Matching Pl

Saurav K. Shastri, Rizwan Ahmad, Christopher A. Metzler, Philip Schniter

Plug-and-Play (PnP) Image Recovery

Goal: Recover N-pixel image \boldsymbol{x}_0 from $M \ll N$ noisy linear measurements

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_0 + oldsymbol{w}, \,\, {
m with}$$

 \boldsymbol{x}_0 : true image

A : linear measurement operator

- $oldsymbol{w}$: AWGN with precision γ_w .
- Although deep nets can be trained to predict $oldsymbol{x}_0$ from $oldsymbol{y}$, th • require a huge number of $(\boldsymbol{x}_0, \boldsymbol{y})$ pairs for training
 - may not generalize well to a different A operators
- Plug-and-play (PnP) algorithms iteratively call a deep-net image denoiser, which can be trained ...
 - from very few images, using patches
 - independently of A, facilitating generalization to any A
- Challenge: In PnP, the denoiser input-error statistics are iteration-dependent and difficult to characterize. For examp they are generally non-white and non-Gaussian
- Thus, it's not clear how to train the denoiser for optimal performance in PnP!
 - Typically the denoiser is trained with AWGN
 - Gilton et al. recently proposed to train the denoiser at the PnP equilibrium point, but it's A-dependent and thus may not generalize

Approximate Message Passing (AMP) Algorithms

- AMP is a family of PnP algorithms that have remarkable properties for large random A:
 - The denoiser input-error is white and Gaussian with predictable variance
 - When used with an MMSE denoiser, AMP algs converge the MMSE estimate of \boldsymbol{x}_0 from \boldsymbol{y}
- Challenge: In most image recovery problems, A does not satisfy AMP's randomness assumptions

AMP for Fourier-Structured Matrix A = MF

- Idea: Recover the wavelet coefficients c_0 , not pixels x_0
 - Why? The resulting model becomes $y = Bc_0 + w$, when the masked Fourier-wavelet $oldsymbol{B} = oldsymbol{M} oldsymbol{F} oldsymbol{\Psi}^{ op}$ is approximate block-diagonal with sufficiently randomizing blocks
- With appropriate algorithm design, the denoiser input-error be white and Gaussian in each wavelet subband
- Prior work includes Whitened VAMP [PS et al. '17], Variable-Density (VD)-AMP [Millard et al. '20], based on wavelet thresholding, & Denoising-VD-AMP [Metzler et al.
- Note: These algorithms provide well-characterized errors, bit non-standard denoiser is required to exploit them!

