal mechanisms and incentive compatibility. The objective of the principal is to find an
optimal mechanism, i.e., a mechanism guaranteeing the maximum possible difference between utility
of the principal and total payments. By the revelation principle, it is possible to restrict our attention
to mechanism that are truthful, i.e., such that the agents are incentivized to follow the principal’s
recommendations and to report truthfully the signals they observe. Hence, we denote the expected
payment received by player i when she behaves truthfully and the mechanism is (µ,γ,π) as:

Fi(µ,γ) =
∑
b∈B

∑
s∈S

∑
θ∈Θ

µ[b]P (s, θ|b) γi[b, s, θ].

Then, the expected utility of the principal is obtained as the difference between the expected utility
received by actions in A and the total expected payments (assuming truthful behavior of the agents):

U(µ,γ,π) =
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
µ[b]P (s, θ|b)

[∑
a∈A

π[b, s, a]u(a, θ)

]]
−
∑
i∈N

Fi(µ,γ).

To ensure that truthful behavior is optimal (i.e., the mechanism is IC), we introduce the concept of
deviation functions, which model the possible deviations from truthful behavior. Formally, the set
Φi of agent i’s deviation functions is Φi = {(ϕ, φ) | ϕ : Bi → Bi, φ : Bi × Si → Si} . Given any
couple (ϕ, φ) ∈ Φi, the function ϕ models the deviation from the recommended action, while φ
models untruthful reporting of the received signal. Agent i’s expected payment when she deviates
according to (ϕ, φ), all the other agents behave truthfully, and the mechanism is (µ,γ,π) is:

Fϕ,φ
i (µ,γ) =

∑
b∈B

∑
s∈S

∑
θ∈Θ

µ[b]P (s, θ|(ϕ(bi), b−i)) γi[b, (φ(bi, si), s−i), θ].

6Intuitively, this assumption models those cases in which the information received by an agent depends
exclusively on her level of effort.

7Bounding the payments is a classical assumption in online problems related to information acquisition and
in principal-agent problems Chen et al. (2023); Zhu et al. (2023). Without this assumption the learner decision
space is unbounded.
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An optimal correlated mechanism can be found as a solution of the following optimization problem:

max
(µ,γ,π)∈C

U(µ,γ,π) (1a)

s.t. Fi(µ,γ)− Fϕ,φ
i (µ,γ) ≥

∑
b∈B

µ[b]Ci(bi, ϕ(bi)) ∀i ∈ N , ∀(ϕ, φ) ∈ Φi (1b)

The objective function of Equation (1) is the maximization of principal’s expected utility assum-
ing honest behavior of the agents, and Equation (1b) guarantees that the mechanism is incentive
compatible (IC), i.e., it guarantees that, for all agents, truthful behavior is an equilibrium.

3 A LINEAR PROGRAMMING RELAXATION FOR COMPUTING OPTIMAL
MECHANISMS

In this section, we provide a polynomial-time algorithm to solve Problem (1), i.e., to find an optimal
mechanism. As a first step, we provide a Linear Program (LP) relaxation of (1). Notice that (1)
presents two main issues: (i) the objective function and the constraints are non-linear in the variables
(µ,γ,π), and (ii) it has an exponential number of constraints, since |Φi| = kkllk. To address
(i), we introduce variables x = (x1, ...,xn) and y, where xi ∈ R|B|×|S|×|Θ|

≥0 for each i ∈ N ,

and y ∈ R|B|×|S|×|A|
≥0 . Intuitively, xi[b, s, θ] represents the product µ[b]γi[b, s, θ], while y[b, s, a]

represents the product µ[b]π[b, s, a], thus making the objective function and the constraints linear.
This yields a relaxation of the original non-linear optimization problem. Then, in order to be able
to recover valid mechanisms from variables xi,y, we introduce additional constraints. For what
concerns (ii), in order to reduce the number of constraints, we observe that it is possible to safely
consider a restricted set of deviations for each agent, while still guaranteeing incentive compatibility
w.r.t. deviations in Φi. In the following, we will denote the expected payment received by agent i
when she is recommended to play bi ∈ Bi, she plays b′i, observes si ∈ Si, and reports s′i ∈ Si as:

fi(xi|bi, b′i, si, s′i,P) =
∑

b−i∈B−i

∑
s−i∈S−i

∑
θ∈Θ

xi[(bi, b−i), (s
′
i, s−i), θ]P ((si, s−i), θ|(b′i, b−i)) ,

where we made explicit fi’s dependency from the probability distribution P (·, ·|b) ∈ ∆(S ×Θ).
Moreover, we write fi(xi|bi, si,P) := fi(xi|bi, bi, si, si,P) to denote the expected payment received
by agent i when she is recommended action bi ∈ Bi, she observes signal si ∈ Si and she behaves
honestly. Then, consider the following LP, which we denote as LP (ζ,Λ, ε). It is parameterized by ζ,
Λ and ε, where ζ = (ζb)b∈B is a collection of probability distributions over S ×Θ, Λ = (Λ1, ...,Λn)
with Λi : Bi ×Bi → [−1, 1] represent pairwise cost differences, and ε > 0:

max
x⪰0,y⪰0,

z⪰0,µ∈∆(B)

∑
b∈B

∑
s∈S

∑
θ∈Θ

[∑
a∈A

[y[b, s, a]ζb[s, θ]u(a, θ)]−
∑
i∈N

xi[b, s, θ]ζb[s, θ]

]
s.t. (2a)

∑
si∈Si

[fi(xi|bi, si, ζ′)− zi[bi, b′i, s]] ≥
∑

b−i∈B−i

µ[(bi, b−i)]Λi(bi, b
′
i)− ε ∀i ∈ N ∀bi, b′i ∈ Bi (2b)

zi[bi, b
′
i, si] ≥ fi(xi|bi, b′i, si, s′i, ζ′) ∀i ∈ N , ∀bi, b′i ∈ Bi, ∀si, s′i ∈ Si (2c)∑

a∈A
y[b, s, a] = µ[b] ∀b ∈ B, ∀s ∈ S (2d)

xi[b, s, θ] ≤Mµ[b] ∀i ∈ N , ∀b ∈ B, ∀s ∈ S, ∀θ ∈ Θ (2e)

Intuitively, constraint (2c) ensures that the auxiliary variable zi[bi, b′i, si] provides an upper bound
on the expected payment that agent i could get through any untruthful signal reporting when she
was recommended to play bi, she played b′i and observes si. Constraint (2b) exploits the auxiliary
variables z = (z1, ...,zn) with zi ∈ R|Bi|×|Bi|×|Si|

≥0 to guarantee that no deviation is profitable for
agent i. The following theorem shows how to recover an optimal correlated mechanism from LP (2)8.

8All the proofs omitted from the main paper can be found in the Appendix.
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Theorem 3.1. Let (x⋆,y⋆,µ⋆, z⋆) be an optimal solution to LP (P, C, 0), where C = (C1, ..., Cn).
Then, let γ⋆ = (γ⋆

1 , ...,γ
⋆
n) and π⋆ be such that

γ⋆i [b, s, θ] =

{
x⋆
i [b,s,θ]
µ⋆[b] if µ[b] ̸= 0

0 otherwise
π⋆[b, s, a] =

{
y⋆[b,s,a]
µ⋆[b] if µ[b] ̸= 0

1
d otherwise.

Then (µ⋆,γ⋆,π⋆) is an optimal solution to Problem (1).

As a consequence of Theorem 3.1, noticing that the linear program has a number of constraints and
variables polynomial in k, l and m, we obtain the following corollary.
Corollary 3.2. An optimal mechanism can be found in polynomial time.

4 CORRELATED VS UNCORRELATED MECHANISMS

Before introducing our online learning problem, we discuss one of the main issues arising from the
adoption of correlated mechanism. Indeed, consider the case in which the principal is not able to
commit to an IC mechanism, for instance because she is uncertain about the game parameters and thus
she is not able to characterize the set of IC mechanisms. When the principal uses non-IC mechanisms
it becomes complex to characterize the behavior of the agents. This is because correlated mechanisms
introduce externalities among the agents. More precisely, since the payments received by agent i
depend also on the deviation policies (ϕj , φj) ∈ Φj adopted by agents j ̸= i, the agents should
play an equilibrium of the n-players game induced by the correlated mechanism. This introduces
well-known issues related to both computational complexity and equilibrium selection Daskalakis
et al. (2009). Thus, committing to a correlated mechanism which is not IC induces an unpredictable
behavior of the agents, which in online settings makes it impossible for the learner to even estimate
the game parameters.

To address such drawbacks of correlated mechanisms, we introduce the class of uncorrelated mecha-
nisms. An uncorrelated mechanism is composed by an uncorrelated scoring rule γ = (γ1, ...,γn)
and an action policy π. Formally, the set of uncorrelated mechanisms is defined as:

U = {(γ,π) | γi : Si ×Θ ∈ [0,M ] ∀i ∈ N , π : S → ∆(A)} .
Notice that any uncorrelated mechanism can be represented as a correlated mechanism and hence
U ⊂ C. Differently from correlated mechanisms, any (γ,π) ∈ U induces a well-defined best
response for each agent. In particular, the best-response problem can be framed as a single-follower
Stackelberg game. Given any (γ,π) ∈ U , we define the optimal action b◦i (γi) ∈ Bi and the optimal
signal reporting policy φ◦

i (·|γi) : Si → Si when the principal commits to mechanism (γ,π) as:

(b◦i (γi), φ
◦
i (·|γi)) ∈ arg max

bi∈Bi
φ:Si→Si

{∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|bi) γi[φ(si), θ]− ci(bi)

}
,

where, as common in the literature, ties are broken in favor of the principal. Therefore, the expected
utility of the principal when she commits to mechanism (γ,π) ∈ U is:

U◦(γ,π) =
∑
s∈S

∑
θ∈Θ

P (s, θ|b◦(γ))

[(∑
a∈A

π[φ◦(s|γ), a]u(a, θ)

)
−
∑
i∈N

γi[φ
◦
i (si|γi), θ]

]
,

where b◦(γ) = (b◦1(γ1), ..., b
◦
n(γn)) and φ◦(s|γ) = (φ◦

1(s1|γ1), ..., φ
◦
n(sn|γn)). Uncorrelated

mechanisms eliminate all externalities among the agents, inducing predictable agents’ responses.
Hence, they are appealing in online settings in which the principal must learn from agents’ behavior.
We conclude the section showing that despite their advantages that make uncorrelated mechanisms a
very useful tool, they can be suboptimal with respect to correlated mechanisms.
Theorem 4.1. There exists a game in which no uncorrelated mechanism is optimal.

However, while uncorrelated mechanisms are suboptimal in general, there exists realistic classes of
games in which optimal mechanisms are uncorrelated as shown by the following theorem.
Theorem 4.2. Assume there for each i ∈ N , θ ∈ Θ and bi ∈ Bi, there exists a probability distribution
ψi(·|bi) ∈ ∆(Si) such that ∀b ∈ B, ∀s ∈ S and ∀θ ∈ Θ, P (s, θ|b) = p[θ]

∏
i∈N ψi(si|bi, θ). Then,

there exists a mechanism (γ,π) ∈ U that is optimal among correlated mechanisms.
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This condition models scenarios in which the signals received by the agents are independent. The
absence of signals correlation makes the expressive power of correlated mechanisms futile.

5 LEARNING THE OPTIMAL MECHANISM

We study an online learning scenario in which the principal interacts for T rounds with n agents
without knowing neither the joint probability distribution P (s, θ|b) nor the cost functions ci. At each
round t ∈ [T ], the principal publicly announces her mechanism. If the mechanism is correlated, then
the agents receive recommendations bt ∼ µ. Then, each i ∈ N chooses action b̃ti (possibly different
that bti) incurring the cost ci(b̃ti). If the mechanism is uncorrelated the agents play according to the
tuple of best responses b̃t = b◦(γt). To avoid the issues highlighted in Section 4, we will never
employ correlated mechanisms that are not IC. Then, a state of nature θt and a signal profile st are
sampled according to P(s, θ|b̃t). Each agent i observes signal si and reports signal s̃ti to the principal.
If the mechanism is correlated, then s̃ti = si. If the mechanism is uncorrelated, then s̃ti = φ◦

i (s
t
i|γt

i ).
Finally, the principal takes action at ∼ π[bt, s̃t, ·] and gets utility u(at, θt) while each agent is paid
according to the scoring rule. At the end of the round, the feedback received by the learner includes
the actions b̃t taken by the agents 9, the signals s̃t reported by the agents, and the state of nature θt,
while she is not able to observe the signals st that were actually observed by the agents.

The performances of the algorithm are measured in terms of cumulative regret RT , which represents
the expected loss of utility for the principal due to not having selected the optimal mechanism at each
t ∈ [T ]. Formally, let (µ⋆,γ⋆,π⋆) be an optimal mechanism (i.e., an optimal solution to (1)), and
let Tc, Tu, T ′

c ⊆ [T ] be the sets of rounds in which the principal committed to a correlated and IC
mechanism, to an uncorrelated mechanism, and to a correlated and non-IC mechanism, respectively
(it holds Tc ∪ Tu ∪ T ′

c = [T ]). Then, the cumulative regret is defined as:

RT =
∑
t∈[T ]

U(µ⋆,γ⋆,π⋆)−
∑
t∈Tc

U(µt,γt,πt)−
∑
t∈Tu

U◦(γt,πt),

where, as discussed in Section 4, we used the fact that when the principal commits to a correlated
mechanism which is not IC, then she can incur in a constant per-round regret in the worst case,
since the behavior of the agents is unpredictable. Our goal is to design an algorithm that achieves
RT = o(T ). In the following, we let ℓ > 0 be the minimum distance between the posteriors
induced by two signals, i.e., ℓ = mini∈N ,bi∈Bi,si,s′i∈Si

∑
θ∈Θ

(
P(i) (θ|bi, si)− P(i) (θ|bi, s′i)

)2
,

and ι > 0 be the minimum probability with which each signal is received by an agent, i.e., ι =
mini∈N ,bi∈Bi,si∈Si P(i) (si|bi).

