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Plug-and-Play (PnP) Image Recovery

Goal: Recover N-pixel image x0 from M�N noisy linear
measurements

y = Ax0 +w, with


x0 : true image

A : linear measurement operator

w : AWGN with precision γw.

Although deep nets can be trained to predict x0 from y, they
require a huge number of (x0,y) pairs for training
may not generalize well to a different A operators

Plug-and-play (PnP) algorithms iteratively call a deep-net
image denoiser, which can be trained . . .

from very few images, using patches
independently of A, facilitating generalization to any A

Challenge: In PnP, the denoiser input-error statistics are
iteration-dependent and difficult to characterize. For example,
they are generally non-white and non-Gaussian

Thus, it’s not clear how to train the denoiser for optimal
performance in PnP!

Typically the denoiser is trained with AWGN
Gilton et al. recently proposed to train the denoiser at the PnP
equilibrium point, but it’s A-dependent and thus may not generalize

Approximate Message Passing (AMP) Algorithms

AMP is a family of PnP algorithms that have remarkable
properties for large random A:

The denoiser input-error is white and Gaussian with
predictable variance
When used with an MMSE denoiser, AMP algs converge to
the MMSE estimate of x0 from y

Challenge: In most image recovery problems, A does not
satisfy AMP’s randomness assumptions

AMP for Fourier-Structured Matrix A =MF
Idea: Recover the wavelet coefficients c0, not pixels x0

Why? The resulting model becomes y = Bc0 +w, where
the masked Fourier-wavelet B =MFΨT is approximately
block-diagonal with sufficiently randomizing blocks

With appropriate algorithm design, the denoiser input-error will
be white and Gaussian in each wavelet subband

Prior work includes Whitened VAMP [PS et al. ’17],
Variable-Density (VD)-AMP [Millard et al. ’20], based on
wavelet thresholding, & Denoising-VD-AMP [Metzler et al. ’21]

Note: These algorithms provide well-characterized errors, but a
non-standard denoiser is required to exploit them!

Proposed Algorithm: Denoising GEC (D-GEC)

Our approach builds on the Generalized Expectation Consistent
(GEC) algorithm from Fletcher et al. ’16:

require: f1(·), f2(·), and gdiag(·)
initialize: r1,γ1
for t = 0, 1, 2, . . .
x̂1← f1(r1,γ1) linear estimation
η1← Diag(gdiag(∇f1(r1,γ1)))−1γ1
γ2← η1 − γ1
r2← Diag(γ2)

−1(Diag(η1)x̂1 − Diag(γ1)r1) Onsager

x̂2← f2(r2,γ2) denoising
η2← Diag(gdiag(∇f2(r2,γ2)))−1γ2
γ1← η2 − γ2
r1← Diag(γ1)

−1(Diag(η2)x̂2 − Diag(γ2)r2) Onsager

GEC is essentially Peaceman-Rachford ADMM with adaptive
vector-valued stepsizes γ1 and γ2

The GEC linear estimation stage is preconditioned LS:

f1(r,γ) =
(
γwB

HB + Diag(γ)
)−1(

γwB
Hy + Diag(γ)r

)
which can be implemented using the conjugate gradient method

∇fi denotes the Jacobian, and gdiag(·) averages its diagonal
across different wavelet subbands. D-GEC approximates the
Jacobian using a Monte-Carlo approach [Ramani et al. ‘08]

Proposed Denoiser: corr+corr

In the wavelet domain, the denoiser input-error is white and
Gaussian in each subband, but with subband-dependent
inverse-variances γ that change with the iterations

Thus, in the pixel-domain, the error is correlated Gaussian
with known covariance matrix ΨDiag(γ)−1ΨT

How should we inform the denoiser about (Ψ,γ)?

We propose to add an extra input channel to an arbitrary
denoiser (e.g., DnCNN) and feed it with an independent
realization of N (0,ΨDiag(γ)−1ΨT)

The denoiser learns to extract the statistics (Ψ,γ) from e
and use them productively for denoising
We call it “corr+corr”

Example PSNRs for depth-1 2D wavelet transform:√
γ−1 white DnCNN corr+corr DnCNN genie DnCNN

[48,47,6,19] 25.54 32.32 32.79
[10,40,23,14] 33.08 35.84 36.47

[13,7,8,10] 36.93 37.53 37.90
[10,10,10,10] 38.03 37.92 38.21

uniform [0-50,0-50,0-50,0-50] 32.18 35.34 —

White trained unif [0-50] and & corr+corr unif [0-50,0-50,0-50,0-50]

MRI Image Recovery Experiments

We consider both single coil measurements y =MFx0 +w
as well as multi-coil measurements

y = [AT
1 , . . . ,A

T
C]

Tx +w with Ac =MF Diag(sc)

where {sc} are Biot-Savart-law coil-sensitivity maps

Experimental setup:
M is a variable density mask
w is AWGN giving pre-mask SNR = 40 dB
Ψ is 2D Haar wavelet transform with D = 4 levels ⇒ 13 subbands
PnP-PDS uses bias-free white-noise DnCNN and careful tuning
D-VDAMP uses the modified DnCNN denoiser from that paper
D-GEC uses bias-free corr+corr DnCNN
training data: 62 000 48x48 patches from 70 training images of the
Stanford 2D FSE dataset

Avg performance on 10 Stanford 2D FSE 352×352 test images:
C = 1 coil C = 4 coils

M/N = 1/4 M/N = 1/8 M/N = 1/4 M/N = 1/8
method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PnP-PDS 45.97 0.978 41.28 0.957 47.98 0.992 43.81 0.977
D-VDAMP 44.61 0.974 38.43 0.901 n/a n/a n/a n/a

D-GEC 47.64 0.982 42.42 0.959 50.80 0.997 46.67 0.991

Example single-coil recoveries and error maps at M/N = 1/4:

Standard deviation of D-GEC denoiser-input error vs iteration:

Example wavelet-error QQ plots at iteration 10:

D-GEC PnP-PDS


