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Plug-and-Play (PnP) Image Recovery

m Goal: Recover N-pixel image xy from M << N noisy linear
measurements
X . true iImage

y = Axy+ w, with ¢ A : linear measurement operator

w : AWGN with precision .

m Although deep nets can be trained to predict &y from y, they

m require a huge number of (xy, y) pairs for training
m may not generalize well to a different A operators

m Plug-and-play (PnP) algorithms iteratively call a deep-net
iImage denoiser, which can be trained ...

m from very few images, using patches
m independently of A, facilitating generalization to any A

m Challenge: In PnP, the denoiser input-error statistics are
iteration-dependent and difficult to characterize. For example,
they are generally non-white and non-Gaussian

m [hus, it's not clear how to train the denoiser for optimal
performance in PnP!

m Typically the denoiser is trained with AWGN
m Gilton et al. recently proposed to train the denoiser at the PnP
equilibrium point, but it's A-dependent and thus may not generalize

Approximate Message Passing (AMP) Algorithms

m AMP is a family of PnP algorithms that have remarkable
properties for large random A:

m | he denoiser input-error is white and Gaussian with
predictable variance

s When used with an MMSE denoiser, AMP algs converge to
the MMSE estimate of x, from y

m Challenge: In most image recovery problems, A does not
satisfy AMP’s randomness assumptions

AMP for Fourier-Structured Matrix A = M F’

m ldea: Recover the wavelet coefficients ¢y, not pixels x
s Why? The resulting model becomes y = Bejy + w, where
the masked Fourier-wavelet B = M F®¥' is approximately
block-diagonal with sufficiently randomizing blocks

m With appropriate algorithm design, the denoiser input-error will
be white and Gaussian in each wavelet subband

m Prior work includes Whitened VAMP [PS et al. '17],
Variable-Density (VD)-AMP [Millard et al. '20], based on
wavelet thresholding, & Denoising-VD-AMP [Metzler et al. '21]

m Note: These algorithms provide well-characterized errors, but a
non-standard denoiser is required to exploit them!
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Proposed Algorithm: Denoising GEC (D-GEC)

Our approach builds on the Generalized Expectation Consistent

(GEC) algorithm from Fletcher et
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MRI Image Recovery Experiments

m We consider both single coil measurements y = M Fxy+ w

as well as multi-coil measurements

al. '16:

initialize: r, v
fort=0,1,2,...
x < fi(r,7)

Yo<—Th — 7N

o < fore, ¥o)

Y1 < T — 72

require: fi(-), fo(-), and gdiag()

1, < Diag(gdiag(V fi(r1,m))) " 'm

1y <— Diag(y2) ' (Diag(m) @, —

1, <— Diag(gdiag(V fa(r2,%2))) '

11 < Diag(y;) ' (Diag(n:) @y —

y=I[A],...,All'z +w with A.= MF Diag(s,)

where {s.} are Biot-Savart-law coil-sensitivity maps

m Experimental setup:

linear estimation m M is a variable density mask
m w is AWGN giving pre-mask SNR = 40 dB
m W is 2D Haar wavelet transform with D = 4 levels = 13 subbands
: m PnP-PDS uses bias-free white-noise DnCNN and careful tuning
Dlag(’yl)rl) Onsager m D-VDAMP uses the modified DnCNN denoiser from that paper
o m D-GEC uses bias-free corr+corr DnCNN
denoising m training data: 62000 48x48 patches from 70 training images of the

Stanford 2D FSE dataset

m Avg performance on 10 Stanford 2D FSE 352x 352 test images:

Diag(~2)rs) Onsager

m GEC is essentially Peaceman-Rachford ADMM with adaptive
vector-valued stepsizes ~y; and -

m [he GEC linear estimation stage is preconditioned LS:

. ~1 .
fi(r,7) = (v.B"B + Diag(y))  (,B"y + Diag(y)r)
which can be implemented using the conjugate gradient method

m V f; denotes the Jacobian, and gdiag(-) averages its diagonal

across different wavelet subband

C' =1 coll C' =4 coils
M/N =1/4 M/N =1/8 M/N =1/4 M/N =1/8
method |PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
PnP-PDS 45.97 0.978 41.28 0.957 47.98 0.992 43.81 0.977
D-VDAMP | 44,61 0.974 38.43 0901 n/a n/a  n/a n/a
D-GEC | 47.64 0.982 42.42 0.959 50.80 0.997 46.67 0.991

m Example single-coil recoveries and error maps at M /N = 1/4:

PNP-PDS

D-VDAMP

s. D-GEC approximates the

Jacobian using a Monte-Carlo a

Proposed Denoiser: corr+corr

bproach [Ramani et al. ‘08|

PSNR: 43.85 dB PSNR: 41.48 dB PSNR: 42.07 dB
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m In the wavelet domain, the denoiser input-error is white and
Gaussian in each subband, but with subband-dependent

inverse-variances 7y that change

m [ hus, in the pixel-domain, the error is correlated Gaussian

with the iterations

with known covariance matrix W Diag(~) W'

= How should we inform the denoiser about (¥, ~)?

m We propose to add an extra input channel to an arbitrary
denoiser (e.g., DNCNN) and feed it with an independent

realization of N (0, W Diag(~y)~

= [he denoiser learns to extract the statistics (¥, ~) from e
and use them productively for denoising

g We call it “corr+corr”

m Example PSNRs for depth-1 2D

m Standard deviation of D-GEC denoiser-input error vs iteration:
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m Example wavelet-error QQ plots
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wavelet transform:
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