5.1 ALGORITHM OVERVIEW AND ASSUMPTIONS

For each agent i ∈ N and action bi ∈ Bi, we assume to know an uncorrelated scoring rule strictly
incentivizing i to play action bi while also incentivizing her to report truthfully the observed signal.
Assumption 1. For each i ∈ N , the learner knows a set of scoring rules
Γi = {γbi

i : Si ×Θ ∈ [0,M ] | bi ∈ Bi} and ρ > 0 such that∑
si∈Si

∑
θ∈Θ

[
P(i) (si, θ|bi) γbii [si, θ]− P(i) (si, θ|b′i) γ

bi
i [φi(si), θ]

]
≥ C(bi, b′i) + ρ (3)

for all b′i ∈ Bi \ {bi} and φi ∈ Si → Si, and such that∑
θ∈Θ

P(i) (θ|si, bi)
[
γbii [si, θ]− γbii [s′i, θ]

]
≥ 0 ∀si, s′i ∈ Si. (4)

Intuitively, Eq. (3) guarantees that for each agent i, following the action recommendation is strictly
better than deviating to a different action, while Eq. (4) guarantees that reporting the observed signal
is never worse in expectation than reporting a different one. This assumption is common in the
literature (see, e.g., Chen et al. (2023)), and it is necessary to achieve incentive compatibility under
uncertainly. Throughout the remaining of the paper, we let Γ = {γb := (γb1

1 , ...,γ
bn
n ) | b ∈ B}.

9It is common in the literature to assume that agents’ actions can be observed (see, e.g., Chen et al. (2023)).
Intuitively, this is because the truthful reporting of signals can be used to discriminate between different actions.
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Algorithm 1 Online Information Acquisition

Require: T,N1, N2, N3, ρ,Γ, δ
▷ Exploration phase
(ζ, ν, ξ, ρ)← ESTIMATEPROB(N1,Γ, δ) ▷ Sec. 6
(Λ, χ)← ESTIMATECOSTS(N2, N3,Γ, δ) ▷ Sec. 7
▷ Commit Phase
COMMIT(ζ, ν, ξ, ρ,Λ, χ,Γ, ρ) ▷ Sec. 8

Algorithm 1 provides an high-level
overview of our algorithm. The proce-
dure is divided in two phases, an explo-
ration phase and a commit phase. The ex-
ploration phase is devoted to finding the
estimators ζb ∈ ∆(S × Θ) of the joint
probabilities P (·, ·|b) for each b, the es-
timators ξ

(i)
bi,si

∈ ∆(Θ) of the posteriors
P(i)(·|bi, si) for each i ∈ N , bi ∈ Bi and
si ∈ Si, and the estimators Λi(bi, b

′
i) of the cost differencesCi(bi, b

′
i) for i ∈ N , bi, b′i ∈ Bi, together

with the respective confidence bounds ν, ϱ, χ ∈ R≥0. During the commit phase, instead, we leverage
the estimates obtained in the previous rounds to output a sequence of IC mechanisms that guarantee
sublinear cumulative regret. As inputs to the algorithm we provide the total number of rounds T , the
minimum number of rounds N1, N2, N3 that regulate the length of the exploration phase, the scoring
rules Γ, the scalar ρ described in Assumption 1, and the desired confidence level δ ∈ (0, 1) on the
regret bound. We provide a description of the three algorithms ESTIMATEPROB, ESTIMATECOSTS
and COMMIT in Sections 6, 7 and 8, respectively. The guarantees of Algorithm 1 are stated in the
following theorem.
Theorem 5.1. Let κ = 289

2 m2 ln(12|B||S|Tmn/δ) 1
ι2ℓ2 . For any δ ∈ (0, 1), with probability at least

1− δ, running Algorithm 1 with N1 = N3 = T 2/3 and N2 = log(T ) guarantees

RT ≤ Õ
(
M3

ρℓ
|B||S|mnk3l2

√
ln(1/δ)max{T 2/3, κ}

)
The upper bound on RT presents a term max{T 2/3, κ}. For T sufficiently large, κ –that depends on
the instance and logarithmically on T– is dominated by T 2/3 and we recover the Õ(T 2/3) bound10.

6 ESTIMATION OF THE PROBABILITY DISTRIBUTIONS

The estimation phase is devoted to the estimation of the joint probabilities P (·, ·|b) and of the
posteriors P(i) (·|si, bi) induced by action-signal couples. Let Tp ⊆ T be the set of rounds devoted
to ESTIMATEPROB. Furthermore, for b ∈ B, bi ∈ Bi and si ∈ Si, let Tp(b) = {t ∈ Tp | bt = b}
and T (i)

p (bi, si) = {t ∈ Tp | s̃ti = si, b
t
i = bi}. For K = 6|B|T |S|nm, we introduce estimators

ζb ∈ ∆(S ×Θ) and ξ
(i)
bi,si
∈ ∆(Θ) with their confidence bounds νb and ϱ(i)bi,si

, defined as11:

ζb[s, θ] =
1

|Tp(b)|
∑

t∈Tp(b)

1
[
s̃t = s, θt = θ

]
, νb =

√
ln(2K/δ)

2|Tp(b)|
, ∀b, s, θ (5)

and

ξ
(i)
bi,si

[θ] =
1

|T (i)
p (bi, si)|

∑
t∈T (i)

p (bi,si)

1
[
θt = θ

]
ϱ
(i)
bi,si

=

√
ln(2K/δ)

2|T (i)
p (bi, si)|

∀i, bi, si, θ. (6)

The procedure for obtaining such estimators is described in Algorithm 2. It leverages the knowledge
of the scoring rules in Assumption 1 to guarantee a sufficient number of samples for each probability
distribution that we want to estimate. In particular, the algorithm iterates over all b ∈ B and commits
to scoring rule γb ∈ Γ for at least N1 rounds and until a specific condition is met. Committing to
γb guarantees that the agents are incentivized to play b (Eq. 3) and that they report the received
signal (Eq. 4). This ensures that the feedback received is reliable for estimating both probability
distributions. The condition ϱ̄ ≤ d/13m on the confidence bounds guarantees that we have collected
enough samples to estimate each posterior distribution. The required precision depends on the
instance parameters ι and ℓ and will be fundamental to design approximately optimal mechanism that
are IC (see Section 8). To formalize the guarantees of Algorithm 2, we introduce the clean event Ep.

10We remark that our algorithm does not need to know ℓ and ι in advance, but implicitly estimates them
during the execution.

11In this work, we denote as 1[·] the indicator function.
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Definition 6.1 (Clean event for probability estimation). Let κ := 289 ln(2K/δ)m2/(2ι2ℓ2). Let
ν := maxb∈B νb and ϱ := maxi∈N ,bi∈Bi,si∈Si ϱ

(i)
bi,si

The clean event Ep holds if, for all t ∈ Tp it
holds that:

|ζb[s, θ]− P (s, θ|b) | ≤ ν ∀b, s, θ, |ξ(i)bi,si
[θ]− P(i) (θ|bi, si) | ≤ ϱ ∀i, bi, si, θ

and if, whenever |Tp(b)| ≥ κ, it holds that

|T (i)
p (bi, si)| ≥

1

2
ι|Tp(b)| ∀i ∈ N , ∀b ∈ B, ∀si ∈ Si,

Algorithm 2 ESTIMATEPROB

Require: N1,Γ, δ
Tp(b)← {∅} ∀b
T (i)
p (bi, si)← {∅} ∀i, bi, si

π[s, a] = 1/d ∀s, a
for b ∈ B do

while |T (b)| < N1 ∨ ϱ̄ > d
13m do

Select (γb,π) and observe s̃t, θt

Tp(b)← Tp(b) ∪ {t}
T (i)
p (bi, s̃

t
i)← T

(i)
p (bi, s̃

t
i) ∪ {t} ∀i

Update (ζb, νb) as in Eq. (5)
Update (ξibi,s̃ti

, ϱ
(i)

bi,s̃ti
) as in Eq. (6) ∀i

ϱ̄← maxi,bi,si ϱ
(i)
bi,si

d← mini,si,s′i ||ξ
(i)
bi,si
− ξ

(i)
bi,s′i
||22

end while
end for
return (ζb)b, ν, (ξ

(i)
bi,si

)i,bi,si , ϱ

Using standard concentration arguments, it is possi-
ble to show the following.
Lemma 6.1. The clean event Ep holds with probabil-
ity at least 1− δ

2 .

Before concluding this section, we point out that the
number of samples |Tp(b)| needed for each b ∈ B to
have ϱ̄ ≤ d/13m depends on the value of the param-
eters ℓ and ι. Indeed, the smaller are the minimum
signal probability ι and the minimum posteriors dis-
tance ℓ, the higher is the number of samples needed to
have an accurate estimation and to satisfy the above
condition. However, setting N1 = T 2/3, the number
of samples needed to satisfy the two terminating con-
ditions becomes dominated by N1 in non-degenerate
instances in which T is sufficiently large. Formally,
Lemma 6.2. Assume the clean event Ep holds. Then,
at the end of the execution of ESTIMATEPROB, for
each b ∈ B it holds that |Tp(b)| ≤ max {N1, κ} .

7 ESTIMATION OF THE COST DIFFERENCES

The second phase aims at obtaining high-confidence bounds for the cost differences Ci(bi, b
′
i) for

i ∈ N , bi, b′i ∈ Bi. For each agent i ∈ N , the algorithm explores each pair bi, b′i ∈ Bi and
executes a binary search (BS) routine in order to estimate Ci(bi, b

′
i), leveraging the knowledge

of the uncorrelated scoring rules γbi
i ,γ

b′i
i ∈ Γi. In particular, playing convex combinations of

the two scoring rules for N2 rounds, the algorithm finds two scoring rules γi and γ′
i such that (i)

||γi − γ′
i||∞ ≤M/2N2 , (ii) γi incentivizes bi over b′i, and (iii) γ′

i incentivizes b′i over bi. Then, the
algorithm estimates for N3 rounds the expected payments received by agent i under scoring rules
γi and γ′

i and uses such estimates, together with the bound on ||γi − γ′
i||∞, to obtain the estimator

Λi(bi, b
′
i) and the confidence bound χi[bi, b

′
i]. However, it might happen that the BS routine ends

before finding such scoring rules, thus requiring a recursive execution of the algorithm. Due to space
constraints, the study of those cases, as well as a more thorough description of ESTIMATECOSTS, are
deferred to Appendix B. To formalize the theoretical guarantees of ESTIMATECOSTS, we need the
following clean event.
Definition 7.1 (Clean event for cost estimation). Let χ = maxi,bi,b′i χi[bi, b

′
i]. The clean event Ec

holds if at the end of the execution of ESTIMATECOSTS:

Λi(bi, b
′
i)− χ ≤ Ci(bi, b

′
i) ≤ Λi(bi, b

′
i) + χ ∀i ∈ N , ∀bi, b′i ∈ Bi,

Then, it is possible to provide a lower bound on the probability with which Ec is verified.
Lemma 7.1. The clean event Ec holds with probability at least 1− δ

2 .

Furthermore, to conclude this section, we show how the number of rounds used by ESTIMATECOSTS
varies as a function of N2 and N3.
Lemma 7.2. Let Td be the set of rounds devoted to the execution of ESTIMATECOSTS. Then it holds
that |Td| ≤ nk3l2(N2 +N3).

8



Published as a conference paper at ICLR 2024

8 COMMIT PHASE

Algorithm 3 COMMIT

Require: ζ, ν, ξ, ϱ,Λ, χ,Γ, ρ
▷ Construction of IC mechanism
ε← 2M |S|mν + χ
(x̃t, ỹt, µ̃t, z̃t)← Opt. solution to LP(ζ,Λ, ε)
(µt, γ̃t,πt)← GETMECHANISM(x̃t, ỹt, µ̃t)
Define γt

i as in Eq. (8) ∀i ∈ N .
▷ Commit rounds
while t ≤ T do

Commit to mechanism (µt,γt,πt)
end while

In the commit phase, the algorithm exploits
the estimations of the probability distribu-
tions and the pairwise cost differences. Here,
the learner selects a sequence of mechanisms
(µt,γt,πt) ∈ C that pursues a twofold objec-
tive: the minimization of the regret RT and the
satisfaction of the IC constraints. To find a regret
minimizing mechanism, we first obtain a mech-
anism (µt, γ̃t,πt) from an optimal solution to
LP(ζ,Λ, ε) through the function GETMECH-
ANISM as specified by Theorem 3.1, where
ε = 2M |S|mν + χ. The parameters are chosen
to guarantee that, assuming clean events Ec and
Ep hold, the optimal mechanism (µ⋆,γ⋆,π⋆) is in the feasibility set. Then, since the objective
function of LP(ζ,Λ, ε) and the one of LP(P, C, 0) have close values, it follows that –assuming that
all the agents behave truthfully– mechanism (µt, γ̃t,πt) guarantees a vanishing per-round regret
w.r.t. (µ⋆,γ⋆,π⋆). However, the following lemma shows that (µt, γ̃t,πt) is not IC and hence the
agents are not incentivized to behave truthfully.

Lemma 8.1. Assume clean events Ec and Ep hold. Let (µ,γ,π) be an optimal solution to LP(ζ,Λ, ε),
where ε = 2M |S|mν + χ. Then, letting λ = 2M |S|m (k + 1) (ν + χ), it holds that:

Fi(µ,γ)− Fϕ,φ
i (µ,γ) ≥

∑
b∈B

µ̃[b]Ci(bi, ϕ(bi))− λ ∀i ∈ N , ∀(ϕ, φ) ∈ Φi.

We recall that, in light of the discussion carried out in Section 4, committing to a non-IC mechanism
yields an unpredictable response of the agents which can induce a constant per-round regret in the
worst case. Thus, we provide a modification of (µt, γ̃t,πt) that makes the mechanism IC, while
maintaining vanishing per-round regret w.r.t. the optimal mechanism. To do so, we exploit the
posterior estimates ξ obtained during the estimation phase, as well as the scoring rules Γ described in
Assumption 1. In particular, let ℓ̂ = mini,bi,si,s′i ||ξ

(i)
bi,si
− ξ

(i)
bi,s′i
||22, ℓ̄ = ℓ̂+ 4mϱ and ℓ = ℓ̂− 4mϱ.

We define two coefficients α :== (ρℓ)/(ρℓ̄+ 65λ) and β := (45 + ℓ̄)/(18ρ+ 45 + ℓ̄). Moreover,
for each agent i we define the uncorrelated scoring rules (γ̂bi

i )bi∈Bi such that

γ̂bii [si, θ] = ξ
(i)
bi,si

[θ] +Hi −
1

2
||ξ(i)bi,si

||22, ∀si ∈ Si, ∀θ ∈ Θ, (7)

where Hi = maxi,bi,si
1
2 ||ξ

(i)
bi,si
||22, and the correlated scoring rule γt

i such that:

γti [b, s, θ] = αγ̃ti [b, s, θ]+(1−α)
[
βγbii [si, θ] + (1− β)γ̂bii [si, θ]

]
∀b ∈ B ∀s ∈ S, ∀θ ∈ Θ. (8)

The correlated scoring rule γt
i is a convex combination of the correlated scoring rule γ̃t

i and two
uncorrelated scoring rules γbii and γ̂bii . The latter two compensate the violation of the IC constraints
of γ̃t

i , as shown in Lemma 8.1. In particular, scoring rules γ̂bii are designed to strictly incentivize
agents’ truthful reporting. 12. We conclude proving that (µt,γt,πt) is indeed an IC mechanism.