	G THE OHIO STATE UNIVERSITY OF MARYLAND (SU	O THE DENOISER NeurIPS 2021 Deep Inverse Workshop upported by NSF 1955587, NIH 135489, NIH 029957)
	Proposed Algorithm: Denoising GEC (D-GEC)	MRI Image Recovery Experiments
r	Our approach builds on the Generalized Expectation Consistent (GEC) algorithm from Fletcher et al. '16:	We consider both single coil measurements $oldsymbol{y} = oldsymbol{M} oldsymbol{F} oldsymbol{x}_0 + oldsymbol{w}$ as well as multi-coil measurements
or	require: $f_1(\cdot)$, $f_2(\cdot)$, and $gdiag(\cdot)$ initialize: r_1, γ_1	$oldsymbol{y} = [oldsymbol{A}_1^T, \dots, oldsymbol{A}_C^T]^T oldsymbol{x} + oldsymbol{w}$ with $oldsymbol{A}_c = oldsymbol{M} oldsymbol{F}$ Diag $(oldsymbol{s}_c)$ where $\{oldsymbol{s}_c\}$ are Biot-Savart-law coil-sensitivity maps
they	for $t = 0, 1, 2,$ $\widehat{\boldsymbol{x}}_1 \leftarrow \boldsymbol{f}_1(\boldsymbol{r}_1, \boldsymbol{\gamma}_1)$ linear estimation $\boldsymbol{\eta}_1 \leftarrow \text{Diag}(\text{gdiag}(\nabla \boldsymbol{f}_1(\boldsymbol{r}_1, \boldsymbol{\gamma}_1)))^{-1} \boldsymbol{\gamma}_1$ $\boldsymbol{\gamma}_2 \leftarrow \boldsymbol{\eta}_1 - \boldsymbol{\gamma}_1$	 Experimental setup: <i>M</i> is a variable density mask <i>w</i> is AWGN giving pre-mask SNR = 40 dB <i>Ψ</i> is 2D Haar wavelet transform with <i>D</i> = 4 levels ⇒ 13 subbands
	$\mathbf{r}_2 \leftarrow \operatorname{Diag}(\mathbf{\gamma}_2)^{-1}(\operatorname{Diag}(\mathbf{\eta}_1)\widehat{\mathbf{x}}_1 - \operatorname{Diag}(\mathbf{\gamma}_1)\mathbf{r}_1)$ Onsager	 PnP-PDS uses bias-free white-noise DnCNN and careful tuning D-VDAMP uses the modified DnCNN denoiser from that paper D-GEC uses bias-free corr+corr DnCNN
4	$ \begin{array}{c c} \widehat{\boldsymbol{x}}_2 \leftarrow \boldsymbol{f}_2(\boldsymbol{r}_2, \boldsymbol{\gamma}_2) & \text{denoising} \\ \boldsymbol{\eta}_2 \leftarrow \text{Diag}(\text{gdiag}(\nabla \boldsymbol{f}_2(\boldsymbol{r}_2, \boldsymbol{\gamma}_2)))^{-1} \boldsymbol{\gamma}_2 \\ \boldsymbol{\gamma}_1 \leftarrow \boldsymbol{\eta}_2 - \boldsymbol{\gamma}_2 \end{array} $	 training data: 62000 48x48 patches from 70 training images of the Stanford 2D FSE dataset
	$\boldsymbol{r}_1 \leftarrow \boldsymbol{\eta}_2 - \boldsymbol{\eta}_2$ $\boldsymbol{r}_1 \leftarrow \operatorname{Diag}(\boldsymbol{\gamma}_1)^{-1}(\operatorname{Diag}(\boldsymbol{\eta}_2)\boldsymbol{\hat{x}}_2 - \operatorname{Diag}(\boldsymbol{\gamma}_2)\boldsymbol{r}_2)$ Onsager	Avg performance on 10 Stanford 2D FSE 352×352 test images: C = 1 coil $C = 4$ coils
nple,	GEC is essentially Peaceman-Rachford ADMM with adaptive vector-valued stepsizes $m{\gamma}_1$ and $m{\gamma}_2$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	The GEC linear estimation stage is preconditioned LS:	D-VDAMP 44.61 0.974 38.43 0.901 n/a n/a n/a n/a D-GEC 47.64 0.982 42.42 0.959 50.80 0.997 46.67 0.991
	$\boldsymbol{f}_1(\boldsymbol{r}, \boldsymbol{\gamma}) = \left(\gamma_w \boldsymbol{B}^{H} \boldsymbol{B} + \operatorname{Diag}(\boldsymbol{\gamma})\right)^{-1} \left(\gamma_w \boldsymbol{B}^{H} \boldsymbol{y} + \operatorname{Diag}(\boldsymbol{\gamma}) \boldsymbol{r}\right)$ which can be implemented using the conjugate gradient method	Example single-coil recoveries and error maps at $M/N = 1/4$:
ze	• ∇f_i denotes the Jacobian, and $gdiag(\cdot)$ averages its diagonal	Target D-GEC D-VDAMP PnP-PDS Image: D-GEC Image: D-VDAMP Image: D-VDAMP Image: D-VDAMP
	across different wavelet subbands. D-GEC approximates the Jacobian using a Monte-Carlo approach [Ramani et al. '08]	PSNR: 43.85 dB PSNR: 41.48 dB PSNR: 42.07 dB
	Proposed Denoiser: corr+corr	-0.050 -0.025 0.000 0.025 0.050
ge to	 In the wavelet domain, the denoiser input-error is white and Gaussian in each subband, but with subband-dependent inverse-variances γ that change with the iterations Thus, in the pixel-domain, the error is correlated Gaussian with known covariance matrix Ψ Diag(γ)⁻¹Ψ^T 	
	- How should we inform the denoiser about $(oldsymbol{\Psi},oldsymbol{\gamma})$?	Standard deviation of D-GEC denoiser-input error vs iteration: True Coarse True Horizontal True Vertical True Diagonal Predicted Coarse Predicted Horizontal Predicted Vertical Predicted Diagonal
nere ately	 We propose to add an extra input channel to an arbitrary denoiser (e.g., DnCNN) and feed it with an independent realization of <i>N</i>(0, Ψ Diag(γ)⁻¹Ψ^T) The denoiser learns to extract the statistics (Ψ, γ) from <i>e</i> and use them productively for denoising We call it "corr+corr" 	Scale 4 Scale 4 Scale 3 Scale 3 Scale 2 Scale 2 Scale 1 Scale 1 Sca
or will I. '21] but a	Example PSNRs for depth-1 2D wavelet transform: $\sqrt{\gamma^{-1}}$ white DnCNN corr+corr DnCNN genie DnCNN [48,47,6,19] 25.54 32.32 32.79 [10,40,23,14] 33.08 35.84 36.47 [13,7,8,10] 36.93 37.53 37.90 [10,10,10,10] 38.03 37.92 38.21 uniform [0-50,0-50,0-50,0-50] 32.18 35.34 — White trained unif [0-50] and & corr+corr unif [0-50,0-50,0-50,0-50] 32.18 35.34 —	Example wavelet-error QQ plots at iteration 10: Vertical, Scale 2 Or trical, Sc