Lemma 8.2. Assume clean events Ec, Ep hold. If mechanism (µt,γt,πt) is chosen according to
Algorithm 3, then it is IC, i.e., if satisfies Equation (1b) of optimization problem (1).

Lemma 8.2 provides the formal guarantees on the incentive compatibility of (µt,γt,πt). By noticing
that the parameter α is chosen so to balance correctly the regret minimizing scoring rule γ̃t and the
other two uncorrelated scoring rules, we can recover sublinear regret during the commit phase. We
refer the reader to the proof of Theorem 5.1 for the technical details on this aspect.

12We remark that also scoring rules in Γ incentivize such truthful reporting (see Eq. (4)), but not in a strict
way. Thus, scoring rules γ̂bi

i is necessary to compensate the IC violations of γ̃t.
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A RELATED WORKS

The study of information acquisition has been mostly confined to economics. However, in recent
years, computational problems related to information acquisition have received increasing attention.
Several works have focused on optimization problems related to the computation of scoring rules
(Chen & Yu, 2021; Papireddygari & Waggoner, 2022; Li et al., 2022; Neyman et al., 2021). The
closest to our work is (Chen et al., 2023), which studies an online learning problem in which a
principal acquires information from a single agent. Chen et al. (2023) provide a Õ(T 2/3) regret
bound. To the best of our knowledge, ours is the first computational work that considers scoring
rules with multiple agents. In the online multi-agent information acquisition problem, (Cacciamani
et al., 2023) is the closest work. Cacciamani et al. (2023) study an online mechanism design problem
without money in which the agents’ utilities depend on the principal’s action and the principal tries
to incentivize the agents to report the information playing agent-favorable actions. The information
acquisition problem is also related to the principal-agent problem, a.k.a. contract design, in which a
principal designs an outcome-dependent payment scheme to incentivize an agent to play a hidden
action (Babaioff et al., 2012; Guruganesh et al., 2021; Alon et al., 2021; Castiglioni et al., 2022b;a;
Dütting et al., 2019; Dutting et al., 2021). A recent work that is closely related to ours is Zhu et al.
(2023), which studies the repeated interaction between a principal and an agent, providing sublinear
regret bounds. Finally, our online information acquisition problem is related to Bayesian persuasion
in online settings (Castiglioni et al., 2021; 2020; 2023; Wu et al., 2022; Bernasconi et al., 2023). The
works closest to ours consider online problems in which the agents do not know the prior over the
states of nature. Zu et al. (2021) studies an online persuasion problem in which the sender and the
receiver do not know the prior. Bernasconi et al. (2022) extend the analysis to sequential games.

B MORE DETAILS ON COSTS ESTIMATION

Algorithm 4 ESTIMATECOSTS

Require: N2, N3,Γ, δ
for i ∈ N do

for bi, b′i ∈ Bi ×B′
i do

γi ← γbi
i ∈ Γi

γ′
i ← γ

b′i
i ∈ Γi

Λi(bi, b
′
i), χi[bi, b

′
i]← BS(i, bi, b′i,γi,γ

′
i, N2, N3, δ)

end for
end for
return (Λi)i∈N , maxi,bi,b′i χi[bi, b

′
i]

In this section we exhaustively describe the algorithm for cost estimation. The pseudocode for the
main algorithm is presented in Algorithm 4. For each agent i ∈ N , the algorithm iteratively explores
each pair bi, b′i ∈ Bi to obtain an estimate Λi(bi, b

′
i) of the cost difference Ci(bi, b

′
i) as well as an

high confidence bound χi[bi, b
′
i] such that

Λi(bi, b
′
i)− χi[bi, b

′
i] ≤ Ci(bi, b

′
i) ≤ Λi(bi, b

′
i) + χi[bi, b

′
i].

To this extent, we leverage the knowledge of scoring rules Γi described in Assumption 1 and use them
as starting points of a binary search routine that is described below. As input to the Algorithm, we
provide the number of rounds N2, N3 that regulate the amount of rounds used by the binary search
routine, the scoring rules Γ described in Assumtpion 1 and the desired confidence level δ.

B.1 BINARY SEARCH

The pseudocode for BS is presented in Algorithm 5. For clarity, we fix an agent i ∈ N and two
actions bi, b′i ∈ Bi and describe the execution of the BS algorithm for estimation of cost difference
Ci(bi, b

′
i). Intuitively, the binary search routine between the two actions bi, b′i ∈ Bi is structured in

three distinct phases. The first phase is a search phase that implements a search over the space of
scoring rules to obtain two uncorrelated scoring rules γi γ

′
i : Si ×Θ→ [0,M ] with appropriately

12
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Algorithm 5 Binary Search (BS)

Require: i, bi, b′i,γi,γ
′
i, N2, N3, δ

π[s, a] = 1/d ∀s ∈ S,∀a ∈ A
▷ Search phase
for t ∈ [N2] do
γ̄i ← 1

2γi +
1
2γ

′
i

Commit to (γ̄,π) and observe b̃ti
if b̃ti = bi then
γi ← γ̄i

else if b̃ti = b′i then
γ′
i ← γ̄i

else
▷ Split phase
x1, y1 ← BS(i, bi, b̃ti,γ, γ̄, N2, N3,V,Λi,χi, δ)

x2, y2 ← BS(i, b̃ti, b
′
i, γ̄,γ

′, N2, N3,V,Λi,χi, δ)
return x1 + x2, y1 + y2

end if
end for
▷ Payment estimation phase
Commit for N3 rounds to (γ,π) and observe γ[s̃ti, θ

t] for t ∈ [N3]
Commit for N3 rounds to (γ′,π) and observe γ′[s̃ti, θ

t] for t ∈ [N3]
x1, y1 ← compute as in Equation (14)
return x1, y1

bounded distance between them such that γi incentivizes13 action bi and γ′
i incentivizes action b′i.

The second phase, i.e., the payment estimation phase, estimates the expected payment received by
agent i when the principal commits to the two scoring rules γi and γ′

i and uses such estimates to
recover an high-confidence interval for the cost difference Ci(bi, b

′
i). The third phase is called split

phase and is needed to manage all those cases in which the scoring rules found during the search
phase are not adequate to recover meaningful upper and lower bounds for the cost difference.

The algorithm takes as input the agent i, the actions bi, b′i, two uncorrelated scoring rules γi,γ
′
i :

Si ×Θ→ [0,M ] that incentivize action bi and b′i, respectively, and the desired confidence level δ.
To formalize the characteristics of scoring rules γi,γ

′
i, we define the maximum expected payment

received by agent i when the principal commits to an uncorrelated scoring rule γi and agent i plays
action bi ∈ Bi, using a best-response policy for signal reporting:

F ◦
i (γi|bi) = max

φ:Si→Si

{∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|bi) γi[φ(si), θ]

}
.

Then, if γi incentivizes action bi and γ′
i incentivizes action b′i, by noticing that

Ci(bi, b
′
i) = −Ci(b

′
i, bi), we get that

F ◦
i (γi|bi)− F ◦

i (γi|b′i) ≥ Ci(bi, b
′
i) (9a)

F ◦
i (γ

′
i|bi)− F ◦

i (γ
′
i|b′i) ≤ Ci(bi, b

′
i). (9b)

Equation (9) provides a rather natural way of finding upper and lower bounds to Ci(bi, b
′
i). We will

leverage this idea to obtain an estimator for Ci(bi, b
′
i). In the following we distinctly analyze each of

the three phases of the algorithm.

Search phase. The search phase for agent i between two actions bi, b′i ∈ Bi aims at finding
two uncorrelated scoring rules γi,γ

′
i that satisfy Equations (9a) and (9b), while also guaranteeing

that ||γi − γ′
i||∞ ≤ η for some η > 0. To do so, for N2 rounds we interpolate between the two

scoring rules and iteratively update them using the feedback received from the online interaction. In
particular, let T (i)

d,s (bi, b
′
i) be the set of rounds used by the search phase, when we want to estimate

13Recall that an uncorrelated scoring rule γi incentivizes an action bi if b◦i (γi) = bi.
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the cost difference Ci(bi, b
′
i). Then, at each t ∈ T (i)

d,s (bi, b
′
i), the principal commits to scoring rule

γ̄i = 1
2γi +

1
2γ

′
i and observes the action b̃ti = b◦i (γ̄i) played by agent i. If b̃ti = bi, the scoring

rules γ̄i incentivizes action bi and thus, we proceed by updating γi = γ̄i. Similarly, if b̃ti = b′i, then
the scoring rule γ̄i incentivizes action b′i and we update γ′

i = γ̄i. If, instead b̃ti ̸= bi, b
′
i, we enter

the so-called split phase, which, for clarity, we describe next. If we never enter the split phase, the
search phase ends after N2 rounds (i.e., when |T (i)

d,s(bi, b
′
i)| = N2). At this point, scoring rules γi,

γ′
i satisfy Equations (9a) and (9b), since the feedback received from the environment guarantees

that b◦i (γi) = bi and b◦i (γ
′
i) = b′i. Furthermore, we can show the following bound on the distance

between the two scoring rules.
Lemma B.1. For any agent i ∈ N and actions bi, b′i ∈ Bi, assume the search phase is completed
without entering into the split phase. Let γi,γ

′
i be the scoring rules obtained at the end of the search

phase. Then the following holds:

||γi − γ′
i||∞ ≤

M

2N2
.

Proof. Fix agent i and actions bi, b′i ∈ Bi. Let dt be the distance between scoring rules γi and γ′
i at

iteration t ∈ T (i)
d,s(bi, b

′
i). With an abuse of notation, we denote as d0 the distance between the two

scoring rules at the beginning of the search phase. Trivially, it holds d0 ≤M . Assume without loss
of generality that b̃ti = b′i. Then, we have that

dt+1 = ||γi − γ̄i||∞ = ||γi −
1

2
γi −

1

2
γ′
i||∞ =

1

2
||γi − γ′

i||∞ =
1

2
dt. (10)

Thus, by recalling that if we do not enter the split phase, then |T (i)
d,s(bi, b

′
i)| = N2, we can iteratively

apply Equation (10) to bound dN2 and obtain the result.

After the completion of the search phase, the algorithm enters into the payment estimation phase, in
which we leverage knowledge of the scoring rules γi,γ

′
i to recover an estimate of Ci(bi, b

′
i).

Payment estimation phase. The payment estimation phase starts after the completion of the search
phase. In this phase we aim at finding estimates of the expected payments F ◦

i (γi|bi) and F ◦
i (γ

′
i|b′i)

and then use those to obtain an high-confidence bound for Ci(bi, b
′
i), leveraging both the properties

of γi and γ′
i mentioned above and Equation (9). In particular, notice that when the principal commits

to uncorrelated scoring rule γi, the payment γi[s̃ti, θ
t] is an unbiased estimate of F ◦

i (γi|bi) since:

E[γi[s̃ti, θt]] =
∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b◦(γi)) γi[φ
◦
i (si|γi), θ]

= max
φ:Si→Si

{∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|bi) γi[φ◦
i (si|γi), θ]

}
= F ◦

i (γi|bi).
Similarly, when the principal commits to scoring rule γ′

i it holds that E [γ′i[s̃
t
i, θ

t]] = F ◦
i (γ

′
i|b′i).

Thus, in order to obtain high confidence bounds for the expected payments F ◦
i (γi|bi) and F ◦

i (γ
′
i|b′i),

we commit to each one of the two scoring rules for N3 rounds and obtain the following estimates,

F̂ ◦
i (γi|bi) =

1

N3

∑
t∈T (i)

d,p(γi)

γi[s̃
t
i, θ

t] F̂ ◦
i (γ

′
i|b′i) =

1

N3

∑
t∈T (i)

d,p(γ
′
i)

γ′i[s̃
t
i, θ

t],

where T (i)
d,p (γi) denotes the set of round in which the principal committed to scoring rule γi during

the payment estimation phase. Moreover, using standard concentration arguments, we can provide
the following high-confidence bounds for the estimated F̂ ◦

i :
Lemma B.2. For each γi : Si ×Θ→ [0,M ], for each δ ∈ (0, 1) and for each K > 0, the following
holds:

P

|F̂ ◦
i (γi|bi)− F ◦

i (γi|bi)| ≤M

√
ln(2K/δ)

2N3

 ≥ 1− δ

K
,

14
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where bi = b◦i (γi).

Proof. The result follows directly from Hoeffding’s bound, noticing that for all t ∈ T (i)
d,p (γi),

0 ≤ γi[s̃ti, θt] ≤M , for all t ∈ T (i)
d,p (γ

′
i), 0 ≤ γ′i[s̃ti, θt] ≤M and that

E
[
F̂ ◦
i (γi|bi)

]
= F ◦

i (γi|bi), E
[
F̂ ◦
i (γ

′
i|b′i)

]
= F ◦

i (γ
′
i|b′i).

Starting from Equation (9), the last elements needed in order to obtain an high-confidence interval
for the cost difference Ci(bi, b

′
i) are estimates for the expected payments F ◦

i (γi|b′i) and F ◦
i (γ

′
i|bi).

We observe that, differently than F ◦
i (γi|bi) and F ◦

i (γ
′
i|b′i), it is not possible to estimate F ◦

i (γi|b′i)
and F ◦

i (γ
′
i|bi) directly using the feedback collected from the online interaction, since every time the

principal commits to scoring rule γi, agent i would respond by playing action bi rather than action b′i
(the same holds for scoring rule γ′ and action bi). Nonetheless, it is possible to leverage the bound
on the distance between γi and γ′

i shown in Lemma B.1 to address this issue. Formally,

Lemma B.3. Let γi,γ
′
i : Si ×Θ→ [0,M ] be such that ||γi − γ′

i||∞ ≤ η. Then, for each bi ∈ Bi,
the following holds

|F ◦
i (γ|bi)− F ◦

i (γ
′
i|bi)| ≤ η

Proof. Fix bi ∈ Bi. Let φ̄, φ̄′ be such that

φ̄ ∈ arg max
φ:Si→Si

{∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|bi) γi[φ(si), θ]

}

φ̄′ ∈ arg max
φ:Si→Si

{∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|bi) γ′i[φ(si), θ]

}
.

Then, we have that

F ◦
i (γ|bi) =

∑
θ∈Θ

P(i) (si, θ|bi) γi[φ̄(si), θ]

≥
∑
θ∈Θ

P(i) (si, θ|bi) γi[φ̄′(si), θ]

≥
∑
θ∈Θ

P(i) (si, θ|bi) γ′i[φ̄′(si), θ]− η

= F ◦
i (γ

′|bi)− η,

and, similarly,

F ◦
i (γ

′|bi) =
∑
θ∈Θ

P(i) (si, θ|bi) γ′i[φ̄′(si), θ]

≥
∑
θ∈Θ

P(i) (si, θ|bi) γi[φ̄(si), θ]

≥
∑
θ∈Θ

P(i) (si, θ|bi) γi[φ̄′(si), θ]− η

= F ◦
i (γ|bi)− η.

Combining the two inequalities, we get

Fi(γ
′|bi)− η ≤ Fi(γ|bi) ≤ Fi(γ

′|bi) + η,

which gives the result.
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In the following, for each agent i ∈ N , we define asDi ⊆ Bi×Bi the set that contains all the couples
(bi, b

′
i) for which the execution of the binary search reached the cost estimation phase. Furthermore,

for each i ∈ N and bi, b′i ∈ Di, let γi,bi and γi,b′i
be the scoring rules found at the end of the

search phase, incentivizing actions bi and b′i, respectively. To conclude the analysis of the payment
estimation phase and to show how to leverage the results of Lemma B.1, Lemma B.2 and Lemma B.3
to recover upper and lower confidence bounds for the expected payment Ci(bi, b

′
i), we introduce the

auxiliary clean event Ēd.

Definition B.1 (Auxiliary clean event for cost estimation). The clean event Ēd holds if

|F̂ ◦
i (γi,bi |bi)− F ◦

i (γi,bi |bi)| ≤M

√
ln(4nk2/δ)

2N3

|F̂ ◦
i (γi,b′i

|b′i)− F ◦
i (γi,b′i

|b′i)| ≤M

√
ln(4nk2/δ)

2N3

∀i ∈ N , ∀(bi, b′i) ∈ Di.

Lemma B.4. The clean event Ēd holds with probability at least 1− δ
2 .

Proof. By Lemma B.2, we have that

P

|F̂ ◦
i (γi,bi |bi)− F ◦

i (γi,bi |bi)| ≤M

√
ln(4nk2/δ)

2N3

 ≥ 1− δ

2nk2

P

|F̂ ◦
i (γi,b′i

|b′i)− F ◦
i (γi,b′i

|b′i)| ≤M

√
ln(4nk2/δ)

2N3

 ≥ 1− δ

2nk2

∀i ∈ N , ∀(bi, b′i) ∈ Di.

The result follows from a union bound, noticing that∑
i∈N

∑
(bi,b′i)∈Di

δ

2nk2
≤ δ

2
.

The introduction of the auxiliary clean event allows us to define, for all i ∈ N and for all pairs of
actions (bi, b′i) ∈ Di for which the binary search algorithms reached the cost estimation phase, the
following estimators and confidence bounds:

Λi(bi, b
′
i) = F̂ ◦

i (γi,bi |bi)− F̂ ◦
i (γi,b′i

|b′i), (14a)

χi[bi, b
′
i] = 2M

√
ln(4nk2/δ)

2N3
+

M

2N2
. (14b)

We formally prove that, if event Ēd holds, then the above definitions yield, indeed, a valid high-
confidence region for the pairwise cost differences.

Lemma B.5. Assume clean event Ēd holds. Then the following holds:

|Λi(bi, b
′
i)− Ci(bi, b

′
i)| ≤ χi[bi, b

′
i] ∀i ∈ N , ∀(bi, b′i) ∈ Di.

Proof. Fix i ∈ N and (bi, b
′
i) ∈ D. By Equation (9a), we have that

Ci(bi, b
′
i) ≤ F ◦

i (γi,bi |bi)− F ◦
i (γi,bi |b′i) (15a)

≤ F ◦
i (γi,bi |bi)− F ◦

i (γi,b′i
|b′i) +

M

2N2
(15b)

≤ F̂ ◦
i (γi,bi |bi)− F̂ ◦

i (γi,b′i
|b′i) +

M

2N2
+ 2M

√
ln(4nk2/δ)

2N3
, (15c)
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where the first equation follows from Lemma B.3 and Lemma B.1, while the last equation follows
from the definition of Ēd. Similarly, from Equation (9b), we get

Ci(bi, b
′
i) ≥ F ◦

i (γi,b′i
|bi)− F ◦

i (γi,b′i
|b′i) (16a)

≥ F ◦
i (γi,bi |bi)− F ◦

i (γi,b′i
|b′i)−

M

2N2
(16b)

≥ F̂ ◦
i (γi,bi |bi)− F̂ ◦

i (γi,b′i
|b′i)−

M

2N2
− 2M

√
ln(4nk2/δ)

2N3
, (16c)

where, also in this case, the first equation follows from Lemma B.3 and Lemma B.1, while the
last equation follows from the definition of Ēd. The result follows by substituting the definitions of
Λi(bi, b

′
i) and χi[bi, b

′
i].

Split phase. The analysis of the payment estimation phase suggested that whenever we are able
to successfully complete the search phase, then we can easily recover high-confidence regions for
the cost differences. However, unfortunately, this is not always the case, since it might happen that
during the search phase for an agent i and between two actions bi, b′i ∈ Bi, the agent responds with
an action b̃ti which is different than bi and b′i, thus causing the search phase to end. In such a case,
the algorithm enters the split phase. The intuition upon which the design of the split phase is based
is that the cost difference Ci(bi, b

′
i) can be expressed in terms of the cost differences Ci(bi, b̃

t
i) and

Ci(b̃
t
i, b

′
i) as follows:

Ci(bi, b
′
i) = Ci(bi, b̃

t
i) + Ci(b̃

t
i, b

′
i).

Then, this shows that it is possible to recursively obtain an high-confidence interval for Ci(bi, b
′
i)

starting from high-confidence intervals for Ci(bi, b̃
t
i) and Ci(b̃

t
i, b

′
i). In particular,

Λi(bi, b̃
t
i)+Λi(b̃

t
i, b

′
i)−χi[bi, b̃

t
i]−χi[b̃

t
i, b

′
i] ≤ Ci(bi, b

′
i) ≤ Λi(bi, b̃

t
i)+Λi(b̃

t
i, b

′
i)+χi[bi, b̃

t
i]+χi[b̃

t
i, b

′
i],

which allows us to define the estimator and confidence bound for Ci(bi, b
′
i) as

Λi(bi, b
′
i) = Λi(bi, b̃

t
i) + Λi(b̃

t
i, b

′
i)

χi[bi, b
′
i] = χi[bi, b̃

t
i] + χi[b̃

t
i, b

′
i].

Hence, when the algorithm enters into the split phase, it instantiates two distinct bynary search
routines, one for estimating the cost difference Ci(bi, b̃

t
i) using as starting points the scoring rules γi

and γ̄i and the other for estimating Ci(b̃
t
i, b

′
i) starting from scoring rules γ̄i and γ′

i.

We proceed by bounding the number of times the algorithm enters the split phase, thus allowing us to
bound the number of rounds used by ESTIMATECOSTS, as well as the high-confidence bound χ =
maxi,bi,b′i χi[bi, b

′
i]. To address this question, we consider the binary search procedures instantiated

by the main loop of the algorithm. For the sake of presentation, let us fix an agent i and two actions
bi, b

′
i ∈ Bi and consider a binary search between the uncorrelated scoring rules γb

i ,γ
b′i
i ∈ Γi. Then,

the maximum number of times the algorithm enters the split phase during the process of estimating the
cost difference Ci(bi, b

′
i) can be characterized by investigating all the possible convex combinations

of the two scoring rules γbi
i ,γ

b′i
i . In particular, we introduce best-response (BR) regions, i.e., sets

Gi(b̃i, φ|bi, b′i) ⊆ [0, 1] such that for each α ∈ Gi(b̃i, φ|bi, b′i), the best response of agent i to scoring
rule γ

α,bi,b
′
i

i := αγbi
i + (1− α)γb′i

i does not change. Formally,

Gi(b̃i, φ|bi, b′i) :=
{
α ∈ [0, 1] | b◦i (γ

α,bi,b
′
i

i ) = b̃i, φ
◦
i (si|γ

α,bi,b
′
i

i ) = φ(si) ∀si ∈ Si

}
.

Trivially, [0, 1] = ∪b̃i,φGi(b̃i, φ|bi, b
′
i) and Gi(b̃i, φ|bi, b′i) ∩ Gi(b̃′i, φ′|bi, b′i) = ∅ for all b̃i, b̃′i ∈ Bi

and for all φ,φ′ : Si → Si, thus, the set

G = {Gi(b̃i, φ|bi, b′i) | b̃i ∈ Bi, φ : Si → Si, Gi(b̃i, φ|bi, b′i) ̸= ∅}
provides a partition of [0, 1]. In principle, [0, 1] can be partitioned in many BR regions (since the
number of different signal reporting policies φ : Si → Si is ll). As we show next, there exist in fact a
limited number of non-empty BR regions. Before proving such result, we introduce an accessory
Lemma.
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Lemma B.6. Let H ⊂ R be a closed, convex subset of R and {G1, ...,Gn} be a set of partitions
of H, where Gi = {Gi

1, ..., G
i
n} with Gi

j convex for each i, j ∈ [n]. Let P = {P1, ..., Pm} be a
partition of H such that for j ∈ [n], Pj = ∩i∈[n]G

i
f(i,j) for some f(i, j) ∈ [n]. Then, it holds that

m ≤ n2 − n+ 1.

Proof. Let P(1) = G1 and m(1) = n. Let now P(k) = {P (k)
1 , ..., P

(k)
m(k)}, for m(k) ∈ N>0 be

a partition of H such that for each j ∈ [m(k)], P (k)
j is convex and P (k)

j = ∩i∈[k]G
i
f(k)(i,j)

, with

f (k)(i, j) ∈ [n]. In other words, P(k) is a set of non-empty and disjoint intervals P (k)
j ⊆ H such

that ∪j∈m(k)P
(k)
j = H in which each element P (k)

j is obtained as the intersection of one element

from each {G1, ...Gk}. Similarly, define P(k−1) = {P (k−1)
1 , ..., P

(k−1)
m(k−1)}, for m(k − 1) ∈ N>0 be

a partition ofH such that for each j ∈ [m(k− 1)], P (k−1)
j = ∩i∈[k−1]G

i
f(k−1)(i,j)

for f (k−1)(i, j) ∈
[n]. Notice that, by definition of P(k−1), in holds that ∀j ∈ [m(k)], P (k)

j = Gk
a ∩ P

(k−1)
b for some

a ∈ [n], b ∈ [m(k − 1)]. Furthermore, it is easy to see that by convexity of every P (k−1)
j and Gk

j ,
m(k) can be at most n+m(k − 1)− 1. Thus, we can conclude the following chain of inequalities:

m ≤ m(n) = n+m(n−1)−1 ≤ 2n+m(n−2)−2 ≤ ... ≤ (n−1)n+m(1)−(n−1) = n2−n+1.

This concludes the proof.

We proceed to bound the maximum number of non-empty BR regions.

Lemma B.7. For any agent i and actions bi, b′i ∈ Bi, there exist at most kl2 non-empty BR regions,
i.e., |G| ≤ kl2. Furthermore, for each b̃i ∈ Bi and φ : Si → Si, the set Gi(b̃i, φ|bi, b′i) is convex.

Proof. Fix an agent i and two actions bi, b′i ∈ Bi.We first prove the convexity of the BR regions and
then we proceed to bound their number.

Convexity. To prove that the sets Gi(b̃i, φ|bi, b′i) are convex for each b̃i ∈ Bi and φ : Si → Si, let
us explicit the constraints defining such sets. In particular, imposing that b̃i and φ are a BR for agent
i is equivalent to imposing the following constraints for each b̃i ∈ Bi and for all φ : Si → Si:∑

si∈Si

∑
θ∈Θ

[
P(i)

(
si, θ|b̃i

)
γ
αbi,b

′
i

i [φ(si), θ]− P(i)
(
si, θ|b̃′i

)
γ
αbi,b

′
i

i [φ′(si), θ]
]
≥ 0.

Clearly, since γ
α,bi,b

′
i

i is a linear expression in α, all the constraints are linear in α, thus implying the
convexity of the set.

Bound on the number of non-empty BR regions. To bound the number of non-empty BR regions,
we introduce, for two signals si, s′i ∈ Si and an action b̃i ∈ Bi, the set Gi(b̃i, si, s

′
i|bi, b′i) ⊆ [0, 1],

containing all those α ∈ [0, 1] for which agent i’s BR to scoring rule γ
α,bi,b

′
i

i after having played
action b̃i ∈ Bi and having observed signal si ∈ Si, is to report signal s′i. Formally,

Gi(b̃i, si, s
′
i|bi, b′i):=

{
α ∈ [0, 1] |

∑
θ∈Θ

P(i)
(
si, θ|b̃i

)[
γ
α,bi,b

′
i

i [s′i, θ]− γ
α,bi,b

′
i

i [s̃i, θ]
]
≥ 0 ∀s̃i ∈ Si

}
.

Furthermore, for each b̃i ∈ Bi and φ : Si → Si, we let, with a slight abuse of notation,Gi(b̃i, φ|bi, b′i)
be the subset of [0, 1] such that, after having selected action b̃i, the best-response policy for agent i to
scoring rule γ

α,bi,b
′
i

i is to report signals according to φ. Formally,

Gi(b̃i, φ|bi, b′i):=

{
α ∈ [0, 1] |

∑
θ∈Θ

P(i)
(
si, θ|b̃i

)[
γ
α,bi,b

′
i

i [φ(si), θ]− γ
α,bi,b

′
i

i [s̃i, θ]
]
≥ 0 ∀si, s̃i ∈ Si

}
.

18



Published as a conference paper at ICLR 2024

By definition, each Gi(b̃i, φ|bi, b′i) can be obtained as the intersection of suitably chosen BR regions
Gi(b̃i, si, s

′
i|bi, b′i), i.e.,

Gi(b̃i, φ|bi, b′i) =∩si∈SiGi(b̃i, si, φ(si)|bi, b′i) ∀b̃i ∈ Bi, ∀φ : Si → Si.

Moreover, we highlight that, by definition, for each b̃i ∈ Bi and si ∈ Si, the set {Gi(b̃i, si, s
′
i|bi, b′i) |

s′i ∈ Si} provides a partition of [0, 1]. Then, by Lemma B.6 we can conclude that |Gi(b̃i, φ|bi, b′i)| ≤
l2 − l + 1. Notice that, in general it holds that for each b̃i ∈ Bi and φ : Si → Si, Gi(b̃i, φ|bi, b′i) ⊇
Gi(b̃i, φ|bi, b′i), since by definition of Gi(b̃i, φ|bi, b′i), for each α belonging to the set, the signal
reporting policy φ is a best-response for agent i to γ

α,bi,b
′
i

i after the agent played action b̃i, but
nothing guarantees that action b̃i is a best-response itself. To conclude the proof it is enough to
notice that, in the worst case, for each b̃i ∈ Bi and φ : Si → Si, Gi(b̃i, φ|bi, b′i) = Gi(b̃i, φ|bi, b′i)
and since the number of non-empty Gi(b̃i, φ|bi, b′i) is at most l2 − l + 1, we can conclude that
|G| ≤ k(l2 − l + 1) ≤ kl2. This concludes the proof.

The result of Lemma B.7 allows us to bound the maximum possible confidence bound as follows.

Lemma B.8. At the end of the execution of ESTIMATECOSTS it holds that

max
i∈N

max
bi,b′i∈Bi

χi[bi, b
′
i] ≤ 2kl2M

√
ln(4nk2/δ)

2N3
+
kl2M

2N2
.

Proof. By Lemma B.7, since for each i ∈ N and for each bi, b′i ∈ Bi, [0, 1] can be partitioned in at
most kl2 convex BR regions, the condition for entering the split phase will be triggered at most ⌊kl

2

2 ⌋
times during the routine for the estimation of Ci(bi, b

′
i), triggering the beginning of a new search

phase at most kl2 times. The result follows since the confidence bound χi[bi, b
′
i] is obtained as the

sum of all confidence bounds obtained at the end of the corresponding payment estimation phases,
hence:

χi[bi, b
′
i] ≤ 2kl2M

√
ln(4nk2/δ)

2N3
+
kl2M

2N2
.

This concludes the proof.

B.2 FORMAL GUARANTEES OF ESTIMATECOSTS

We conclude this Section by formally proving main properties of Algorithm 4.

Lemma 7.1. The clean event Ec holds with probability at least 1− δ
2 .

Proof. Assume auxiliary clean event Ēd holds. By Lemma B.5, for all i ∈ N and for all (bi, b′i) ∈ Di,

|Λi(bi, b
′
i)− Ci(bi, b

′
i)| ≤ χi[bi, b

′
i] ≤ χ.

Then, let us fix i ∈ N and consider a couple (bi, b
′
i) /∈ Di. Let Di(bi, b

′
i) be the set that contains

all the pairs of actions (b̂i, b̂′i) for which the payment estimation phase has been reached during the
procedure for estimating Ci(bi, b

′
i). Then, the algorithm guarantees that

Ci(bi, b
′
i) =

∑
(b̂i,b̂′i)∈Di(bi,b′i)

Ci(b̂i, b̂
′
i).

The result follows from Lemma B.5 noticing that Di(bi, b
′
i) ⊆ Di, Λi(bi, bi) =∑

(b̂i,b̂′i)∈Di(bi,b′i)
Λi(b̂i, b̂

′
i), and χi[bi, b

′
i] =

∑
(b̂i,b̂′i)∈Di(bi,b′i)

χi[b̂i, b̂
′
i].

Lemma 7.2. Let Td be the set of rounds devoted to the execution of ESTIMATECOSTS. Then it holds
that |Td| ≤ nk3l2(N2 +N3).
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Proof. By Lemma B.7, since for each i ∈ N and for each bi, b′i ∈ Bi,Hi(bi, b
′
i) can be partitioned

in at most kl2 BR regions, the agent will change her action at most ⌊kl
2

2 ⌋ times during the routine for
the estimation of Ci(bi, b

′
i), triggering the beginning of a new search phase at most kl2 times. This

implies that

|Td| ≤
∑
i∈N

∑
bi,b′i∈Bi

kl2(N2 +N3) ≤ nk3l2(N2 +N3).

This concludes the proof.

C PROOFS OMITTED FROM SECTION 3

Theorem 3.1. Let (x⋆,y⋆,µ⋆, z⋆) be an optimal solution to LP (P, C, 0), where C = (C1, ..., Cn).
Then, let γ⋆ = (γ⋆

1 , ...,γ
⋆
n) and π⋆ be such that

γ⋆i [b, s, θ] =

{
x⋆
i [b,s,θ]
µ⋆[b] if µ[b] ̸= 0

0 otherwise
π⋆[b, s, a] =

{
y⋆[b,s,a]
µ⋆[b] if µ[b] ̸= 0

1
d otherwise.

Then (µ⋆,γ⋆,π⋆) is an optimal solution to Problem (1).

Proof. We start the proof of this theorem by showing that (µ⋆,γ⋆,π⋆) is feasible for optimization
problem (1). Then, we prove that (µ⋆,γ⋆,π⋆) is also optimal.

Feasibility. First, notice that

0 ≤ γ⋆i [b, s, θ] ≥M ∀i ∈ N , ∀b ∈ B, ∀s ∈ S, ∀θ ∈ Θ,

thus guaranteeing that γ⋆ is a valid scoring rule. Furthermore,

∑
a∈A

π⋆[b, s, a] =

{∑
a∈A

y⋆[b,s,a]
µ⋆[b] if µ⋆[b] ̸= 0∑

a∈A
1
dotherwise

= 1 ∀b ∈ B, ∀s ∈ S,

which implies that π⋆ is a valid action policy.

For what concerns incentive compatibility, for each i ∈ N let us notice that:

Fi(µ
⋆,γ⋆) =

∑
b∈B
s∈S
θ∈Θ

µ⋆[b]γ⋆i [b, s, θ]P (s, θ|b) (17a)

=
∑
b∈B
s∈S
θ∈Θ

x⋆i [b, s, θ]P (s, θ|b) (17b)

=
∑
b∈Bi

∑
s∈Si

∑
b−i∈B−i

s−i∈S−i

θ∈Θ

xi[(b, b−i), (s
′, s−i), θ]P ((s, s−i), θ|(b′, b−i)) (17c)

=
∑
b∈Bi

∑
s∈Si

fi(xi|b, s,P). (17d)
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Similarly, for each i ∈ N and for each (ϕ, φ) ∈ Φi:

Fϕ,φ
i (µ⋆,γ⋆) =

∑
b∈B
s∈S
θ∈Θ

µ⋆[b]γ⋆i [b, (φ(bi, si), s−i), θ]P (s, θ|(bi, b−i)) (18a)

=
∑
b∈B
s∈S
θ∈Θ

x⋆i [b, (φ(bi, si), s−i), θ]P (s, θ|(ϕ(bi), b−i)) (18b)

=
∑
b∈Bi

∑
s∈Si

∑
b−i∈B−i

s−i∈S−i

θ∈Θ

x⋆i [b, (φ(b, s), s−i), θ]P (s, θ|(ϕ(b), b−i)) (18c)

=
∑
b∈Bi

∑
s∈Si

fi(xi|b, ϕ(b), s, φ(b, s),P) (18d)

≤
∑
b∈Bi

∑
s∈Si

z⋆i [b, ϕ(b), s], (18e)

where the last inequality follows from feasibility of (x⋆,y⋆,µ⋆, z⋆). Combining Equations (17d)
and (18e), we get:

Fi(µ
⋆,γ⋆)− Fϕ,φ

i (µ⋆,γ⋆) ≥
∑
b∈Bi

∑
s∈Si

fi(xi|b, s,P)− z⋆i [b, ϕ(b), s] (19a)

≥
∑
b∈Bi

∑
b−i∈Bi

µ⋆[(b, b−i)] (ci(b)− ci(ϕ(b))) (19b)

=
∑
b∈B

µ[b] (ci(bi)− ci(ϕ(bi))) , (19c)

where the second inequality follows from feasibility of (x⋆,y⋆,µ⋆, z⋆). This proves the incentive
compatibility of (µ⋆,γ⋆,π⋆).

Optimality. To prove that (µ⋆,γ⋆,π⋆) is optimal, assume, by contradiction that there exists an IC
mechanism (µ,γ,π) such that U(µ,γ,π) > U(µ⋆,γ⋆,π⋆). Let (x,y, z) be such that:

xi[b, s, θ] = µ[b]γi[b, s, θ] ∀i ∈ N , ∀b ∈ B, ∀s ∈ S, ∀θ ∈ Θ

y[b, s, a] = µ[b]π[s, a] ∀b ∈ B, ∀s ∈ S, ∀a ∈ A
zi[b, b

′, s] = max
s′∈Si

{fi(xi|b, b′, s, s′,P)} ∀i ∈ N , ∀b, b′ ∈ Bi, ∀s ∈ Si.

Let us notice that (x,y,µ, z) satisfy, by definition, constraints (2c), (2d) and (2e) of LP(P, C, 0). To
prove that they satisfy also constraints (2b), for each i ∈ N and b, b′ ∈ Bi, let (ϕ, φ) ∈ Φi be such
that:

ϕ(b′′) =

{
b′ if b′′ = b

b′′ otherwise
and φ(b′′, s) = s ∀b′′ ∈ Bi \ {b}, ∀s ∈ Si.
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Then, by incentive compatibility of (µ,γ,π):∑
b∈B

µ[b] (ci(b)− ci(ϕ(b))) =
∑

b−i∈B−i

µ[(b, b−i)] (ci(b)− ci(b′)) (21a)

≤ Fi(µ,γ)− Fϕ,φ
i (µ,γ) (21b)

=
∑
b∈B
s∈S
θ∈Θ

µ[b] (γi[b, s, θ]P (s, θ|b)− γi[b, φ(bi, si), θ]P (s, θ|(bi, ϕ(bi))))

(21c)

=
∑
b∈B
s∈S
θ∈Θ

xi[b, s, θ]P (s, θ|b)− xi[b, φ(bi, si), θ]P (s, θ|(bi, ϕ(bi)))

(21d)

=
∑
s∈Si

[fi(x|b, s,P)− fi(xi|b, s, b′, φ(b, s))] (21e)

≤
∑
s∈Si

[fi(x|b, s,P)− zi[b, b′, s]] . (21f)

Thus we can conclude that (x,y,µ, z) is feasible for LP (P, C, 0). Moreover:∑
b∈B
s∈S
a∈A

[
y[b, s, a]

(∑
θ∈Θ

P (s, θ|b)u(a, θ)

)]
−
∑
i∈N

∑
b∈B
s∈S
θ∈Θ

xi[b, s, θ]P (s, θ|b) (22a)

=
∑
b∈B
s∈S
a∈A

[
µ[b]π[b, s, a]

(∑
θ∈Θ

P (s, θ|b)u(a, θ)

)]
−
∑
i∈N

∑
b∈B
s∈S
θ∈Θ

µ[b]γi[b, s, θ]P (s, θ|b) (22b)

= U(µ,γ, b) (22c)
> U(µ⋆,γ⋆, b⋆) (22d)

=
∑
b∈B
s∈S
a∈A

[
µ⋆[b]π⋆[b, s, a]

(∑
θ∈Θ

P (s, θ|b)u(a, θ)

)]
−
∑
i∈N

∑
b∈B
s∈S
θ∈Θ

µ⋆[b]γ⋆i [b, s, θ]P (s, θ|b)

(22e)

=
∑
b∈B
s∈S
a∈A

[
y⋆[b, s, a]

(∑
θ∈Θ

P (s, θ|b)u(a, θ)

)]
−
∑
i∈N

∑
b∈B
s∈S
θ∈Θ

x⋆i [b, s, θ]P (s, θ|b) , (22f)

which contradicts the assumption on the optimality of (x⋆,y⋆,µ⋆, z⋆). This concludes the proof.

D PROOFS OMITTED FROM SECTION 4

Before proving the formal results of Section 4, we introduce a useful preliminary result.
Lemma D.1. For any uncorrelated mechanism (γ,π) ∈ U , there exists an equivalent uncorrelated
mechanism (γ′,π′) ∈ U which is truthful, i.e., such that for any i ∈ N and si ∈ Si, φ◦

i (si|γ′
i) = si

and such that
U◦(γ,π) = U◦(γ′,π′).

Proof. Let (γ′,π′) be such that

γ′i[si, θ] = γi[φ
◦
i (si|γi)] ∀i ∈ N , ∀si ∈ Si, ∀θ ∈ Θ,

and
π′[s, a] = π[φ◦(s|γ), a] ∀s ∈ S, ∀a ∈ A.
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First, we show that for any agent i ∈ N , (b◦i (γi), φ
H
i ) is a best response to γ′, where φH

i is the
honest signal reporting function such that φH

i (si) = si for all si ∈ Si. Fix i ∈ N . Assume, by
contradiction, that there exists b′i ∈ Bi and φi : Si → Si such that∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b′i) γ′i[φi(si), θ]− ci(b′i) >
∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b◦i (γi)) γ
′
i[si, θ]− ci(b◦i (γi)),

and let φ′
i : Si → Si such that φ′

i(si) = φ◦(φ(si)|γi). Then, we have that∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b◦i (γi)) γi[φ
◦
i (si|γi), θ]− ci(b◦i (γi))

=
∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b◦i (γi)) γ
′
i[si, θ]− ci(b◦i (γi))

<
∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b′i) γ′i[φi(si), θ]− ci(b′i)

=
∑
si∈Si

∑
θ∈Θ

P(i) (si, θ|b′i) γi[φ′
i(si), θ]− ci(b′i),

which contradicts the assumption that b◦i (γi), φ◦
i (·|γi) is a best response of agent i to scoring rule γi.

To conclude the proof, we show that U◦(γ,π) = U◦(γ′,π′). Notice that

U◦(γ,π) =
∑
s∈S

∑
θ∈Θ

P (s, θ|b◦(γ))

[(∑
a∈A

π[φ◦(s|γ), a]u(a, θ)

)
−
∑
i∈N

γi[φ
◦
i (si|γi), θ]

]
(24a)

=
∑
s∈S

∑
θ∈Θ

P (s, θ|b◦(γ))

[(∑
a∈A

π′[s, a]u(a, θ)

)
−
∑
i∈N

γ′i[si, θ]

]
(24b)

= U◦(γ′,π′). (24c)

This concludes the proof.

Now we are ready to prove Theorem 4.1.
Theorem 4.1. There exists a game in which no uncorrelated mechanism is optimal.

Proof. Consider a game in which N = {1, 2}, Bi = {b▷, b◁} and Si = {s▷, s◁}, ∀i ∈ N . The
action costs are specified such that c1(b▷) = c2(b▷) = c2(b◁) = 0, c1(b◁) = K ≤ 1/24. The set of
states of nature is Θ = {θ1, θ2}. The joint probability distributions are defined as in the following
tables:

P (θ, s|b▷b▷) s▷s▷ s▷s◁ s◁s▷ s◁s◁
θ1 1/8 1/8 1/8 1/8
θ2 1/8 1/8 1/8 1/8

P (θ, s|b▷b◁) s▷s▷ s▷s◁ s◁s▷ s◁s◁
θ1 1/8 1/8 1/8 1/8
θ2 1/8 1/8 1/8 1/8

P (θ, s|b◁b▷) s▷s▷ s▷s◁ s◁s▷ s◁s◁
θ1 1/6 1/6 1/12 1/12
θ2 1/12 1/12 1/6 1/6

P (θ, s|b◁b◁) s▷s▷ s▷s◁ s◁s▷ s◁s◁
θ1 1/3 0 0 1/6
θ2 1/6 0 0 1/3

Optimal Uncorrelated Mechanism. As a first step, we characterize the set of optimal uncorrelated
mechanisms for this game. Since the cost of both actions for agent 2 is 0, we can trivially set γ2[s, θ] =
0 for each s ∈ S2 and θ ∈ Θ to minimize payments without affecting the incentive compatibility
of the mechanism. As a direct implication of Lemma D.1, there exists an optimal uncorrelated
mechanism which incentivizes truthful signal reporting, thus, in order to find an optimal uncorrelated
mechanism, we can enumerate among the optimal uncorrelated mechanisms incentivizing each action
profile while incentivizing each agent to report truthfully her information. Furthermore, it is easy to
see that, when players report their information truthfully, signal profiles (b▷b▷) and (b▷b◁) induce the
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same posteriors over the states of nature. The same holds for signal profile (b◁b▷) and (b◁b◁). Thus,
we have that:

max
π

∑
a∈A
s∈S
θ∈Θ

π[s, a]P (s, θ|b▷b▷)u(a, θ) = max
π

∑
a∈A
s∈S
θ∈Θ

π[s, a]P (s, θ|b▷b◁)u(a, θ) = 1/2 (25)

max
π

∑
a∈A
s∈S
θ∈Θ

π[s, a]P (s, θ|b◁b▷)u(a, θ) = max
π

∑
a∈A
s∈S
θ∈Θ

π[s, a]P (s, θ|b◁b◁)u(a, θ) = 2/3. (26)

Moreover, fixing the action profile b ∈ B that we want to incentivize, for any scoring rule γ1 ∈
[0,M ]Bi×Si×Θ, consider the incentive compatibility constraints (recall that we can trivially ignore
the incentive compatibility constraints of agent 2 by setting γ2 = 0 as discussed above):∑
s∈S1

∑
θ∈Θ

γ1[s, θ]P(1) (s, θ|b1)−γ1[φ(b1, s), θ]P(1) (s, θ|ϕ(b1)) ≥ c1(b1)−c1(ϕ(b1)) ∀ϕ, φ ∈ Φ1,

while the expected utility of the principal when the agents behave honestly is

U◦(b) = max
π

{∑
s∈S

∑
θ∈Θ

∑
a∈A

π[s, a]P (s, θ|b)u(a, θ)

}
−
∑
s∈S1

∑
θ∈Θ

P(1) (s, θ|b1) γ1[s, θ].

Noticing that, for any two action profiles b, b′ ∈ B, if b1 = b′1 then the incentive compatibility
does not change and that, by equations (25) and (26), U(b▷b▷) = U(b▷b◁) and U(b◁b▷) = U(b◁b▷),
it follows that the problem can be reduced to a single-agent problem in which we have to decide
whether to incentivize action b▷ or b◁ to agent 1. Hence, let us fix, without loss of generality, b◁ as
the action played by 2.

Since action b▷ has a cost c1(b▷) = 0 for agent 1, it can be trivially incentivized by setting γ1 = 0,
guaranteeing a utility for action profile (b▷, b◁) of U(b▷b◁) = 1/2.

Consider, instead, action profile b◁b◁. Given a scoring rule γ1, the expected payment received by
agent 1 is:

F1(b◁b◁,γ) =
∑
s∈S1

∑
θ∈Θ

γ1[s, θ]P(1) (s, θ|b◁)

=
1

3
[γ1[s▷, θ1] + γ1[s◁, θ2]] +

1

6
[γ1[s◁, θ1] + γ1[s▷, θ2]] .

Similarly, consider the deviation (ϕ, φ) ∈ Φ1 such that ϕ(b◁) = b▷ and φ(b◁, s) = s for any s ∈ S1.
Then:

Fϕ,φ
1 (b◁b◁,γ) =

∑
s∈S1

∑
θ∈Θ

γ1[s, θ]P(1) (s, θ|b▷)

=
1

4
[γ1[s▷, θ1] + γ1[s◁, θ2] + γ1[s◁, θ1] + γ1[s▷, θ2]] .

The associated incentive compatibility constraint is, therefore:

1

12
[γ1[s▷, θ1] + γ1[s◁, θ2]]−

1

12
[γ1[s▷, θ2] + γ1[s◁, θ1]] ≥ K.

Repeating the same procedure for all possible deviation functions, we obtain the following incentive
compatibility constraints:

1

12
[γ1[s▷, θ1] + γ1[s◁, θ2]]−

1

12
[γ1[s▷, θ2] + γ1[s◁, θ1]] ≥ K

1

3
γ1[s◁, θ2] +

1

6
γ1[s◁, θ1]−

1

6
γ1[s▷, θ1]−

1

3
γ1[s▷, θ2] ≥ K

1

3
γ1[s▷, θ2] +

1

6
γ1[s▷, θ1]−

1

6
γ1[s◁, θ1]−

1

3
γ1[s◁, θ2] ≥ K

1

6
[γ1[s▷, θ1] + γ1[s◁, θ2]]−

1

6
[γ1[s◁, θ1] + γ1[s▷, θ2]] ≥ 0.
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Thus, it is easy to check that in order to minimize the expected payment, while satisfying the above
constraints it is enough to select a scoring rule such that

γ1[s▷, θ1] = γ1[s◁, θ2] = 6K

γ1[s▷, θ2] = 0

γ1[s◁, θ1] = 0.

Since K ≤ 1/24 by assumption, we have that the optimal utility achievable by using an uncorrelated
mechanism is 2/3− 4K.

Optimal Correlated Mechanism. Consider the correlated mechanism (µ,γ,π) defined such that
µ[b◁b◁] = ε and µ[b◁b▷] = 1− ε for some ε = 12K/5 = 1/10. Similarly to before, since all actions
for agent 2 have cost 0, we can be incentive compatible by setting γ2 = 0. The scoring rule for agent
1 is defined as:

γ1[b, s, θ] = 0 ∀b ∈ {b▷b▷, b▷b◁, b◁b▷} , ∀s ∈ S, ∀θ ∈ Θ

γ1[b◁b◁, s, θ1] = 0 ∀s ∈ S \ {s▷s▷}
γ1[b◁b◁, s, θ2] = 0 ∀s ∈ S \ {s◁s◁}

γ1[b◁b◁, s▷s▷, θ1] = γ1[b◁b◁, s◁s◁, θ2] = 1.

Let π be such that π ∈ argmaxπ′ {U(µ,γ,π′)} Simple calculations show that
U(µ,γ,π) = 2/3− 2ε/3. It is possible to show that the above mechanism is incentive compatible.
In particular, the expected payment received by agent 1 is:

F1(µ,γ) =
2

3
ε.

Consider any two deviation functions (ϕ, φ) ∈ Φi such that ϕ(b◁) = b▷. The expected payment
received by agent 1 when she deviates according to (ϕ, φ) is:

Fϕ,φ
i (µ,γ) = ε/4 ∀φ.

Similarly, for any two deviation functions (ϕ, φ) ∈ Φi such that ϕ(b◁) = b◁, the expected payment is

Fϕ,φ
1 (µ,γ) =


ε/3 if φ(b◁, s▷) = s▷ ∧ φ(b◁, s◁) = s▷
2ε/3 if φ(b◁, s▷) = s▷ ∧ φ(b◁, s◁) = s◁
0 if φ(b◁, s▷) = s◁ ∧ φ(b◁, s◁) = s▷
ε/3 otherwise.

Thus, the incentive compatibility constraints that are yielded are:

5ε

12
≥ K

ε

3
≥ 0,

which are trivially satisfied since, by assumption, ε = 12K/5 > 0. Hence, the expected utility of the
principal is

U(µ,γ,π) =
2

3
− 2

3
ε =

2

3
− 2

3

12

5
K >

2

3
− 4K.

Any optimal correlated mechanism (µ⋆,γ⋆,π⋆) achieves a utility U(µ⋆,γ⋆,π⋆) ≥ U(µ,γ,π) >
2/3− 4K, hence we can conclude that in this game there does not exist an uncorrelated mechanism
which is optimal for optimization problem (1). This concludes the proof

Theorem 4.2. Assume there for each i ∈ N , θ ∈ Θ and bi ∈ Bi, there exists a probability distribution
ψi(·|bi) ∈ ∆(Si) such that ∀b ∈ B, ∀s ∈ S and ∀θ ∈ Θ, P (s, θ|b) = p[θ]

∏
i∈N ψi(si|bi, θ). Then,

there exists a mechanism (γ,π) ∈ U that is optimal among correlated mechanisms.
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Proof. Let (µ⋆,γ⋆,π⋆) ∈ C be an optimal correlated mechanism. For each b ∈ B, let G(b) be such
that

G(b) =
∑
s∈S

∑
θ∈Θ

P (s, θ|b)

[∑
a∈A

π⋆[b, s, a]u(a, θ)−
∑
i∈N

γ⋆i [b, s, θ]

]
.

It is easy to see that it holds U(µ⋆,γ⋆,π⋆) =
∑

b∈B µ
⋆[b]G(b). Let b̄ ∈

argmaxb∈B:µ⋆[b]>0 {G(b)} be the action profile yielding optimal utility to the principal and define
the uncorrelated scoring rule γ = (γ1, ...,γn) be such that

γi[si, θ] =
1∑

b−i∈B−i
µ⋆[(b̄i, b−i)]

∑
b−i∈B−i

s−i∈S−i

µ⋆[(b̄i, b−i)]
∏

j∈N\{i}

ψj(sj |bj , θ)γ⋆i [(b̄i, b−i), (si, s−i), θ].

Furthermore, let π be such that π[s, a] = π⋆[b̄, s, a]. It is possible to show that for each i ∈ N ,
(b̂i, φ

H
i ) is a best response for agent i to uncorrelated mechanism (γ,π), where φH

i : Si → Si is the
honest signal reporting policy, i.e., such that φH

i (si) = si for all si ∈ Si. In particular, notice that
the expected payment received by agent i when the principal commits to mechanism (µ⋆,γ⋆,π⋆)
can be written as

Fi(µ
⋆,γ⋆) =

∑
bi∈Bi
si∈Si
θ∈Θ

P(i) (si, θ|bi)

 ∑
b−i∈B−i

s−i∈S−i

µ⋆[(bi, b−i)]
∏

j∈N\{i}

ψj(sj |bj , θ)γ⋆i [(bi, b−i), (si, s−i), θ]


and similarly, for each (ϕ, φ) ∈ Φi,

Fϕ,φ
i (µ⋆,γ⋆) =

∑
bi∈Bi
si∈Si
θ∈Θ

P(i) (si, θ|ϕ(bi))

 ∑
b−i∈B−i

s−i∈S−i

µ⋆[(bi, b−i)]
∏

j∈N\{i}

ψj(sj |bj , θ)γ⋆i [(bi, b−i), (φ(bi, si), s−i), θ]

 .

For any b′i ∈ Bi and φ′
i : Si → Si, let (ϕ, φ) ∈ Φi be the deviation functions such that ϕ(bi) = bi for

all bi ∈ Bi\{b̄i}, ϕ(b̄i) = b′i, φ(bi, si) = si for all bi ∈ Bi\{b̄i} and si ∈ Si, and φ(b̄i, si) = φ′
i(si)

for all si ∈ Si. Then, by substituting the definition of γi into the expressions for Fi and Fϕ,φ
i , we

can write the following:

Fi(µ
⋆,γ⋆)− Fϕ,φ

i (µ⋆,γ⋆)

=

 ∑
b−i∈B−i

µ⋆[(b̄i, b−i)]

 ∑
si∈Si

∑
θ∈Θ

[
P(i)

(
si, θ|b̄i

)
γi[si, θ]− P(i) (si, θ|b′i) γi[φ′

i(si), θ]
]

(27a)

≥
∑

b−i∈B−i

µ⋆[(b̄i, b−i)]Ci(b̄i, b
′
i), (27b)

where 27b follows from incentive compatibility of (µ⋆,π⋆,γ⋆). By dividing for∑
b−i∈B−i

µ⋆[(b̄i, b−i)], we get∑
si∈Si

∑
θ∈Θ

[
P(i)

(
si, θ|b̄i

)
γi[si, θ]− P(i) (si, θ|b′i) γi[φ′

i(si), θ]
]
≥ Ci(bi, b

′
i),

which proves that (b̄i, φH
i ) is a best response of agent i to mechanism (γ,π) ∈ U . The result follows

by noting that U◦(γ,π) = G(b̄) ≥ U(µ⋆,γ⋆,π⋆).

E PROOFS OMITTED FROM SECTION 6

Lemma 6.1. The clean event Ep holds with probability at least 1− δ
2 .
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Proof. By Hoeffding bound, we have that

P (|ζb[s, θ]− P (s, θ|b) | ≤ ν) ≥ 1− δ

K
,

∀b ∈ B, ∀s ∈ S, ∀θ ∈ Θ, ∀t ∈ ∪bTp(b), and similarly,

P
(
|σ(i)

bi,si
[θ]− P(i) (θ|bi, si) | ≤ ϱ

)
≥ 1− δ

K
,

∀i ∈ N , ∀bi ∈ Bi, ∀si ∈ Si ∀θ ∈ Θ, ∀t ∈ ∪bTp(b).
Moreover, let b be such that |Tp(b)| ≥ κ. Notice that for any i ∈ N and si ∈ Si,

|T (i)
p (bi, si)| =

∑
b′∈B:
b′i=bi

∑
t∈Tp(b′)

1[s̃ti = si].

Therefore, |T (i)
p (bi, si)| can be seen as the sum of a sequence of Bernoulli random variables with

parameter P(i) (si|bi). Additionally,

E
[
|T (i)

p (bi, si)|
]
=
∑
b′∈B:
b′i=bi

∑
t∈Tp(b′)

P(i) (si|bi) ≥ ι
∑
b′∈B:
b′i=bi

|Tp(b′)| ≥ ι|Tp(b)|. (28)

By applying Chernoff bound together with Equation(28), we get that ∀b ∈ B, ∀i ∈ N , ∀si ∈ Si,
∀t ∈ ∪bTp(b),

P
(
|T (i)

p (bi, si)| ≥
1

2
ι|Tp(b)|

)
≥ 1− exp

(
− ι

2|Tp(b)|
2

)
≥ 1− exp

(
− ι

2

2
κ

)
≥ 1− exp

(
− ln(2K/δ)

289m2

4ℓ2

)
≥ 1− δ

K

The Lemma follows by applying a union bound with K = 6|B|T |S|nm.

Lemma 6.2. Assume the clean event Ep holds. Then, at the end of the execution of ESTIMATEPROB,
for each b ∈ B it holds that |Tp(b)| ≤ max {N1, κ} .

Proof. The prove this Lemma, we show that for any b ∈ B, if |Tp(b)| = max {Ni, κ}, then the
condition |Tp(b)| < N1 ∨ ϱ̄ > d

13m is not satisfied, and hence the while loop in Algorithm 2
terminates. To prove this, we show that if |T (b)| = max {Ni, κ}, then ϱ̄ ≤ d

13m .

Fix b ∈ B. Since the clean event Ep holds, and since, by assumption, |Tp(b)| ≥ κ we have that

|T (i)
p (bi, si) | ≥

1

2
ι|Tp(b)| ≥

1

2
ικ ∀i ∈ N , ∀si ∈ Si. (29)

Furthermore, let (i, si, s′i) ∈ argmini∈N ,si,s′i∈Si
||σ(i)

bi,si
− σ

(i)
bi,s′i
||22. By definition, we have that

d = ||σ(i)
bi,si
−σ

(i)
bi,s′i
||22. By definition of ϱ̄ and by assumption that the clean event holds, for all θ ∈ Θ

we have that
|P (θ|bi, si)− P (θ|bi, s′i) | ≤ |σ

(i)
bi,si

[θ]− σ(i)
bi,s′i

[θ]|+ 2ϱ̄,

and thus ∑
θ∈Θ

|P (θ|bi, si)− P (θ|bi, s′i) |2 ≤ ||σ
(i)
bi,si
− σ

(i)
bi,s′i
||22 + 4mϱ̄2 = d+ 4mϱ̄2.
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Rearranging, we get the following chain of inequalities:

d ≥
∑
θ∈Θ

|P (θ|bi, si)− P (θ|bi, s′i) |2 − 4mϱ̄2 (30a)

≥ ℓ− 4mϱ̄+ 13mϱ̄− 13mϱ̄ (30b)
= ℓ− 17mϱ̄+ 13mϱ̄ (30c)

= ℓ− 17m

√
ln(2K/δ)

2|T (i)
p (bi, si)|

+ 13mϱ̄ (30d)

≥ ℓ− 17m

√
ln(2K/δ)

ικ
+ 13mϱ̄ (30e)

= ℓ− 17m

√
2ιℓ2

289m2
+ 13mϱ̄ (30f)

≥ ℓ
(
1−
√
2ι
)
+ 13mϱ̄ (30g)

≥ 13mϱ̄, (30h)

where Equation (30b) follows from the definition of ℓ and from the fact that ϱ̄ ≤ 1 whenever
|Tp(b)| ≥ κ and Equation (30d) follows by definition of ϱ̄. Rearranging, we get ϱ̄ ≤ d

13m , which
concludes the proof.

F PROOFS OMITTED FROM SECTION 8

Lemma F.1. Let (x⋆,y⋆,µ⋆, z⋆) be an optimal solution to LP(P, C, 0). Then, if clean events Ep and
Ed hold, there exists z′ such that (x⋆,y⋆,µ⋆, z′) is a feasible solution for LP(ζ,Λ, 2M |S|mν + χ).

Proof. Let z′ be such that z′i[bi, b
′
i, si] = z⋆i [bi, b

′
i, si] +M |S−i|mν, for all i ∈ N , bi, b′i ∈ Bi and

si ∈ Si. Trivially, (x⋆,y⋆,µ⋆, z′) satisfy constraints (2d) and (2e) of LP(ζ,Λ, 2M |S|mν + χ).
Consider now constraint (2c). By feasibility of (x⋆,y⋆,µ⋆, z⋆), we have that

z⋆i [bi, b
′
i, si] ≥ fi(x⋆

i |bi, b′i, si, s′i,P) (31a)

=
∑

b−i∈Bi

s−i∈S−i

θ∈Θ

x⋆i [(bi, b−i), (s
′
i, s−i), θ]P ((si, s−i), θ|(b′i, b−i)) (31b)

≥
∑

b−i∈Bi

s−i∈S−i

θ∈Θ

x⋆i [(bi, b−i), (s
′
i, s−i), θ]

(
ζ(b′i,b−i)[(si, s−i), θ]− ν

)
(31c)

≥ fi(x⋆
i |bi, b′i, si, s′i, ζ)−M |S−i|mν. (31d)

Rearranging and substituting the definition of z′, we get z′i[bi, b
′
i, si] ≥ fi(x

⋆
i |bi, b′i, si, s′i, ζ), thus

proving that constraint (2c) is satisfied.
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Let us consider constraint (2b). By feasibility of (x⋆,y⋆,µ⋆, z⋆), for any i ∈ N and bi, b′i ∈ Bi, the
following holds:∑

b−i∈B−i

µ⋆[(bi, b−i)]Ci(bi, b
′
i) ≤

∑
s∈Si

[fi(x
⋆
i |bi, si,P)− z⋆i [bi, b′i, s]] (32a)

=
∑

b−i∈Bi

s∈S
θ∈Θ

[x⋆i [(bi, b−i, s, θ)]P (s, θ|(bi, b−i))]−
∑
si∈Si

z⋆i [bi, b
′
i, si] (32b)

≤
∑

b−i∈Bi

s∈S
θ∈Θ

[
x⋆i [(bi, b−i, s, θ)]

(
ζ(bi,b−i)[s, θ] + ν

)]
−
∑
si∈Si

z⋆i [bi, b
′
i, si] (32c)

=M |S|mν +
∑
si∈Si

[fi(x
⋆
i |bi, si, ζ)− z′i[bi, b′i, si] +M |S−i|mν] (32d)

= 2M |S|mν +
∑
si∈Si

[fi(x
⋆
i |bi, si, ζ)− z′i[bi, b′i, si]] . (32e)

Furthermore, notice that∑
b−i∈B−i

µ⋆[(bi, b−i)]Ci(bi, b
′
i) ≥

∑
b−i∈B−i

µ⋆[(bi, b−i)] (Λi(bi, b
′
i)− χ) (33a)

≥
∑

b−i∈B−i

[µ⋆[(bi, b−i)]Λi(bi, b
′
i)]− χ. (33b)

Putting all together, we get∑
si∈Si

[fi(x
⋆
i |bi, si, ζ)− z′i[bi, b′i, si]] ≥

∑
b−i∈B−i

[µ⋆[(bi, b−i)]Λi(bi, b
′
i)]− (χ+ 2M |S|mν) ,

which gives the desired result.

Lemma 8.1. Assume clean events Ec and Ep hold. Let (µ,γ,π) be an optimal solution to LP(ζ,Λ, ε),
where ε = 2M |S|mν + χ. Then, letting λ = 2M |S|m (k + 1) (ν + χ), it holds that:

Fi(µ,γ)− Fϕ,φ
i (µ,γ) ≥

∑
b∈B

µ̃[b]Ci(bi, ϕ(bi))− λ ∀i ∈ N , ∀(ϕ, φ) ∈ Φi.

Proof. Let (x̃t, ỹt, µ̃t, z̃t) be the vectors from which mechanism (µ̃t, γ̃t, π̃t) is obtained, i.e., an
optimal solution to LP(ζ,Λ, ε). Fix an agent i ∈ N and a deviation (ϕ, φ) ∈ Φi. Notice that:

Fi(µ̃
t, γ̃t) =

∑
b∈B
s∈S
θ∈Θ

µ̃t[b]γ̃ti [b, s, θ]P (s, θ|b) (34a)

≥
∑
b∈B
s∈S
θ∈Θ

[
µ̃t[b]γ̃ti [b, s, θ]ζb[s, θ]

]
−M |S|mν (34b)

=
∑
b∈B
s∈S
θ∈Θ

[
x̃ti[b, s, θ]ζb[s, θ]

]
−M |S|mν (34c)

=
∑
bi∈Bi

∑
si∈Si

fi(x̃
t
i|bi, si, ζ)−M |S|mν. (34d)
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Similarly,

Fϕ,φ
i (µ̃t, γ̃t) =

∑
b∈B
s∈S
θ∈Θ

µ̃t[b]γ̃ti [b, (φ(bi, si), s−i), θ]P (s, θ|(ϕ(bi), b−i)) (35a)

≤
∑
b∈B
s∈S
θ∈Θ

[
µ̃t[b]γ̃ti [b, (φ(bi, si), s−i), θ]ζ(ϕ(bi),b−i)[s, θ]

]
+M |S|mν (35b)

=
∑
b∈B
s∈S
θ∈Θ

[
x̃ti[b, (φ(bi, si), s−i), θ]ζ(ϕ(bi),b−i)[s, θ]

]
+M |S|mν (35c)

=
∑
bi∈Bi

∑
si∈Si

[
fi(x̃

t
i|bi, ϕ(bi), si, φ(bi, si))

]
+M |S|mν (35d)

≤
∑
bi∈Bi

∑
si∈Si

[∑
si∈Si

z̃ti [bi, ϕ(bi), si]

]
+M |S|mν. (35e)

Thus, by feasibility of (x̃t, ỹt, µ̃t, z̃t), we have that:

Fi(µ̃
t, γ̃t)− Fϕ,φ

i (µ̃t, γ̃t) ≥
∑
bi∈Bi

[∑
si∈Si

fi(x̃
t
i|bi, si, ζ)− z̃ti [bi, ϕ(bi), si]

]
− 2M |S|mν (36a)

≥
∑
b∈B

µ̃t[b]Λi(bi, ϕ(bi))− 2M |S|m (k + 1) ν − kχ (36b)

≥
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi))− 2M |S|m (k + 1) ν − (k + 1)χ (36c)

≥
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi))− 2M |S|m (k + 1) (ν + χ). (36d)

This concludes the proof.

Lemma F.2. Assume clean events Ep and Ed hold. Then, at the end of the execution of ESTI-
MATEPROB, it holds that∑

θ∈Θ

[
P(i) (θ|bi, si)− P(i) (θ|bi, s′i)

]2
≥ 9mϱ ∀i ∈ N , bi ∈ Bi, si ∈ Si.

Proof. Fix i ∈ N , bi ∈ Bi and si ∈ Si. Notice that

|ξ(i)bi,si
[θ]− ξ(i)bi,s′i

[θ]| ≤ |P(i) (θ|bi, si)− P(i) (θ|bi, s′i) |+ 2ϱ,

and thus

||ξ(i)bi,si
− ξ

(i)
bi,s′i
||22 ≤

∑
θ∈Θ

[
|P(i) (θ|bi, si)− P(i) (θ|bi, s′i) |+ 2ϱ

]2
(37a)

≤ 4mϱ2 +
∑
θ∈Θ

[
P(i) (θ|bi, si)− P(i) (θ|bi, s′i)

]2
, (37b)

where the second inequality follows from triangle inequality. Hence, rearranging, we get∑
θ∈Θ

[
P(i) (θ|bi, si)− P(i) (θ|bi, s′i)

]2
≥ ||ξ(i)bi,si

− ξ
(i)
bi,s′i
||22 − 4mϱ2 ≥ 13mϱ− 4mϱ2 ≥ 9mϱ,

where the third inequality follows from ϱ ≤ 1 since ϱ ≤ d/13m. This concludes the proof.

Lemma F.3. For each i ∈ N and bi ∈ Bi, let γ̂bi
i be an uncorrelated scoring rule defined according

to Equation (7). Then, assuming clean events Ep and Ed are verified, the following holds∑
θ∈Θ

P(i) (θ|si, bi)
[
γ̂bii [si, θ]− γ̂bii [s′i, θ]

]
≥ ℓ

18
∀i ∈ N , ∀bi ∈ Bi, ∀si, s′i ∈ Si.
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Proof. Fix i ∈ N , bi ∈ Bi and si, s′i ∈ Si. Then, we can state the following:∑
θ∈Θ

P(i) (θ|si, bi) γ̂bii [si, θ] =
∑
θ∈Θ

P(i) (θ|si, bi)
[
ξ
(i)
bi,si

[θ] +Hi −
1

2
||ξ(i)bi,si

||22
]

(38a)

= Hi −
1

2
||ξ(i)bi,si

||22 +
∑
θ∈Θ

P(i) (θ|si, bi) ξ(i)bi,si
[θ] (38b)

≥ Hi −
1

2
||ξ(i)bi,si

||22 +
∑
θ∈Θ

(
ξ
(i)
bi,si

[θ]− ϱ
)
ξ
(i)
bi,si

[θ] (38c)

= Hi +
1

2
||ξ(i)bi,si

||22 − ϱ (38d)

Furthermore,∑
θ∈Θ

P(i) (θ|si, bi) γ̂bii [s′i, θ] =
∑
θ∈Θ

P(i) (θ|si, bi)
[
ξ
(i)
bi,s′i

[θ] +Hi −
1

2
||ξ(i)bi,s′i

||22
]

(39a)

= Hi −
1

2
||ξ(i)bi,s′i

||22 +
∑
θ∈Θ

P(i) (θ|si, bi) ξ(i)bi,s′i
[θ] (39b)

≤ Hi −
1

2
||ξ(i)bi,s′i

||22 +
∑
θ∈Θ

(
ξ
(i)
bi,si

[θ] + ϱ
)
ξ
(i)
bi,s′i

[θ] (39c)

= Hi −
1

2
||ξ(i)bi,s′i

||22 + ϱ+
∑
θ∈Θ

ξ
(i)
bi,si

[θ]ξ
(i)
bi,s′i

[θ]. (39d)

Combining the two results, we get∑
θ∈Θ

P(i) (θ|si, bi)
[
γ̂bii [si, θ]− γ̂bii [s′i, θ]

]
(40a)

≥ +
1

2
||ξ(i)bi,si

||22 +
1

2
||ξ(i)bi,s′i

||22 −
∑
θ∈Θ

ξ
(i)
bi,si

[θ]ξ
(i)
bi,s′i

[θ]− 2ϱ (40b)

=
1

2

∑
θ∈Θ

[(
ξ
(i)
bi,si

[θ]
)2
− 2ξ

(i)
bi,si

[θ]ξ
(i)
bi,s′i

[θ] +
(
ξ
(i)
bi,s′i

[θ]
)2]
− 2ϱ (40c)

=
1

2

∑
θ∈Θ

[
ξ
(i)
bi,si

[θ]− ξ(i)bi,s′i
[θ]
]2
− 2ϱ (40d)

≥ 1

2

∑
θ∈Θ

[
P(i) (θ|bi, si)− P(i) (θ|bi, s′i)

]2
− 2mϱ2 − 2ϱ (40e)

≥ ℓ

2
− 4mϱ (40f)

≥ ℓ

2
− 4

9
ℓ (40g)

=
ℓ

18
(40h)

where Equation (40e) follows from the fact that, since clean event Ep holds, ||ξ(i)bi,si
− ξ

(i)
bi,s′i
||22 ≥∑

θ∈Θ

[
P(i) (θ|bi, si)− P(i) (θ|bi, s′i)

]2 − 4mϱ2, Equation (40f) follows from the definition of ℓ and
Equation (40g) follows from Lemma F.2. This concludes the proof.

Lemma F.4. Assume the clean events Ep and Ed hold. Let γ′ = (γ′
1, ...,γ

′
n) be such that

γ′
i[b, s, θ] = βγbii [si, θ] + (1− β)γ̂bii [si, θ],

where β = (45 + ℓ̄)/(18ρ+ 45 + ℓ̄). Then, the following holds

Fi(µ̃
t,γ′)− Fϕ,φ

i (µ̃t,γ′) ≥
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi)) +
ρℓ

65
∀i ∈ N , ∀(ϕ, φ) ∈ Φi.
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Proof. Fix an agent i ∈ N and a deviation policy (ϕ, φ) ∈ Φi. With a slight abuse of notation, let
γ′i[bi, si, θ] = βγbii [si, θ] + (1− β)γ̂bii [si, θ]. Then, we can write the following:

Fi(µ̃
t,γ′)− Fϕ,φ

i (µ̃t,γ′)

=
∑
b∈B:

ϕ(bi )̸=bi

µ̃t[b]
∑
si∈Si
θ∈Θ

[
P(i) (si, θ|bi) γ′i[bi, si, θ]− P(i) (si, θ|ϕ(bi)) γ′i[bi, φ(bi, si), θ]

]
︸ ︷︷ ︸

A⃝

+
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]

∑
si∈Si
θ∈Θ

P(i) (si, θ|bi) γ′i[bi, si, θ]− P(i) (si, θ|bi) γ′i[bi, φ(bi, si), θ]


︸ ︷︷ ︸

B⃝

. (41a)

Let us analyze the two terms separately.

Term A⃝. First, notice that, by Assumption 1, it holds that

∑
b∈B:

ϕ(bi )̸=bi

µ̃t[b]

∑
si∈Si
θ∈Θ

P(i) (si, θ|bi) γbii [si, θ]− P(i) (si, θ|ϕ(bi)) γbii [φ(bi, si), θ]


≥

∑
b∈B:

ϕ(bi )̸=bi

µ̃t[b]Ci(bi, ϕ(bi)) + ρ. (42a)

Furthermore, noticing that Ci(bi, ϕ(bi)) ≤ 1 and that, by definition, γ̂bii [si, θ] ≤ 3/2 for all i ∈ N ,
bi ∈ Bi, si ∈ Si and θ ∈ Θ, we can write the following

∑
b∈B:

ϕ(bi )̸=bi

µ̃t[b]

∑
si∈Si
θ∈Θ

[
P(i) (si, θ|bi) γ̂bii [si, θ]− P(i) (si, θ|ϕ(bi)) γ̂bii [φ(bi, si), θ]

]
− Ci(bi, ϕ(bi))


≥

∑
b∈B:

ϕ(bi )̸=bi

−5

2
µ̃t[b]. (43a)

Rearranging, we get

∑
b∈B:

ϕ(bi )̸=bi

µ̃t[b]

∑
si∈Si
θ∈Θ

P(i) (si, θ|bi) γ̂bii [si, θ]− P(i) (si, θ|ϕ(bi)) γ̂bii [φ(bi, si), θ]


≥

∑
b∈B:

ϕ(bi )̸=bi

µ̃t[b]

[
Ci(bi, ϕ(bi))−

5

2

]
, (44a)

By linearity and by definition of γ′, we get

A⃝ ≥
∑
b∈B:

ϕ(bi) ̸=bi

µ̃t[b]

[
Ci(bi, ϕ(bi)) + βρ− 5

2
(1− β)

]
(45a)

=
∑
b∈B:

ϕ(bi) ̸=bi

µ̃t[b]

[
Ci(bi, ϕ(bi)) +

ρℓ̄

18ρ+ 45 + ℓ̄

]
(45b)

≥
∑
b∈B:

ϕ(bi) ̸=bi

µ̃t[b]

[
Ci(bi, ϕ(bi)) +

ρℓ

65

]
, (45c)

where Equation (45b) follows from the definition of β and Equation (45c) follows from ρ < 1
(w.l.o.g.), ℓ̄ ≤ 2 (by the stopping condition of Algorithm 2) and ℓ ≤ ℓ̄ (since clean event Ep holds).
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Term B⃝. By assumption 1, it holds that

∑
b∈B:

ϕ(bi)=bi

µ̃t[b]

∑
si∈Si
θ∈Θ

P(i) (si, θ|bi) γbii [si, θ]− P(i) (si, θ|bi) γbii [φ(bi, si), θ]


=

∑
b∈B:

ϕ(bi)=bi

µ̃t[b]
∑
si∈Si

P(i) (si|bi)
∑
θ∈Θ

[
P(i) (θ|bi, si)

[
γbii [si, θ]− γbii [φ(bi, si), θ]

]]
(46a)

≥
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]
∑
si∈Si

P(i) (si|bi)
∑
θ∈Θ

[
P(i) (θ|bi, si)

[
γbii [si, θ]− γbii [si, θ]

]]
(46b)

= 0. (46c)

Furthermore, by Lemma F.3,

∑
b∈B:

ϕ(bi)=bi

µ̃t[b]

∑
si∈Si
θ∈Θ

P(i) (si, θ|bi) γ̂bii [si, θ]− P(i) (si, θ|bi) γ̂bii [φ(bi, si), θ]


=

∑
b∈B:

ϕ(bi)=bi

µ̃t[b]
∑
si∈Si

P(i) (si|bi)
∑
θ∈Θ

[
P(i) (θ|bi, si)

[
γ̂bii si, θ]− γ̂

bi
i [φ(bi, si), θ]

]]
(47a)

≥
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]
∑
si∈Si

P(i) (si|bi)
ℓ

18
(47b)

=
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]
ℓ

18
(47c)

(47d)

Also in this case, by linearity and by definition of γ′, we get

B⃝ ≥
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]

(
Ci(bi, ϕ(bi)) + (1− β) ℓ

18

)
(48a)

=
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]

[
Ci(bi, ϕ(bi)) +

ρℓ

18ρ+ 45 + ℓ̄

]
, (48b)

≥
∑
b∈B:

ϕ(bi)=bi

µ̃t[b]

[
Ci(bi, ϕ(bi)) +

ρℓ

65

]
(48c)

where to obtain Equation (48b) we substituted the definition of β and Equation (48c) follows from
ρ < 1 (w.l.o.g.) and ℓ̄ ≤ 2 (by the stopping condition of Algorithm 2).

Putting all together. By substituting Equations (45c) and (48c) into Equation 41a, we get

Fi(µ̃
t,γ′)− Fϕ,φ

i (µ̃t,γ′) ≥
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi)) +
ρℓ

65
.

This concludes the proof.

Lemma 8.2. Assume clean events Ec, Ep hold. If mechanism (µt,γt,πt) is chosen according to
Algorithm 3, then it is IC, i.e., if satisfies Equation (1b) of optimization problem (1).
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Proof. Fix an agent i ∈ N and a deviation policy ϕ, φ ∈ Φi. By linearity, we have that

Fi(µ̃
t,γt)− Fϕ,φ

i (µ̃t,γt) = α
[
Fi(µ̃

t, γ̃t)− Fϕ,φ
i (µ̃t, γ̃t)

]
+ (1− α)

[
Fi(µ̃

t,γ′)− Fϕ,φ
i (µ̃t,γ′)

]
(49a)

≥
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi))− αλ+ (1− α)ρℓ
65

(49b)

=
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi)) +
λρℓ− λρℓ+ 8mϱρℓ/65

ρℓ̄+ 65λ
(49c)

≥
∑
b∈B

µ̃t[b]Ci(bi, ϕ(bi)), (49d)

where Equation (49b) follows from Lemmas 8.1 and F.4, Equation (49c) follows from the definition
of α in Algorithm 3 and Equation (49d) follows from the fact that, since clean event Ep holds, ℓ ≥ ℓ.
This concludes the proof.

G PROOF OF THEOREM 5.1

Assume clean events Ec and Ep hold. Notice that by a union bound on the results of Lemma 6.1 and
Lemma 7.1, this happens with probability at least 1− δ. From the definition of regret we have that

RT =
∑
t∈Tc

[
U(µ⋆,γ⋆,π⋆)− U(µt,γt,πt)

]
︸ ︷︷ ︸

RT
c

+
∑
t∈Tu

[
U(µ⋆,γ⋆,π⋆)− U◦(γt,πt)

]
︸ ︷︷ ︸

RT
u

.

Let us analyze the two terms separately.

Term RT
u . Consider the rounds Tu in which the principal committed to an uncorrelated mechanism.

Since during the commit phase the principal uses only correlated mechanisms, we have that

Tu =
∑
b∈B

Tp(b) + Td.

By Lemma 6.2 and Lemma 7.2, we have that

|Tu| ≤ |B|max{N1, κ}+ 2nk3N2 + nk2N3 = |B|max{T 2/3, κ}+ 2nk3 log(T ) + nk2T 2/3,

where κ = 289
2 m2 ln(2K/δ) 1

ι2ℓ2 . Then, since for all t, by definition of U we have that
U(µ⋆,γ⋆,π⋆)− U◦(γt,πt) ≤ nM + 1, we can bound the term RT

u as

RT
u ≤ (nM + 1)

(
|B|max{T 2/3, κ}+ nk3l2 log(T ) + nk3l2T 2/3

)
.

Term RT
c . The only rounds in which the principal commits to correlated mechanisms are those of

the commit phase. Let t ∈ Tc. By definition of γt and by linearity of U , we have that

RT
c ≤ α

∑
t∈Tc

[
U(µ⋆,γ⋆,π⋆)− U(µt, γ̃t,πt)

]
+ (1− α)T (nM + 1). (50)

Furthermore, notice that we can bound 1− α as

(1− α) = 65λ

ρℓ̄+ 65λ
≤ 65

ρℓ
2M |S|m(k + 1)(ν + χ).

Recalling that, by Lemma B.8

χ ≤ 2kl2M

√
ln(2nk2/δ)

2N3
+
kl2M

2N2
= 2kl2M

√
ln(2nk2/δ)

2T 2/3
+
kl2M

T
,
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and by definition

ν = max
b∈B

{√
ln(12|B|T |S|nm/δ)

2|Tp(b)|

}
≤
√

ln(12|B|T |S|nm/δ)
2T 2/3

,

we get

(1− α) ≤ 780

ρℓ
M2|S|mk2l2

(√
ln(12|B|T |S|nm/δ)

2T 2/3
+

1

T

)
. (51)

Let us now consider the term U(µ⋆,γ⋆,π⋆). Let (x⋆,y⋆,µ⋆, z⋆) be an optimal solution to
LP(P, C, 0) and let (xt,yt,µt, zt) be the optimal solution to LP(ζ,Λ, ε) from which mechanism
(µt, γ̃t,πt) was obtained. Furthermore, we recall that the objective function of LP(ζ,Λi, ε) is

Ū(x,y,µ, z) =
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
ζb[s, θ]

[∑
a∈A

y[b, s, a]u(a, θ)

]
−
∑
i∈N

xi[b, s, θ]

]
.

Then, we can write the following

U(µ⋆,γ⋆,π⋆) =
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
µ⋆[b]P (s, θ|b)

[∑
a∈A

π⋆[b, s, a]u(a, θ)

]
−
∑
i∈N

γ⋆i [b, s, θ]

]

≤
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
µ⋆[b]ζb[s, θ]

[∑
a∈A

π⋆[b, s, a]u(a, θ)

]
−
∑
i∈N

γ⋆i [b, s, θ]

]
+ 2M |S|mnν

=
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
ζb[s, θ]

[∑
a∈A

y⋆[b, s, a]u(a, θ)

]
−
∑
i∈N

x⋆i [b, s, θ]

]
+ 2M |S|mnν

= Ū(x⋆,y⋆,µ⋆,π⋆) + 2M |S|mnν,
where the first inequality follows since, given that clean event holds, |P (s, θ|b)− ζb[s, θ]| ≤ ν. In a
similar way, it holds that

U(µt, γ̃t,πt) =
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
µt[b]P (s, θ|b)

[∑
a∈A

πt[b, s, a]u(a, θ)

]
−
∑
i∈N

γ̃ti [b, s, θ]

]

≥
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
µt[b]ζb[s, θ]

[∑
a∈A

πt[b, s, a]u(a, θ)

]
−
∑
i∈N

γ̃ti [b, s, θ]

]
− 2M |S|mnν

=
∑
b∈B

∑
s∈S

∑
θ∈Θ

[
ζb[s, θ]

[∑
a∈A

yt[b, s, a]u(a, θ)

]
−
∑
i∈N

xti[b, s, θ]

]
− 2M |S|mnν

= Ū(xt,yt,µt,π⋆)− 2M |S|mnν,
Furthermore, we recall that, by Lemma F.1, (x⋆,y⋆,µ⋆, z⋆) is a feasible solution to LP(ζ,Λ, ε),
while, by definition, (xt,yt,µt, zt) is optimal for LP(ζ,Λ, ε). Thus, Ū(xt,yt,µt,π⋆) ≥
Ū(x⋆,y⋆,µ⋆,π⋆), which yields∑
t∈Tc

[
U(µ⋆,γ⋆,π⋆)− U(µt, γ̃t,πt)

]
≤
∑
t∈Tc

[
Ū(x⋆,y⋆,µ⋆,π⋆)− Ū(xt,yt,µt,π⋆) + 4M |S|mnν

]
≤
∑
t∈Tc

4M |S|mnν

≤ 4M |S|mnT 2/3
√
ln(12|B|T |S|nm/δ)

Combining the above results, we get

RT
c ≤ α

∑
t∈Tc

[
U(µ⋆,γ⋆,π⋆)− U(µt, γ̃t,πt)

]
+ (1− α)T (nM + 1)

≤ 1564

ρℓ
M3|S|mnk2

(
T 2/3

√
ln(12|B|T |S|nm/δ) + 1

)
.
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Putting all together. Hence, the final regret bound is

RT = RT
c +RT

u

≤ 1567

ρℓ
M3|B||S|mnk3l2

(√
ln(12|B|T |S|nm/δ) + 1

)
max{T 2/3, κ}+ (nM + 1) log(T ),

which gives the result.
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